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Abstract

EL is a popular description logic, used as a core formalism in large existing knowl-
edge bases. Uniform interpolants of knowledge bases are of high interest, e.g. in
scenarios where a knowledge base is supposed to be partially reused. However,
to the best of our knowledge no procedure has yet been proposed that computes
uniform EL interpolants of general EL terminologies. Up to now, also the bound
on the size of uniform EL interpolants has remained unknown. In this article,
we propose an approach to computing a finite uniform interpolant for a general
EL terminology if it exists. To this end, we develop a quadratic representation of
EL TBoxes as regular tree grammars. Further, we show that, if a finite uniform
EL interpolant exists, then there exists one that is at most triple exponential in
the size of the original TBox, and that, in the worst case, no smaller interpolants
exist, thereby establishing tight worst-case bounds on their size. Beyond showing
these bounds, the notions and results established in this paper also provide useful
insights for designing efficient ontology reformulation algorithms, for instance,
within the context of module extraction.
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1. Introduction

With the wide-spread adoption of ontological modeling by means of the W3C-
specified OWL Web Ontology Language [2], description logics (DLs, [3, 4])
have developed into one of the most popular family of formalisms employed for
knowledge representation and reasoning [5, 6, 7, 8]. For application scenarios
where scalability of reasoning is of utmost importance, specific tractable sublan-
guages (the so-called profiles [9]) of OWL have been put into place, among them
OWL 2 EL which in turn is based on DLs of the EL family [10, 11].

In view of the practical deployment of OWL and its profiles [12, 13, 14], non-
standard reasoning services for supporting modeling activities gain in importance.
An example of such reasoning services supporting knowledge engineers in differ-
ent tasks is that of uniform interpolation: given a theory using a certain vocabu-
lary, and a subset of “relevant terms” of that vocabulary, find a theory (referred to
as a uniform interpolant, short: UI) that uses only the relevant terms and gives rise
to the same consequences (expressible via relevant terms) as the original theory.
Intuitively, this provides a view on the ontology where all irrelevant (asserted as
well as implied) statements have been filtered out.

Uniform interpolation has many applications within ontology engineering. For
instance, it can help ontology engineers understand existing ontological specifi-
cations by visualizing implicit dependencies between relevant concepts and roles,
as used, for instance, for interactive ontology revision [15]. In particular for un-
derstanding and developing complex knowledge bases, e.g., those consisting of
general concept inclusions (GCIs), appropriate tool support of this kind would be
beneficial. Another application of uniform interpolation is ontology reuse: given
an ontology that is to be reused in a different scenario, most likely not all as-
pects of this ontology are relevant to the new usage requirements. In combination
with module extraction, uniform interpolation can be used to reduce the amount
of irrelevant information within an ontology employed in a new context.

For DL-Lite, the problem of uniform interpolation has been investigated [16,
17] and a tight exponential bound on the size of uniform interpolants has been
shown. Lutz and Wolter [18] propose an approach to uniform interpolation in ex-
pressive description logics such as ALC featuring general terminologies showing
a tight triple-exponential bound on the size of uniform interpolants. Koopman and
Schmidt [19] and Ludwig and Konev [20] propose practical approaches to com-
puting uniform interpolants in expressive description logics. For the lightweight
description logic EL, the problem of uniform interpolation has, however, not been
solved. To the best of our knowledge, the only existing approach [21] to uniform
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interpolation in EL is restricted to terminologies containing each concept symbol
at most once on the left-hand side of concept inclusions and additionally satisfying
particular acyclicity conditions which are sufficient, but not necessary for the ex-
istence of a uniform interpolant. Recently, Lutz, Seylan and Wolter [22] proposed
an EXPTIME procedure for deciding, whether a finite uniform EL interpolant ex-
ists for a particular general terminology and a particular set of relevant terms.
However, the authors do not address the actual computation of such a uniform
interpolant. Up to now, also the bounds on the size of uniform EL interpolants
have remained unknown.

In this paper, we propose a worst-case-optimal approach to computing a finite
uniform EL interpolant for a general terminology. Our approach is based on proof
theory and regular tree languages. We develop a grammar representation of EL
TBoxes. These grammars are quadratic in the size of the initial TBox and capture
all of its logical consequences except for a certain kind of weak consequences –
consequences that can be trivially derived from other logical consequences but
are not equivalent to those. We show via a proof-theoretic analysis that the tree
languages generated by the proposed grammars indeed capture all non-weak con-
sequences of the initial terminology expressed using the set of relevant terms.

Further, we show that certain finite subsets of the languages generated by these
grammars can be transformed into a uniform EL interpolant of at most triple ex-
ponential size, if such a finite uniform EL interpolant exists for the given termi-
nology and a set of terms. We also show that, in the worst-case, no shorter inter-
polants exist, thereby establishing tight bounds on the size of uniform interpolants
in EL.

It should be noted that the notions and results presented in this article go be-
yond the mere purpose of showing the triple exponential blowup and have prac-
tical applications. In fact, the proposed grammars have served as a basis for a
module extraction tool in follow-up work by Nikitina and Glimm [23]. Within
this tool, the insights gained in the present article are taken into account to de-
rive a blowup-avoiding algorithm for a kind of partial uniform interpolation that
conditionally eliminates concept symbols one by one after a careful analysis.

The article is structured as follows: In Section 2, we recall the necessary pre-
liminaries on EL. In Section 3, we introduce a calculus for deriving general sub-
sumptions in EL terminologies, which is used as a major tool in the proofs of this
work. Section 4 formally introduces the notion of inseparability and defines the
task of uniform interpolation. Section 5 demonstrates that the smallest uniform
interpolants in EL can be triple exponential in the size of the original knowledge
base. In Section 6.1, we describe a normalisation of terminologies that enables
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a representation of non-weak logical consequences as languages of regular tree
grammars. In Section 6.2, we recall the necessary preliminaries on regular tree
languages/grammars and introduce regular tree grammars representing subsumees
and subsumers of concept symbols, which are the basis for computing uniform EL
interpolants as shown in Section 6.3. In the same section, we also show the upper
bound on the size of uniform interpolants. After giving an overview of related
work in Section 7, we summarize the contributions in Section 8 and discuss some
ideas for future work. This is a revised and extended version of our previous
paper [1] and contains technical enhancements, a more detailed argumentation,
examples and the full proofs.

2. Preliminaries

In this section, we formally introduce the description logic EL, and recall
some of its well-known properties. Let NC and NR be countably infinite and
mutually disjoint sets called concept symbols and role symbols, respectively. EL
concepts C are defined by

C ::= A | C u C | ∃r.C

where A and r range over NC ∪ {>} and NR, respectively. In the following,
C,D,E, F and G can denote arbitrary concepts, while A,B can only denote con-
cept symbols (i.e., concepts from NC) or >. We use the term simple concept to
refer to a simpler form of EL concepts defined by Cs ::= A | ∃r.A, where A and
r range over NC ∪ {>} and NR, respectively.

A terminology or TBox consists of concept inclusion axioms C v D and
concept equivalence axioms C ≡ D, the latter used as a shorthand for the mutual
inclusion C v D and D v C.1 The signature of an EL concept C, an axiom
α or a TBox T , denoted by sig(C), sig(α) or sig(T ), respectively, is the set of
concept and role symbols occurring in it. To distinguish between the set of concept
symbols and the set of role symbols, we use sigC(·) and sigR(·), respectively.
Further, we use sub(T ) to denote the set of all subconcepts in T .

For a concept C, let the role depth of C (denoted by d(C)) be the maximal
nesting depth of existential restrictions within C. For instance, d(∃r.(∃s.AuB)u

1While knowledge bases in general can also include a specification of individuals with the
corresponding concept and role assertions (ABox), in this paper we do not consider ABoxes, but
concentrate on TBoxes.

4



∃s.B) = 2. For a TBox T , the role depth is given by the maximal role depth of
its subconcepts.

Next, we recall the semantics of the DL constructs introduced above, which
is defined by the means of interpretations. An interpretation I is given by a set
∆I , called the domain, and an interpretation function ·I assigning to each concept
A ∈ NC a subset AI of ∆I and to each role r ∈ NR a subset rI of ∆I × ∆I .
The interpretation of> is fixed to ∆I . The interpretation of arbitrary EL concepts
is defined inductively via (C u D)I = CI ∩ DI and (∃r.C)I = {x | (x, y) ∈
rI and y ∈ CI for some y}. An interpretation I satisfies an axiom C v D if
CI ⊆ DI . I is a model of a TBox T , if it satisfies all axioms in T . We say that
T entails an axiom α (in symbols, T |= α), if α is satisfied by all models of T .
The deductive closure of a TBox T is the set of all axioms entailed by T . For
EL concepts C,D such that T |= C v D, we call C a subsumee of D and D a
subsumer of C.

2.1. Model-Theoretic Properties of EL Concepts
In the following, we provide some results concerning model-theoretic proper-

ties of EL concepts, which are essentially common knowledge. Nevertheless, to
make the paper self-contained, we include the proofs in the appendix. We first de-
fine pointed interpretations as well as homomorphisms between them. Moreover
we define the notion of a characteristic interpretation of an EL concept. Intu-
itively, a concept’s characteristic interpretation describes a partial model with one
distinguished element which represents necessary and sufficient conditions for a
domain element to be an instance of this concept.

Definition 1. A pointed interpretation is a pair (I, x) with x ∈ ∆I . Given two
pointed interpretations (I1, x1) and (I2, x2), a homomorphism from (I1, x1) to
(I2, x2) is a mapping ϕ : ∆I1 → ∆I2 such that

• ϕ(x1) = x2,

• x ∈ AI1 implies ϕ(x) ∈ AI2 for all A ∈ NC ,

• (x, y) ∈ rI1 implies (ϕ(x), ϕ(y)) ∈ rI2 for all r ∈ NR.

Given an EL concept C, we define its characteristic pointed interpretation
(IC , xC) inductively over the structure of C as follows:

• For > we let ∆I> = {x>} with
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– BI> = ∅ for all B ∈ NC , and

– rI> = ∅ for all r ∈ NR.

• For A ∈ NC we let ∆IA = {xA} with

– AIA = {xA},
– BIA = ∅ for all B ∈ NC \ {A}, and

– rIA = ∅ for all r ∈ NR.

• For C = C1 u C2, we define ∆IC = {xC} ∪
⋃
ι∈{1,2}(∆ICι \ {xCι}) × {ι}

with

– AIC = {xC | xC1 ∈ AIC1 or xC2 ∈ AIC2} ∪ ⋃
ι∈{1,2}(AICι \ {xCι})×

{ι} for all A ∈ NC , and

– rIC = ⋃
ι∈{1,2}{(xC , (y, ι)) | (xCι , y) ∈ rICι}∪⋃

ι∈{1,2}{((y, ι), (y′, ι)) |
(y, y′) ∈ rICι , y 6= xCι} for all r ∈ NR.

• For C = ∃r.C ′, we define ∆IC = {xC} ∪∆IC′ with

– AIC = AIC′ for all A ∈ NC , and

– (r′)IC = {(xC , xC′) | r′ = r} ∪ (r′)IC′ for all r′ ∈ NR.

The subsequent lemma shows that characteristic interpretations indeed charac-
terize EL concept membership via the existence of appropriate homomorphisms.

Lemma 1 (structurality of validity of EL concepts). For any EL concept C and
any interpretation I = (∆I , ·I) and x ∈ ∆I it holds that x ∈ CI if and only if
there is a homomorphism from (IC , xC) to (I, x).

The next lemma shows that EL concept subsumption in the absence of ter-
minological background knowledge can as well be characterized via homomor-
phisms between characteristic interpretations.

