
Too Much Information: Can AI Cope With Modern
Knowledge Graphs?

Markus Krötzsch[0000−0002−9172−2601]

TU Dresden, Dresden, Germany, markus.kroetzsch@tu-dresden.de

Abstract Knowledge graphs play an important role in artificial intelligence (AI)
applications – especially in personal assistants, question answering, and semantic
search – and public knowledge bases likeWikidata are widely used in industry and
research. However, modern AI includes many different techniques, including ma-
chine learning, data mining, natural language processing, which are often not able
to use knowledge graphs in their full size and complexity. Feature engineering,
sampling, and simplification are needed, and commonly achieved with custom
preprocessing code. In this position paper, we argue that a more principled integ-
rated approach to this task is possible using declarative methods from knowledge
representation and reasoning. In particular, we suggest that modern rule-based
systems are a promising platform for computing customised views on knowledge
graphs, and for integrating the results of other AI methods back into the overall
knowledge model.

1 Introduction

The modern-day rise of artificial intelligence (AI) in research and applications has
also sparked a renewed interest in graph-based knowledge representation. So-called
knowledge graphs (KGs) have become essential resources for intelligent assistants such
as Apple’s Siri and Amazon’s Alexa [48], for question answering features of modern
search engines such as Google1 and Microsoft Bing, and for the new expert systems in
the style of IBM’s Watson [21]. As with many recent AI breakthroughs, this has partly
been a matter of scale: modern knowledge graphs are orders of magnitude larger than
knowledge bases conceived in early AI. Public KGs such as Wikidata [52], YAGO2 [29]
and Bio2RDF [5] comprise hundreds of millions of statements; KGs in parts of the web
search industry are significantly larger still (due to, e.g., crawled schema.org annotation
data and other resources, such as maps).

The free availability of large knowledge graphs is also creating new opportunities
in research. KGs are used to improve the quality of approaches to natural language pro-
cessing, machine learning, and data mining [43]. Combining techniques from several
fields also leads to advances in knowledge representation, e.g., for improved association
rule mining [28]. Machine learning meanwhile can help KG construction and mainten-
ance, e.g., by employing methods of knowledge graph embedding to predict missing
information or to detect errors [11,54,43].

1 The company’s Google Knowledge Graph is the origin of the term.



2 M. Krötzsch

Nevertheless, the promise of perfect synergy between knowledge graphs and AI
often remains unfulfilled. Most KGs available today are the work of human authors,
who have contributed either directly or by creating heavily structured online content
(HTML tables, Wikipedia templates, schema.org annotations, etc.) from which KGs
could be extracted.2 When Google decided to migrate its former KG project Freebase
to Wikidata, it largely relied on human labour [49]. Even closely related AI techniques,
such as ontology-based knowledge representation, are used in only a few KG projects.

Why don’t we see much more use of neighbouring AI methods for building, main-
taining, and using KGs? The answer might be quite simple: the “knowledge graphs”
addressed in much of the current research are different from the real KGs used in applic-
ations. Real KGs are predominantly based on annotated directed graph models, where
directed, labelled edges are augmented with additional context information (validity
time, data source, trustworthiness, etc.). Related data models are used in Wikidata (Sec-
tion 3), Yago2 [29], and in the widely used property graph data model, where graph
edges are conceived as complex data objects with additional key-value pairs [46]. Real
KGs are also very large.

In contrast, research in other fields of AI often uses small, simplified excerpts of
KGs for benchmarking. For example, link prediction through KG embeddings is still
frequently evaluated with the FB15K dataset, which contains about 600,000 edges for
15,000 Freebase entities [11]. When Google announced the discontinuation of Freebase
in 2014, the KG had almost 45M entities and 2.5 billion edges, and it was using
annotations, e.g., for time (based on so-called Compound Value Types). In fact, KG
embeddings often conceive graphs as sets of “triplets” – a simplified form of RDF
triples – and n-ary relations, compound structures, quantities, and annotations are poorly
supported [43].

These limitations are not specific to KG embeddings, which can actually cope with
“triplet” graphs of significant size. Other knowledge-based data mining techniques are
also challenged by the scale of modern KGs. For example, Formal Concept Analysis
(FCA) requires a projection of graphs to Boolean propositions (“attributes”) [22], and
studies are typically working with hundreds of attributes at most (see, e.g., [25]). Similar
limitations in size and complexity apply to other rule mining approaches [28]. The field
of network analysis offersmany highly scalable algorithms, e.g., for computing centrality
measures such as PageRank, but they need KGs to be preprocessed to obtain directed
(and often unlabelled) graphs [38]. Which part of the KG is used to obtain the network
has a major impact on the meaning and quality of the results. Ontological knowledge
representation and reasoning also has been scaled to hundreds of millions of statements,
especially in recent rule engines [7,51], but does not cope well with exceptions and
errors, and lacks a general approach for handling annotations [35,33].

