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The project analyzes the hardware utilization of a SAT solver. The analysis is done
using statistical profiling and tracing the following processor events: total cycles, re-
source stall cycles, level 2 cache hits and level 2 cache misses. The HPC Toolkit is used
to perform the analysis on top of the PAPI library. The used benchmark is a part of
the SAT competition 2009 application benchmark.

The analysis has additionally been done on two well known solver MiniSAT and Pre-
coSAT and unveiled similar utilization problems as in the project SAT solver. Its result
is that the utilization can be increased for example by improving the clause representa-
tion, using the prefetch unit of the CPU and maintaining frequently used data structures
lazily. The combination of the suggested improvements speed up the project SAT solver
by 60%. The runtime improvement is mainly caused by fewer main memory and level 2
cache accesses.
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1 Introduction

The importance of Satisfiability Testing (SAT) increased in recent years. The develop-
ment of SAT solvers made them a powerful tool for solving problems of various fields
very fast. There are even domains where SAT solvers are more powerful than specific
problem solver. Some of the fields where SAT solvers can be applied are hardware and
software verification, bioinformatics and attacking cryptographic algorithms [3].

Since SAT solver work in the domain of propositional logic, they can only handle a
certain form of input, namely a formula containing clauses in conjunctive normal form
(CNF). Any problem that can be represented in a propositional formula can be solved by
a SAT solver. Thus, it first needs to be converted into the SAT domain and afterwards
the gained result from the SAT solver needs to be transformed back in the original
domain. Due to the fact that SAT is NP complete [10] any problem that can be solved
in NP, can also be solved using a SAT solver.

The size of the encoded problems increased with the performance of the SAT solvers.
Today an encoded problem can contain more than ten million variables and over 32
million clauses [3]. These sizes force SAT solvers to handle huge amounts of data. For fast
maintenance fast access data structures need to be provided. Handling the huge problem
size requires also a good algorithm. Many improvements have been introduced in recent
years. Major algorithm improvements are the introduction of the CDCL algorithm [16]
and the two-watched literal propagation [17]. These improvements have been compared
by annual SAT-competitions and SAT-races [3].

In recent years the hardware changed from single core CPUs to multi-core CPUs and
the growth of the CPU frequency almost stalled. Thus, the performance of sequential
SAT solvers will not improve due to increasing frequency. The implementation of the
solvers need to exploit the features of the underlying hardware to gain the best result.
The interaction of modern SAT solvers, such as the winner of the last SAT competitions
PrecoSAT [6] (2009) and the well known solver MiniSAT [13], and recent hardware has
not yet been analyzed in detail. Modern high performance CPUs offer a huge range to
increase the performance of applications like large caches, translation lookaside buffers
(TLB), a prefetch unit or branch prediction units [2] [1]. Only the first component has
been considered in analysis for SAT solver [9].

This work studies the memory hierarchy utilization of a CDCL-based SAT solver.
Thus, only the branch prediction unit is excluded directly from the research. TLBs are
only concerned for future work. The solver uses similar data structures as MiniSAT.
The measurement is done using sample-based profiling by the HPC Toolkit [22]. During
the measurement the following processor events are traced: total cycles, resource stall
cycles, level 2 cache misses and level 2 cache hits. The used benchmark consists of 40
instances of the application track of the SAT competition 2009 with an overall runtime
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of almost 10 hours. During the measurement read and write accesses to the clauses of
the formula are traced to retrieve an access statistic.

Basically adapting the algorithm will gain more runtime improvement than adapting
the implementation to the hardware. Still the implementation needs to be suited to
modern hardware to achieve a reasonable performance. The major goal of this work is
to improve the hardware utilization, especially the usage of the cache and the overall
runtime of the solver. Measurements of PrecoSAT and MiniSAT unveiled that both
systems solve the benchmark faster although their level 2 cache miss rate is lower and
higher than the original implementation of the project solver (compare section 5.1).
Thus this value does not necessarily indicate better hardware utilization.

After the analysis of the project solver improvement opportunities are suggested.
These improvements include restructuring the clause representation and prefetching the
clauses of watch lists and applying a more intelligent watch list maintenance. The listed
improvements do not change the processing order of the algorithm. This property is
very useful if the SAT solver is applied to new problem instances. The effect of this
improvement remains for any input instance. The combination of these improvements
improves the runtime of the SAT solver further, because their positive impacts sum up.
The combination of the best improvements made the project SAT solver twice as fast.

The remaining chapters are structured as follows. Satisfiability Testing and the project
SAT solvers are introduced in chapter 2. In chapter 3 the memory hierarchy of modern
CPUs is described. Afterwards the measurement and useable frameworks are explained
in chapter 4. The next chapter 5 analyzes the measured data and the implementation
of the SAT solver. In chapter 6 improvements for higher hardware utilization and their
results are presented. Finally, chapter 7 summarizes and concludes the work and gives
an outlook on further improvements.
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2 Satisfiability Testing

This chapter introduces the theory around the solver and the algorithm. It also includes
implementation details and gives an overview of the components that are used in the
project solver.

2.1 Propositional Logic

Satisfiability testing is done in the domain of propositional logic. Since SAT Solvers
handle only one specific input form only the necessary terms are introduced.

2.1.1 Syntax

The input formula for a SAT solver is formulated in Conjunctive Normal Form (CNF).

Definition 1. A propositional variable is a binary variable and is called atom.

Definition 2. A literal is either an atom a or a negated atom ¬a.

Definition 3. The polarity of a literal is negative if the literal is a negated atom. Oth-
erwise it is positive.

Definition 4. A clause is a disjunction of literals without duplicates.

Definition 5. A formula in Conjunctive Normal Form is a conjunction of clauses.

The solvers variables are represented by integers. Positive numbers refer to positive
literals and negative numbers to negative literals. Clauses are written using square
brackets like C= [¬1,¬2,3]. The conjunction of clauses is notated using diamond brack-
ets like F=〈 [2,¬1], [1,3]〉. The following formula will be used as an example during this
chapter.

F=〈 [¬1, 2], [¬4, 5], [¬1, ¬4, 6], [¬2, ¬5, ¬6], [1, 3] 〉

The five clauses in the formula will be named according to their position in the formula
from C1 for the first clause to C5 for the last clause.
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2.1.2 Semantics

Solving a formula is the task of finding a mapping for each variable to a truth-value such
that the application of this mapping to the formula evaluates to true. This mapping is
called assignment.

Definition 6. An assignment α to a set V of Boolean variables is a mapping
α:V→{false, true}. It is represented by a sequence of literals. The literals in this

sequence evaluate to true.

Definition 7. A literal is satisfied if it is an atom that is mapped to true or if it is a
negated atom that is mapped to false.

Definition 8. A clause is satisfied if one of its literals is satisfied. An empty clause is
unsatisfied.

Definition 9. A formula is satisfied if all its clauses are satisfied. An empty formula is
always satisfied.

The interpretation of a formula F by an assignment α is written as F|α. It is applied
using the following rules:

• All clauses that contain a satisfied literal are removed.

• All unsatisfied literals are removed from the remaining clauses.

A clause that contains only a single literal under the current assignment, is called unit
clause or just unit. A binary clause is a clause with two literals left under the current
assignment.

An assignment for the example formula is α = { 1, 2, 3, 4, 5, 6}. This assignment
satisfies all positive literals of the formula. According to the above rule C1, C2, C4 and
C5 are removed. In clause C3 all literals are removed, so that it becomes empty and
according to Definition 8 and 9 this assignment does not satisfy the formula.

Definition 10. If an assignment exists that evaluates the formula to true this formula
is satisfiable. If there is no such assignment the formula is unsatisfiable.

During the search the formula is not fixed. Some clauses are added to it. They are
obtained by resolution. A clause that is the result of a resolution step is called resolvent.
Due to Lemma 1 adding resolvents to the formula does not change the result of the
search.

Definition 11. Resolving two clauses leads to a new clause that contains all literals of
both clauses. In case a literal occurs positive in the one clause and negative in the other
one, all occurrences of the according variable are removed from the new clause. This
removal rule is applied only once in a resolution step.

Lemma 1. The satisfiability of a formula does not change, if a resolvent is added. [7, p.
138]

In the given example C3 and C4 can be resolved. The resolvent is [¬1, ¬4, 6] ⊗ [¬2,
¬5, ¬6] = [ ¬1, ¬2, ¬4, ¬5] where ⊗ is the resolution operand.
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2.2 Satisfiability Problem

The task of a SAT Solver is to show whether a given input formula is satisfiable. Most
state of the art solvers also give a satisfying assignment if one exists. The naive approach
checks all possible total assignments and stops if a satisfying assignment is found. This
schema results in 2n possible mappings for a formula with n variables. Modern SAT
Solvers use partial assignments to avoid the huge arising number of total assignments.

Definition 12. A partial assignment is an assignment that does not contain all variables
of the given formula.

Definition 13. A variable that is not assigned by a partial assignment is undefined.

The extension of a partial assignment α by a literal l will be written αl

2.3 Modern SAT Solving Procedures

Solving the satisfiability problem hes been done using a search tree. Next, the Davis
Putnam Logeman Loveland (DPLL) algorithm has been introduced [11]. The Conflict
Driven Clause Learning (CDCL) algorithm is an improvement of the DPLL algorithm.
Both algorithms can be illustrated using a depth first search in a binary tree. The
following sections describe the three algorithms.

2.3.1 Search Tree

The search tree is a binary tree. Each edge is labeled by a literal. The literals on the
branch from a node to the root represent a partial assignment. The level of a node is
the number of literals in its branch to the root node.

If a node does not have child nodes it can be expanded by a variable that is not on
its branch. The one edge to the first child node is labeled with the positive atom and
the other edge with the negative one. The most intuitive way of assigning variables is
choosing the same variable for the same tree depth.

A branch can be closed if the formula contains a clause whose literals occur negated
on this branch. If a branch contains all variables and cannot be closed, the literals on
this branch are equal to a satisfying assignment for the formula. An incomplete search
tree for the example formula is given in Figure 2.1.

In this search tree the fully expanded branches can be closed by the clauses C3 and C4.
To illustrate the advantages of partial assignments it is shown that the tree expansion
can stopped at a higher level. If the clause C=[ ¬1, ¬2, ¬4, ¬5] is added to the formula,
the expansion of the very left branch is stopped at depth four, because this clause is
unsatisfied with this partial assignment. This example shows that clauses cut the tree.
A clause with n literals in a formula F with the variables V cuts 2|V |−n leafs of the tree.
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1 ¬1

¬22

3 ¬3

4 ¬4

5 ¬5

¬66

Figure 2.1: Extendable Search Tree.

2.3.2 Davis Putnam Logeman Loveland

The DPLL algorithm is explained in algorithm 1 using a recursive version.
Given a formula F a set of rules is checked. If the formula is empty it is satisfied

under the current partial assignment (line 1). If one of the contained clauses is empty
the formula is unsatisfied under the assignment (line 4). The unit rule (line 7) is the
most important rule. It checks whether a clause of the formula is unit and thus its literal
must be added to the assignment to satisfy the clause.

Definition 14. A clause that is applicable for the unit rule is called reason.

The pure literal rule (line 10) checks whether a literal occurs only in one polarity. If
this rule applies the literal found can be set to satisfy clauses and to avoid obtaining
empty clauses. In modern solvers this rule is not implemented, because its gained result
is not worth the time to check whether there are pure literals on common problems. If
none of the above rules is applicable a decision (line 13) is made by choosing a literal
p and adding it to the partial assignment. This step is called splitting rule. If the try
fails the variable has to be mapped to the other polarity (line 16). This step is called
chronological backtracking, because the last decision is undone and the search leaves the
current depth of the search tree.

The search tree in Figure 2.2 shows a DPLL search where the splitting rule leads to
an unsatisfying assignment. The next step of the procedure is undoing the last decision
and proceeding with the branch 1,2,3,¬4. Vertical arrows represent the application of
the unit rule.

2.3.3 Conflict Driven Clause Learning

The CDCL algorithm is an extension of the DPLL algorithm. Instead of chronological
backtracking, a mechanism called backjumping is used. Multiple decisions are undone in
one backjumping step. Furthermore the order of the variables on the branches changes.
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Algorithm 1 DPLL(F, α)

1: if F|α empty then
2: return SATISFIABLE
3: end if
4: if F|α contains an empty clause then
5: return UNSATISFIABLE
6: end if
7: if F|α contains an unit clause [p] then
8: return DPLL(F|αp)
9: end if

10: if F|α contains a pure literal p then
11: return DPLL(F|αp)
12: end if
13: if DPLL(F|αp) = SATISFIABLE then
14: return SATISFIABLE
15: else
16: return DPLL(F|α¬p)
17: end if

These two facts make it difficult to give a recursive version of this algorithm. To make
the algorithm more comparable to the implementation of a SAT solver it is given in an
iterative version. The DPLL algorithm without the pure literal rule can be simulated by
the CDCL algorithm (compare subsection 2.4.6). A correctness proof of the presented
CDCL algorithm would be very similar to the one given in [14].

The given CDCL algorithm 2 introduce the new variable current level (line 1). It
represents the number of branches from the root of the search tree to the current point
of the search. For each variable the level (line 2) has to be stored. This is done when
the assignment α is expanded with the according literal. The variable conflict (line 2)
indicates whether there is an unsatisfied clause under the current partial assignment.