Lemma 2 (Structurality of EL concept subsumption). Let C and C ′ be two EL
concepts. Then ∅ |= C v C ′ if and only if there is a homomorphism from (I ′C , x′C)
to (IC , xC).

The proofs of both lemmas can be found in Appendix A.
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3. A Gentzen-Style Proof System for EL

The aim of this section is to provide a proof-theoretic calculus that is sound
and complete for general subsumption in EL. We will use this calculus in the
subsequent sections to prove particular properties of TBoxes of a certain form in
the context of consequence-preserving rewriting. The Gentzen-style calculus for
EL is shown in Fig. 1 and is a variation of the calculus given by Hofmann [24].

C v C
(AX)

C v >
(AXTOP)

D v E

C uD v E
(ANDL)

C v E C v D

C v D u E
(ANDR)

C v D

∃r.C v ∃r.D
(EX)

C v E E v D

C v D
(CUT)

Figure 1: Gentzen-style proof system for general EL terminologies with C, D, E arbitrary con-
cepts.

The calculus operates on sequents. A sequent is of the form C v D, where
C,D are EL concepts. The rules depicted in Fig. 1 can be used to derive new
sequents from sequents that have already been derived. For instance, if we have
derived the sequent C v D, we can derive the sequent ∃r.C v ∃r.D using rule
(EX). A derivation (or proof ) of a sequent C v D is a finite tree with whose
nodes are labeled with sequents. The tree root is labeled with the sequent C v D.
Within the tree, a parent node is always labeled by the conclusion of a proof rule
from Fig. 1 whose antecedent(s) are the labels of the child nodes. The leaves
of a derivation are either labeled by axioms from T or conclusions of (AX) or
(AXTOP). We use the notation T ` C v D to indicate that there is a derivation
of C v D. In our calculus, we assume commutativity of conjunction for conve-
nience.2 Fig. 2 shows an example derivation of the sequent ∃r.C1 v C2 in our

2Alternatively, commutativity of conjunction can be realised by adding a rule CuDvDuC .
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∃r.C1 v C1 u C2

(AX)
C2 v C2 (ANDL)

C1 u C2 v C2 (CUT)∃r.C1 v C2

Figure 2: Example derivation of ∃r.C1 v C2 from Te.

calculus w.r.t. the EL TBox Te = {∃r.C1 v C1 u C2}.

We show that the above calculus is sound and complete for subsumptions be-
tween arbitrary EL concepts.

Lemma 3 (Soundness and Completeness). Let T be an arbitrary EL TBox, C,D
EL concepts. Then T |= C v D iff T ` C v D.

Proof. While the soundness of the proof system (if-direction) can be easily ver-
ified for each rule separately, the proof of completeness is more sophisticated.
Analogously to other proof-theoretic approaches [11, 25], we show the only-if-
direction of the lemma by constructing a model I for T wherein only the GCIs
derivable from T are valid. The construction of the model is rather standard (a
similar construction is, e.g., given by Lutz and Wolter [26]). The model is defined
as follows:

• ∆I is the set of elements δC where C is an EL concept;

• AI := {δC ∈ ∆I | T ` C v A}, where A ∈ NC ;

• rI := {(δC , δD) ∈ ∆I ×∆I | T ` C v ∃r.D} where r ∈ NR.

We will show that the following claim holds for I:
For all δE ∈ ∆I and EL concepts F , it holds that δE ∈ F I iff T ` E v F . (*)

This claim can be exploited in two ways: First, we use it to show that I is
indeed a model of T . Let C v D ∈ T and consider an arbitrary concept G with
δG ∈ CI . Via (*) we obtain T ` G v C. Further, T ` C v D is due to
C v D ∈ T . Thus we can derive T ` G v D via (CUT) and consequently,
applying (*) again, we obtain δG ∈ DI . Thereby, we have proved that I |= T .

Second, we use (*) to show that I is a counter-model for all GCIs not derivable
from T as follows: Assume T 6` C v D. From T ` C v C and (*) we derive
δC ∈ CI . From T 6` C v D and (*) we obtain δC 6∈ DI . Hence we get CI 6⊆ DI

and therefore I 6|= C v D.
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It remains to prove (*). This is done by induction over the structure of the
concept F . There are two base cases:

• for F = >, the claim trivially follows from (AXTOP),

• for a concept symbol F , it is a direct consequence of the definition of our
model I.

We now consider the cases where F is a complex concept

• for F = C1 u . . . u Cn, we note that δE ∈ F I exactly if δE ∈ CIi for all
i ∈ {1 . . . n}. By induction hypothesis, this means T ` E v Ci for all
i ∈ {1 . . . n}. Finally, observe that {E v Ci | 1 ≤ i ≤ n} and E v
C1 u . . . u Cn can be mutually derived from each other:

– {E v Ci | 1 ≤ i ≤ n} ` E v C1 u . . . u Cn is a straightforward
consequence of (ANDR);

– To derive E v C1 u . . . u Cn ` {E v Ci | 1 ≤ i ≤ n}, we first
derive C1 u . . . u Cn v Ci from Ci v Ci (obtained using (AX)) by
applying (ANDL) multiple times. Since T ` E v C1 u . . . u Cn, we
can apply (CUT) (with E v C1 u . . . u Cn as the left antecedent and
C1 u . . . u Cn v Ci as the right antecedent) to derive E v Ci.

• for F = ∃r.G, we prove the two directions separately. First assuming δE ∈
F I we must find (δE, δH) ∈ rI for some H with δH ∈ GI . This implies
both T ` E v ∃r.H (by the definition of the model) and T ` H v G
(via the induction hypothesis). From the latter, we can deduce T ` ∃r.H v
∃r.G by (EX) and consequently T ` E v ∃r.G. For the other direction,
note that by definition, T ` E v ∃r.G implies (δE, δG) ∈ rI . On the other
hand, we get T ` G v G by (AX) and therefore δG ∈ GI by the induction
hypothesis which yields us δE ∈ F I .

Alternatively, the completeness of the calculus could be shown by a reduction
to the calculus of Hofmann [24].

4. Uniform Interpolation

Uniform interpolation has many potential applications in ontology engineering
due to its ability to reduce the amount of irrelevant information within a terminol-
ogy while preserving all relevant consequences given the set of relevant signature
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elements. The task of computing terminologies with such properties is not triv-
ial. For instance, it is not sufficient to simply eliminate axioms containing only
irrelevant entities, since it can change the meaning of the relevant entities and
cause a loss of relevant information. Example 1 demonstrates the effect of such
an elimination.

Example 1. Consider the terminology T given by

Ai+1 v Ai 1 ≤ i ≤ 3
A4 v ∃r.A4

If we are only interested in entities A1, A4, r, then we might consider to eliminate
all axioms except for those that contain at least one relevant entity, obtaining
T ′ = T \ {A3 v A2}. However, in this way we would lose the information
about the connection between the relevant entities, for instance A4 v A1, A4 v
∃r.A1, A4 v ∃r.∃r.A1, .... Indeed, T ′ does not entail any of these statements.

In typical ontology reuse scenarios, it is required to preserve the meaning of
the relevant entities while computing a terminology that contains as little irrelevant
information as possible. We say that the meaning of relevant entities is preserved,
if every logical statement that follows from the original terminology and contains
only relevant entities also follows from the resulting terminology. The logical
foundation for such a preservation of relevant consequences can be defined using
the notion of inseparability. Two terminologies, T1 and T2, are inseparable w.r.t.
a signature Σ if they have the same Σ-consequences, i.e., consequences whose
signatures are subsets of Σ. Depending on the particular application requirements,
the expressivity of those Σ-consequences can vary from subsumption axioms and
concept assertions to conjunctive queries. In the following, we consider concept-
inseparability of general EL terminologies as given, for instance, in [17, 21, 18]:

Definition 2. Let T1 and T2 be two general EL terminologies and Σ a signature.
T1 and T2 are concept-inseparable w.r.t. Σ, in symbols T1 ≡ELΣ T2, if for all EL
concepts C,D with sig(C)∪ sig(D) ⊆ Σ it holds that T1 |= C v D iff T2 |= C v
D.

Due to its usefulness for different ontology engineering tasks, concept-insepa-
rability has been investigated by different authors in the last decade. For instance,
in the context of ontology reuse, the notion of inseparability can be used to derive
a terminology that is inseparable from the initial terminology and is using only
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terms from Σ. This is an established non-standard reasoning task called forgetting
or uniform interpolation.

Definition 3. Given a signature Σ and a terminology T , the task of uniform
interpolation is to determine a terminology T ′ with sig(T ′) ⊆ Σ such that T ≡ELΣ
T ′. T ′ is also called a uniform Σ-interpolant of T .

For the TBox T in Example 1, one possible uniform Σ-interpolant for Σ =
{A1, A4, r} would be TΣ = {A4 v A1, A4 v ∃r.A4}. We see that, by intro-
ducing a shortcut axiom A4 v A1, we preserve all relevant logical consequences
(those expressed using Σ) while eliminating all other logical consequences, e.g.,
Ai+1 v Ai for 0 ≤ i ≤ 3.

In practice, uniform interpolants are required to be finite, i.e., expressible by
a finite set of finite axioms using only the language constructs of a particular DL.
It is well-known (e.g., see [21]) that, in the presence of cyclic concept inclusions,
a finite uniform EL Σ-interpolant might not exist for a particular terminology T
and a particular Σ.

Example 2. Consider the terminology T = {A′ v A,A v A′′, A v ∃r.A,∃s.A v
A} and let Σ = {s, r, A′, A′′}. As consequences, we obtain infinite sequences
A′ v ∃r.∃r.∃r....A′′ and ∃s.∃s.∃s....A′ v A′′ which contain nested existential
quantifiers of unbounded depth. Those sequences cannot be finitely axiomatized,
using only signature elements from Σ.

Lutz, Seylan and Wolter [22] give an EXPTIME procedure for deciding if a
finite uniform EL interpolant exists. In the following, we extend the results and
show that, if a finite uniform EL interpolant exists for the given terminology and
signature, then there exists a uniform EL interpolant of at most triple exponential
size. Further, we show that, in the worst case, no shorter interpolants exist, thereby
establishing tight bounds on the size of uniform interpolants in EL.

5. Lower Bound

In this section we will establish the lower bound for the size of uniform in-
terpolants of EL terminologies, in case they exist. It is interesting that, while
deciding the existence of uniform interpolants in EL [22] is one exponential less
complex than the same decision problem for the more complex logic ALC [18],
the size of uniform interpolants remains triple-exponential. An intuitive reason
for this rather unexpected result can be seen in the unavailability of disjunction,
which would allow for a more succinct representation of the interpolants. In fact,
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the exponential blowup due to the non-availability of disjunction has been noted
before [21]. We show the triple-exponential lower bound by means of a sequence
of terminologies (obtained by a slight modification of the corresponding example
given in [27] originally demonstrating a double exponential lower bound in the
context of conservative extensions).

We start with an intuitive explanation of what the terminology is supposed to
express. Assume, given some n ∈ N we want to label domain elements with
natural numbers 0 . . . 2n− 1 according to the following scheme: domain elements
belonging to the concepts A1 or A2 are labeled with 0. Further, whenever we find
a domain element δ that is linked via an r-role to an `-labeled domain element
δ1 and linked via an s-role to an `-labeled domain element δ2, then δ will be
labeled with `+ 1 (provided ` < 2n − 1). Finally, we stipulate that every domain
element labeled with 2n − 1 will belong to the concept B. In order to encode this
labeling scheme in a knowledge base whose size is polynomial in n, we encode
the number-labels in a binary way as a conjunction of n concepts. Thereby, the
concept symbols Xi, Xi represent the ith bit of `’s binary representation being
clear or set.