Simply put: no single AI approach is able to handle current KGs in their full size and
complexity. Indeed, although each approach might be further improved, one should not
expect future AI to be based on a single principle. New ideas are needed for reconciling
different AI formalisms. IBMWatson has pioneered one way of combining the strengths
of formerly incompatible methods in question answering [21], but this integration is

2 Crawling and extracting such content is a difficult task, and a worthy research area in itself, yet
the main work of knowledge gathering remains that of the human author.



Too Much Information: Can AI Cope With Modern Knowledge Graphs? 3

limited to selecting the best answer at the output level. To fully exploit KGs in AI, we
also need principled ways of defining input data that can be used by other techniques
(including the task of feature engineering inmachine learning). In this paper, we conceive
this as the task of defining suitable views onKG data, andwe propose the use of advanced
recursive query mechanisms to solve it in a declarative way. Modern rule engines can
compute some useful views already, but mostly lack the features needed for integrating
other methods. Moreover, for full integration, the outputs of such methods must be
reconciled with the KG contents.

In this position paper, we motivate this new approach, discuss the relevant state of
the art, and derive open issues for future research needed to realise this idea. The text
includes parts of an earlier publication of KGs in ontological modelling [33].

2 What is a Knowledge Graph?

The knowledge graphs in modern applications are characterised by several properties
that together distinguish them frommore traditional knowledgemanagement paradigms:

(1) Normalisation: Information is decomposed into small units of information, inter-
preted as edges of some form of graph.

(2) Connectivity: Knowledge is represented by the relationships between these units.
(3) Context: Data is enriched with contextual information to record aspects such as

temporal validity, provenance, trustworthiness, or other side conditions and details.

While many databases are normalised in some way (1), the focus on connections
(2) is what distinguishes the graph-based view. This is apparent not so much from the
data structures – graphs can be stored in many formats –, but from the use of query
languages. Graph query languages such as SPARQL [45] or Cypher [44] natively support
reachability queries and graph search features that are not supported in other paradigms.3

Contextual information (3) is introduced for a variety of reasons. It may simply be
convenient for storing additional details that would otherwise be hard to represent in
normalisation, or it may be used for capturing meta-information such as provenance,
trust, and temporal validity. Indeed, knowledge graphs are often used in data integration –
graphs are well suited for capturing heterogeneous data sources and their relationships –,
and it is natural to retain basic information regarding, e.g., the source and trustworthiness
of a particular piece of data.

While we can only speculate about the shape and content of Google’s original
knowledge graph, we can find the above characteristics in major graph database formats:

– Property Graph. The popular graph model that is used in many applications is
based on a directed multi-graph with attribute-value annotations that are used to
store contextual information on each edge and node [46]. Popular property graph
query languages, such as Cypher, support graph search [44].

3 SQL supports recursive views that resemble the expressivity of linear Datalog, but the standard
forbids the use of duplicate elimination (DISTINCT) in their construction, making them quite
useless for breadth-first search on graphs that may contain cycles.



4 M. Krötzsch

– RDF. The W3C graph data standard encodes directed graphs with different types
of edges. Support for storing contextual information has been added to RDF 1.1 by
enabling references to named graphs [17]. The SPARQL query language for RDF
supports regular path queries and named graphs [26].

Likewise, individual knowledge graphs exhibit these characteristics, for example:

– Yago and Yago2 are prominent knowledge graphs extracted from Wikipedia [29].
The authors extended RDF (at a time before RDF 1.1) with quadruples to capture
important contextual information related to time and space.

– Bio2RDF is a graph-based data integration effort in the life sciences [5]. It uses an
n-ary object model to capture complex and contextual information in plain RDF
graphs, i.e., it introduces new identifiers for tuples extracted from relational DBs.

– Wikidata, the knowledge graph of Wikipedia, is natively using a graph-like data
model that supports expressive annotations for capturing context [52]. Details are
discussed in the next section.

3 Wikidata, the Knowledge Graph of Wikipedia

To gain a better understanding of the problem, it is instructive to take a closer look at a
modern KG. We choose Wikidata, the knowledge graph of the Wikimedia Foundation,
since it is freely accessible and has become a major resource in many applications.
Wikidata is a sister project of Wikipedia that aims to gather and manage factual data
used in Wikipedia or any other Wikimedia project [52]. Launched in October 2012,
the project has quickly grown to become one of the largest and most active in terms of
editing. As of March 2019, Wikidata is one of the largest public collections of general
knowledge, consisting of more than 680 million statements about more than 55 million
entities. Wikidata is prominently used by intelligent agents such as Alexa and Siri [48],
but also in many research activities, e.g., in the life sciences [12], in social science [53],
and in Formal Concept Analysis [24,25].