Definition 15. A conflict clause is a clause that is unsatisfied under the current partial
assignment.

The procedure starts with an empty assignment (line 1). The next steps are repeated
until a solution is found (line 3: the current assignment is propagated (line 4). The
propagation includes the unit step of the DPLL algorithm. If an unit clause is found
the assignment is extended and propagation proceeds.

If the propagation does not lead to a conflict (line 5) a new decision has to be made
(line 6). If no decision is possible (line 7), because all variables are assigned and there has
been no conflict, the current assignment satisfies the formula (line 8). If the assignment
is partial the current node in the search tree can be expanded (line 10) and the variable
decision contains the literal that extends the assignment (line 11).

If there has been a conflict its aftermath has to be checked (line 13). If the conflict
occurs at the root of the search tree the formula is not satisfiable (line 15). An example
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Algorithm 2 CDCL(F)

1: α ← {}, current level← 0;
2: conflict← 0; decision←NO LIT; level[|V |];
3: while true do
4: conflict ← propagate(F, α);
5: if conflict = 0 then
6: decision← pick literal();
7: if no decision possible then
8: return SATISFIABLE;
9: end if

10: current level ← current level + 1;
11: α← αdecision;
12: level[decision]← current level;
13: else
14: if level = 0 then
15: return UNSATISFIABLE
16: end if
17: clause←analyze(conflict);
18: literal ← single literal from current level of clause;
19: current level← max{level[x] : x ∈ clause− {literal}};
20: backtrack(α, current level);
21: α← αliteral;
22: level[literal]← current level;
23: F ← F ∪ clause;
24: end if
25: end while

14



1

¬1
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1 1 2 3 3 3

- - -1 2 3

Figure 2.2: DPLL Search Tree With Conflict.

is the formula 〈 [¬1 ], [ 1 ]〉. The unit rule is applied at the root of the tree and results in
a conflict. Otherwise the conflict is analyzed and a new clause is obtained. This analysis
is described in chapter 2.4.6. Properties of this clause are that it contains only one literal
of the current level (line 18) [16]. Due to the fact that it is a resolvent of the formula
it can be added to the formula (line 23). An example, which illustrates this property,
is given in Figure 2.5. The level where the search continues is the second highest of the
obtained clause (line 19) because on that level the obtained literal becomes applicable
to the unit rule (line 21). Backjumping is done exactly to this level (line 20). Next
the assignment is propagated again and the next value of the conflict variable has to be
evaluated. An example for such a backtracking step is given in Figure 2.3.

The white nodes are the ones that have been accessed before the conflict. The analysis
of the conflict led to a backjumping to level 1 where the unit rule became applicable
again. The search proceeds at the lowest filled node with the branch 1,2, ¬4.

The presented algorithm represents the basic CDCL search method. A state of the
art solver includes more methods. At some point in the search the whole search tree is
thrown away and the search starts from scratch, just with the advantage of the learnt
clauses. This method is called restart and tries to recompense wrong decisions that have
been made in low levels of the search tree. Early wrong decisions are very expensive,
because the search is a depth-first search and thus leaving the entered part of the search
tree needs to process lots of nodes. Restarts help escaping these parts.

Another problem of the presented algorithm is its memory usage due to added learnt
clauses. A part of the learned lemmas has to be deleted during search. This approach
is called removal. The removal is important, because propagation slows down if too
many clauses have to be processed. Heuristics for this two strategies are introduced in
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Figure 2.3: CDCL Backjumping After a Conflict.

subsection 2.4.8 and subsection 2.4.9.

2.4 The Project Solver

This section describes the composition of the used SAT solver. The first two subsec-
tions 2.4.1 and 2.4.2 describe used data structures and the way they are used during
search. The remaining subsections describe the solver and its components.

2.4.1 Data Structures

A clause is represented by an array of literals, its size and an activity, which is a floating-
point number. A clause is never copied if it is used in several modules of the solver.
Only the address of the clause is shared among the components, because it is unique
and can identify the clause.

Arrays and vectors are collections, whose elements can be accessed and changed. The
elements are stored in an array. A vector can be enlarged explicitly or by adding elements
to it. Removing elements from it can be done by preserving the order of all elements or by
swapping the element that should be deleted with the last one and afterwards removing
the new last element of the vector. The latter method is advantageous, because only two
elements have to be processed. A stack is a special vector. Removing or adding elements
is only allowed at its end. The access of its elements is not restricted. The used queue
is double ended. All of its elements can be changed and adding and removing elements
can be done at the front and the end. The vector, stack, double ended queue and linked
list (will be called list in the sequel) implementations are taken from the C++ Standard
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Template Library [23].
The priority queue is implemented via a binary heap. All elements can be accessed via

an index, the element with the highest priority is returned fast and all elements can be
inserted according to the order of their reference value. The heap is stored and managed
using a vector. All elements of the heap need to be combined with a reference value that
is used to order the elements.

In theory the clauses in the formula do not have an order, because the formula is
represented as a set of clauses. The order is introduced by implementing this set as a
vector. This order influences the search process, because the search iterates systemat-
ically over all collections to perform its work. The elements of the formula vector are
pointer to clauses.

2.4.2 Elements of the Search

As presented in the algorithm 2 important data structures are the assignment, the
formula and the current level of the search. Additionally to the assignment a trail
is introduced that stores the assigned literals according to the order of their assignment
time. It represents the current branch of the search tree. Per variable the level of its
assignment is stored using an array, which is indexed by the variable. The clauses that
are reason for a variable mapping are stored as pointer in an array named reason.

The current state of the search is represented by this data. The search object stores
this state. The CDCL algorithm is implemented in the search method of the object and
connects the components.

2.4.3 Implementation Details

The whole solver is implemented in C++. Most of the implemented data structures and
algorithms are taken from HydraSAT [5], which has been ranked in the middle field of
SAT competition 2009 [3]. Since HydraSATs implementation is close to MiniSAT [13]
the implemented data structures are also similar. The major difference between the two
solvers is the implemented removal heuristic (compare 2.4.9).

The project solver is component based. The components, which are described in sec-
tion 2.4.4, can be replaced without another compilation using command-line parameter
and the parameters for the algorithms can be set. This enables an easy exchange of
procedures to measure several algorithms for a specific part of the search without imple-
menting another solver. The used data structures can only be chosen at compile time.
Choosing them at runtime introduces too much overhead.

The lines of code of the basic version of the solver are almost 3600 lines C++ code and
about 800 lines Ansi C code. The basic version includes only the components described
in the following subsections and no hardware utilization improvements. The solver is
compiled to a 64 bit binary using the GNU Compiler version 4.1.2 with the highest
optimization level -O3. Thus all data pointers use 8 bytes. The data types literal t and
variable t are represented using unsigned integers of 32 bits. Floating point numbers
are stored using the 32 bit single precision float data type.
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2.4.4 Solver Components

The search can be split into several components. This modular implementation intro-
duces the ability to exchange routines without much effort, because only implemented
objects need to be exchanged.

File Reader Preprocessor

Solver

Search

Conflict Analysis

Removal Heuristic

Unit Propagation

Decision Heuristic

Restart Event Removal Event

Figure 2.4: Components of the Project Solver.

The controlling object is called solver. It reads the input formula via the file reader
and tries to simplify it using a preprocessor . Afterwards the search, whose task is split
into several components, is called.

• The unit propagation checks the formula under the current partial assignment
for units and conflicts

• The conflict analysis returns a resolvent given the current state of the search
and a conflict clause.

• The decision heuristic picks a new decision literal when the splitting rule is
applied.

• The removal heuristic keeps track of the added learnt clauses and chooses clauses
to be removed again.

• The restart event heuristic schedules restarts.

• The removal event heuristic schedules removals.

For a straightforward replacement of components all communications between single
components have been reduced to communication between the search and the specific
component. In Figure 2.4 it is shown how the solver handles the input formula. The
formula is read by the file reader and then passed to the preprocessor. The preprocessed
formula is passed to the search, which applies the CDCL algorithm using its components.
There is no direct communication between the search components.
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The file reader and the preprocessor do not influence the search process much. The
file reader runs only once at the beginning and parses the input file. It stores the formula
in main memory. The search can only be controlled by changing the order of the clauses
or placing the clauses to a given position in memory. The preprocessor works as the one
implemented in MiniSAT 1.4 [12]. This component tries to simplify the input formula
by reducing the amount of clauses. The preprocessor influences the search only once
before the search. The details of its algorithm are not discussed in this work.

2.4.5 Unit Propagation

The unit propagation (UP) does the major work of solver. Its task is to propagate the
current partial assignment through all clauses, checking them for conflicts and applying
the unit rule of the DPLL algorithm. If the propagation finds a conflict it stops immedi-
ately and returns the conflict clause. It is the only component that changes the current
state of the search. Therefore, backtracking is also implemented in this component.

For the propagation only the current level is interesting, because all the previous
assignments have been already propagated. Therefore, the propagation object has a
unit queue of literals that have to be propagated at this level. At the beginning of a
propagation this queue contains only the current decision literal.

The propagation through the clauses is not done via visiting all clauses and checking
their state. Instead the two-watched-literal schema, which has been introduced in the
Chaff solver [17], is used to visit only clauses that can become unit or conflict during
the propagation of the current literal. Therefore, for each literal set of clauses is stored
in a structure, which is called watch list. This literal is watched in these clauses.

The watch list contains clauses with the complement literal, because this clause be-
comes smaller under an assignment that sets the literal to true. The literals that are
watched in a clause are called watched literals. The clause that contains two watched
literals will be called watched clause for these two literals, because it is in the set of
clauses that will be visited if these literals are propagated. If the assignment is applied
the literals are not really removed from the clause.

Given the assignment α = {2} and the clause C=[ ¬2, ¬5, ¬6] the literal 2 has to
be propagated. The clause is watched by literal 2 and literal 5. The propagation accesses
the clause and checks it for a satisfied literal or an unassigned literal ignoring the other
watched one. The propagation finds literal ¬6, which will be watched now. The clause
is moved from the list of literal 2 to the list of literal 6 and now contains the following
literals C=[ ¬2, ¬5, ¬6] . If a satisfied literal is found, the clause will be watched by
this literal as well as in case the literal is undefined.

Assume the next assignment looks like α = {2, 5}. The clause is accessed again
and there is no other unassigned literal. Therefore, the other watched literal has to be
propagated because the clause can only be satisfied by this literal. The assignment will
be extended to α = {2, 5,¬6} and the clause will be stored as reason for the assignment
of the literal ¬6.

The last remaining case occurs if the other watched literal is also assigned but not yet
propagated. This effect is caused by handling the literals of the unit queue sequentially.
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Assuming the assignment is α = {2, 5, 6} and variable 2 has already been propagated
and variable 5 is propagated at the moment. Then extending the assignment with ¬6
fails, because the variable 6 is already assigned. The clause is a conflict clause in this
case.

If the unit rule has to be applied the according literal is added to the assignment and
to the trail. The literal that has to be set to true is enqueued to the unit queue. After
the propagation of one literal finished the next literal is dequeued and propagated. This
procedure is repeated until the queue is empty or a conflict is found. Other conflicts can
be found and the search would proceed in another part of the search tree. Dequeuing
literals from the unit queue is done according to the breadth-first search.

Algorithm 3 propagate(F, α)

1: while queue not empty() do
2: lit =queue dequeue();
3: conflict =propagate binary(lit);
4: if conflict = 0 then
5: conflict =propagate long(lit);
6: end if
7: if conflict 6= 0 then
8: return conflict;
9: end if

10: end while
11: return 0;

The implementation handles binary clauses in a special way, because they are implica-
tions and their propagation is easier to execute than the one for long clauses. Algorithm 3
shows how the propagation is split. As long as there are literals to propagate (line 1)
the next literal lit is dequeued and propagated (line 2). The given procedure handles
binary clauses (line 3) before it propagates literal lit through the rest of the formula
(line 5) but only if no conflict is found before (line 4). There is a discussion whether it
is useful to have binary conflict clauses or whether one should look for a long conflict if
a short one has been found [6].

The special treatment is implemented as follows. The watch list of a literal for binary
clauses does not only store the pointer to the clauses but also the other literal so that
the check of the other literal becomes very cheap. The spatial overhead of this method
is that every literals has to store a watch list for long clauses and another one for binary
clauses.

The maintenance of watch lists can only be done if the UP gets to know the newly
learned clauses. For adding and removing clauses some methods are provided. If a
learned clause is added this clause is checked whether it is unit under the current as-
signment. In this case the according literal is enqueued to the unit queue.

The task of the backtracking is undoing all assignments that have been made at a
higher level than the current one. All literals with a higher level are removed from
the trail, their assignment is set to undefined and their reason and level are reset to
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undefined. The undefined variables are passed back to the search just in case some
other component wants to know which variables are assigned.

2.4.6 Conflict Analysis

The conflict analysis (AN) analyzes the conflict in the current state of the search. It
is sufficient to return a clause of all negated decision literals. This approach results in
a DPLL like search with chronological backtracking. To achieve a non chronological
back jumping in the search one needs to return a clause that is unit under a part of the
current partial assignment.

In the conflict clause all literals are unsatisfied (Definition 15). The literals of this
clause are either set by decision or by the unit rule and have a reason (compare sec-
tion 14). If they have a reason they occur complementary in it. This fact can be used
to resolve the conflict clause and the reason clauses for the literals of the current level.