Definition 4. The EL TBox Tn for a natural number n is given by

A1 v X0 u ... uXn−1 (1)

A2 v X0 u ... uXn−1 (2)
l

σ∈{r,s}

∃σ.(Xi uX0 u ... uXi−1) v Xi i < n (3)

l

σ∈{r,s}

∃σ.(Xi uX0 u ... uXi−1) v Xi i < n (4)

l

σ∈{r,s}

∃σ.(Xi uXj) v Xi j < i < n (5)

l

σ∈{r,s}

∃σ.(Xi uXj) v Xi j < i < n (6)

X0 u ... uXn−1 v B (7)

In the above TBox, Axiom (3) ensures that a clear bit will be set in the succes-
sor number, if all lower bits are already set. The subsequent Axiom (4) ensures
that a set bit will be clear in the successor number, if all lower bits are also set.
Axioms (5) and (6) ensure that in all other cases, bits are not toggled. For instance,
Axiom (5) states that, if any of the bits lower than i is clear, then bit i will remain

12



clear also in the successor number.
If we now consider sets Ci of concept descriptions inductively defined by C0 =

{A1, A2}, Ci+1 = {∃r.C1 u ∃s.C2 | C1, C2 ∈ Ci}, then we find that |Ci+1| = |Ci|2
and consequently |Ci| = 2(2i). Thus, the set C2n−1 contains triply exponentially
many different concepts, each of which is doubly exponential in the size of Tn
(intuitively, we obtain concepts having the shape of binary trees of exponential
depth, thus having doubly exponentially many leaves, each of which can be A1
or A2, which gives rise to a triply exponential number of such trees). Then we
will show that for each concept C ∈ C2n−1 it holds that Tn |= C v B and
that there cannot be a smaller uniform interpolant with respect to the signature
Σ = {A1, A2, B, r, s} than the one containing all these GCIs.

Based on the above definition, we now prove the following result.

Theorem 1. There exists a sequence of EL TBoxes and a fixed signature Σ such
that for each TBox (Tn) within this sequence the following hold:

• the size of Tn is polynomial in n and

• the size of the smallest uniform interpolant of Tn with respect to Σ is at least
2(2(2n−1)).

Proof. Obviously, the size of Tn is polynomial in n. As discussed above, the
set C2n−1 contains triply exponentially many different concepts, each of which is
doubly exponential in the size of Tn. By definition, for any k, every concept from
Ck contains only signature elements from A1, A2, r, s.

It is rather straightforward to check that Tn |= C v B holds for each concept
C ∈ C2n−1: by induction on k, we can show that for any C ∈ Ck with k < 2n it
holds that Tn |= C v Y k

0 u . . . u Y k
n−1 with

Y k
i =

{
Xi if b k2i cmod 2 = 1
Xi if b k2i cmod 2 = 0 ,

i.e., Y k
i indicates the ith bit of the number k in binary encoding. Then, C v B

follows via the last axiom of Tn.
Toward the claimed triple-exponential lower bound, we now show that every

uniform interpolant of Tn for Σ = {A1, A2, B, r, s} must contain for each C ∈
C2n−1 a GCI of the form C v B′ with B′ = B or B′ = B u F for some F (where
we consider structural variants – i.e., concepts whose characteristic interpretations
are isomorphic – as syntactically equal). Toward a contradiction, we assume that
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this is not the case, i.e., there is a uniform interpolant T ′ and a C ∈ C2n−1 where
C v B′ 6∈ T ′ for any B′ containing B as a (top-level) conjunct.

Yet, C v B must be a consequence of T ′, since it is a consequence of of Tn
containing only signature elements from Σ and T ′ is a uniform interpolant of Tn
w.r.t. Σ by assumption. Therefore, there must be a derivation of it. Looking at the
derivation calculus from the last section, the last derivation step must be (ANDL)
or (CUT). We can exclude (ANDL) since neither ∃r.C ′ v B nor ∃s.C ′ v B
is the consequence of T ′ for any C ′ ∈ C2n−2 (which can be easily shown by
providing appropriate witness models of T ′). Consequently, the last derivation
step must be an application of (CUT), i.e., there must be a concept E 6= C such
that T ′ |= C v E and T ′ |= E v B. Without loss of generality, we assume
that we consider a derivation tree where the subtree deriving C v E has minimal
depth.

We now distinguish two cases: either E contains B as a conjunct or not.

• First we assume E = E ′ uB, i.e. the (CUT) rule was used to derive C v B
fromC v E ′uB andE ′uB v B. The former cannot be contained in T ′ by
assumption, hence it must have been derived itself. We can exclude (ANDR)
due to the minimality of the proof. Again, it cannot have been derived via
(ANDL) for the same reasons as given above, which again leaves (CUT) as
the only possible derivation rule for obtaining C v E ′ u B. Thus, there
must be some concept G with T ′ |= C v G and T ′ |= G v E ′ u B. Once
more, we distinguish two cases: either G contains B as a conjunct or not.

– If G contains B as a conjunct, i.e., G = G′ u B, the derivation of
C v E was not depth-minimal since there is a better proof where
C v B is derived from C v G′ u B and G′ u B v B via (CUT).
Hence we have a contradiction.

– IfG does not containB as a conjunct, the original derivation ofC v E
was not depth-minimal since we can construct a better one that derives
C v B directly fromC v G andG v B (the latter being derived from
G v E ′ uB via (ANDR)).

• Now assume E does not contain B as a conjunct.

We construct a specific interpretation (∆I , ·I) as follows (ε denotes the
empty word):

– ∆I = {w | w ∈ {r, s}∗, length(w) < 2n}
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– We define an auxiliary function χ associating a concept to each domain
element: we let χ(ε) = C (with ε being the empty word) and, for every
wr,ws ∈ ∆I with χ(w) = ∃r.C1 u ∃s.C2, we let χ(wr) = C1 and
χ(ws) = C2.

– the concepts and roles are interpreted as follows:

∗ AIι = {w | χ(w) = Aι} for ι ∈ {1, 2}
∗ BI = {ε}
∗ XIi = {w | b length(w)

2i cmod 2 = 0} for i < n

∗ Xi
I = {w | b length(w)

2i cmod 2 = 1} for i < n

∗ rI = {〈w,wr〉 | wr ∈ ∆I}
∗ sI = {〈w,ws〉 | ws ∈ ∆I}

It is straightforward to check that I is a model of Tn. Furthermore using
descending induction on the length of w, we can show that w ∈ (χ(w))I for
every w ∈ ∆I ; in particular, ε ∈ CI . Consequently, due to our assumption,
ε ∈ EI must hold. Now we observe that the restriction of I to the signature
elements A1, A2, r, s is isomorphic to IC (with xC corresponding to ε). On
the other hand, as ε ∈ EI we find by Lemma 1 a homomorphism from
(IE, xE) to (I, ε) and hence to (IC , xC), thus, by Lemma 2, E is a proper
“structural superconcept” of C, i.e., ∅ |= C v E and ∅ 6|= E v C must
hold.

We now obtain Ẽ by enriching E as follows: starting from k = 0 and
iteratively incrementing k up to 2n− 1, every subconcept G of E satisfying
∅ |= G v C ′ for some C ′ ∈ Ck is substituted by GuY k

0 u . . .uY k
n−1 where,

as before,

Y k
i =

{
Xi if b k2i cmod 2 = 1
Xi if b k2i cmod 2 = 0 ,

i.e., Y k
i indicates the ith bit of the number k in binary encoding.

Then, Ẽ’s characteristic pointed interpretation (I
Ẽ
, x

Ẽ
) satisfies the follow-

ing conditions: I
Ẽ

is a model of Tn (following from structural induction
on subconcepts of Ẽ) and its root individual x

Ẽ
is in the extension of Ẽ.

Still, we find x
Ẽ
6∈ CIẼ for the following reason: C does only contain

signature elements from {A1, A2, B, r, s}, and the restriction of (I
Ẽ
, x

Ẽ
)

to these signature elements is isomorphic to (IE, xE), therefore x
Ẽ
∈ CI

Ẽ

iff xE ∈ CIE . The latter is however not the case as this would imply by
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Lemma 1 that there is a homomorphism from (IC , xC) to (IE, xE) and con-
sequently, via Lemma 2 ∅ |= E v C, contradicting our finding above.

Yet, the root individual x
Ẽ

cannot satisfy any other concept C ′′ from C2n−1\
{C} either, since this, via ∅ |= E v C ′′, would imply ∅ |= C v C ′′

which is not the case (by induction on k one can show that there cannot be
a homomorphism between the characteristic pointed interpretations of any
two distinct concepts from any Ck). In particular, we note that x

Ẽ
6∈ BIẼ .

Thus, we have found a model of Tn witnessing Tn 6|= E v B, contradicting
our assumption that T ′ |= E v B.

Hence we have found a class Tn of TBoxes giving rise to uniform EL inter-
polants of triple-exponential size in terms of the original TBox.

6. Upper Bound

Now we discuss the upper bound on the size of uniform EL interpolants as
well as their computation. Since, for a TBox T and a signature Σ, there are in
general infinitely many Σ-consequences, in the following, we aim at identifying
a subset of such consequences, the deductive closure of which contains the whole
set. Interestingly, there exists a bound on the role depth of Σ-consequences such
that, for the set TΣ,N of all Σ-consequences of T with the maximal role depth N
the following holds: either TΣ,N is a uniform EL interpolant of T with respect
to Σ or such a finite uniform EL interpolant of T does not exist. This is an easy
consequence of results obtained by Lutz, Seylan and Wolter [22] while investigat-
ing the problem of existence of uniform EL interpolants (a proof can be found in
Appendix B).

Lemma 4 (Reformulation of Lemma 55 from [22] ). Let T be an EL TBox, Σ a
signature. The following statements are equivalent:

1. There exists a uniform EL Σ-interpolant of T .
2. There exists a uniform ELΣ-interpolant T ′ of T such that d(T ′) ≤ 24·|sub(T )|+

1.

However, an upper bound on the role depth is only sufficient for showing a
non-elementary upper bound on the size of uniform interpolants for the following
reasons. There are 2n many different conjunctions of n different conjuncts, and,
accordingly, for each role, 2m many different existential restrictions of depth i+ 1
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if m is the number of existential restrictions of depth i. Moreover, for any role
depth i, we can find a TBox such that i is the corresponding maximal role depth.
Subsequently, the upper bound on the role depth does not suffice to obtain an upper
bound for the number i of exponents bounding the size of the uniform interpolant.

In order to obtain a tight upper bound, we need to further narrow down the
subset of Σ-consequences required to obtain a uniform interpolant. To this end,
we show the following:

• If we “flatten” terminologies, i.e., we reduce the maximal role depth of T
to 1 by recursively introducing fresh concept symbols for all subconcepts
occurring in T , it is sufficient to consider the Σ-consequences stating sub-
sumees and subsumers of all concept symbols referenced by the flattened
terminology T ′ in order to preserve all Σ-consequences.

• Lemma 4 can be transferred to flattened TBoxes such that it is sufficient to
consider subsumees and subsumers of role depth 24·|sub(T ′)| + 1 in order to
preserve all Σ-consequences of T .

• There is a particular type of subsumees and subsumers that do not add any
consequences to the deductive closure, which we call weak subsumees and
subsumers. These are subsumees obtained by adding arbitrary conjuncts to
arbitrary subconcepts of other subsumees and, accordingly, subsumers ob-
tained from other subsumers by omitting conjuncts from arbitrary subcon-
cepts. When included into the uniform interpolant, weak subsumees and
subsumers have a negative impact on its size. Given the exponential bound
on the role depth, each concept has non-elementary many weak subsumees.
Since weak subsumers and subsumees do not add any new Σ-consequences,
we can safely exclude them.