The main content of Wikidata are its statements, which describe and interrelate
the entities. A Wikidata statement can be viewed as an edge in a directed graph that
is further annotated by attribute-value pairs and provenance information. For example,
Fig. 1 shows two statements as seen by users of wikidata.org. In both cases, the main part
of the statement can be read as a directed edge: Berners-Lee’s employer has been CERN,
and the film The Imitation Game has cast member Benedict Cumberbatch. In addition,
both statements include contextual information in the form of additional property-value
pairs that refer to the statement (rather than to the subject of the statement). As one can
see, this additional information includes classical “meta-data” such as validity time and
references (collapsed in the figure), but also other details that are more similar to the
modelling of n-ary relations.

Statements consist of properties (e.g., employer, start date, character role) that are
given specific values, which may in turn be Wikidata items (e.g., Alan Turing, CERN)
or values of specific datatypes (e.g., 1984, which denotes a date whose precision is
limited to the year). Notably, the properties and values used in the main part of the graph
are the same as those used to add contextual information, and this can be exploited in

wikidata.org


Too Much Information: Can AI Cope With Modern Knowledge Graphs? 5

Statement from the page of Tim Berners-Lee (https://www.wikidata.org/wiki/Q80):

Statement from the page of The Imitation Game (https://www.wikidata.org/wiki/Q14918344):

Figure 1. Two statements from Wikidata

Tim Berners-Lee CERN

Fellow1984 1994

employerin
statement_1234

employerout

start time end time position held

Figure 2. Plain graph encoding of the upper statement in Fig. 1

queries (e.g., one can ask for actors who have played computer scientists). Moreover,
Wikidata allows users to create new properties, and to make statements about them.
From a knowledge representation viewpoint, Wikidata properties are therefore a special
type of individual rather than a binary predicate.

Some further details of Wikidata’s graph model are briefly noted: (1) the same
directed relationship may occur with several different annotations, e.g., in the case of
Elizabeth Taylor whowasmarried to Richard Burton several times; (2) the same property
can be assigned more than one value in the context of some statement, e.g., this is used
when several people win an award together (together with is the Wikidata property used
to annotate the award received statement); and (3) the order of statements and statement
annotations is not relevant.

Wikidata’s rich graph model can of course be encoded in simpler graph structures,
which mainly requires some way of encoding statement annotations. To this end, state-
ments are represented by own vertices in the graph, whose incidental edges can indicate
their related entities and annotations. Figure 2 illustrates this approach for one encoding
(other encodings would be possible [27]). Note that each Wikidata property gives rise
to several distinct edge labels, and in particular that the main property employer is split
into two parts. Wikidata uses a similar encoding to export its contents to RDF. The
actual encoding is slightly more complex, e.g., since some data values such as geo-
graphic coordinates also need to be encoded using several edges, and since the export
already includes several alternative encodings as well as further data [39]. As of March
2019, the RDF export of Wikidata comprises 7.28 billion triples with more than 64,000

https://www.wikidata.org/wiki/Q80
https://www.wikidata.org/wiki/Q14918344


6 M. Krötzsch

RDF properties.4 It is natural that a more normalised representation like RDF requires
significantly more edges to capture the contents of a KG. The magnitude of this increase
underlines the challenge that AI methods based on simpler graph models are facing.

The RDF encoding of Wikidata can be downloaded in the form of file exports and
queried through a public SPARQL query service, which is based on the current version
of this continuously changing KG. Details are described by Malyshev et al. [39]. The
public SPARQL service is used as anAPI inmany applications, and serves in the order of
100 million queries per month. Malyshev et al. also published 575 million anonymised
queries and provide an initial analysis of their form and content.

4 Ontology-Based Views on Knowledge Graphs

The sheer size of Wikidata creates difficulties for some approaches in data mining
and machine learning, but the bigger challenge lies in the complexity of the data, in
particular due to the use of complex data types and annotations. Interpreting statements
might require background knowledge on Wikidata’s modelling conventions or at least a
certain amount of common sense.

Example 1. Wikidata specifies many historic facts, and among the most common an-
notations are those for temporal validity. For example, London is said to be located in five
administrative regions, including the Kingdom of Wessex and two distinct entities called
England. The only current value is Greater London, from which a chain of (temporally
current) located in statements leads to present-day England. A challenge in this infer-
ence is that the times specified for each statement along the chain are different, although
the intervals overlap. Population numbers and mayors are also commonly temporalised,
whereas other transient statements do not specify a temporal context, e.g., London is
stated (without any annotations) to be the capital of ten entities, including some that
no longer exist. Indeed, many entities also specify times for inception (creation) and
dissolution (abolishment), which should be considered when interpreting statements.

Notably, the background knowledge needed to correctly interpret such statements
might not be encoded in Wikidata at all. Applying data mining or machine learning
techniques to the unfiltered data therefore is likely to produce unintended results, even
if the scalability issues can be overcome. This suggests that preprocessing is needed to
obtain not only smaller but also more regular, hence predictable, slices of the data.