The procedure traverses the trail from its back to the front. The reason of the current
literal is resolved with the last resolvent. Initially the conflict clause is this resolvent.
The procedure is stopped if the resolvent contains only a single literal with the current
level. This approach has been introduced as first UIP learning in [16].

The gained clause is called learnt clause. It contains only unsatisfied literals in the
current search state. The learnt clause becomes unit if the partial assignment is back-
tracked until one literal is undefined again. This literal will be the one from the current
level, because it has the highest level. If the level is reduced lower than the second
highest level of the literals of the learnt clause, this clause is no unit clause any more.
Therefore the second highest level is chosen.

The learnt clause can be minimized further by resolving it with the reasons of its
literals. If the new resolvent is shorter than the old one and the number of different levels
of the literals is not higher the new clause is kept. Otherwise the minimization is stopped.
The backjump level is calculated as before. Experiments showed that minimizing the
learnt clause result in less memory consumption and a faster search [21].

Figure 2.5 shows the analysis given the search state of Figure 2.2 and the example
formula F the analysis of the conflict including minimization. Only step 1 and 2 belong
to the analysis. The result of step 2 satisfies already the criteria that the clause should
contain only one literal of the current level. These literals are the bold printed ones in
the result column. The other bold printed literals refer to the current literal of the step.
The backjump level of this analysis is 1. Due to backtracking the literals 3, 4, 5, 6 are
undefined and the clause [ ¬1, ¬4 ] becomes unit under the new partial assignment.

2.4.7 Decision Heuristic

A very important part of SAT solvers is the decision heuristic (DH). It chooses the
search path. If it always chooses the right path, SAT problems could be solved in sub
exponential complexity. Modern heuristics seem to be close to right choices for real-
life problems, because most industrial SAT problems are solved in a tiny part of the
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variable 1 2 3 4 5 6
level 1 1 2 3 3 3
reason - 1 - - 2 3

step current literal current resolvent reason result
1 6 [¬2, ¬5, ¬6] [¬1, ¬4, 6] [ ¬1, ¬2, ¬4, ¬5 ]
2 5 [ ¬1, ¬2, ¬4, ¬5 ] [¬4, 5] [ ¬1, ¬2, ¬4 ]
3 2 [ ¬1, ¬2, ¬4 ] [¬1,2] [ ¬1, ¬4 ]

Figure 2.5: Conflict Analysis Example.

theoretical worst case execution time, if one uses the number of decisions in the whole
search process as a metric.

The used decision heuristic follows the principles of the Variable State Independent
Decay Sum (VSIDS). An activity using a single precision floating point number is stored
per variable and initialized with 0. This activity is increased by an increase factor,
if this variable was involved in the resolution process to obtain a learnt clause. The
increase factor increases, if another conflict occurs. Thus, every new conflict increases
the importance of all literals that have been used for recent conflict analysis.

If a decision literal should be chosen the unassigned variable v with the highest activity
is chosen and the negated variable is returned. The aim is to access recently learnt clauses
again and use them to create even smaller learnt clauses at the next conflict. The order
of the variables is managed using a priority queue.

After 1000 decisions a random decision is made. The heuristic tries to find an unas-
signed variable randomly. If this attempt fails 10 times a deterministic choice is done.

If all variables are assigned NO LIT is returned. It indicates that no more literal can
be set to true.

2.4.8 Restart Event Heuristic

Scheduling restarts is done using an event heuristic (RH) working according to a geo-
metric schema. The first event is triggered after 100 conflicts and the increment factor
is 1.5. The calculation of the next event point is

limit(n) = (limit(n− 1)− limit(n− 2)) ∗ factor + totally made conflicts

with limit(0) = 0 and limit(1) = 100. If a limit is reached a restart is only scheduled
if no conflict occurred in the recent propagation. Due to this fact the totally made -
conflicts value occurs in the calculation. If no conflict occurred when reaching the limit
its value is exactly the same as limit(n−1). A restart is done by backjumping to level 0
with all its consequences. Thus only variables with reason clauses that are unit are kept.

Restarts are very important in the search, because they can undo early wrong decision.
The search process starts initially with almost no information about the problem to solve.
After a while the activities of the variables in the decision heuristic are increased. If
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the search had started with the these activities it would have done completely different
decision. These decision could lead faster to the satisfying assignment. Since the search
is a depth first search early decisions are hard to undo without restarts.

2.4.9 Removal Heuristic

Keeping the number of clauses reasonable is very important for the performance of the
solver. Therefore, at some point some learned clauses have to be removed again. Every
conflict creates another clause and after a large number of conflicts UP is much slower.
The solver will run out of memory or will propagate slowly.

The aim of the removal is to keep clauses that speed up the search process and cut off
big parts of the search tree and throw away useless ones. Due to the fact that a clause
with n literals removes 2|V |−n total assignments short clauses are kept and long ones
are thrown away. A removal is scheduled immediately after a restart by the removal
heuristic (RM). The solver removes

• all clauses with more than 6 literals.

• the oldest 55% of the remaining clauses with more than two literals.

For managing these lists the component needs to be notified, if clauses are added.
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3 Memory Hierarchy

Since SAT solvers access lots of data the features of the underlying hardware needs to
be utilized as well as possible to keep the runtime of the solver small. This chapter
introduces the memory hierarchy of modern computers. The focus of the work is to
analyze the utilization of this hierarchy.

3.1 Memory Performance

Figure 3.1 shows the latency for working with various amounts of data. The access time
of memory increases with the size of the data that is processed.

Figure 3.1: Memory Latency for AMD Opteron 2384.

The steps of the curve are the result of the memory hierarchy. Small data set can be
hold in caches that are accessed fast. The processor AMD Opteron 2384 that has been
used for this measurement has three cache levels. The lower three levels of the curve
refer to cache accesses and the last level shows accesses in main memory. The latency
of the access increases with the level in the hierarchy.

Unfortunately the memory latency does not keep pace with improvements in raw
computing power as shown in Figure 3.2 [15, p. 374]. The absolute time to get data
from main memory and the time for a CPU cycle has been equal about 1980. The
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Figure 3.2: Comparison of CPU and RAM Latency.

improvement factor of the two developments has been and is still different. Thus the
time to access data decreases only by nine percent every year whereas next year’s CPU
can execute 160% of the operations the current one is able to execute in a certain amount
of time. The arising gap between the two hardware components increases by 50% per
year [15].

Definition 16. The memory footprint of a program is the size of memory that is touched
during the whole execution of a program.

Comparing the memory footprint in Figure 3.3 to the memory performance in Fig-
ure 3.1 the solver seems to work at the lowest memory performance. This behavior is
controlled by the memory access pattern. Thus the memory footprint of an application
alone does not determine the hardware utilization. The memory access pattern control
in which layer of the memory hierarchy an application buffers its currently accessed data.

Memory Average Minimum Maximum
MB 226.25 25.38 626.04

Figure 3.3: Memory Usage of Project Solver.

3.2 Introducing Caches

The fact that RAM is much slower than the CPU led hardware vendors introducing
caches. A cache is a small and fast storage that buffers accesses to main memory.
Figure 3.1 shows the dependencies between memory size and memory access time. It
shows that the number of cycles to access a hierarchy level increases with the size that
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the according level can store. Table 3.4 shows a possibility of adding caches between
the CPU and main memory. The CPU that has been used for the SAT solver analysis
implements two cache level. The small level 1 (L1) cache is separated into a storage for
instructions and a storage for data. The level 2 (L2) cache stores both instructions and
data. Accessing main memory takes 15 times longer than accessing L2 cache.

Memory Size Access Cycles

Main Memory 2 GB 2̃40

L2 Cache 1 MB 1̃4
L1 Cache 64 KB + 64 KB 3
Register 16 * 8 B 1

Table 3.1: Properties of Memory Hierarchy for AMD Opteron 285.

3.3 Cache Foundations

Foundations of the cache architecture are the assumptions of temporal and spatial lo-
cality [15, p. 41]. Temporal locality means that currently accessed data will be accessed
again in near future with a high probability. Holding this data in fast memory is likely
to improve the programs performance. Spatial locality means that data, which is stored
next to previous accessed data, will be accessed with a high probability. Therefore, this
data should be stored in the cache as well. To achieve this goal more than a single word
is buffered per memory access.

Buffering data that is likely to be accessed is the task of the prefetcher, which is
an unit of the CPU. The prefetcher stores data with high access probability in the
cache, for example by recognizing linear memory accesses. It works while the CPU
proceeds executing the program. The goal of the prefetcher is to reduce the latency of
the programs memory accesses.

3.4 Cache Implementation

Caches are implemented as associative memory. They are content addressable with
respect to the addresses. If the CPU needs some data from a certain address it checks
the caches for this data in parallel to getting the data from main memory as it is shown
in Figure 3.4. The first response is used and the CPU continues executing the program.
Thus, if the data is fetched from main memory in both L1 and L2 cache this access
resulted in a cache miss. Any fetch from a hierarchy level is caused by misses on the
lower levels. The other way around a hit in a certain hierarchy level does not result in
an event of the higher levels.

Caches are split in tag memory and data memory. The tag memory stores the address
of the according cache line of the data memory. If a certain address is accessed the tag is
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Figure 3.4: Accessing Data in the Memory Hierarchy.

compared to it. If the comparison succeeds the desired data is buffered in the according
cache line.

There are several parameters for the implementation of caches. They are explained in
subsection 3.4.1. The remaining subsections describe how caches can be organized.

3.4.1 Cache Parameter

The following set of parameters describes the cache implementation. The cache size
gives the amount of memory that can be stored in the cache. This memory is organized
in cache lines. If a piece of data is cached a whole line is stored in the cache. The cache
line size is the number of bytes that are handled as one block. The number of cache
lines can be determined by dividing the cache size by the line size.
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Figure 3.5: Data Organization in Caches.

There are three ways of organizing memory lines in the cache as shown in Figure 3.5.
The marked line 7 in main memory is stored in the marked lines in the caches according
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to the given schema. A fully associative cache stores the data in any line, a direct
mapped cache stores a memory line to one fixed line. Set associative caches determine
a set of cache lines by calculating memory line number modulo number of cache lines
sets [15, p. 376].

3.4.2 Direct Mapped Cache

There is only one fixed cache line per memory line. This location is determined by
calculating the modulo of its line number to the number of cache lines. In this case only
one tag needs to be compared. On the other hand the old cache line needs to be evicted
from cache. The line to evict is strictly determined.

Address

ByteIndexTag

Figure 3.6: Partition of Addresses for Direct Mapped and N-way Set Associative Caches.

The address is split into a tag, an index and a byte part as shown in Figure 3.6. The
index determines the line to choose. It is equal for all memory lines that are stored in
the same cache line. Therefore, there is no need to store it in the cache. The number
of index bits is the logarithm to the basis 2 of the number of cache lines. The index
is the result of the application of number of memory line to store modulo number of
available cache lines [15, p. 376]. The byte part is used to select the desired byte of the
cache line. The number of used bits is the logarithm to the basis 2 of the cache line size.
All remaining bits are called the tag. This tag is compared to the tag memory of the
matching cache line. It is the only part of the address that needs to be stored in the tag
memory.

It is not guaranteed that the whole cache is used, because some lines are maybe
never used due to the memory layout of the running application, which maybe uses only
specific parts of main memory.

3.4.3 Fully Associative Cache

This problem of being forced to evict a cache line is solved by fully associative caches. A
memory line can be stored in any of the cache lines. The line that needs to be replaced
is chosen from the whole cache.

The address is only split into a tag and a byte part as shown in Figure 3.7. The index
is missing, because there is no restriction to use a certain line. A negative aspect of this
schema is that the architecture needs to compare all tags to the address of the desired
data. The number of bits to compare for searching a cache line is the largest among
these schemes.
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Figure 3.7: Partition of Memory Address for Fully Associative Caches.

3.4.4 N-Way Set Associative Cache

To reduce the number of tag comparisons and keep the replacement strategy the N-way
set associative cache divides the cache into N sets. The number of memory lines to store
determines the set of cache lines where it is buffered. The number of the set is calculated
by the module of the number of the memory line to the number of cache line sets. The
lines in each set are chosen as in the fully associative schema.

The address is split into tag, index and byte, which is also the address in Figure 3.6.
Tag and byte part have the same function as in the fully associative schema. The index
part does not choose single lines like but sets of lines. Consequently the number of bits
is the logarithm to the basis 2 of the number of sets. This schema is a trade of between
cache usage and accessing speed.

3.5 Cache Misses and Improvements

Every program has to access memory. A cache hit is a data access that accesses data
that is stored in the cache. A cache miss is the complement. As previously shown in
Figure 3.1 the performance of the program depends on the number of cache misses and
cache hits. Thus, the higher levels in the figure are results to cache misses in the lower
levels. Hitting the lowest level results in the smallest latency.

The following subsections describe the influence of caches. The three types of cache
misses are explained in detail and some solutions to avoid them are given.

3.5.1 Performance Influence of Caches

The CPU time of a program without memory accesses can be calculated using the
formula

CPUtime = IC · CPI · CycleT ime

where IC is the number of executed instructions, CPI is the number of cycles that a
single instruction needs in average to be executed. CycleT ime is the time that is needed
for a single clock cycle. If memory is taken into account the memory accesses have to be
calculated as well. The given formula [15, p. 386] considers only one cache level. This
approach is not a problem for analyzing a SAT solver, because the penalty for the last
hierarchy level is orders of magnitude higher than the one of lower levels. As shown in
the analysis chapter 5 the number of cache misses is almost as high as the number of
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cache hits. The number of cache hits does not influence the runtime much, because their
penalty is much lower.