We show that, in case a finite uniform EL interpolant of T with respect to Σ
exists, there are at most triple-exponentially many such non-weak subsumers and
subsumees of role depth up to 24·|sub(T )|+1. Moreover, we show that each of them
is of at most double-exponential size.

6.1. Flattening
Recall that we want to compute the uniform interpolant of a TBox T by rewrit-

ing the latter, ensuring that the part of the deductive closure of T consisting of
Σ-consequences is preserved throughout the rewriting process. Since rewriting
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operates on the syntactic structure of T , it is desirable that the syntactic struc-
ture has a close relation to the deductive closure of T such that we can easily
manipulate the deductive closure via changes of the syntactic structure. As in
other syntax-based approaches [11, 25, 21], we decompose complex axioms into
syntactically simple ones. We refer to this process as flattening: assigning a tem-
porary concept symbol to each complex subconcept occurring in T , so that the
terminology can be represented without nested expressions, namely using only
axioms of the form A v B, A ≡ B1 u . . . u Bn, and A ≡ ∃r.B, where A and
B(i) are concept symbols or > and r is a role. For this purpose, we introduce a
minimal required set of fresh concept symbols ND with exactly one equivalence
axiom A′ ≡ C ′ for each A′ ∈ ND, where C ′ is the subconcept of T replaced by
A′.

In what follows, we assume terminologies to be flattened and all concepts
symbols from ND to be in sigC(T ) \ Σ. W.l.o.g., we also assume that EL con-
cepts do not contain any equivalent concepts in conjunctions and that whenever
several concept symbols are equivalent in T , all their occurrences have been re-
placed by a single representative of the corresponding equivalence class. Concept
symbols from Σ are preferred to be selected as representatives. Note that this is
a preprocessing step that can be performed in polynomial time as EL allows for
polytime reasoning. The following lemma postulates the close semantic relation
between a TBox and its flattening.

Lemma 5 (Model-conservativity). Any EL TBox T can be rewritten into a flat-
tened TBox T ′ so that each model of T ′ is a model of T and each model of T can
be extended into a model of T ′.

In the next subsection, we represent the corresponding subsumees and sub-
sumers explicitly stated within a classified, flattened TBox T as a pair of regular
tree grammars on ranked trees (with concept symbols interpreted as non-terminals
and ∃r,u as functions). We show that all non-weak subsumees and subsumers en-
tailed by T can be generated by these grammars. To this end, we now analyse
the derivation of subsumptions in flattened TBoxes by means of the deduction
calculus introduced in Section 3.

First, we consider the derivation of subsumees. We use the auxiliary function
Pre : sigC(T ) → 22sigC (T )

which allows us for any concept symbol A to refer to
its subsumees of the form B1u ...uBn, where B(i) are concept symbols. For each
such conjunction, the set of its conjuncts is an element of Pre.
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Definition 5. Let T be an EL TBox and A ∈ sigC(T ). Pre(A) is the smallest set
with the following properties:

• {A} ∈ Pre(A).

• For each K ∈ Pre(A) and each B ∈ K, if there is T |= B′ v B, then also
(K \ {B}) ∪ {B′} ∈ Pre(A).

• For each K ∈ Pre(A) and each B ∈ K, if there is B ≡ B1 u ...uBn ∈ T ,
then also (K \ {B}) ∪ {B1, ..., Bn} ∈ Pre(A).

We can show the following closure property of Pre.

Lemma 6. Let T be an EL TBox and A ∈ sigC(T ). For each K ∈ Pre(A), each
B ∈ K and each M ∈ Pre(B), we have (K \ {B}) ∪M ∈ Pre(A).

The above lemma can be shown by an easy induction over the derivation of M
from B.

In essence, the lemma below implies that, in case of flattened terminologies
explicitly containing all elements of Pre, we can derive all subsumees of a con-
cept by (1) applying the rule (EX) to construct existential restrictions from two
concepts in a subsumption relation and/or (2) replacing concepts occurring within
subsumees by their subsumees.

Lemma 7. Let T be a flattened EL TBox andC,D two EL concepts with sig(C)∪
sig(D) ⊆ sig(T ) such that T |= C v D. Let

C =
l

1≤j≤n
Aj u

l

1≤k≤m

∃rk.Ek

where Aj are concept symbols, rk are role symbols and Ek are arbitrary EL con-
cepts. Then, for all conjuncts Di of D, the following is true: If Di is a concept
symbol, then there is a set M ∈ Pre(Di) of concept symbols from sigC(T ) such
that, for each B ∈M , either:

(a1) There is an Aj in C such that Aj = B.
(a2) There are rk, Ek and B′ ∈ sigC(T ) such that T |= Ek v B′ and B ≡

∃rk.B′ ∈ T .

If Di = ∃r′.D′ for a role r′ and an EL concept D′, then either:

(a3) There are rk, Ek such that rk = r′ and T |= Ek v D′.
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(a4) There is B ∈ sigC(T ) such that T |= B v ∃r′.D′ and T |= C v B and
either (a1) or (a2) holds for C v B.

Proof. We apply induction on the length of the proof. We start with the last ap-
plied rule and show for each possibility that the lemma holds. Rules AXTOP,AX

and the case C ./ D ∈ T are the basis of induction, since each proof begins with
one of them.

(C ./ D ∈ T ) In the case that C v D ∈ T or C ≡ D ∈ T , the lemma holds due
to the flattening. Axioms within T can have the following form:

• C ∈ sigC(T ), D = D1 u ... u Dm with m ≥ 1 and D1, ..., Dm ∈
sigC(T ). In this case, we have {C} ∈ Pre(Di) for each Di with
1 ≤ i ≤ m. Therefore, condition (a1) holds for each Di.

• C ∈ sigC(T ), D = ∃r′.D′ with D′ ∈ sigC(T ). This case corresponds
to the condition (a4).

(AXTOP) Since the conjunction is empty in case D = >, the lemma holds.

(AX) Since C = D, for each Di there is a conjunct Ci of C with Ci = Di. If Di

is a concept symbol, condition (a1) holds. Otherwise, (a3).

(EX) If EX was the last applied rule, then Di = ∃rk.D′ and T ` Dk v D′.
Therefore, (a3) holds.

(ANDL) Assume that C ′ u C ′′ = C such that C ′ v D is the antecedent. By
induction hypothesis, the lemma holds for C ′ v D. Since all conjuncts of
C ′ are also conjuncts of C, the lemma holds also for C v D.

(ANDR) Assume that D = D1 u D2, therefore, C v D1 and C v D2 is the
antecedent. By induction hypothesis, the lemma holds for both C v D1
and C v D2. Since all conjuncts of D are from either D1 or D2, the lemma
also holds for C v D.

(CUT) By induction hypothesis, the lemma holds for both elements of the an-
tecedent, C v C1 and C1 v D. Let C1 =

d
1≤p≤r Ap u

d
1≤s≤t ∃r′s.E ′s.

1. Assume that Di is a concept symbol. Then, there is M1 ∈ Pre(Di)
such that (a1) or (a2) holds for each Bu ∈M1. We now consider each
C v Bu and distinguish three cases, in one of which (a2) holds. In the
remaining two cases, we can obtain Mnew by replacing Bu within M1
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by the elements of some M ′
u ∈ Pre(Bu) such that (a1) or (a2) holds

for each B′ ∈Mnew and C v B′:
a. Assume that (a1) holds and that there is a conjunct Ap of C1 with

Ap = B1. Then, by induction hypothesis, for C v Ap, there is
M ′

u ∈ Pre(Ap) such that (a1) or (a2) holds for each B′ ∈ M ′
u.

We can replace Bu within M1 by the elements of M ′
u.

b. Assume that (a2) holds and that, for Bu, there are r′s, E
′
s and there

exists B′ ∈ sigC(T ) such that T |= E ′s v B′ and B ≡ ∃r′s.B′ ∈
T . Then, for C v ∃r′s.E ′s either (a3) or (a4) holds.

– Assume that (a3) holds. Then there are rk, Ek such that rk =
r′s and T |= Ek v E ′s. Then (a2) holds for C v Bu, since
T |= Ek v B′ and B ≡ ∃rk.B′ ∈ T .

– Assume that (a4) holds. Then there is B′′ ∈ sigC(T ) such
that T |= B′′ v ∃r′s.E ′s, T |= C v B′′ and there is a set
M ′

u ∈ Pre(B′′) such that for each element B′ of M ′
u at least

one of the conditions (a1)-(a2) holds with respect to C v B′.
Let MA1 be the set of all Bu ∈ M1 for which (a1) holds and let MA4
be the set of all Bu ∈ M1 for which (a2) holds and (a4) holds for
C v ∃r′s.E ′s. Now we replace each Bu within M1 by the elements
of the corresponding set M ′

u ∈ Pre(Bu) that we have specified above
and obtain Mnew = M1 \ (MA1 ∪MA4)∪⋃{M ′

u | Bu ∈MA1 ∪MA4}.
Clearly, Mnew ∈ Pre(Di) and (a1) or (a2) holds for each B′ ∈ Mnew

with respect to C v B′, i.e., the lemma holds for C v Di.
2. Assume that Di = ∃r′.D′. Then, (a3) or (a4) hold.

a. Assume that (a3) holds. Then there are r′s, E
′
s such that r′ = r′s

and T |= E ′s v D′. Then, for C v ∃r′s.E ′s one of (a3), (a4) holds:
– Assume that (a3) holds. Then there are rk, Ek such that rk =
r′s and T |= Ek v E ′s. Then (a3) holds for C v Di, since
T |= Ek v D′ and rk = r′.

– Assume that (a4) holds. Then there is a concept symbol B′′

such that T |= B′′ v ∃r′s.E ′s, T |= C v B′′ and there is a set
M ′′ ∈ Pre(B′′) of concept symbols such that at least one of
the conditions (a1)-(a2) holds for each element B′ of M ′′ and
C v B′. Since T |= B′′ v Di, (a4) holds for T |= C v Di.

b. Assume that (a4) holds. Then there is a concept symbol B such
that T |= B v ∃r′.D′, T |= C1 v B and there is a set M1 ∈
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Pre(B) such that at least one of the conditions (a1)-(a2) holds for
each element Bu of M1 and for C1 v Bu. The argumentation
is the same as for 1 (Di is a concept symbol). We consider each
C v Bu and distinguish three cases, in one of which (a2) holds.
In the remaining two cases, we can obtain Mnew by replacing Bu

within M1 by the elements of some M ′
u ∈ Pre(Bu) such that

(a1) or (a2) holds for each B′ ∈ Mnew and C v B′. Therefore,
there is M1 ∈ Pre(B) such that either (a1) or (a2) holds for each
Bu ∈M1. Then, (a4) holds for C v Di.

The above lemma is focused on the derivation of subsumees. For the compu-
tation of uniform interpolants, we additionally need to show that, in flattened ter-
minologies, every subsumption relation with a concept symbol and its subsumer
being an existential restriction is derived from an equivalence axiom of the form
B1 ≡ ∃r.B2 in T .

Lemma 8. Let T be a flattened EL TBox, A ∈ sigC(T ) and r ∈ sigR(T ). Let
C be an EL concept such that T |= A v ∃r.C. Then, there are B1, B2 with
B1 ≡ ∃r.B2 ∈ T such that T |= A v B1, T |= B2 v C.