Instead of relying on ad hoc preprocessing, we propose to model the required back-
ground knowledge explicitly using declarative knowledge representation languages. In-
deed, the “slices of the data” that we seek correspond to views (under the meaning
common in databases). Logical formalisms have been proposed for specifying such
views declaratively, comprising approaches such as Datalog queries [2], inclusion de-
pendencies [37], tuple-generating dependencies [13], and ontology-based data access
(OBDA) [14,32]. It is worth to consider these approaches for use on KGs.

However, the application of formal logic to KGs is not straightforward either, since
the latter may not have a native expression in predicate logic. Statements as in Fig. 1

4 https://grafana.wikimedia.org/dashboard/db/wikidata-query-service

https://grafana.wikimedia.org/dashboard/db/wikidata-query-service


Too Much Information: Can AI Cope With Modern Knowledge Graphs? 7

could be represented as n-ary relations, but the arity would be different for each statement
depending on howmany annotations are given. Indeed,Wikidata does not impose a limit
on the number of annotations, and some statements use a large number of them. For a
faithful relational representation with predicates of bounded arity, we therefore need to
use an encoding like the one in Fig. 2.

With this encoding, any modelling language that is compatible with predicate logic
can be used on knowledge graphs, including description logics (DLs) – today’s most
common ontology languages and the basis of OBDA.

Example 2. Hanika et al. apply Formal Concept Analysis to Wikidata by defining at-
tributes based on the incidence of Wikidata properties to certain objects [25]. Using
relation names as in Fig. 2, we can express, e.g., that every entity that is the source of a
motherin relation should be in a unary predicate Mother (used as an attribute in FCA). In
first-order logic, this is expressed as ∀x.(∃y.motherin(x, y)) ↔ Mother(x). An equivalent
DL sentence is ∃motherin.> ≡ Mother. Similar uses of DL for defining FCA attributes
have been considered previously [47].

Note that the formalisation in Example 2 actually defines a two-way relationship
between the view and the KG, such that one could, e.g., interpret association rules
computed on this view as logical sentences from which new information can be derived
about the KG [10]. The logic-based approach thus is more than just a declarative way
of preprocessing KGs: it also is in principle invertible, supporting the interpretation of
results obtained on a view with respect to the original data. But Example 2 is still too
simple. Unary view predicates will not always be enough (e.g., we need “triplets” in
KG embeddings), and significantly more complex view definitions would be needed to
address use cases as in Example 1.

Unfortunately, if we try to specify more general views, we encounter severe ex-
pressivity limits. DLs, for example, offer very little expressivity for deriving binary
relations (which could be interpreted as triplets), and are generally too weak to express
even simple relationships on rich KGmodels [33]. The root cause of this restriction is the
close connection of DLs to guarded logics, which syntactically ensure tree-like model
structures by requiring guard atoms that bind certain variables. Our decomposition of
statements into several smaller atoms makes it very hard to find guards, and other kinds
of guarded logics are therefore similarly restricted on such KG encodings [35].

A more suitable logical formalism might therefore be Datalog, the simple recursive
query language that syntactically corresponds to function-free first-order Horn-logic
without existential quantifiers. Indeed, Datalog rules can express arbitrary positive rela-
tional patterns (conjunctive queries) in their premise, requiring no guard. Their weakness
is that they are restricted to the given set of domain elements, i.e., they cannot infer the
existence of new entities. Example 2 shows a case where this power is useful (for the
“←” part of the equivalence). Datalog can be generalised to support this, leading to
so-called existential rules or tuple-generating dependencies, but then other restrictions
must be imposed to retain decidability.

Part of this difficulty arises from the loss of structure that our relational encoding
has incurred, since we can no longer distinguish the (non-local, possibly incomplete)
connection structure of the KG from the (local, complete) annotations of individual



8 M. Krötzsch

edges. Marx et al. therefore proposed to explicitly include annotations into relational
calculus, obtainingwhat they call attributed logics [41]. For example, the upper statement
in Fig. 1 could be written in attributed logic as an atom

employer(TimBL,CERN)@{start_time : 1984, end_time : 1994, position : Fellow}.

In this syntax, attributes (e.g., position) and values (e.g., 1984) are treated like lo-
gical terms, and in particular can be variables. In addition, attributed logics allow for
quantification over (finite) sets of attributes.

In its full generality, this yields a logic with an undecidable entailment problem,
and Marx et al. propose a restricted rule-based language MARPL that uses specialised
primitives for expressing properties of annotation sets.

Example 3. The following MARPL rule defines a CFellow to be somebody employed
by CERN as a fellow, and it copies the respective start and end time (if given):

employer(x,CERN)@Z ∧ bpos : Fellowc(Z) → CFellow@{start : Z .start, end : Z .end}

All variables are implicitly quantified universally. Z is bound to the annotation set of the
employer fact, and required to contain pos : Fellow and possibly other attribute-value
pairs (denoted by the bracket that is opened to the top). The conclusion of the rule is the
required fact, using a shortcut notation from [34] to copy (zero or more) values of the
start and end attributes.