CPUtime = (IC · CPI +MemoryAccesses ·MissRate ·MissPenalty) · CycleT ime

MemoryAccesses is the number of total memory accesses of the execution. The
MissRate is the ratio of cache misses compared to the overall memory accesses and the
MissPenalty gives the number of cycles the CPU has to wait until the data is read from
main memory.

Concerning the high latency of main memory the numbers of memory accesses and
the miss rate have to be optimized to improve the runtime of the program.

Reducing the miss rate works differently for the three existing types of cache misses.
They are explained in the following subsections.

3.5.2 Compulsory Cache Miss

The very first access to a block can never be in the cache except the prefetch unit buffers
the data in the cache before. Thus this kind of miss can only be reduced by touching
less lines of main memory or using the prefetch unit.

3.5.3 Capacity Cache Miss

Caches are usually significantly smaller than main memory. Accessing memory that has
been evicted from the cache, because the cache was not able to buffer all the data, results
in a capacity miss. To reduce these misses it has to be ensured that only the frequently
accessed data is stored in the cache and is not removed.

The used data could be separated into an often used part and the remaining data.
Since accessing one element loads another element of the same cache line into the cache
frequently used data has to be stored compactly. Accessing seldom used data would
result in a cache miss and thus important data is removed from the cache. Since these
accesses are rare it should be beneficial to differentiate between frequently used and
other data. For the decision which data is frequently used some additional instructions
have to be executed.

3.5.4 Conflict Cache Miss

In case of set associative or direct mapped caches the replacement of a cache line is
called a conflict miss, if its reasons is that too many lines need to be placed in a certain
set of cache lines.

An improvement can be achieved by using certain areas of main memory to force an
equally mapping of cache lines to main memory. This approach is called cache coloring.

Assuming a restriction of 2 GB main memory the solver would quickly run into memory
capacity issues. In case of an N way set associative cache one needs to reserve the Nth
part of main memory for a single data structure. Most of the used data structures are
much smaller.
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3.6 Non Data Caches

Recent CPUs also implement other caches. The main type is the Translation Look
aside buffer (TLB) [15, p. 445]. Due to virtual memory [15, p. 439] the used virtual
addresses in the program have to be translated to physical ones. The translation is done
using a hierarchy of page tables [15, p. 451]. The process results in additional memory
accesses. Thus its latency is comparable to the one of L2 cache misses [15, p. 447].
To avoid redoing the same translation again TLBs store the result of last translations
to reuse them and avoiding redoing the same translation. This work does not focus on
TLB utilization. In section 7.2 the impact of TLB misses is briefly discussed.
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4 Measurements

There are several tools for obtaining various data of a running program, for example the
number of cache misses, the runtime of a function, the number of calls of a function or
the memory accesses of a single instruction. In the following sections 4.1 some of these
tools are discussed. In the remaining sections the used benchmark is described and its
results are discussed.

4.1 Performance Measurement Tools

The most common framework to do runtime analysis is Valgrind [19]. For cache simu-
lation Callgrind [4] can be chosen, which is an extension for this framework. Callgrind
is described in subsection 4.1.1. In the next subsection 4.1.2 the PAPI [18] library is
introduced that can trace processor events and thus does not need to simulate the cache.
For the current work the HPC Tool Kit [22] has been chosen. The tool kit is described
in subsection 4.1.3.

4.1.1 Callgrind

Callgrind is a tool of the Valgrind framework [19] [4]. Valgrind is a framework for
creating dynamic analysis tools. It analyzes the execution via binary translation. The
framework also provides a range of tools for detailed performance profiling. One of the
dynamic analysis tools is Callgrind that analyzes the calls of functions and can simulate
the memory hierarchy. Callgrind is capable of counting the number of instruction and
memory accesses as well as cache misses per source code line.

An advantage of Callgrind is that its results are not influenced by other processes of
the system, because it simulates the entire CPU and only runs the binary to analyze on
this CPU. Thus the results are very precise.

The main disadvantage is its very high overhead. The analysis of a program can
take up to 100 times of the normal execution time. Another issue is that the accuracy
of the measured data depends on the compilation of the program. For precise results
the program cannot be fully optimized by the compiler, resulting in an even longer
runtime of the analysis. The prohibitive time overhead makes Callgrind inapplicable to
compute-intense applications.
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4.1.2 PAPI Library

Most of the current high performance processors implement performance counters [2] [1].
These counters are hardware registers that count processor events. The PAPI library
provides a Performance Application Programming Interface that can read the counters
of the processor [18]. The provided interfaces are an abstraction layer to the varying
implementation of the performance counter among the different CPUs. There is a low
level interface that manages processor events, and a high level interface that starts, stops
and reads these counter. The accuracy of the hardware counter depends on the length of
the instruction block that is instrumented, because there is some overhead of the counter
interface.

The PAPI library can be used for manual instrumenting the SAT solver. Therefore,
the solver has to be extended to store the performance data and output it in a readable
format. An advantage is the provided control. The user can choose the traced counter
and measure only specific parts of the solver. The library has not been chosen for the
analysis, because implementing the measurement for every single function call would be
more difficult than using an existing framework.

4.1.3 HPCToolKit

The High Performance Tool Kit consists of several components for measuring the per-
formance of fully optimized executables [22]. The analysis is done via sample based
profiling, which is also known as statistical profiling. The program is interrupted at a
sample point and the currently running method is detected to update its event counter.
Such a sample point is triggered when a performance counter reaches the maximum of
its period. When the program is halted the performance counters are read using the
PAPI library [18].

The measurement is not as precise as using Valgrind because it is statistical. The
measured result is only an approximation of the real values and thus is not exact, but
the precision of the measurement increases with the number of samples. The benchmark
just needs to fit the criteria of a long runtime, such that the accuracy of the measurement
stays reasonable. The traced events can be any supported combination of all the PAPI
events. The HPC Toolkit can only trace 4 events simultaneously.

The overhead of the analysis is negligible, thus this tool usable for long running bench-
marks. The total runtime with and without measurement differ only 4%. Another ad-
vantage is that the binary can be optimized because the analysis detects in-lined func-
tions and restores the original program structure, if the compiler adds some debugging
information during compilation.

4.2 Measured Data

Important data for finding weaknesses of the implementation are the number of processor
events. Nevertheless, for improving the usage of the cache the accesses to data structures
and their sizes are interesting as well. The following processor events have been traced:
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1. Total Cycles

2. Resource Stall Cycles

3. L2 Cache Miss

4. L2 Cache Hit

Total cycles are the CPU cycles the program needs to execute the program. Resource
stall cycles are cycles that are spend waiting for resources. The sample period for the
total cycles is 106. The sample periods for the other processor events are 105.

With the number of the given events additional data can be calculated. The difference
between total cycles and resource stall cycles is called work cycles, because during these
cycles the CPU proceeds with the algorithm and does not wait for resources. The number
of L2 accesses is the sum of L2 hits and L2 misses. Since L1 accesses are not traced,
this number is also equal to the total recordable memory accesses, because the sum
of main memory accesses and L2 cache hits are the total accesses to any memory in
the hierarchy. In the sequel memory access will be used if the focus is on the overall
algorithm and L2 access will be used for focusing on processor events. The number of
main memory accesses is equal to the L2 cache misses, because there is no other
cache level between main memory and L2 cache in the used system. The cache miss
rate is the ratio of L2 misses to L2 accesses. The wait rate is the ratio of resource stall
cycles to total cycles.

For the data structure access the following values are stored:

1. Clause read access

2. Clause write access

Since not only the hardware counters are measured but also accesses to data structures
multiple measurements had to be done. Processor events have only been measured when
tracing data structures was disabled, because of the overhead of the access analysis.
Additional to the measured and calculated metrics above the implementation of the used
data structures and the implementation of the algorithm have been analyzed, because
some of their weaknesses cannot be found by the run time analysis due to their small
impact on the runtime.

4.3 Benchmark

The benchmark is a subset of the application benchmark of the SAT Competition
2009 [3]. Problem instances that are solved between 2 and 45 minutes by the basic
version of the solver have been selected. The files with their solve time and the used
memory are given in Table 4.1. The overall runtime of the algorithm for solving the
algorithm is almost 10 hours.

34



Instance Solve time(in s) Memory(KB) satisfiable
ACG-10-5p0.cnf 169.062565 170968 no
AProVE09-20.cnf 1756.697786 203888 yes
UCG-15-5p0.cnf 476.773796 321968 no
UCG-20-5p1.cnf 1226.080625 474164 yes
UR-15-5p0.cnf 574.231887 338256 no
UTI-10-10p0.cnf 607.533968 388956 no
UTI-15-10p0.cnf 1027.736229 601984 no
blocks-4-ipc5-h22-unknown.cnf 570.543656 269496 no
cmu-bmc-longmult15.cnf 130.956184 26744 no
countbitswegner064.cnf 2585.413578 266988 no
eq.atree.braun.8.unsat.cnf 256.244014 30292 no
gss-16-s100.cnf 243.911243 38484 yes
gss-17-s100.cnf 357.822362 40828 yes
gss-20-s100.cnf 705.240074 51040 yes
gus-md5-07.cnf 121.45559 98880 no
gus-md5-09.cnf 820.299265 102548 no
manol-pipe-c10nidw s.cnf 820.53928 625660 no
manol-pipe-c6bidw i.cnf 257.124069 175516 no
manol-pipe-c6nidw i.cnf 273.521094 181600 no
manol-pipe-g10id.cnf 812.70279 339084 no
manol-pipe-g10nid.cnf 2334.201878 570644 no
mizh-md5-47-3.cnf 814.090877 275084 yes
mizh-md5-47-4.cnf 668.657788 246784 yes
mizh-sha0-35-3.cnf 219.293705 153244 yes
ndhf xits 20 SAT.cnf 393.776609 252364 yes
post-c32s-gcdm16-22.cnf 998.362393 257068 yes
q query 3 L60 coli.sat.cnf 336.085004 240176 yes
q query 3 L70 coli.sat.cnf 561.367083 285092 yes
q query 3 l44 lambda.cnf 2024.402517 135872 no
q query 3 l45 lambda.cnf 1767.374454 133816 no
q query 3 l48 lambda.cnf 2068.153251 136716 no
rbcl xits 06 UNSAT.cnf 415.165946 32620 no
schup-l2s-abp4-1-k31.cnf 448.384022 69608 no
schup-l2s-guid-1-k56.cnf 2439.468457 306456 no
schup-l2s-motst-2-k315.cnf 344.433525 561832 yes
simon-s02b-dp11u10.cnf 1189.330328 80564 no
uts-l05-ipc5-h27-unknown.cnf 353.102067 163212 no
uts-l06-ipc5-h31-unknown.cnf 1186.990182 284108 no
vmpc 24.cnf 659.017186 73148 yes
vmpc 26.cnf 539.513717 84628 yes

Table 4.1: Analysis Benchmark Details.

The number of clauses and variables is recorded after preprocessing the formula, be-
cause only the search is analyzed. The runtime of the preprocessor is negligible compared
to the overall runtime as shown in Table 5.1.

The number of specific clause sizes is interesting for dividing the data. Figure 4.1
shows this ratio for the given benchmark after preprocessing. A first look emphasizes
the special treatment of short clauses.

4.4 Benchmark System

The AMD Opteron 285 CPU with a clock frequency of 2.66GHz has been used for
analyzing the SAT solver. During the analysis no other application has been allowed to
use the second core of the dual core CPU. The cache is a 4-way-associative cache and
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Figure 4.1: Clause Size Distribution after Preprocessing.

can store 1MB. The system has 2GB main memory. The level 2 TLB has 512 entries for
data and 512 for instructions, so that 2MB data can be accessed without a TLB miss.
The used page size is 4 KB.
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5 Analysis

This chapter presents the analysis of the SAT solver. The analysis can only give hints
where these optimization opportunities are located in the algorithm and its implemen-
tation. Furthermore, the implementation of the algorithm is analyzed.

An overview about the memory hierarchy utilization of leading SAT solvers is given
in section 5.1. Section 5.2 discusses the data of the analysis. In the following sections
the found improvement opportunities are examined.

5.1 Analysis of Leading SAT Solvers

MiniSAT 2.0 and PrecoSAT 246 have been analyzed using the same benchmark. Both
solvers solved 39 out of the 40 instances in the given timeout. The cache miss rate of
MiniSAT is 50%. The runtime for the 39 instances is 92% of the project solver runtime
although MiniSAT accesses L2 cache and main memory less often. The number of work
cycles is also comparable. The similar behavior of MiniSAT and the project solver is
caused by the usage of similar data structures.

PrecoSAT solves the given benchmark much faster than the other two solvers. It needs
only 33% of the basic version runtime. PrecoSAT processes the 39 instances with 37%
of the project solvers work cycles. PrecoSATs L2 cache miss rate is 36%, and thus it
has the lowest cache miss rate among the analyzed solvers.