Proof. Lemma 16 [27] states that for a general EL TBox T with T |= C1 v
∃r.C2, where C1, C2 are EL-concepts one of the following holds:

• there is a conjunct ∃r.C ′ of C1 such that T |= C ′ v C2;

• there is a subconcept ∃r.C ′ of T such that T |= C1 v ∃r.C ′ and T |= C ′ v
C2;

The first condition does not hold in this lemma, since A is a concept symbol.
Moreover, since in our case T is flattened, for each subconcept ∃r.C ′ of T con-
taining an existential restriction holds: there is an concept symbol B2 such that
B2 = C ′ and there is an axiom of the form B1 ≡ ∃r.B2 ∈ T with B1. Addition-
ally, from the above Lemma 16 it follows that T |= A v ∃r.B2 and T |= B2 v C.
Since T |= B1 ≡ ∃r.B2, it also follows that T |= A v B1.

6.2. Grammar Representation of Subsumees and Subsumers
In this section, we show how the sets of Σ-subsumees and Σ-subsumers of

each concept symbol in a flattened EL TBox T can be described as languages
generated by regular tree grammars on ranked ordered trees for a particular sig-
nature Σ. First, we briefly recall the basics of tree languages and regular tree
grammars.
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6.2.1. Regular Tree Grammars
A ranked alphabet is a pair (F , Arity) where F is a finite set and Arity is a

mapping from F intoN. We use superscripts to denote the arity of alphabet sym-
bols (if it is not 0), e.g., f 2(g1(a), a). The set of ground terms over the alphabet
F (which are also simply referred to as trees) is denoted by T (F). Let X be a set
of variables. Then, T (F ,X ) denotes the set of terms over the alphabet F and the
set of variables X . A term C ∈ T (F ,X ) containing each variable from X at most
once is called a context.

Example 3. Let F = {f 2, g1, a} and X, Y two variables. Terms f 2(g1(a), X),
f 2(g1(Y ), X) and f 2(Y,X) are contexts obtained by replacing terminal symbols
within the term f 2(g1(a), a) with a variable. The term f 2(g1(X), X) is not a
context, since it contains the variable X more than once.

A regular tree grammar G = (S,N ,F , R) is composed of a start symbol S,
a set N of non-terminal symbols (of arity 0) with S ∈ N , a ranked alphabet F of
terminal symbols with a fixed arity such that F ∩N = ∅, and a set R of derivation
rules, each of which is of the form N → β where N is a non-terminal from N
and β is a term from T (F ∪ N ). Let X be a set of variables disjoint from the
ranked alphabet F ∪ N . Given a regular tree grammar G = (S,N ,F , R), the
derivation relation→G associated toG is a relation on terms from T (F ∪N ) such
that s →G t if and only if there is a rule N → α ∈ R and there is a context C
such that s = C[N/X] and t = C[α/X], where X is a variable from X . The
subset of T (F ∪ N ) which can be generated by successive derivations starting
with the start symbol is denoted by Lu(G) = {s ∈ T (F ∪ N ) | S →+

G s}
where →+

G is the transitive closure of →G. We omit the subscript G when the
grammar G is clear from the context. The language generated by G denoted by
L(G) = T (F) ∩ Lu(G).

By definition of the derivation relation, it does not necessarily hold that f 2(B,A)
∈ L(G)⇒ f 2(A,B) ∈ L(G) or f 2(A, f 2(B,C))∈ L(G)⇒ f 2(f 2(A,B)), C) ∈
L(G). In contrast, for DL constructs with conjunction, the order of conjuncts is
not significant. For instance, for concepts C and D, it always holds that C uD ≡
D u C. It also holds that D u (E u C)) ≡ ((D u E) u C). Since we are in-
terested in languages consisting of DL concepts, it will be convenient to consider
the commutative associative closure L∗u(G) and L∗(G) of languages Lu(G) and
L(G), respectively. This closure can be defined as follows.

Definition 6. Let G = (S,N ,F , R) be a regular tree grammar and let F ′ be a
subset of F . Then the commutative associative closure L∗(G) of L(G) wrt. F ′ is
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the smallest set for which the following hold:

• L(G) ⊆ L∗(G);

• Let X = {X1, . . . , Xn} be a set of variables and let C and D be con-
texts from T (F ′,X ), in which every variable from X occurs exactly once.
Moreover let E be a context over F containing a variable X and let λ be
a function mapping variables from X to ground terms over F . Let C ′ =
C[λ(X1)/X1, . . . , λ(Xn)/Xn] and let D′ = D[λ(X1)/X1, . . . , λ(Xn)/Xn]
(where, for a variable X and two terms t1 and t2, we use t1[t2/X] to denote
the simultaneous replacement of all occurrences of X in t1 by t2). Then
L∗(G) contains E[C ′/X] iff it contains E[D′/X].

The following example demonstrates the application of derivation rules.

Example 4. Let G = (A, {A,B}, {f 2, g1, a, b}, R) with R given by the following
derivation rules:

• A→ f 2(B,A)

• A→ a

• B → g1(A)

• B → b

Then, f 2(g1(a), a) ∈ L(G), sinceA→ f 2(B,A)→ f 2(B, a)→ f 2(g1(A), a)→
f 2(g1(a), a). While f 2(a, g1(a)) is not in L(G), it is contained in L∗(G) wrt.
{f 2}.

For further details on regular tree grammars, we refer the reader, for instance,
to [28].

6.2.2. Subsumees and Subsumers as Grammars
Now, we define regular tree grammars that capture, for a signature Σ and a

flattened EL TBox T , the sets of Σ-subsumees and Σ-subsumers of each concept
symbol. In our definition of grammars, we uniquely represent each concept sym-
bol A ∈ sigC(T ) by a non-terminal nA (and denote the set of all non-terminals by
N T = {nB | B ∈ sigC(T ) ∪ {>}}). In what follows, we use the ranked alphabet
F = (sigC(T ) ∩ Σ) ∪ {>} ∪ {∃r1 | r ∈ sigR(T ) ∩ Σ} ∪ {ui | 2 ≤ i}, where
> and concept symbols in sigC(T ) ∩ Σ are constants, ∃r1 for r ∈ sigR(T ) ∩ Σ
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are unary functions and ui are functions of the arity greater than 2. Due to flat-
tening, |sigC(T )| is the highest arity of conjunctions that can occur in our TBox
and, as we will see, also within the languages generated by our grammars. How-
ever, higher arities are required for terms within the commutative associate clo-
sure of these languages wrt. {ui | 2 ≤ i}. In the following, it will be conve-
nient to simply write u and ∃r if the arity of the corresponding function is clear
from the context. Clearly, every EL concept C with sig(C) ⊆ Σ and at most
|sigC(T )| conjuncts in each subconcept has a unique representation by means
of the above functions. We denote such a term representation of C using F
by tC . For a term t, we denote its concept representation by Ct. Additionally,
we use a substitution function σT ,F : {C | sig(C) ⊆ sig(T )} → T (F ,N T )
with σT ,F(C) = tC{n>/>, nB1/B1, ..., nBn/Bn}, where B1, ..., Bn are all con-
cept symbols occurring in C. If the TBox and the set of non-terminals are clear
from the context, we will denote such a representation of a concept C simply by
σ(C).

As mentioned above, weak subsumees and subsumers are not required in order
to obtain a uniform EL interpolant. Including weak subsumees into our defini-
tion of the grammars would lead to a significant redundancy within the generated
language, which would become infinite even for most simple TBoxes containing
roles. Weak subsumers would lead to an exponential blow-up in the size of the
corresponding grammar. Thus, we avoid generating weak subsumees and sub-
sumers by the corresponding grammars.

Definition 7. Let T be a flattened EL TBox, Σ a signature. Further, for each
B ∈ sigC(T ) ∪ {>}, let Rw be given by

(GL1) nB → B if B ∈ Σ ∪ {>},

(GL2) nB → nB′ for all B′ ∈ sigC(T ) ∪ {>} with T |= B′ v B, B 6= B′

(GL3) nB → u(nB1 , ..., nBn) for all B ≡ B1 u . . . uBn ∈ T ,

(GL4) nB → ∃r(nB′) for all B ≡ ∃r.B′ ∈ T with r ∈ sigR(T ) ∩ Σ.

Let Rv be given for all B ∈ sigC(T ) ∪ {>} by

(GR1) nB → B if B ∈ Σ ∪ {>},

(GR2) nB → nB′ if B 6= B′ and either B′ = > or B′ is the only concept symbol
such that T |= B v B′,
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(GR3) nB → u(nB1 , ..., nBn) if {B1, . . . , Bn} = {B′ ∈ sigC(T ) | T |= B v
B′} and n ≥ 2,

(GR4) nB → ∃r(nB′) for all B ≡ ∃r.B′ ∈ T with r ∈ sigR(T ) ∩ Σ.

For every A ∈ sigC(T ), the regular tree grammar Gw(T ,Σ, A) is given by
(nA,N T ,F , Rw). Likewise, the regular tree grammar Gv(T ,Σ, A) is given by
(nA,N T , F , Rv).

We denote the set of tree grammars {Gw(T ,Σ, A) | A∈sigC(T )} by Gw(T ,Σ)
and the set {Gv(T ,Σ, A) | A∈sigC(T )} by Gv(T ,Σ). In what follows, L∗(Gw(T ,
Σ, A)) and L∗(Gv(T ,Σ, A)) refer to the commutative associate closure of L(Gw
(T ,Σ, A)) and L(Gv(T ,Σ, A)) wrt. {ui | 2 ≤ i}. For the construction of gram-
mars the following result holds.

Theorem 2. Let T be a flattened EL TBox and let Σ be a signature. Gw(T ,Σ) and
Gv(T ,Σ) can be computed from T in polynomial time and are at most quadratic
in the size of T .

Proof. Flattening and classification can be done all together in polynomial time
[11] and yield an at most quadratic result. From this result, the grammars are
constructed in linear time.

The following example demonstrates the grammar construction.

Example 5. Let T = {A1 v ∃r.A2,∃r.B1 u B3 v B2, A2 v B1}. In order to
flatten the given TBox, we introduce fresh concept names for ∃r.A2,∃r.B1 and
B′1 uB3 to obtain T ′:

A1 v A′2 A2 v B1

B′2 v B2 B′1 uB3 ≡ B′2
∃r.B1 ≡ B′1 ∃r.A2 ≡ A′2

Let Σ = sig(T ) \ {B1}. Then, we introduce terminals for each concept symbol
from Σ and the > concept according to (GL1) and (GR1):

nA1→A1 nA2→A2 nB2→B2 n>→> (8)

If we only use subsumees explicitly given in T ′, we obtain the following set of
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transitions Rw for generating subsumees of concept symbols:

nA′2→nA1 nB1→nA2 (9)

nB2→nB′2 nB′2→u (nB′1 , nB3) (10)

nB′1→∃r(nB1) nA′2→∃r(nA2) (11)

We see that the subsumee ∃r.A2 u B3 of B2 is not generated by the above set of
transitions. If we take inferred inclusions into consideration, we obtain addition-
ally

nB′1→nA′2 nB′1→nB′2 nB3→nB′2 nB′1→nA1 (12)

Accordingly, Rv is given by Rules (8),(11) and, additionally

nA1→n> nA2→n> nB1→n> nB2→n> (13)
nB3→n> nA′2→n> nB′1→n> nB′2→n> (14)

nA1→nA′2 nA2→nB1 nA′2→nB′1 nB′2→u (nB′1 , nB3 , nB2) (15)

In the above example, we can generate all non-weak subsumees using the
complete grammar construction, i.e., after including the results of classification in
addition to transitions representing explicitly given subsumptions. For instance,
the subsumee ∃r.A2 uB3 of B2 can be generated using the first additional rule in
(12) as follows: nB2→nB′2→u (nB′1 , nB3)→u (nA′2 , nB3)→u (∃r(nA1), nB3)→u
(∃r(A1), B3).