Theorem 1 ([41]). Conjunctive query answering with respect to MARPL ontologies is
ExpTime-complete, both in terms of combined and data complexity.5

Combined complexity therefore matches basic Datalog, but the high data complexity
might be surprising. It is caused by MARPL’s ability of creating an exponential number
of different annotation sets, which is already possible if only a fixed set of attributes
is used in annotations. It is not expected that reasoning on real KGs leads to such
combinatoric explosions in the relevant annotation sets, but it might still be a strength
of the proposal that it can also describe view definitions that are not in polynomial time.

5 Rule Engines as Platforms for Artificial Intelligence

New ontology languages such as MARPL might develop into suitable formalism for
expressing views and logical relationships over KGs, but they do not provide the required
integration with other AI approaches yet. At the time of this writing, there is not even
an implemented reasoning engine for MARPL. If we look for existing reasoners that
scale to large amounts of data, (existential) rule reasoners stand out [7]. Indeed, these
engines have been developed as extensions of the deductive query language Datalog,
which has a long tradition in databases, where scalability to large datasets is a prime
concern. In recent years, there has been significant progress in this area, and many new

5 Data complexity characterises the worst-case asymptotic complexity of the reasoning problem
for a fixed logical theory (i.e., MARPL rule set) with respect to the size of the input data (KG).



Too Much Information: Can AI Cope With Modern Knowledge Graphs? 9

rule-based systems have been presented [3,4,8,9,23,42,50]. In this section, we therefore
discuss what it would take to develop such systems into a suitable basis for reconciling
knowledge graphs with other AI methods.

Existential rule systems, such as RDFox [42] or VLog [50], are often based on
bottom-up materialisation of inferences, known as the chase in databases. This is the
most common reasoning approach for Datalog, and it is naturally extended to existential
rules. Common variants of the chase include the standard (a.k.a. restricted) chase [20],
the skolem (a.k.a. semi-oblivious) chase [40], and the core chase [18]. They differ in the
approach taken to determine if the application of a rule can be considered redundant in
the sense that it will not contribute to producing distinct new entailments.

However, reasoning with existential rules is undecidable in general, and indeed any
chase may fail to terminate in some cases – the algorithm is sound but not complete.
Termination of the chase is also undecidable, but many sufficient criteria have been
developed for detecting it [16]. Almost all of these criteria ensure that the skolem chase
over a set of rules will terminate universally, i.e., on all possible sets of input facts. The
following result applies in any such case:

Theorem 2 (Marnette, [40]). Let Σ be a set of existential rules, such that, for every set
of input facts F , the skolem chase over Σ∪F terminates. Then the skolem chase decides
fact entailment over Σ ∪ F in polynomial time with respect to the size of F .

In other words, the data complexity of fact entailment over rules with a universally
terminating skolem chase is in PTime. This data complexity is strictly smaller than
for MARPL rules (Theorem 1), i.e., we cannot hope to encode MARPL theories in
skolem-chase terminating rules. This restriction applies to virtually every known chase
termination criterion, including recent approaches that are not specific to the skolem
chase but also feature PTime data complexity [15].

Surprisingly, however, this restriction is not inherent to other versions of the chase.
As has recently been observed, there are universally standard-chase terminating rule
sets with non-elementary data complexity [36]. Therefore, there does not seem to be any
principled reasonwhyMARPL-style expressive power should not be in reach for existing
rule engines. Indeed, we conjecture that MARPL can be translated into existential rules
with a suitable encoding. The standard chase is implemented in both RDFox [7] and
VLog [51], hence this translation might also allow MARPL reasoning in practice.

A MARPL reasoner would be a first step towards realising the vision described
in this paper. It would enable users to replace custom data extraction and projection
software with a declarative logical description of a KG view. Further expressive features
will be useful to truly cover a significant part of current preprocessing implementations:

(1) Negation: The reasoner needs to be able to check for the absence of data in the KG,
e.g., to determine which entities have no time of dissolution.

(2) Quantitative data: Basic range comparisons on input data are important for filtering,
e.g., to check if a statement is valid at a specific point in time (within the given
validity interval).

(3) Aggregates: especially maximum and minimum values can be of importance, e.g.,
to find the most recent statement of a certain property.



10 M. Krötzsch

It would often suffice if these features were supported on input data, which is not affected
by recursive computation, and therefore does not raise semantic issues related to, e.g.,
the use of negation in recursive specifications. Nevertheless, view definitions might
benefit from the use of recursion in other places, e.g., to compute excerpts of the KG
by computing all entities that are reachable through some property (example: select all
monarchs and all of their relatives).