Figure 5.1 shows the comparison of the three SAT solvers and gives an outlook to
the final improved version of the project solver (Combination 6). Among the analyzed
solvers, PrecoSAT has the best values, but the improved project solver comes close in
the total runtime. The low number of work cycles of PrecoSAT indicate that this SAT
solver implements a smarter algorithm for the benchmark.

5.2 Runtime Analysis

Based on the runtime analysis of section 5.2.1 the remaining sub sections discuss the
result. The part of the algorithm where most of the runtime is spent is discussed and
the resulting memory access schemas are introduced.

5.2.1 Runtime Distribution

Table 5.1 shows the distribution of the runtime spent among the components. The
distribution of resource stall cycles and cache hits and misses are also given. In the first
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Figure 5.1: Comparison of SAT Solvers.

row, the absolute numbers for the benchmark are provided. The remaining rows present
the percentage that is needed by the specified part of the solver (first row).

Improving the overall performance can mainly be done in the propagation component.
Reducing the number of cycles of any other component can only save about eight percent
of the total runtime. Therefore, the improvements focus on this component. A more
detailed analysis shows that most of the runtime is spent in the propagate long() method.
Even more specific, there are two function calls in this function that use a huge part of
the solving time.

Table 5.2 shows that most of the solving time is spent in propagating long clauses.
Most cache accesses occur in this method. The runtime of the function propagate long()
is mainly consumed by the following three functions: Clause.literal(0) and Clause.literal(i)
are clause read accesses (Listing 5.2) with the only difference that the index of the literal
is known at compile time for the first function. The Vector.erase() procedure executes
almost a quarter of the runtime, although it has a low L2 cache miss rate. The reason
for the large number of stall cycles is the number of cycles that are needed to access L2
cache. The Vector.erase() procedure is called, if a clause is watched by another literal.
The pointer has to be removed from the current watch list and the gap in the vector has
to be closed by pushing all following elements one position forward.
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Component Cycles Stall Cycles L2 Misses L2 Accesses
Program 9.222 · 1013 7.535 · 1013 2.9566 · 1011 7.2225 · 1011

Program 100.0% 100.0% 100.0% 100.0%
Search 99.41% 99.68% 99.50% 99.27%

Propagation 91.65% 92.62% 90.08% 88.94%
Decision Heuristic 1.77% 1.59% 3.13% 2.95%
Removal Heuristic 0.31% 0.21% 0.09% 0.21%
Analysis 5.74% 5.42% 6.27% 7.27%
Event Heuristic 0.00% 1.33% 0.00% 0.00%

Table 5.1: Processor Event Distribution Among the Solver Components.

Component Cycles Stall Cycles L2 Misses L2 Accesses
Program 9.222 1013 7.535 1013 2.9566 1011 7.2225 1011

propagate() 90.34% 91.25% 87.00% 86.06%

propagate binary() 5.71% 5.55% 7.95% 5.64%
propagate long() 83.86% 85.30% 78.17% 79.78%

Clause.literal(0) 19.68% 23.86% 19.84% 8.95%
Clause.literal(i) 26.12% 30.63% 4.23% 3.62%
Vector.erase() 24.26% 18.59% 2.19% 36.64%

Table 5.2: Processor Event Distribution in Unit Propagation.

5.2.2 Propagate long Implementation

An outline of the propagate long() implementation is given in Algorithm 5.1. The three
major functions of Figure 5.2 are the following. Line 5 and line 8 refer to Clause.literal(0).
In line 13 the method Clause.literal(i) is called with an index. In line 20 Vector.erase()
is called.

The propagation object knows the current assignment assignment. It also manages
the watch lists in the structure watchlists. The procedure is called and the literal to
propagate is passed to it as a parameter (line 1). For a better overview, the variable
watch is introduced. It represents the watch list for the literal (line 2). Next all clauses in
this list are processed (line 3). Giving a better overview the current clause is referenced
by the variable clause (line 4). The next step is to ensure the following Invariant (line
5-7).

Invariant 1. The watched literals are stored at the first two positions of the clause.

If the other watched literal already satisfies the clause, the next clause is processed
(line 8-10). Otherwise, the remaining literals have to be examined. They are accessed in
ascending order of their index (line 12). The variable literal represents the current literal
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1 clause propagate_long(literal_t literal)
2 {
3 watch = watchlists[ literal ];
4 for( index = 0; index < watch.size(); ++ index ){
5 clause = watch[ index ];
6 if( clause.literal (0) == invert(literal) ){
7 clause.swap( 0, 1);
8 }
9 if( assignment.literal_satisfied( clause.literal (0) )){

10 continue;
11 }
12 unsigned int i = 2;
13 for(; i < clause.size(); ++i ){
14 literal_t literal = clause.literal(i);
15 if(
16 assignment.variable_undefined(variable(literal)) ||
17 assignment.literal_satisfied( literal )
18 ){
19 clause.swap( 1, i );
20 watch_clause( clause , literal );
21 watch.erase( index );
22 index --;
23 continue;
24 }
25 }
26 if( i == clause.size() ){
27 if( enqueue_literal( clause.literal (0), clause ) == false ){
28 return clause;
29 }
30 }
31 }
32 return 0;
33 }

Listing 5.1: Implementation of the propagate long() Method.

(line 13). Its state is checked next (line 14-17). If this literal is satisfied or undefined, it
can be watched (line 18-24).

Invariant 2. The first two literals in the clause are the inverse of the literals that watch
the clause.

Invariant 2 is ensured (line 18), the watch list of the literal is updated (line 19) and
the clause is removed from the current watch list (line 20). Because the clause became
no unit, the next one can be processed (line 21-22). If no satisfied or undefined literal
has been found (line 25) the clause is either unit or a conflict clause. These cases are
checked in the enqueue literal() method (line 26). Its task is to enqueue the unit to
the unit queue. The reason, level and the assignment for the literals are set in this
method as well. If the literal cannot be enqueued, because it is unsatisfied, the clause
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is returned as conflict clause, because all of its literals are unsatisfied under the current
assignment (line 27). If all clauses had been processed successfully, a 0 is returned (line
31) to indicate that no conflict has been found. In this case, the unit propagation goes
ahead with propagating the next literal from the unit queue as outlined in algorithm 3.

5.2.3 Data Structure Implementation

The unit propagation does not access clauses directly. As stated in section 2.4.5 a list of
clauses is stored per literal. These lists are implemented using a vector. The reference to
the according watch list for a literal is also implemented using a vector, which is indexed
by the literal. To propagate the current literal in the first clause the according watch
list has to be accessed. This procedure is illustrated in Figure 5.2.

¬2, ¬5, ¬6

Index of watch lists

Watched clauses
for literal 2

First watched clause

¬1

¬2

1

¬3

¬4

3

4

5

¬5

¬6

6

2

Figure 5.2: First Clause Access in a Watched List.

Accessing a clause results in two memory accesses. The first access will be called
memory hop, because this access only gets the address of the data and the next access
fetches the data in memory. Two accesses need two cache lines to be fetched from main
memory in the worst case. These loads are reasons why the literal read procedure of the
clause object consume such a big part of the runtime.

Another memory hop arises due to the implementation of the clause. The literals are
not stored in the clause itself but in an external array, which is called clause body. The
clause head stores only the address of this array and its size. Additionally the clause
stores an activity value that is used by some removal component variants to decide
whether the clause has to be removed. Listing 5.2 shows the implementation of the
clause and the appropriate memory schema.

The size of the clause head is 16 bytes. This size can be calculated by the sum of
the stored data structures (compare subsection 2.4.3). The size of the external array
depends on the number of literals that belong to the clause. Accessing one of the literals
always results in a memory hop, because only knowing the location of the clause head
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1 class CppClause
2 {
3 private:
4 float activity;
5 uint32_t size;
6 literal_t* literals;
7 public:
8 literal_t literal(uint32_t index)
9 {

10 return literals[index];
11 }
12

13 void literal(uint32_t index , literal_t lit)
14 {
15 literals[index] = lit;
16 }
17 // constructor and other methods
18 };

Listing 5.2: Clause Implementation

is not sufficient to know the location of the literals. Their address is created at runtime
by allocating memory dynamically.

5.2.4 Literal Accesses

The trace of literal accesses in a clause is shown in Figure 5.3. Almost 60% of read
accesses are on the first literal in the clause. Only 15 percent of the read accesses are
spent at the second literal. The higher the index of the literal the fewer is the number
of accesses. The total number of literal read accesses is approximately 1.024 1012.

The number of write accesses is much lower. The 1.63 1011 writes are only 16% of the
number of read accesses. The accesses to the first two positions are different compared
to the read accesses. The second literal is written more often than the first one, namely
50% compared to 25%. This effect is caused by Invariant 1. If Invariant 2 does not hold
the two literals are simply swapped and it is satisfied again. If another literal has to be
watched in the clause, this literal is swapped to index 1.

The descending number of accesses to a literal with ascending index can be explained
by the algorithm. The literals of a clause are accessed according to their position until
a condition is satisfied (Listing 5.1, line 12). The remaining literals are not touched in
this iteration. Together with the clause size distribution in Figure 4.1 the many accesses
on the first two literals can be explained.

5.2.5 Measurement Errors

Since the overhead of the HPC Toolkit is not known the measurement error has been
determined. Therefore, the basic version of the solver has been analyzed fife times on
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Figure 5.3: Distribution of Literal Accesses in Clauses.

Processor Event Relative Standard Deviation
Total Cycles 3.16%

Resource Stall Cycles 3.95%
Level 2 Cache Misses 8.18%
Level 2 Cache Hits 7.54%

Table 5.3: Measurement Standard Deviation Relative to Arithmetic Mean.

the benchmark. Afterwards the arithmetic mean of each processor event measurement
has been determined and the standard deviation of the fife runs has been calculated.
This procedure results in the values given in table 5.3.

The most precise measurement is performed on the total cycles. The relative error of
the level 2 misses is close to 10%. Therefore, the results of the analysis will mainly be
judged by their overall runtime. The other processor events will be compared as well,
but only differences larger than 10% can really be considered to be caused by the applied
changes.

5.3 Implementation Analysis

The implementation of the used data structures does not really fit to the statements in
section 3.5 The memory footprint can be minimized to increase the hardware utilization.
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5.3.1 Assignment

The assignment holds ternary values because it is partial and needs to know whether a
variable is set to true, false or whether it is undefined. Each ternary element is stored
in a byte although one byte can hold 256 different values. It is possible to store 5 ternary
values in 256 elements, because 35 = 243 ≤ 256 holds. Since the assignment stores one
polarity per variable the size of the assignment can be reduced from 500KB to 120KB
assuming the biggest instance of the benchmark with 500.000 variables (section 4.3).

5.3.2 Boolean Array

The Boolean array use 8 bit per element where only one is needed. Most of these arrays
are used to store a flag for a variable. The biggest number of variables is 600.000. If
the Boolean array is compressed the used size is reduced from 600 KB to 75KB. For
accessing a single bit in a byte some additional instructions have to be executed.

5.3.3 Dynamic Allocated Objects

Objects for temporary usage with an unknown size are usually allocated and freed at
the runtime of the program. Receiving this memory executes some instructions of the
operating system or a system library. The touched and freed memory increases for the
memory footprint and should be reduced. Especially C++ vectors have the following
bad property. Every time their current capacity is reached and another element should
be stored, their whole data has to be copied to another place in memory. The conflict
analysis is done in one function that creates three vectors. They are used for temporal
data during the analysis and are thrown away afterwards again. At the next conflict,
memory is allocated again. The reallocation can be avoided by reusing the old vector
storage by not throwing it away, but clearing and reusing it.
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6 Improvement

There are two ways of improving the execution of a program. Micro-optimization
tries to minimize the executed cycles by improving the implementation of the algorithm.
Macro-optimization improves the complexity of the algorithm. Usually the latter
approach has a bigger impact on the runtime. Examples are the comparison of the
search algorithms linear and binary search or the sort algorithms bubble-sort and merge-
sort. Each latter algorithm has a better worst case runtime complexity and thus runs
faster, if the number of processed elements increases. Micro optimization can improve
the runtime only by a constant factor.

Nevertheless, the work will concentrate on micro optimization. Section 6.1 will repeat
the conflicts of modern hardware and the solver implementation. Afterwards the arising
problems of macro optimization are explained in section 6.2. In the remaining sections
the improvements are introduced, the effect of their combination is discussed and a final
version of the solver configuration is presented.

6.1 Conflicts of Hardware and Implementation

In section 3.5 the main statements have been:

• keep number of memory accesses small

• reduce the cache miss penalty

• increase the cache hit rate

• keep memory footprint small

• keep frequently used data in cache

The implementation presented in Algorithm 5.1 (page 40) and the runtime distribution
in Figure 5.2 (page 39) show that the project solver does not meet these criteria well.

The memory footprint of the algorithm cannot be reduced to the memory size of the
parsed input formula since clause learning is a main part of the algorithm. The number
of accessed clauses during propagation is small. According to the watched literal schema
in section 2.4.5, the number of processed clauses is reduced compared to the naive schema
that processes all clauses in every propagation step. A disadvantage of the two watched
literal schema is its almost random access of clauses. The clauses where the same literal
is watched are not necessarily stored close to each other or in a specific order. This fact
complicates the work of the prefetcher.
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6.2 Comparison of Different Runs

As mentioned above macro optimization is the better choice in general. However, in
case of this project it is difficult to apply it, because it is not possible to determine the
reason of an improvement if the algorithm has been changed. The question whether the
runtime decreased because of a better cache hit rate or a smaller search tree remains
open. The following sections explain the arising problem.