We now consider various properties of the above grammars that are of interest
for the computation of uniform interpolants. The following theorem states that
the grammars derive only terms representing Σ-subsumees and Σ-subsumers of
the corresponding concept symbol.

Theorem 3. Let T be a flattened EL TBox, Σ a signature and A ∈ sigC(T ).

1. For each t ∈ L(Gw(T ,Σ, A)) it holds that sig(Ct) ⊆ Σ and T |= Ct v A.
2. For each t ∈ L(Gv(T ,Σ, A)) it holds that sig(Ct) ⊆ Σ and T |= A v Ct.

Proof. It is easy to check that sig(Ct) ⊆ Σ in 1 and 2 by examining Definition
7: the grammars derive only terms containing concept symbols and roles from Σ,
since nB → B only if B ∈ Σ ∪ {>} and nB → ∃r(t′) only if r ∈ Σ. Therefore,
for anyA ∈ sigC(T ) and any t ∈ L(Gv(T ,Σ, A))∪L(Gw(T ,Σ, A)) it holds that
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sig(Ct) ⊆ Σ. To show that grammars only generate subsumees and subsumers,
we investigate the above two cases separately:

1. We use an easy induction on the maximal nesting depth of functions in t
using the rules given in Definition 7:

• Assume that Ct is a concept symbol B or >. The term B can only be
derived from nA by n transitions (GL2), and, once nB is derived, the
rule (GL1). LetB1, ..., Bn be such that nA → nB1 → ...→ nBn → nB.
Then, by Definition 7, T |= A w B1, T |= Bi w Bi+1, for i < n, and
T |= Bn w B. Thus, T |= A w B.

• Assume that t = ∃r(t′) for some term t′. Then, the derivation of t
from nA starts with n transitions (GL2) such that nB′ for some B′ ∈
sigC(T )∪{>} is derived, and a subsequent application of (GL4) such
that nB for some B ∈ sigC(T ) ∪ {>} is derived. As argued above
about the applications of transitions (GL2), T |= A w B′ holds.
Moreover, by (GL4) it holds that B′ ≡ ∃r.B ∈ T , and, therefore,
T |= A w ∃r.B. Let C ′ = Ct′ . Then, by induction hypothesis,
T |= B w C ′. Therefore, T |= A w ∃r.C ′, while ∃r.C ′ = Ct.

• Assume that t = u(t1, ..., tn) for a set of terms t1, ..., tn. Then, the
derivation of t from nA starts with m transitions (GL2) such that nB′
for someB′ ∈ sigC(T )∪{>} is derived, and a subsequent application
of (GL3) such that we derive u(nB1 , ..., nBn), where ti ∈ L(Gw(T ,Σ,
nBi)) for 1 ≤ i ≤ n. As argued above about the applications of tran-
sitions (GL2), T |= A w B′. Let Ci = Cti . By induction hypothesis,
T |= Bi w Ci. By Definition 7, B′ ≡ B1 u ... u Bn ∈ T . There-
fore, T |= B′ w C1 u ... u Cn and T |= A w C1 u ... u Cn with
C1 u ... u Cn = Ct.

2. The proof of soundness of Gv(T ,Σ) can be done in the same manner, i.e.,
by induction on the maximal nesting depth of functions in t:

• Assume that Ct is a concept symbol B or >. The term B can only
be derived from nA by n transitions (GR2), and, once nB is derived,
the rule (GR1). Let B1, ..., Bn be such that nA → nB1 → ... →
nBn → nB. Then, by Definition 7, for each pair Bi, Bi+1 it holds that
T |= Bi v Bi+1, for Bn, B it holds that T |= Bn v B and for A,B1
it holds that T |= A v B1. It follows that also T |= A v B with
Ct = B.
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• Assume that t = ∃r(t′) for some term t′. Then, the derivation of t
from nA starts with n transitions (GR2) such that nB′ for some B′ ∈
sigC(T )∪{>} is derived, and a subsequent application of a transition
(GR4) such that ∃r.nB for someB ∈ sigC(T )∪{>} is derived. As ar-
gued above about the applications of transitions (GR2), T |= A v B′

holds. Moreover, By Definition 7, it holds that T |= B′ ≡ ∃r.B, and,
therefore, T |= A v ∃r.B. Let C ′ = Ct′ . By induction hypothesis,
T |= B v C ′. Therefore, T |= A v ∃r.C ′ with Ct = ∃r.C ′.

• Assume that t = u(t1, ..., tn) for a set of terms t1, ..., tn. Then, the
derivation of t from nA starts with m transitions (GR2) such that nB′
for someB′ ∈ sigC(T )∪{>} is derived, and a subsequent application
of (GR3) such that we derive u(nB1 , ..., nBn), where ti ∈ L(Gw(T ,Σ,
nBi)) for 1 ≤ i ≤ n and n ≥ 2. As argued above about the applica-
tions of transitions (GR2), T |= A v B′. Let Ci = Cti . By induction
hypothesis, T |= Bi v Ci. By Definition 7, T |= B′ v B1 u ... u Bn.
Therefore, T |= B′ v C1 u ... u Cn and T |= A v C1 u ... u Cn with
C1 u ... u Cn = Ct.

To be able to show completeness of the grammars, we first show that the com-
mutative associative closure of the generated Gw language contains all elements
of Pre.

Lemma 9. Let T be flattened EL TBox, Σ a signature, A a concept symbol and
K ∈ Pre(A). Then, σ(

d
B∈K B) ∈ L∗u(Gw(T , Σ, A)).

Proof. The lemma can be shown by an easy induction on the depth of derivation
of K from A. We distinguish three cases for the last derivation step.

• If K = {A}, then the lemma is a direct consequence of (GL1).

• Assume that K has been obtained from K ′ ∈ Pre(A) by replacing some B
by someB′ such that T |= B′ v B. By induction hypothesis, σ(

d
B′′∈K′ B

′′)
∈ L∗u(Gw(T ,Σ, A)). By (GL2), we have nB → nB′ ∈ Rw. Thus, also
σ(

d
A′∈K A

′) ∈ L∗u(Gw(T ,Σ, A)).

• Assume that K has been obtained from K ′ ∈ Pre(A) by replacing some
B by some B1, . . . , Bn such that B ≡ B1 u ... u Bn ∈ T . By induction
hypothesis, σ(

d
B′′∈K′ B

′′) ∈ L∗u(Gw(T ,Σ, A)). By (GL3), we have nB →
u(nB1 , ..., nBn) ∈ Rw. Thus, also σ(

d
A′∈K A

′) ∈ L∗u(Gw(T ,Σ, A)).
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As discussed above, grammars do not guarantee to capture weak subsumees
and subsumers. Therefore, we obtain the following result for the completeness of
the grammars.

Theorem 4. Let T be a flattened EL TBox, Σ a signature andA a concept symbol.

1. For each C with sig(C) ⊆ Σ such that T |= C v A there is a concept
C ′ with tC′ ∈ L∗(Gw(T ,Σ, A)) such that C can be obtained from C ′ by
adding arbitrary conjuncts to arbitrary subconcepts.

2. For each C with sig(C) ⊆ Σ such that T |= A v C there is a concept
C ′ with tC′ ∈ L∗(Gv(T ,Σ, A)) such that C can be obtained from C ′ by
removing > conjuncts from arbitrary subconcepts.

Proof. The theorem is proved by induction on the role depth of C using the prop-
erties of the flattening, for instance, stated in Lemma 7, in addition to Definition
7 and Lemma 9. Let

C =
l

1≤j≤n
Aj u

l

1≤k≤m

∃rk.Ek

where Aj are concept symbols, rk are role symbols and Ek are arbitrary EL con-
cepts. W.l.o.g., we can assume that all Aj are pairwise different. We prove the
first claim as follows:

• Assume role depth is 0. Then, C is a conjunction of concept symbols, i.e.,
C =

d
1≤j≤nAj . By Lemma 7, there is a set M ′ ∈ Pre(A) of concept

symbols such that, for each B ∈ M ′, there is an Aj with Aj = B. By
Lemma 9, σ(

d
B∈M ′ B) ∈ L∗u(Gw(T ,Σ, A)). Since each B ∈ M ′ is in Σ,

by (GL1), nB → B ∈ Rw. It follows that tC ∈ L∗(Gw(T ,Σ, A)).

• Assume that the role depth is greater than 0. As in the case above, there is
a set M ′ ∈ Pre(A) of concept symbols such that, for each B ∈ M ′, [A1]
or [A2] holds. Let M ′

1 be the subset of M ′ where [A1] holds, i.e., M ′
1 =

M ′∩{A1, ...An}, and letM ′
2 = M ′\M ′

1. In accordance with this separation
of M ′ into M ′

1 and M ′
2, we can also identify the two corresponding sub-

conjunctions of C: Let C ′1 =
d
B∈M ′1

B, and C ′2 =
d

1≤f≤p ∃r′f .E ′f such
that for each f there is a corresponding Bf ∈M ′

2.

For each f , there exists a concept symbol B′f with T |= E ′f v B′f and
Bf ≡ ∃r.B′f ∈ T . By induction hypothesis, for each f there exists a
concept E ′′f such that tE′′

f
∈ L∗(Gw(T ,Σ, B′f )) and E ′f can be obtained

from E ′′f by adding arbitrary conjuncts to arbitrary subconcepts. By (GL4),
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nBf → ∃r′f (nB′f ) ∈ Rw. Therefore, ∃r′f (tE′′f ) ∈ L∗(Gw(T ,Σ, Bf )) and
∃r′f .E ′f can be obtained from ∃r′f .E ′′f by adding arbitrary conjuncts to arbi-
trary subconcepts.

Since each B ∈ M ′
1 is in Σ, we have nB → B ∈ Rw by (GL1). By Lemma

9, σ(
d
B∈M ′ B) ∈ L∗u(Gw(T ,Σ, A)). Thus, we obtain a concept C ′′ =d

B∈M ′1
B u

d
Bf∈M ′2

∃r′f .E ′′f with tC′′ ∈ L∗(Gw(T ,Σ, A)) such that C can
be obtained from it by adding arbitrary conjuncts to arbitrary subconcepts.

We proceed with showing that for each such general C with sig(C) ⊆ Σ such
that T |= A v C there is a concept C ′ such that tC′ ∈ L∗(Gv(T ,Σ, A)) and
C can be obtained from C ′ by removing > conjuncts from arbitrary subconcepts.
For each Aj , we know that T |= A v Aj and Aj ∈ Σ ∪ {>}. By (GR1) nAj →
Aj ∈ Rv for all Aj . Assume a role depth 0.

• Assume that n = 1, i.e., C = A1, and assume that A1 is the only concept
symbol such that T |= A v A1. By (GR2) nA → nA1 ∈ Rv. Thus,
tC ∈ L∗(Gv(T ,Σ, A)).

• Assume that there are more than one concept symbol Ai such that T |=
A v Ai. By (GR3), nA → u(nA1 , ..., nAl) ∈ Rv for some l ≥ n. By
(GR2), there is nAi → n> ∈ Rv for all Ai. By applying (GR1) for all Aj
and nAi → n>, n> → > for all i > n, we obtain a term tCuC′ , where C ′ is a
conjunction of x− n concepts >. Thus, the theorem holds for role depth 0.

Assume that the role depth is greater than 0. For each ∃rk.Ek, it follows from
Lemma 8 that there are Bk, B

′′
k ∈ sigC(T ) with Bk ≡ ∃rk.B′′k ∈ T such that

T |= A v Bk, T |= B′′k v Ek. By (GR4), nBk → ∃rk(nB′′k ) ∈ Rv. By induction
hypothesis, there is a concept E ′k such that tE′

k
∈ L∗(Gv(T ,Σ, B′′k)) and Ek can

be obtained from E ′k by removing > conjuncts from arbitrary subconcepts.