The facts entailed by such recursive view definitions can then be used with other
AI methods for data mining or machine learning. This could be done by exporting the
entailments, using them as input to other approaches, and re-importing the results into
the logical knowledge base. Further logical rules could then be used to draw conclusions
that relate to the original data model of the KG.

It would be desirable to achieve a tighter integration that avoids the need for this
separate export and import step. A practical way of doing this could be to access the other
AI methods through built-in predicates that can be used in rules. This leads to hybrid
rule-based systems that can “call” external libraries or sub-systems for optimisation and
learning tasks. Some recent rule engines have started to explore this approach, examples
being LogicBlox [3] and Vadalog [6].

While built-in functions are not uncommon in rule-based systems, the functions
needed here would in fact be aggregates in the sense that they would act on sets of facts
(representing views) rather than on single tuples. There are also other conceivable ways
of achieving such integration, for example using higher-order built-ins as proposed by
Eiter et al. for the case of answer set programming [19]. The main requirement is that the
built-in function can receive a complete set of facts, e.g., an unlabelled directed graph
that was extracted from the KG.

The use of built-in functions allows us to treat methods from machine learning and
data analytics as black boxes. This approach is flexible and versatile, but it does not
exploit the characteristics of specific built-in functions. The latter may have significant
advantages in terms of overall performance, as has been found by recent works that have
explored this idea for (non-recursive) database queries [31]. Similar approaches suggest
themselves in the context of rule-based systems.

Accessing data mining and machine learning methods through built-in functions
should be contrasted with approaches that attempt to increase the expressivity of the
logic in order to be able to implement data analysis algorithms in rules. For example,
Aberger et al. present an architecture for computing some recursive network analysis
algorithms, such as PageRank centrality, using rule-based specifications [1]. While such
iterative algorithms are compatible with the recursive reasoning in rule engines, they
require a different control strategy, since they can usually not be iterated until a fixed
point is reached but only until some sufficient precision has been obtained. Another
approach of combining numeric optimisation with rule reasoning was proposed by
Kaminski et al. [30]. It has the potential of integrating linear optimisation with rules
in a fully declarative way, but other algorithms such as PageRank seem to be out of
scope. We believe that built-in functions can be a middle ground between such a fully
integrated approach (which must be carefully restricted to remain within the limits of
computability) and today’s loose combination of several programs that does not follow
any underlying principle.



Too Much Information: Can AI Cope With Modern Knowledge Graphs? 11

6 Summary and Outlook

Knowledge graphs are characterised by their heterogeneous and multi-faceted inform-
ation content, which covers a range of topics at different levels of detail. Significant
feature engineering and sampling is required to apply AI techniques from data mining
or machine learning to such resources successfully. We have argued that rule-based
knowledge representation can be used to achieve this preprocessing in a declarative,
principled way.

Besides the immediate benefit of an integrated system that replaces the make-
shift processing pipelines in many current works, this approach has the potential of
paving the way towards an explainable AI. Indeed, the powerful but opaque methods of
statistical optimisation and machine learning would be invoked and interpreted through
the knowledge-based framework of logical rules, which is specified by humans and
therefore more explicit and easier to verify than learned models.

Looking further ahead, we can see an opportunity for expanding this approach to-
wards new system architectures and design principles that lead to an artificial intelligence
that is not just powerful and efficient but also reliable, predictable, and safe.

Acknowledgements This work is partly supported by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) in project number 389792660 (TRR 248, Center
for Perspicuous Systems), CRC 912 (Highly Adaptive Energy-Efficient Computing,
HAEC), and Emmy Noether grant KR 4381/1-1.

References

1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: EmptyHeaded: A relational engine for graph
processing. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proc. 2016 ACM SIGMOD Int.
Conf. on Management of Data. pp. 431–446. ACM (2016)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
3. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E., Veldhuizen,

T.L., Washburn, G.: Design and implementation of the LogicBlox system. In: Sellis, T.K.,
Davidson, S.B., Ives, Z.G. (eds.) Proc. 2015 ACM SIGMOD Int. Conf. on Management of
Data. pp. 1371–1382. ACM (2015)

4. Baget, J., Leclère, M., Mugnier, M., Rocher, S., Sipieter, C.: Graal: A toolkit for query
answering with existential rules. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A.,
Roman, D. (eds.) Proc. 9th Int. Web Rule Symposium (RuleML’15). LNCS, vol. 9202, pp.
328–344. Springer (2015)

5. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: Towards a mashup
to build bioinformatics knowledge systems. J. of Biomedical Informatics 41(5), 706–716
(2008)

6. Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: Datalog-based reasoning for
knowledge graphs. Proc. VLDB Endowment 11(9), 975–987 (2018)

7. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D., Tsamoura,
E.: Benchmarking the chase. In: Sallinger, E., den Bussche, J.V., Geerts, F. (eds.) Proc. 36th
Symposium on Principles of Database Systems (PODS’17). pp. 37–52. ACM (2017)