6.2.1 Same Search Path

Comparing two runs of the same instance using the same solver configuration is easy,
because the execution is deterministic and thus repeatable. The order of made decisions,
found conflicts, learnt clauses and clauses in the watch lists remain. Even the schedules
of restarts and removals remain, because they depend on the number of conflicts (sec-
tion 2.4.8 and 2.4.9). The whole search path is invariant for a single configuration. The
difference in runtime can be explained only by the different system behavior and the
resulting measurement errors (section 5.2.5).

Thus, the comparison of two runs with an equal runtime is easy, if the search path is
the same. Assuming the same hardware is used, every change in runtime is caused only
by the differences of the two implementations. One can determine the effect of this kind
of changes by regarding the runtime first. If the runtime of the new version is worse,
this version can be ignored for the combination of the best versions. Otherwise, it is
analyzed further to find the benefits of the differences, so that it can be combined with
other configurations.

6.2.2 Different Search Path

If the search path of two configurations is not equal, it is difficult to determine the
influence of the differences and hardware effects. Runtime changes can be caused by the
algorithmic change, by improved resource usage or even by a combination of both. The
impacts of the different reasons cannot be separated.

The runtime of two different algorithms can be the same, although the first one may
visit less elements of the search tree than the other one. This effect can be caused by
a better cache miss rate because of the compact storage of the propagated clauses. On
the other hand accessing fewer elements could also result in a longer runtime because of
a spread storage of the clauses. There is no way of extracting the impact on the cache
from the runtime and the hardware events that can be watched without knowing more
details about the storage of the clauses and the number of processed elements of the
search tree.

It would be nice to have a metric that compares the search path of two runs and
returns a runtime ratio. There are only approximations for this metric. For example
MiniSAT 2.0 [13] shows the number of propagations per second. From a theoretical
point of view, a more precise metric seems to be the number of processed clauses during
search and even more accurate should be the number of processed literals.
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Figure 6.1: Metrics to Compare Search Path.

Figure 6.1 shows the ratio between the runtime and the metric value. The two versions
that are compared are the basic version and a version using the phase saving heuristic.
The benchmark consists of six instances of the benchmark.Every end of a line represents
a run of one of these versions. The point in the diagram represents the relation between
runtime and metric value. The slope of the line should be positive because the value of
the metric should increase with the runtime. All the given metrics fail this criteria. For
each of them there are lines with a negative slope on the left side of the picture.

6.3 Improving Data Structures

The analysis pointed out that clauses are the critical data structure for the runtime.
The literal access of clauses needs most of the solving time. One reason is the number
of memory hops to access literals. Some improvements to tackle this weakness are
presented in subsection 6.3.1. The following subsection 6.3.2 tries to solve the other
time consuming part of the runtime, maintaining the watch list.

6.3.1 Clause Implementation Variants

Figure 5.3 shows the access of a single literal in the clause. The head of the clause and
its literals do not have to be stored separately. Storing both together safes one memory
hop per access and thus one less memory line to be accessed when accessing a literal, if
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the clause can be stored on a single cache line. This schema is called flatten clause.

1 typedef literal_t* cls;
2 cls literals;
3

4 literal_t literal(cls literals ,
5 uint32_t index)
6 {
7 return literals[index];
8 }
9

10 uint32_t size(cls literals)
11 {
12 return (( uint32_t *) literals) [-1];
13 }
14

15 float activity(cls literals)
16 {
17 return
18 (( float*) (&((( uint32_t *)cls)[-1])))[-1];
19 }
20

21 // constructor and other methods

Listing 6.1: Member Access in Flatten Clause

Head

Activity

Size

Literals

Figure 6.2: Flat-
ten Clause.

Figure 6.2 shows the combination of clause head and body. The clause is implemented
in an array. The first two elements of the array are no literals but the size and the activity.
The literals are accessed as in the previous implementation (line 4-8). Accessing the size
cannot be done using a simple getter method. The element before the stored literals has
to be read (line 10-13). Due to the fact that literals are read more often than the size of
the clause, their access is kept simple and accessing the size involves pointer arithmetic.
Accessing the activity is implemented similar to accessing the size with the difference
that the activity is stored before the size (line 15-19).

The flatten clause approach improves the runtime of the solver by 21.18%. Because
the second memory hop is not needed, the number of memory accesses is reduced by
24.46% and the cache miss rate is only 32.52%. The distribution of the runtime among
the components varies only slightly compared to the basic version. The unit propagation
needs 90.65% instead of 91.65%. The runtime of the propagate long() function decreases
to 81.2%. The watch list management uses a larger part of 30.67% for erasing elements,
because it is not improved.

Having in mind the distribution of the clause sizes from Figure 4.1 and the special
treatment of frequently used data the presented idea can be extended. Not all literals
are added to the clause head. Instead, a number of literals is determined. This schema
will be called cache clause and has been already introduced in [9] as clause packing.
The literals that are stored in the head will be called local literals and the other part will
be referred to as external literals. The number of local literals should be set such that
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multiple causes fit exactly in a cache line. The fact that the storage of the C runtime to
manage the memory is also on the cache line will be discussed in section 6.4.3.

1 class CppCacheClause
2 {
3 private:
4 float activity;
5 uint32_t size;
6 literal_t *literals;
7 literal_t local_lits[ELEMENTS ];
8 public:
9 literal_t literal(uint32_t index)

10 {
11 if(index < ELEMENTS){
12 return local_lits[index]
13 } else {
14 return
15 literals[index -ELEMENTS ];
16 }
17 }
18 // constructor and other methods
19 }

Listing 6.2: Cache Clause Implementation

Head

Activity

Size
External literals

Literals

Local literals

Figure 6.3: Cache Clause.

The cache clause schema (Figure 6.3) and the implementation of the literal access
are presented in Listing 6.2. The head of the clause contains an additional array of
local literals (line 7). Their access does not introduce a memory hop. In the given
example, the number of local stored literals is two. In the implementation the constant
ELEMENTS determines the number of local stored literals. The saved memory hop
has to recompense the additional instructions that are executed to determine where the
desired literal is stored (line 9-17).

The number of local literals for the experiment has been chosen to be 4 such that the
size of the clause became 32 bytes and thus two clauses fit exactly on one cache line if
the system memory overhead is ignored. The runtime decreased to 80.83% of the basic
versions runtime. As in the flatten clause approach the number of memory accesses
is reduced, but only for the first four literals of the clause. Thus, the cache miss rate
decreased to 33.06% and the number of memory accesses decreases to 85.38% compared
to the base version. The distributions of the runtime among the components and in
the propagate() method differ only half a percent to the ones from the flatten clause
approach.

The two above schemas reduce the average access time of the literals in the clause.
The analysis in Figure 5.2 shows that the first access needs about 20% of the total
runtime. This time is the result of two memory accesses. The address of the watched
clauses are stored in the watch list. Accessing the first literal needs to access the clause
first to obtain the address. The big percentage of the total runtime is spent at this
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access, because also a big part of the total cache misses occurs during these accesses.
The miss penalty for accessing the clause can be reduced by prefetching the watched
clauses before propagating the current literal.

When a literal is propagated, the very first memory access retrieves the according
watch list. This access can also result in a cache miss. Therefore, the list is fetched
immediately when a literal is added to the propagation unit queue. Two variants are
tested with different results.

The first approach prefetch method 1 prefetchs the watched clauses immediately
before they are used in the propagation. This method achieves 12.86% runtime gain. Of
this runtime the propagate long() method that is the only affected method still needs
81.26% of the programs runtime. Comparing the total time of this method to the basic
version of the solver the runtime of this method decreased from 83.36% to 70.81%.
Prefetching the clauses takes just a little time so that the achieved improvement comes
only from the propagate long() method.

The second approach prefetch method 2 introduces a parameter depth that controls
when the clauses of a watched list have to be prefetched. Only watch lists of a certain
number of literals at the beginning of the unit queue are fetched. For example the
unit queue q = {2, 5} and the value of the parameter is depth = 2 and the literal 1 is
propagated at the moment. Assuming literal ¬6 is implied by literal 1 and thus added to
the queue. The resulting queue is q = {2, 5,¬6}. The watch list of ¬6 is prefetched but
not the watched clauses. Just when the next literal 2 is dequeued, the watched clauses
of literal ¬6 are prefetched.

The given results are obtained with the parameter depth = 10. At first glance the
gained effect for the propagate long() method looks even better than in the previous
example. A closer look explains why the overall runtime is only 96.4% of the basic
versions runtime. The distribution among the components does not change. The nearly
4% gain belong to the unit propagation. The propagate long() method needs only 76.6%
of the runtime, because the clause heads of the current watch list are already in cache.
The prefetching is done by the enqueue() method that enqueues literals to the unit
queue of the propagation. The part of runtime that is used by this function increased
from almost 0% to 5.3% so that the overall costs of propagating a literal through the
long clauses is not different to the one in the previous approach. The improvement of
this approach can be increased by tuning the deptch parameter. If a value had been
found, it is not ensured that this value is also the best for other instances. Thus, this
optimization is not performed in the current work.

6.3.2 Watch List Improvements

Another weakness of unit propagation in Figure 5.2 (page 39) is the part that is spent
in the method Vector.erase(). Removing a value in the middle of the vector is done by
moving all the following pointers one position forward. Thus, time is spent on copying
data in memory. Erasing elements from a list is less expensive. Only the preceding and
the successive element have to be notified that the element in the middle does not exist
anymore. The part of the runtime that is spent on reading elements of the watch list
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cannot be extracted. Reading an element in a vector is cheaper than one from a list,
because the address of the element is known in advance. Processing a list is done by
iterating over all its elements, as it is done with the watch list during propagation as well.
Thus, it should be no major disadvantage using a list instead of a vector for implementing
the watched list. The implementation using a list for the watch list implementation is
called list propagation.

It turned out that using a vector is the better choice. Using a list to avoid the erase
overhead resulted in 20% more runtime. The number of total cycles increased by 18%
although the work cycles are only 67.2% compared to the standard version. The number
of total memory accesses decreases by 13.4% but the number of cache misses increased
dramatically by 50.3%. This effect is caused by the comparison of reads in a vector and
a list. Iterating over a vector results in linear memory accesses so that the prefetch unit
is able to prefetch the address of the next clause. Since the size of an address is only 8
bytes, eight clauses can be processed before another cache line has to be loaded. Iterating
over a list often loads a new cache line for every element, because the elements of the
list are not stored close to each other. The advantage of the removal time disappears
because of the iteration cache misses.

Removing elements from the vector can also be done lazily. There are two kinds of
clauses that stay in the current watch list while propagating a literal. Clauses of the
first kind are clauses whose other watched literal is satisfied (Algorithm 5.1, line 9-11).
Clauses of second kind are clauses that become reason for a literal. Clauses that where
another literal is watched are removed (line 15-24). If a conflict is found in the watch
list the propagation stops. The watch list contains the kept clauses, the conflict clause
and all clauses that are stored behind this conflict clause.

If a clause is removed, the pointer can be kept in the watch list and be marked as a
gap. If the propagation stops, all these gaps need to be closed. All the kept clauses can
be stored compact at the beginning of the vector. The order of clauses in the vector is
as follows:

1. kept clauses

2. gap

3. clauses to be processed

This removal of clauses from the watch list is called lazy removal. It is illustrated in
Figure 6.4. The picture shows four states of a watch list during propagation. Propagating
a literal starts with visiting the first clause in state 1. The kind of the following clauses
it not known at the current state.

The first clause should be removed from the current vector. Instead of pushing all
following elements one position forward a gap is created. The propagation proceeds with
the second clause. This clause should also be removed. Again, the rest of the watch list
is not touched, but the gap is enlarged. This state is illustrated in state 2.

The next clause to propagate has to be kept in the watch list. Its final position in
the watch list will be index 0. Thus, it is moved to this position. Consequently, its old
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position is added to the gap. Processing the next clause that shall be removed enlarges
the gap again. The last two steps are repeated for the next two clauses. The resulting
situation is illustrated in state 3. The two clauses that have to be kept are stored at the
first positions of the watch list. The gap is behind these kept clauses and behind the
gap the remaining clause of the watch list are stored.

Since the next clause to propagate is a conflict clause propagation stops. The gap has
to be removed from the watch list again. This step is done by moving all clauses that are
stored behind the gap close to the already kept clauses. Finally removing the gap from
the watch list results in state 4. This state is the same as if all the clauses to remove are
removed immediately. In contrast to the old implementation, the lazy removal moves
every clause only once. Thus, the number memory accesses is reduced.

current

current

Remove Clause

Keep clause

Conflict Clause

Not visited Clause

1 2 3 4

current

Key

gap

gap

Figure 6.4: States of a Watch List with Lazy Removal.

The new removal reduces the runtime of the watch list maintenance. This reduction
results in 23.78% speedup of the solver. The number of L2 misses does not change, but
the number of memory accesses decreased by 35.34%. Thus, the L2 miss rate increases
to 54.42%. These results indicate that maintaining the watch list is buffered in the L2
cache completely. Moving elements multiple times in the same lists meets the temporal
locality criteria. Due to the lazy moving of clauses in the watch list the number of work
cycles decreases by 52.05%. Consequently, the basic version of the solver seems to spend
50% of its work cycles on maintaining the watch lists. The according memory accesses
are buffered in L2 cache and thus the cache miss rate is lower. Removing these easy to
predict memory accesses increases the L2 cache miss rate, because the part of almost
random accesses among all accesses increases. The L2 cache miss rate does not seem to
be sufficient to indicate the hardware utilization of a SAT solver well.