• Assume that there is the only one concept symbol B′ such that T |= A v
B′. Then, C = ∃r1.E1 and B1 = B′. By (GR2) nA → nB′ ∈ Rv. Thus,
t∃r1.E′1

∈ L(Gv(T ,Σ, A)) and ∃r1.E1 can be obtained from ∃r1.E
′
1 by re-

moving > conjuncts from arbitrary subconcepts.

• Assume that there are more than one concept symbol B′ such that T |=
A v B′. By (GR3), nA → u(nB′1 , ..., nB′l) ∈ R

v for some l ≥ n + m such
that B′j = Aj for 1 ≤ j ≤ n and B′n+k = Bk for 1 ≤ k ≤ m. By (GR2),
there is nB′i → n> ∈ Rv for all B′i. Now, we derive the term tC′′uC′ from
nA by first applying nA → u(nB′1 , ..., nB′l) and then proceeding as follows:
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– from each B′i with i > n + m, we derive > by applying nB′i → n>,
n> → >;

– from each B′j = Aj with 1 ≤ j ≤ n, we derive Aj by applying
nB′j → Aj;

– from each B′n+k = Bk with 1 ≤ k ≤ m, we derive t∃rk.E′k .

We obtain a term tC′′uC′ ∈ L∗(Gv(T ,Σ, A)), where C ′ is a conjunction
of concepts > and C ′′ =

d
1≤j≤nAj u

d
1≤k≤m ∃rk.E ′k. Clearly, C can

be obtained from C ′′ by removing > conjuncts from arbitrary subconcepts.
Thus, C can be obtained from C ′′ u C ′ by removing the > conjuncts from
arbitrary subconcepts.

6.3. From Grammars to Uniform Interpolants
Now we show that, as a consequence of Lemma 4 and Theorem 4, in case a

finite uniform interpolant exists, we can construct it from the subsumees and sub-
sumers of maximal depthN = 24·|sub(T )|+1 generated by the grammars Gw(T ,Σ)
and Gv(T ,Σ). To this end, we represented subsumees and subsumers of maximal
depth N as a TBox that uses only concept and role symbols from Σ as follows.

Definition 8. Let T be an EL TBox and Σ a signature. LetN be a natural number.
For ./∈ {w,v} and A ∈ sigC(T ), let L./(A) = {C | tC ∈ L(G./(T ,Σ, A)),
d(C) ≤ N}. Then the grammar-generated TBox TG for T , Σ and N is defined as
follows:

TG(T ,Σ, N) = {C v A | A ∈ Σ ∩ sigC(T ), C ∈ Lw(A)} ∪
{A v D | A ∈ Σ ∩ sigC(T ), D ∈ Lv(A)} ∪
{C v D | A ∈ sigC(T ) \ Σ,
C ∈ Lw(A), D ∈ Lv(A)}.

We now show that TG(T ,Σ, N) is a uniform EL Σ-interpolant of T in case
there exists one and obtain an upper bound on its size.

Theorem 5. Let T be a flattened version of an EL TBox Tnf and let Σ be a
signature with Σ ∩ sig(T ) ⊆ sig(Tnf ). Let N = 24·|sub(Tnf )| + 1. The following
statements are equivalent:

1. There exists a uniform EL Σ-interpolant of Tnf .
2. TG(T ,Σ, N) ≡ELΣ Tnf
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3. There exists a uniform EL Σ-interpolant T ′ of Tnf with |T ′| ∈ O(222|Tnf | ).

Proof. We prove the implications 1 ⇒ 2 and 2 ⇒ 3. All other implications are
either trivial or follow from the others. For convenience, let TΣ denote the TBox
TG(T ,Σ, N).

We start by showing the implication 1⇒ 2. First, note that the statement TΣ ≡ELΣ
Tnf follows from Lemma 5 and the fact that Σ ∩ sig(T ) ⊆ sig(Tnf ). Thus, it is
sufficient to prove TΣ ≡ELΣ T . By Definition 2, the statement TΣ ≡ELΣ T consists
of two directions: (1) for all EL concepts C,D with sig(C)∪ sig(D) ⊆ Σ it holds
that TΣ |= C v D ⇒ T |= C v D and (2) for all EL concepts C,D with
sig(C) ∪ sig(D) ⊆ Σ it holds that TΣ |= C v D ⇐ T |= C v D.

(1) The first direction follows from Theorem 3 and Definition 8. Theorem 3
ensures that the subsumees and subsumers used within Definition 8 are all
entailed by T . Theorem 3 and Definition 8 imply that TΣ does not contain
any concept and role symbols not from Σ.

(2) For the second direction, assume that there exists a uniform ELΣ-interpolant
of Tnf and, subsequently, T . Then, by Lemma 4, there exists a uniform EL
Σ-interpolant T ′ of Tnf and T with d(T ′) ≤ N . It is sufficient to show
that for each C v D ∈ T ′ it holds that TΣ |= C v D. Assume that
C v D ∈ T ′. We prove by induction on maximal role depth of C,D that
also TΣ |= C v D. Let D =

d
1≤i≤lDi and

C =
l

1≤j≤n
Aj u

l

1≤k≤m

∃rk.Ek

where Aj are concept symbols, rk are role symbols and Ek are arbitrary EL
concepts. Clearly, T |= C v D iff T |= C v Di for all i with 1 ≤ i ≤ l.

– IfDi is a concept symbol, then, it follows from Theorem 4 that there is
a concept C ′ such that tC′ ∈ L∗(Gw(T , Σ, A)) and C can be obtained
from C ′ by adding arbitrary conjuncts to arbitrary subconcepts. Since
d(C) ≤ N , also d(C ′) ≤ N . From Definition 8, it follows that TΣ |=
C v Di.

– If Di = ∃r.D′ for some r,D′, then, by Lemma 7, one of the following
is true:
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(a3) There are rk, Ek in C such that rk = r and T |= Ek v D′. Since
d(Ek) < N and d(D′) < N , by induction hypothesis, it holds
that TΣ |= Ek v D′. It follows that TΣ |= ∃rk.Ek v Di and
TΣ |= C v Di.

(a4) There is a concept symbol B ∈ sigC(T ) such that T |= B v
∃r.D′ and T |= C v B. Then, on one hand, it follows from Theo-
rem 4 that there is a concept C ′1 such that tC′1 ∈ L

∗(Gw(T , Σ, B))
and C can be obtained from C ′1 by and adding arbitrary conjuncts
to arbitrary subconcepts. Since d(C) ≤ N , also d(C ′1) ≤ N .
Therefore, there is a commutative associative variant C ′′1 of C ′1
with C ′′1 ∈ Lw(B). On the other hand, it follows from Theorem 4
that there is a concept C ′2 such that tC′2 ∈ L

∗(Gv(T ,Σ, B)) and
∃r.D′ can be obtained from C ′2 by removing > conjuncts from
arbitrary subconcepts. Since d(∃r.D′) ≤ N , also d(C ′2) ≤ N .
Therefore, there is a commutative associative variant C ′′2 of C ′2
with C ′′2 ∈ Lv(B).
By Definition 8, C ′′1 v C ′′2 ∈ TΣ, and, therefore, TΣ |= C v Di.

Now we show the implication 2⇒ 3. Observe that Gw(T ,Σ) and Gv(T ,Σ) have
n = |sigC(T )| non-terminals and n is also the maximal arity of u. Now we con-
sider the stepwise generation of terms in L(Gw(T ,Σ, A)) and L(Gv(T ,Σ, A)).
Initially, terms are given by transitions. Assume that m is the maximal number of
transitions in Gw(T ,Σ) and Gv(T ,Σ). Note that m is polynomial in n. Each of
these outgoing transitions has at most n occurring non-terminals. For a term t of
role depth x, we can obtain a term of the role depth x + 1 by first applying tran-
sition rules of type GL1-GL3 ( GR1-GR3 in case of subsumer terms) to replace
non-terminals n by terms t′ and then applying transitions of type GL4 (GR4). In
case of subsumees, we can assume that it is sufficient to consider terms t′ with
a maximal function depth m (maximal number of transitions), since a repeated
application of the same transition of type GL3 generates a weak subsumee that is
not required for the construction of the uniform interpolant. The total maximal
depth of function nestings in subsumee terms is then N ·m. In case of subsumers,
the term of the role depth x + 1 is obtained by applying at most one rule of type
GR3 for each non-terminal, since the corresponding conjunctions in GR3 contain
all non-terminals that can be obtained by infinitely many successive applications
of GR1-GR3. The total maximal depth of function nestings in subsumer terms
is then N · 2. Given the maximal function depth N · m, the maximal arity n of
functions and the number n of different non-terminals, we obtain at most nnN·m
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different terms. Since in N ∈ O(2n), the size of terms is in O(22n) while the
number of terms is in O(222n ).

These complexity results correspond to the size and number of axioms in Ex-
ample 4 used to demonstrate the triple-exponential lower bound.

7. Related Work

In addition to the already discussed results on uniform interpolation in de-
scription logics [21, 18, 22, 29, 30, 16, 17], in this section we discuss the work on
inseparability and conservative extensions. The latter two notions form the foun-
dation for module extraction, e.g., [31, 17, 32], and decomposition of ontologies
into modules, e.g., [33, 34, 35]. The notion of a conservative extension is defined
using inseparability: A TBox T1 is called a Σ-conservative extension of a TBox
T2 if T1 is Σ-inseparable from T2 and T1 ⊆ T2.

Ghilardi, Lutz and Wolter [36] investigate modularity of ontologies based on
inseparability for the logicALC, which is defined in the same way as inseparabil-
ity for EL in Section 4. They show that deciding if a subontology is a module in
the description logic ALC is 2EXPTIME-complete. In a subsequent work, Lutz,
Walther and Wolter [37] show that the same problem is 2EXPTIME-complete for
ALCQI, but undecidable for ALCQIO. The authors also investigate a stronger
notion of inseparability and conservative extensions defined directly on models
instead of entailed consequences: given two TBoxes T1 and T2, T1 is a model-
conservative extension of T2 iff for every model I of T2, there exists a model of
T1 which can be obtained from I by modifying the interpretation of symbols in
sig(T1) \ sig(T2) while leaving the interpretation of symbols in sig(T2) fixed. The
authors show that the corresponding problem based on the latter notion is unde-
cidable for ALC.

In a more recent work, Konev, Lutz, Walther and Wolter [32] consider the de-
cidability of the above problem based on model-conservative extensions for ALC
under different additional restrictions, e.g., restriction of the relevant signature to
concept names, and obtain complexity results ranging from Πp

2 to undecidable.
Further, the authors consider the problem for acyclic EL terminologies. It is in-
teresting that, in contrast to acyclic ALC terminologies, for which the problem
remains undecidable, for acyclic EL terminologies the complexity goes down to
PTIME. In a later work [38], the above authors present a full complexity picture
for ALC and its common extensions. They investigate a broad range of query
languages (languages in which the relevant consequences are expressed), start-
ing with the language allowing for expressing inconsistency only and ending with
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Second Order Logic. More recently, Lutz and Wolter [27] show that the above no-
tion of model-conservative extensions is undecidable also for such a lightweight
logic as EL.

Kontchakov, Wolter and Zakharyaschev [39] investigate the above decision
problem for two representatives of the DL-Lite family of description logics as
ontology languages and existential Σ-queries as a query language. They show
that, for DL-Litehorn, the problem is CONP-complete, and for DL-Litebool Πp

2-
complete.