8. Benedikt, M., Leblay, J., Tsamoura, E.: PDQ: proof-driven query answering over web-based
data. Proc. VLDB Endowment 7(13), 1553–1556 (2014)

https://www.perspicuous-computing.science/
https://www.perspicuous-computing.science/


12 M. Krötzsch

9. Bonifati, A., Ileana, I., Linardi, M.: Functional dependencies unleashed for scalable data
exchange. In: Baumann, P., Manolescu-Goujot, I., Trani, L., Ioannidis, Y.E., Barnaföldi,
G.G., Dobos, L., Bányai, E. (eds.) Proc. 28th Int. Conf. on Scientific and Statistical Database
Management (SSDBM’16). pp. 2:1–2:12. ACM (2016)

10. Borchmann, D.: Towards an error-tolerant construction of EL⊥-ontologies from data using
formal concept analysis. In: Cellier, P., Distel, F., Ganter, B. (eds.) Proc. 11th Int. Conf. on
Formal Concept Analysis (ICFCA’13). LNCS, vol. 7880, pp. 60–75. Springer (2013)

11. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Ghahramani, Z.,
Weinberger, K.Q. (eds.) Proc. 27th Annual Conf. Neural Information Processing Systems
(NIPS 2013). pp. 2787–2795 (2013)

12. Burgstaller-Muehlbacher, S., Waagmeester, A., Mitraka, E., Turner, J., Putman, T., Leong, J.,
Naik, C., Pavlidis, P., Schriml, L., Good, B.M., sSu, A.I.: Wikidata as a semantic framework
for the Gene Wiki initiative. Database 2016, baw015 (2016)

13. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query
answering over ontologies. In: Paredaens, J., Su, J. (eds.) Proc. 28th Symposium on Principles
of Database Systems (PODS’09). pp. 77–86. ACM (2009)

14. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

15. Carral, D., Dragoste, I., Krötzsch, M.: Restricted chase (non)termination for existential rules
with disjunctions. In: Sierra, C. (ed.) Proc. 26th Int. Joint Conf. on Artificial Intelligence
(IJCAI’17). pp. 922–928. ijcai.org (2017)

16. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.:
Acyclicity notions for existential rules and their application to query answering in ontologies.
J. of Artificial Intelligence Research 47, 741–808 (2013)

17. Cyganiak, R., Wood, D., Lanthaler, M. (eds.): RDF 1.1 Concepts and Abstract Syntax. W3C
Recommendation (25 February 2014), available at http://www.w3.org/TR/rdf11-concepts/

18. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo, D. (eds.)
Proc. 27th Symposium on Principles of Database Systems (PODS’08). pp. 149–158. ACM
(2008)

19. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In: Kaelbling, L., Saffiotti, A.
(eds.) Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). pp. 90–96. Professional
Book Center (2005)

20. Fagin, R., Kolaitis, P.G.,Miller, R.J., Popa, L.: Data exchange: semantics and query answering.
Theoretical Computer Science 336(1), 89–124 (2005)

21. Ferrucci, D.A., Brown, E.W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A.,
Murdock, J.W., Nyberg, E., Prager, J.M., Schlaefer, N., Welty, C.A.: Building Watson: An
overview of the DeepQA project. AI Magazine 31(3), 59–79 (2010)

22. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1997)
23. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: That’s all folks! LLUNATIC goes open source.

PVLDB 7(13), 1565–1568 (2014)
24. González, L., Hogan, A.:Modelling dynamics in semantic web knowledge graphs with formal

concept analysis. In: Champin, P., Gandon, F.L., Lalmas, M., Ipeirotis, P.G. (eds.) Proc. the
2018 World Wide Web Conference (WWW’18). pp. 1175–1184. ACM (2018)

25. Hanika, T., Marx, M., Stumme, G.: Discovering implicational knowledge in Wikidata. In:
Proc. 15th Int. Conf. on Formal Concept Analysis (ICFCA’19). LNCS, Springer (2019)

26. Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Recommendation (21
March 2013), available at http://www.w3.org/TR/sparql11-query/



Too Much Information: Can AI Cope With Modern Knowledge Graphs? 13

27. Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with wikidata? In:
Liebig, T., Fokoue, A. (eds.) Proc. 11th Int. Workshop on Scalable Semantic Web Knowledge
Base Systems. CEUR Workshop Proceedings, vol. 1457, pp. 32–47. CEUR-WS.org (2015)

28. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Learning rules from
incomplete KGs using embeddings. In: van Erp, M., Atre, M., López, V., Srinivas, K.,
Fortuna, C. (eds.) Posters & Demonstrations, Industry and Blue Sky Ideas Tracks of the
17th International Semantic Web Conference (ISWC 2018). CEUR Workshop Proceedings,
vol. 2180. CEUR-WS.org (2018)

29. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and temporally
enhanced knowledge base from Wikipedia. J. of Artif. Intell. 194, 28–61 (2013)