Figure 6.5 summarizes the explained changes to the clause and watch list usage. The
major improvements come from saving memory hops in the flatten clause and the cache
clause and the lazy removal in the watch list. Both improvements reduce the runtime
by almost 25%. The number of work cycles is only improved by the latter one. On the
other hand, the other improvements reduce the number of L2 cache misses significantly.
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Figure 6.5: Comparison of Data Structure Improvements.

The diagram also shows the higher number of L2 cache misses of the list propagation
approach.

6.4 Improving Memory Accesses

The goal of improving memory accesses can be achieved in three ways: compress data,
store data compact, reuse already allocated memory. Subsections 6.4.5 presents a com-
parison of different compiler optimizations.

6.4.1 Compression of Data Structures

Data representation can be compressed, if it uses more memory than needed. For exam-
ple storing a Boolean value can be done using a single bit instead of a byte as it is done
in the implementation. The representation of a Boolean array can be compressed. The
configuration with a compressed Boolean array is referred to as compressed Boolean
array.

Figure 6.6 gives an example for this schema. The compression and decompression
of the data requires more instructions than just returning the value of a byte. The
implemented array is based on 32 bit words. First, the according word has to be accessed
(line 6-8). Next, the matching bit of this word has to be extracted. Therefore, its offset
is read (line 10) and a bit mask is created (line 12). Using this mask and word, the
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1

2 bool get( boolarray_t boolarray ,
3 const uint32_t index )
4 {
5 // 32 elements per word
6 uint32_t wordPos = index >> 5;
7 uint32_t word =
8 (( uint32_t *) boolarray)[wordPos ];
9 // last 5 bits are offset

10 uint32_t offset = (index & 31);
11 // create mask
12 uint32_t element = 1 << offset;
13 // get bit from word
14 element = word & element;
15 // move back to lowest bits
16 return (bool)(element >> offset);
17 }

Listing 6.3: Uncompression of Boolean Array
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Figure 6.6: Compressing Boolean
Arrays.

desired information that is stored in the accessed bit is returned (line 16). The runtime
improved by 0.9%. This improvement indicates that the compression of a small array
and the 1.3% less L2 cache misses are not worth the additional instructions that are
executed every time the array is accessed.

The assignment can be compressed in a similar way with the only difference that a
ternary value has to be stored. In the basic implementation again a byte is used per
element although this byte can store 256 different values instead of 3. In the extreme
case, five ternary values can be stored in a byte, because all possible combinations result
in 35 = 243. Accessing this compact compression is only possible by using the slow
modulo instruction. Due to the fact that the compression of factor eight of the Boolean
array does not result in a high improvement, only four ternary values are stored in a
byte. In this approach the values are accessible using fast bit shift operations similar
as in Listing 6.3. This schema is called compressed assignment and results in an
insignificant improvement of 0.4%. As in the case of the compressed Boolean array the
gained 2.3% reduction of L2 cache misses are not worth the additional 6.3% work cycles.
This result has been also obtained in [9].

The implemented assignment supports backing up the last set polarity of a variable.
This backup polarity is used by some decision heuristics to assign the polarity again to
the variable and to propagate the variable again.

As shown in Figure 6.7 every even value of the assignment array corresponds to the
current polarity and every odd field corresponds to the backup polarity. Reading the
current polarity during propagation always loads the backup polarities in the cache as
well. To avoid this effect the backup polarities are stored at a negative index. The
left assignment is implemented in the basic version. Its pointer points at the very first
element. The new approach on the right side divides the assignment into two parts and
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Figure 6.7: Storing Backup Assignment Using Negative Indexes.

begins indexing in the middle of the array. Thus, the variable can be used as index for
the assignment and not its double as it is done in the basic case. This approach, which
is called negative index assignment, achieves 0.75% runtime improvement. Again,
the saved 1.2% L2 cache misses are not worth the 1.2% additional instructions.

6.4.2 Compression of Literals

Compressing literals is easier to implement than compressing a binary or ternary value,
because the programming language provides the necessary elements. As introduced in
Chaff [17] it is possible to store 3 literals in a 64 bit double word. In Chaff each literal
is represented with 20 bit such that maximum number of variables is 219, because the
literal has to store the polarity. Since a literal can also be represented using 21 bit and
three of them still fit into a 64 bit double word the implementation has been done in this
way and is called compressed clause. The size of 21 bit allows to process formulas
with 220. This limit is more practical than the previous one but compared to using
32 bit literals and 231 possible variables it remains a limit. The used benchmark can
be handled with the Chaff approach, because the instance with the highest number of
variables contains only 507145 variables.

The compression of the literals saves almost a third of the necessary storage for literals
of clauses having a size larger than 2. The compression factor depends on the number
of literals in a clause as shown in Figure 6.8. The picture on shows to literal lists. The
left one is uncompressed and stores eight literals using 32 bytes, because every literal
needs 4 bytes memory. The right list uses 24 bytes for storing three literal triple of 8
bytes. The compression factor of 33% is reached, if the number of literals to compress
is a multiple of three.
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1

2 class CppCompressClause
3 {
4 private:
5 struct lits_t{
6 unsigned lit1 : 21;
7 unsigned lit2 : 21;
8 unsigned lit3 : 21;
9 unsigned pad : 1;

10 }__attribute__ (( packed));
11 float activity;
12 uint32_t size;
13 lits_t* literals;
14 public:
15 literal_t literal(uint32_t index)
16 {
17 assert(index < size);
18 lits_t tmp = literals[index /3];
19 uint8_t mod = index %3;
20 if(mod ==0){
21 return (literal_t)tmp.lit1;
22 } else if( mod == 1){
23 return (literal_t)tmp.lit2;
24 } else {
25 return (literal_t)tmp.lit3;
26 }
27 }
28 // other methods
29 };

Listing 6.4: Uncompression of Literals in Clause

64 b
it

64 b
it

64 b
it

64 b
it

Uncompressed

0

1

2

3

Compressed

4

5

6

7

2

1

0

5

4

3

7

6

Figure 6.8: Compression of Literals
in Clauses.

The implementation of the clause in Listing 6.4 provides a structure lits t that stores
the 21 bit values in a 64 bit double word (line 5-10). The elements of the clause remain
the same except the literal array that became a pointer to an array of literal triples.
Accessing a literal needs to extract the right triple (line 18) and to select the matching
21 bit value (line 19). The modulo operation is used although it is slow, because there
is no faster way to determine the according element out of a triple. The matching 21 bit
value is returned (line 20-26). The order of the if statements is important, because of
the clause access pattern (Figure 5.3). Most of the time the very first element is accessed
so this case is handled first and thus the average runtime of the routine is optimal.

The obtained result is not satisfying, because the runtime does not improve at all.
The cache miss rate decreases slightly to 40.09% but the work cycles increase by 17.55%
such that the interference of both effects discharges.

With respect to the fact that the size of a clause can be represented by the same
amount of bits as literals the next approach, which is named size compressed clause,
compresses also the size and stores the first literal triple in the clause head, similar to
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the cache clause approach. Therefore, the result of this run cannot only be compared
to the basic version or the compress clause approach, because a memory hop is saved, if
one of the two first literals is accessed. The size of the clause head is not optimal for 64
bit systems in this schema because it is no factor of the cache line size. Using a 32 bit
system the size of the pointer to the literal triple array has a size of 4 bytes and the size
of the clause head would be 16 bytes. This size would be optimal concerning the cache
line size. On the tested 64 bit system the runtime improved by 9.87%. The number of
L2 cache accesses decreases to 89.78% and the miss rate is 33.33%. The distribution of
the runtime among the components changes such that the unit propagation looses 2%.
These 2% are shared among the remaining components. Compared to the cache clause
approach the compress size clause approach is not the better choice.
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Figure 6.9: Comparison of Data Compression Improvements.

Figure 6.9 summarizes improvements due to data compression. It shows that com-
pression leads to a small positive impact on the runtime due to less memory accesses
and a better cache miss rate. The compression of data always leads to additional work
cycles. The gap between saving a memory hop in case of the size compress clause and
only compressing the data is nicely shown.

6.4.3 Slab Memory

Storing important data compact can be done by using an own memory allocator instead
of malloc that is provided by the operating system. The slab allocator, which has been
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introduced in [8], can be used for the allocation of memory of the same size. It organizes
the single allocated objects in slabs of a fixed size. The size of the clause head is known
at compile time, thus the slab allocator is used for them in an approach called slab
clause. An advantage of this allocator is, that it does not introduce additional storage
per element as it is done by the system allocator malloc(). On the test machine malloc()
stores 8 bytes before every allocated memory block.
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Figure 6.10: Comparison of Cache Lines with System and Slab Allocator.

Figure 6.10 shows two cache lines, each filled with clauses by a different allocator.
The slab allocator stores the 8 bytes system information only once for a larger memory
block and thus the clause heads are stored compact. If the block is large enough all
cache lines contain only user information and no system overhead. The system allocator
cache line contains up to three times 8 bytes system overhead and thus wastes a quarter
of the cache line.

The processor events of this run are not different compared to the runtime of the basic
version. Accessing different clauses of the same cache line does not happen often enough
to gain some improvement on the cache misses and thus the overall runtime.

The slab allocator can also be applied to any other structure where the size is known
and thus the allocator with the according slab size can be chosen. The literals of the
clause are allocated using the slab allocator in the slab literals schema. Since the
allocator reserves some memory in advance, an upper bound of slab sizes is introduced.
Memory allocation above this bound are passed to the system allocator.

The result of the last approach is the same as for the first one. As shown in Figure 5.3
most of the time the literals in a clause are not accessed one after another. Only the
first literals are accessed often. Thus, placing literals closer together does not lead to
an improvement. Most of the time the next memory access touches another clause.
Additional instructions are not introduced because the slab allocator is used instead of
malloc.
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6.4.4 Reuse Structures

In the conflict analysis the clause resolution is implemented using a vector that stores
the literals that the learnt clause contains. For the minimization this vector is copied
twice. One copy holds the literals that are resolved in the current step. The next one
contains the literals of the previous run, if the last resolution process has to be undone.
Thus, these vectors are created and destroyed for every conflict analysis. Their lifetime
is very small. Since the extension of a vector involves memory allocation and copying
this process is expensive. In case of a vector it is easy because instead of destroying
the old vector and creating a new one the old vector just has to be cleaned. Cleaning a
vector keeps the capacity of the vector so that the vector does not need to be extended
again. The approach is called reused vector.

The overall runtime decreases by 4.53%. In the basic version the analysis needs 5.74%
of the total runtime. Surprisingly in the improved version it still needs 5.95%. Compared
to the runtime of the analysis in the basic version the analysis consumes 5.67% of the
runtime. The change does not affect the analysis at all. A side effect of keeping the
vectors and not extending, another vector is the reduction of memory fragmentation.
Less memory fragmentation results in faster memory allocation, because the allocator
finds suitable free parts of main memory faster and data is stored more compact so that
the chance of hitting the same cache line twice increases and the prefetch unit prefetchs
some user data instead of unused memory.

6.4.5 Compiler Options

The runtime of -O1 is 2.27% slower than -O3. This result can be explained by the
differences of the optimization that is done. Except aligning loops the -O3 level includes
all optimizations that are done by -O1. It further includes minor changes that mainly
improve the execution of conditional execution branches. Thus, the -O1 run has 9.91%
more work cycles and a slightly better cache miss rate of 40.88%, which interfere with
each other.

The reduction of memory overhead led to a slight increase of the runtime as shown
in Figure 6.11. Only reusing the vector in the conflict analysis reduces the number of
memory accesses, the cache miss rate and thus the overall runtime.

6.5 Search Path Changing Improvements

Some improvements that change the search path turned out during analyzing the solver.
Accessing literals during propagation is expensive, because of the two memory hops.
Their avoidance is discussed in the subsection 6.5.1. The second subsection 6.5.2 dis-
cusses the reduction of literal accesses and subsection 6.5.3 explains another decision
heuristic that could lead to an improved cache utilization. All statements comparing
the two solver configurations can be applied only to the used benchmark. Using other
instances may result in different results.
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Figure 6.11: Comparison of Overhead Improvements.

6.5.1 Watch List Literals

Figure 5.2 (page 41) shows the two memory hops to access a literal in a clause. A
first approach to improve the accesses has been introduced in section 6.3.1 (page 47)
where the literals are stored in the clause head. Another approach is to store some of
the literals next to the address of the clause in the watch list as in [9]. The access of
these literals does not introduce another memory hop. If such a literal is satisfied the
matching clause must not be accessed at all. Thus, they are checked before the clause
is processed. There are several ways to manage the literals in the watch list. When the
clause is added the first two literals of the clause are stored in the watched list. The
approach is called cache watch list.

The work cycles of this approach almost three folded (279.12%), but the total time
of this schema only increased by 57.24%. The number of memory accesses three folded
as well (316.63%), since the solver processes clauses most of the time. The difference
between the rises of the different cycle types can be explained by the cache miss rate
that decreased to 10.25% as expected because of the skipped clause accesses.