The high complexity results for already rather simple logics have lead to a
development of alternative ways to extract modules not requiring checking insep-
arability. For instance, Cuenca Grau, Horocks, Kazakov and Sattler [31], propose
a tractable algorithm for computing modules from OWL DL ontologies based on
the notion of syntactic locality [40] that defines the locality of an axiom on the
syntactic level, i.e., states syntactic conditions for the potential logical relevance
of axioms. It is guaranteed that the extracted module preserves all relevant conse-
quences, but the obtained modules are not necessarily minimal.

8. Discussion and Outlook

In this article, we considered the task of uniform interpolation – reformulation
of an ontology into an alternative one that uses only a specific subset Σ of the
initial signature and preserves all logical consequences about concept and role
symbols from Σ. We proposed an approach to computing uniform interpolants of
general EL terminologies based on proof theory and regular tree languages.

One of our results is a representation of EL TBoxes as regular tree gram-
mars. These grammars reduce the computation of logical consequences of ontolo-
gies to replacement of concept symbols within concepts by their subsumees/sub-
sumers, which can serve as a basis for efficient ontology reformulation algorithms
as demonstrated, for instance, in a follow-up work within the context of module
extraction [23]. While the grammars were designed to enable forgetting-related
ontology reformulation, they can also serve as a basis for computing equivalent,
but syntactically different ontologies. For instance, they can be used as a starting
point for computing structurally simpler, equivalent ontologies, i.e., ontologies
containing fewer DL constructs such as conjunction and existential restriction and
fewer references to concept and role symbols [41, 42], since the grammars capture
all logical consequences that might be part of the less complex ontology.

A further result obtained within this paper is a tight triple exponential bound
on the size of uniform EL interpolants: we showed that, if a finite uniform EL in-
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terpolant exists, then there exists one of at most triple exponential size in terms of
the original TBox, and that, in the worst case, no shorter interpolant exists. This
insight reveals the effect of structure sharing in the basic logic EL and demon-
strates the worst-case behavior of uniform interpolation algorithms used for the
purpose of module extraction. It should be noted that this result does not con-
stitute a fundamental technical obstacle for uniform interpolation in practice as
demonstrated by Nikitina and Glimm [23], but rather contributes towards a higher
stability of the corresponding tool support through the awareness of the theoreti-
cally possible triple exponential blowup. Further, this result reveals the theoretic
extent, to which we may be able to increase the succinctness of ontologies by in-
troducing additional vocabulary. Some ideas discussed within this paper inspired
a follow-up work on refactoring of large and complex ontologies in order to reduce
the maintenance effort by simplifying their structure and eliminating redundancy.
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Appendix A. Model-Theoretic Properties of EL Concepts

In Section 2, we characterize EL concept membership and EL concept sub-
sumption in the absence of terminological background knowledge. In this section,
we include the according proofs.
Lemma 1. For any EL conceptC and any interpretation I = (∆I , ·I) and x ∈ ∆I
it holds that x ∈ CI if and only if there is a homomorphism from (IC , xC) to
(I, x).

Proof. We prove both directions by structural induction over C.
We start with the if-direction, letting ϕ be a homomorphism from (IC , xC) to

(I, x):

• For C = >, the case is trivial.

• For C = A ∈ NC , we find xA ∈ AIA , therefore the existence of the homo-
morphism ensures that x = ϕ(xA) ∈ AI .

• For C = C1 u C2, we find that ϕι : ∆ICι → ∆I defined by

ϕι(y) =
{
x if y = xCι
ϕ(y′) if y = (y′, ι)
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for ι ∈ {1, 2} are homomorphisms from (IC1 , xC1) to (I, x) and (IC2 , xC2)
to (I, x), respectively. Invoking the induction hypothesis, we conclude that
x ∈ CI1 as well as x ∈ CI2 and thus x ∈ CI1 ∩ CI2 = (C1 u C2)I .

• Considering C = ∃r.C1, we find that ϕ′ = ϕ|∆IC1 is a homomorphism from
(IC1 , xC1) to (I, ϕ(xC1)). Invoking the induction hypothesis, we conclude
ϕ′(xC1) = ϕ(xC1) ∈ CI1 . On the other hand, by construction of IC we
find (xC , xC1) ∈ rIC and thus, since ϕ is a homomorphism (x, ϕ(xC1) =
(ϕ(xC), ϕ(xC1) ∈ rI . Together, this allows to conclude x ∈ (∃r.C1)I .

We proceed with the only-if direction.

• For C = >, the case is trivial.

• For C = A ∈ NC , the mapping ϕ = {xA 7→ x} is the required homomor-
phism since by assumption it holds that x ∈ AI .

• For C = C1uC2, we have by assumption x ∈ CI = CI1 ∩CI2 therefore x ∈
CI1 and x ∈ CI2 . Invoking the induction hypothesis we find homomorphisms
ϕ1 from (IC1 , xC1) to (I, x) and ϕ2 from (IC2 , xC2) to (I, x). Consequently,
by construction of IC , the mapping ϕ : ∆IC to∆I defined by

ϕ(y) =


x if y = xC
ϕ1(y′) if y = (y′, 1)
ϕ2(y′) if y = (y′, 2)

is a homomorphism from (IC , xC) to (I, x).

• For C = ∃r.C1, we find by assumption x ∈ (∃r.C1)I thus there exists an
x′ ∈ ∆I with (x, x′) ∈ rI and x′ ∈ CI1 . Invoking the induction hypothesis,
we find a homomorphism ϕ′ from (IC1 , xC1) to (I, x′). Consequently the
mapping ϕ : ∆IC → ∆I with ϕ = ϕ′ ∪ {xC 7→ x} is a homomorphism
from (IC , xC) to (I, x).

Lemma 2. Let C and C ′ be two EL concepts. Then ∅ |= C v C ′ if and only if
there is a homomorphism from (I ′C , x′C) to (IC , xC).

Proof. For the if-direction, let ϕ be a homomorphism from (I ′C , x′C) to (IC , xC).
Now let I be an interpretation and pick an arbitrary x ∈ ∆I with x ∈ CI . By
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Lemma 1, there exists a homomorphism ϕ′ from (IC , xC) to (I, x). Then ϕ′ ◦ϕ is
a homomorphism from (IC′ , xC′) to (I, x) and by the other direction of Lemma 1,
we can conclude x ∈ C ′. Thus CI ⊆ C ′I for all interpretations I and therefore
∅ |= C v C ′.
For the only-if-direction, assume ∅ |= C v C ′. Now consider the pointed inter-
pretation (IC , xC). As the identity on ∆IC is a homomorphism from (IC , xC) to
itself, we use Lemma 1 to conclude xC ∈ CIC . By ∅ |= C v C ′ we can infer that
xC ∈ C ′IC . Invoking the if-direction of Lemma 1, we find that there must be a
homomorphism from (I ′C , x′C) to (IC , xC).

Appendix B. EL Automata

In this appendix section, we recall core notions on EL automata [22] before
giving the proof of Lemma 4.

Definition 11 [22]. An EL automaton (EA) is a tuple A = (Q,P,ΣN ,ΣE, δ),
where Q is a finite set of bottom up states, P is a finite set of top down states,
ΣN ⊆ NC is the finite node alphabet, ΣE ⊆ NR is the finite edge alphabet, and δ
is a set of transitions of the following form:

true → q p → p1 (B.1)
A → q p → 〈r〉p1 (B.2)

q1 ∧ . . . ∧ qn → q p → A (B.3)
〈r〉q1 → q p → false (B.4)

q → p (B.5)

where q, q1, ..., qn range over Q, p, p1 range over P , A ranges over ΣN , and r
ranges over ΣE .

Definition 12 [22]. Let I be an interpretation and A = (Q,P,ΣN ,ΣE, δ) an EA.
A run of A on I is a map ρ : δ → 2Q∪P such that for all d ∈ ∆I , we have:

1. if true → q ∈ δ, then q ∈ ρ(d);
2. if A→ q ∈ δ, and d ∈ AI , then q ∈ ρ(d);
3. if q1, ..., qn ∈ ρ(d) and q1 ∧ . . . ∧ qn → q ∈ δ, then q ∈ ρ(d);
4. if (d, e) ∈ rI , q1 ∈ ρ(e) and 〈r〉q1 → q ∈ δ, then q ∈ ρ(d);
5. if q ∈ ρ(d) and q → p ∈ δ, then p ∈ ρ(d);
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6. if p ∈ ρ(d) and p→ p1 ∈ δ, then p1 ∈ ρ(d);
7. if p ∈ ρ(d) and p→ 〈r〉p1 ∈ δ, then there is an (d, e) ∈ rI with p1 ∈ ρ(e);
8. if p ∈ ρ(d) and p→ A ∈ δ, then d ∈ AI;
9. if p→ false ∈ δ, then p 6∈ ρ(d).

The following Proposition specifies how the corresponding EA A for any
TBox T can be constructed such that TΣ(A) ≡ELΣ T for any Σ.

Construction from Proposition 13 [22] Let T be a TBox, s(T ) subconcepts of T
and A = (Q,P, sigC(T ), sigR(T ), δ) with Q = {qC |C ∈ s(T )}, P = {pC |C ∈
s(T )} and δ given by

• true → q> if > ∈ s(T );

• A→ qA and qA → pA for all A ∈ sigC(T );

• qC ∧ qD → qCuD;

• 〈r〉qC → q∃r.C and q∃r.C → 〈r〉pC for all ∃r.C ∈ s(T );

• qC → qD for all C,D ∈ s(T ) with T |= C v D;

• pA → A for all A ∈ sigC(T );

• p∃r.C → 〈r〉pC for all ∃r.C ∈ s(T );

• pC → pD for all C,D ∈ s(T ) with T |= C v D;

• p⊥ → false if ⊥ ∈ s(T ).

An EA A is said to entail a subsumption C v D if every model accepted by
A satisfies C v D. Subsequently, an EA A and a TBox T are EL Σ-inseparable,
in symbols A ≡ELΣ T , if A |= C v D iff T |= C v D for all EL Σ-inclusions
C v D. Further, for a signature Σ, TΣ(A) = {C v D | A |= C v D, sig(C) ∪
sig(D) ⊆ Σ}. For a natural number m, T mΣ (A) = {C v D | C v D ∈
TΣ(A), d(C) ≤ m and d(D) ≤ m}.

Excerpt from Lemma 55 [22]. LetA be an EA andMA = 2|P∪Q|. The following
conditions are equivalent:

1. There exists k > M2
A + 1 such that T M

2
A+1

Σ 6|= T kΣ ;
4. There does not exists an EL TBox T with A ≡ELΣ T .
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Lemma 4. Let T be an EL TBox, Σ a signature. The following statements are
equivalent:

1. There exists a uniform EL Σ-interpolant of T .
2. There exists a uniform EL Σ-interpolant T ′ of T for which it holds that
d(T ′) ≤ 24·(|sub(T )|) + 1.

Proof. Assume that a uniform ELΣ-interpolant of T exists and letM = 2(2·|sub(T )|).
Then, by Lemma 55 [22], there is no k > M2 + 1 such that T M2+1

Σ (A) 6|= T kΣ (A),
where A is the corresponding EL automaton for T . Then T M2+1

Σ (A) |= TΣ(A).
Therefore, T M2+1

Σ (A) ≡ELΣ T , i.e., T M2+1
Σ (A) is a uniform EL Σ-interpolant T ′

of T with d(T ′) ≤M2 + 1. We can replace M2 + 1 by 24·(|sub(T )|) + 1 and obtain
d(T ′) ≤ 24·(|sub(T )|) + 1.
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