Another weakness of the watch list implementation is the removal of items when a
clause is watched by a new literal. According to Figure 5.2 (page 39) this process needs
about a quarter of the whole search time. Applying a removal that does not keep the
order of the elements leads to less memory copying and thus less memory accesses. The
new removal swaps the element that should be erased with the last element of the vector.
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Afterwards the size of the vector is reduced so that the new last element, which is the
element to remove, is erased from the vector. The name of this schema is unordered
propagation. Its result is negative in all aspects. Although the number of work cycles
stayed almost the same, the total runtime increases by 77.05%.

The runtime distribution stayed the same, except the part of the Vector.erase()
method. The original runtime of the watch list maintenance almost disappears com-
pletely. That this better maintenance does not lead to an overall improvement of the
propagate function is caused by processing on other parts of the search tree and thus
visiting more clauses and accessing memory with a higher L2 cache miss rate (68.3%).

A third approach is to reversely process the clauses in the watch list. Since removing
an element from the list pushes the following elements one position forward the number of
clauses to push is reduced, because some of the initial following clauses have already been
removed. The overall runtime of this schema, which is called reverse propagation,
increases by 88.42%. The number of work cycles increased by 41.86% and indicate that
the search path of this approach seems to be worse than the one of the basic version. The
part of the runtime that is needed by the Vector.erase() method is reduced to 10.81%.

6.5.2 Reducing Literal Access

The unnecessary swapping of the watched literals in the clauses is removed in the next
approach, which is called no swapped literals. Instead of swapping the watched
literals (line 6-8, Listing 5.1) in the clause when it is processed the other watched literal
and position of the current watched literals are remembered. The consequences of this
schema are less accesses to L1 cache and another search path, because of a different
order of literals in the clauses. They result in a worse number of work cycles (217.75%)
and a larger runtime (186.47%). The number of memory accesses increases due to the
longer work process.

6.5.3 Change Decisions

The decision heuristic is the component controlling the next part of the search tree that
is accessed. There are approaches that seem to access the same part of the search tree
more often. One example is the phase-saving decision heuristic [20]. Its main goal is to
pick the polarity of the decision literals such that is the same as it had been previously.
Therefore, the old polarity of all assigned variables needs to be backed up when the
variables are undefined. Applying this schema satisfies the same set of clauses that has
been satisfied before resetting the variable. These clauses have not been accessed during
the last propagation and thus they are probably not stored in the cache. In the current
propagation they are not accessed again, because they are satisfied again. The schema
does not access clauses that are known to be not stored in the cache. Due to the two
watched literal propagation some of the satisfied clauses could still be accessed, because
the satisfying literal is not necessarily the watched literal. Thus, propagating another
literal of a satisfied clause still touches it and loads it into the cache.
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6.6 Combination of Improvements

Several improvements can be combined. The only restriction is that not all clause
improvements can be combined. The most promising combinations have been chosen to
find the best improvement.

A remaining weakness of the cache clause approach is that the clause head does fit
on the cache line twice but the system allocator memory overhead prevents this. Thus,
the slab allocator and the cache clause are combined to store two clauses on a single
cache line. This combination results in a speedup of 23.7% and thus gain another 4%
compared to the separate improvements. The cache miss rate decreased to 31.07%. This
effect is caused by the 5% reduction of the L2 cache misses. The other processor events
behaved as in the cache clause approach.

The slab allocator has also been combined with the flatten clause. Due to the fact
that the flatten clause is not separated in clause head and body the effect of storing two
clauses in one cache line is only gained for clauses with two or four literals. Thus, the
impact on the runtime is not as big as in the above approach. Compared to the flatten
clause approach the introduced combination gains 2% in the L2 cache miss rate such
that the overall runtime decreased to 77.38% of the basic versions runtime. The other
processor events changed only slightly compared to the flatten clause schema.

Table 6.1 gives the results of some combinations of improvements with respect to
total cycles, wait rate, L2 cache accesses and miss rate. The search path changing
improvements have not been considered for the combination, because their impact may
be too different on another benchmark. The six combinations combine the following
improvements. The cache clause is used with four literals and uses the acronym CC.
The flatten clause improvement uses the acronym FC. LR is the acronym for the lazy
removal improvement. VR refers to the vector reuse improvement and slab refers to the
slab allocator. P1 is the acronym for the prefetch method 1 , NA refers to the negative
index assignment improvement and CBA is the acronym to the compressed Boolean
array approach. Finally, CA refers to the compressed assignment schema. The first two
columns of the table are relative values with respect to the basic version. The values of
the remaining columns are absolute numbers, because they already represent ratios.

The following combinations have been chosen.

• Combination 1 = CC + slab + LR + VR + P1

• Combination 2 = FC + slab + LR + VR + P1

• Combination 3 = CC + slab + LR + VR + P1 + NA

• Combination 4 = FC + slab + LR + VR + P1 + NA

• Combination 5 = CC + slab + LR + VR + P1 + NA + CBA

• Combination 6 = CC + slab + LR + VR + P1 + CA + CBA
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Configuration Total Cycles L2 Accesses L2 Miss Rate Wait rate

Basic Version 9.222 · 1013 7.2225 · 1011 40.94% 81.12%
Combination 1 40.93% 56.3% 47.68% 75.56%
Combination 2 39.91% 56.72% 48.7% 75.88%
Combination 3 41.01% 56.01% 48.05% 75.82%
Combination 4 40.9% 56.51% 48.86% 76.14%
Combination 5 40.69% 54.56% 48.25% 74.86%
Combination 6 39.7% 51.71% 49.3% 72.21%

Table 6.1: Results of Improvement Combinations.

Table 6.1 shows that the chosen combinations lead to almost 60% runtime improve-
ment. The number of L2 accesses differs only about 5%. The compression of data
structures leads to less memory accesses. Less accesses also result in a lower wait rate.
The compression advantages do not seem to interfere much with the runtime. The L2
cache miss rate differs only 2%. Combination 6 is the fastest combination and has the
lowest wait rate. Its L2 cache miss rate is the highest, because it is also the combination
with the least memory accesses.

6.7 Final Version

Since the runtime difference among the presented combinations is not significant only
Combination 6 is analyzed further. Table 6.2 shows the distribution of total cycles and
work cycles among the solver parts. It also gives the improvements compared to the
basic version of the solver.

Compared to the basic version of the solver, the distribution of the total cycles moves
slightly from the unit propagation to the other components. The conflict analysis needs
13% of the runtime. The runtime of the propagate() function is reduced by 60% com-
pared to the basic run. This improvement is caused by the positive impact on the clause
read access of 16%. The newly introduced prefetch instruction consumes 10% of this
improvement. Another part of the positive effect is the decreased number of cycles for
the Vector.erase() method. The methods task is spread in the propagate long() method,
such that it is not possible to trace it and assign it again to the watch list maintenance.

Combination 6 and the basic version of the solver differ only in 232 lines of code of the
activated components. Most of these lines are needed for compressing the assignment
(93 lines) and implementing the slab allocator (80 lines). The other changes can be
implemented with less than 25 lines. The effect of the few additional lines of code is
significant for the overall performance of the solver.

Unit propagation remains the heart of the solver and is the part where further im-
provements concerning the resource usage should be applied. The usage of the prefetch
function seems to offer more optimization opportunities since it executes only 4% of the
work cycles but consumes 24% of the total runtime. Improving the decision heuristic
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Total Cycles Improvement of Work Cycles Improvement of
total cycles work cycles

Basic Version 9.222 · 1013 7.535 · 1013

Combination 6 3.66 · 1013 5.562 · 1013 9.64 · 1012 6.571 · 1013

Combination 6 100% 60.31% 100% 42.62%
Search 98.63% 60.26% 97.19% 42.42%
Decision Heuristic 4.28% 0.07% 4.52% -0.02%
Removal Heuristic 0.68% 0.04% 2.33% -0.58%
Conflict Analysis 13% 0.58% 15.97% -1.99%
Event Heuristic 0% 1.33% 0.01% 1.33%
Unit Propagation 80.87% 59.55% 74.48% 44.56%

propagate() 77.86% 59.43% 72.09% 44.89%
propagate binary() 14.42% -0.01% 13.07% -1.08%
propagate long() 61.47% 59.46% 54.14% 46.32%

Clause.literal(i) 9.17% 16.04% 8.34% -3.87%
Vector.erase() 0.22% 24.18% 0.34% 49.51%
prefetch() 23.14% -9.18% 3.46% -1.98%

Table 6.2: Comparing Cycle Distribution of Basic and Final Version.

may lead to a much better search path, such that applying the decision heuristic and
conflict analysis may take as long as unit propagation does.
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7 Summary

This chapter summarizes the work. In section 7.1 implementation rules that lead to
the major runtime improvement are presented. Section 7.2 presents results of related
experiments. Finally section 7.3 concludes the work.

7.1 Implementation Hints

The following rules led to major runtime improvements.

1. Avoid memory hops.

2. Separate frequently accessed and other data.

3. Fit data structures to the cache line size

4. Store frequently used data compact.

5. Prefetch data if the memory accesses are not linear.

6. Do not touch data unnecessarily.

Avoiding memory hops always results in less cache misses and thus in a better cache
miss rate. Less cache misses result in a better work rate and thus the CPU does not
spend that much time on waiting. Both the flatten and cache clause approach are a
prove that this rule is very effective if it is applied alone.

The separation of frequently used data from the other data increases the chance of
accessing the same cache line twice, because this line contains frequently used data.
Since the prediction which cache line will be used again is difficult this approach can
only be followed by a statistic approach. The cache clause approach showed the positive
impact of this rule.

Fitting the size of data structures to the cache line size is important to avoid loading
another line from main memory. The positive impact of this schema is shown in com-
bination with the first rule in the combination of cache clause and slab allocator. Two
clause head including four literals can be stored on a cache line and thus if the other
clause has to be accessed, it is already load into cache.

The combination slab allocator and cache clause showed also that it is important to
store other data between frequently used data. The application of the slab allocator
alone did not lead to any effect. It removed the system memory overhead but the
compact stored data has not been the frequently used one. Adding the slab allocator
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approach to the cache clause approach led to another improvement, because the cache
clause approach already determined the frequently used part of the data.

The fifth rule is very important, especially if the other rules cannot be applied. It
enables the programmer to give the hardware hints about the structure of the memory
accesses of the program. Thus the miss penalty for cache misses reduces, because the
memory hierarchy has been notified about the data access before that access is really
executed. Both prefetching methods prove that this improvement is important. The
prefetch method 2 also introduces another parameter to suite the solver even more to a
certain benchmark.

Ignoring the last rule has a dramatic impact on the runtime of the solver. Avoiding
multiple unnecessary accesses of the clauses in watch lists decreases the number of mem-
ory accesses a lot, and due to the miss penalty for higher memory hierarchy layers also
the runtime decreased dramatically. Every memory access can result in a main memory
access and thus introduce many stall cycles. Thus keeping the number of accesses as
small as possible is crucial for the runtime of the solver.

7.2 Further Work

Another hardware component that tries to reduce wait cycles is the TLB [15, p. 445].
It avoids repeating memory address translation, which are very expensive. An analysis
using another computer system (Intel Core i7 860, 8MB L2 cache, clock frequency of
2.80GHz) showed the influence of the TLB. The benchmark has been run using different
page sizes and thus the amount of memory for which the address translation is buffered
in the TLB is changed. Enabling 2MB pages instead of the usual 4KB pages improved
the runtime of both the basic and final version of the solver by 10%. This result shows
that the TLB behavior needs to be analyzed to further increase the hardware utilization
of the solver.

Recent CPUs implement a branch prediction unit. At the moment is not known how
often this unit miss-predicts the right branch and thus can be optimized. In addition,
the possible impact of this improvement is unknown.

Finding a metric for comparing different search path is of major interest. The work
cycles meet the monotony criteria for a metric, but they also depend on the overhead
an implementation spends on improving the hardware usage. The work cycles may be
considered as a metric if the used data structures of the two versions are the same
and thus do not introduce additional work cycles. The suitability of this datum as a
comparing metric need to be analyzed further. A disadvantage is that it is a metric that
is hard to calculate without executing the algorithm and measuring its value.

A subsequent research of this work could be the analysis of the suggested improvements
on a parallel version of the solver using a multi-core computer platform with a shared
cache. The current work provides a basis for further cache analysis of SAT solver. Since
current CPUs become more parallel and implement shared caches, the further analysis
may be of future interest.
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7.3 Conclusion

The report presents the analysis of a modern SAT solver with respect to its hardware
utilization on industrial problems. The research analyzed weaknesses of the solver con-
cerning the memory hierarchy. These weaknesses have been reduced and thus the hard-
ware utilization and the overall runtime improved. The major improvements include
efficient clause representation, prefetching and lazy watch list maintenance, since the
clause and the watch list are the most used data structures in a SAT solver. Combining
several micro optimization improvements led to 60% speedup of the algorithm.

This speedup is only of minor interest for researchers, because the complexity of the
algorithm remains the same. The linear speedup reduces only the runtime of further
analysis. For users of SAT solvers this speedup is very important, since they are inter-
ested in smallest possible runtime of the solver. Industrial users of SAT solver do not
care where the runtime improvement comes from. Every second they can save speeds
up their overall process and reduces their costs. These people do not care where the
speedup comes from. Thus saving more than the half of the runtime with adding only
250 lines of code is a very positive result of this work.
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