30. Kaminski, M., Grau, B.C., Kostylev, E.V., Motik, B., Horrocks, I.: Foundations of declarative
data analysis using limit datalog programs. In: Sierra, C. (ed.) Proc. 26th Int. Joint Conf. on
Artificial Intelligence (IJCAI’17). pp. 1123–1130. ijcai.org (2017)

31. Khamis, M.A., Ngo, H.Q., Nguyen, X., Olteanu, D., Schleich, M.: In-database learning with
sparse tensors. In: den Bussche, J.V., Arenas, M. (eds.) Proc. 37th Symposium on Principles
of Database Systems (PODS’18). pp. 325–340. ACM (2018)

32. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to ontology-based data access. In: Walsh, T. (ed.) Proc. 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI’11). pp. 2656–2661. AAAI Press/IJCAI (2011)

33. Krötzsch, M.: Ontologies for knowledge graphs? In: Artale, A., Glimm, B., Kontchakov, R.
(eds.) Proc. 30th Int. Workshop on Description Logics (DL’17). CEUR Workshop Proceed-
ings, vol. 1879. CEUR-WS.org (2017)

34. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: Reasoning on
knowledge graphs. In: Lang, J. (ed.) Proc. 27th Int. Joint Conf. on Artificial Intelligence
(IJCAI’18). pp. 5309–5313 (2018). https://doi.org/10.24963/ijcai.2018/743

35. Krötzsch, M., Thost, V.: Ontologies for knowledge graphs: Breaking the rules. In: Groth, P.T.,
Simperl, E., Gray, A.J.G., Sabou, M., Krötzsch, M., Lécué, F., Flöck, F., Gil, Y. (eds.) Proc.
15th Int. Semantic Web Conf. (ISWC’16). LNCS, vol. 9981, pp. 376–392 (2016)

36. Krötzsch, M., Marx, M., Rudolph, S.: The power of the terminating chase. In: Barceló, P.,
Calautti, M. (eds.) Proc. 22nd Int. Conf. on Database Theory (ICDT’19). LIPIcs, vol. 127,
pp. 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019)

37. Lenzerini, M.: Data integration: A theoretical perspective. In: Popa, L. (ed.) Proc. 21st
Symposium on Principles of Database Systems (PODS’02). pp. 233–246. ACM (2002)

38. Leskovec, J., Rajaraman,A.,Ullman, J.D.:Mining ofMassiveDatasets. CambridgeUniversity
Press, 2nd ed edn. (2014)

39. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the most out
of Wikidata: Semantic technology usage in Wikipedia’s knowledge graph. In: Vrandečić,
D., Bontcheva, K., Suárez-Figueroa, M.C., Presutti, V., Celino, I., Sabou, M., Kaffee, L.A.,
Simperl, E. (eds.) Proc. 17th Int. Semantic Web Conf. (ISWC’18). LNCS, vol. 11137, pp.
376–394 (2016)

40. Marnette, B.: Generalized schema-mappings: from termination to tractability. In: Paredaens,
J., Su, J. (eds.) Proc. 28th Symposium on Principles of Database Systems (PODS’09). pp.
13–22. ACM (2009)

41. Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: Ontologies for generalised property
graphs. In: Sierra, C. (ed.) Proc. 26th Int. Joint Conf. on Artif. Intell. (IJCAI’17). pp. 1188–
1194 (2017)

42. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: A highly-scalable
RDF store. In: Arenas, M., Corcho, Ó., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas,
K., Groth, P.T., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) Proc. 14th Int.
Semantic Web Conf. (ISWC’15), Part II. LNCS, vol. 9367, pp. 3–20. Springer (2015)

https://doi.org/10.24963/ijcai.2018/743


14 M. Krötzsch

43. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning
for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (2016)

44. openCypher community: Cypher Query Language Reference, Version 9. available at http:
//www.opencypher.org/resources (2019)

45. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-
mendation (15 January 2008), available at http://www.w3.org/TR/rdf-sparql-query/

46. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of the American
Society for Information Science and Technology 36(6), 35–41 (2010)

47. Rudolph, S.: Exploring relational structures via FLE. In:Wolff,K.E., Pfeiffer, H.D., Delugach,
H.S. (eds.) Proc. 12th Int. Conf. on Conceptual Structures, (ICCS’04). LNCS, vol. 3127, pp.
196–212. Springer (2004)

48. Simonite, T.: Inside the Alexa-friendly world of Wikidata. WIRED
Magazine 27.03 (2019), available online at https://www.wired.com/story/
inside-the-alexa-friendly-world-of-wikidata/, accessed 2019-03-16

49. Tanon, T.P., Vrandecic, D., Schaffert, S., Steiner, T., Pintscher, L.: From Freebase toWikidata:
The great migration. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y.
(eds.) Proc. 25th Int. Conf. on World Wide Web (WWW’16). pp. 1419–1428. ACM (2016)

50. Urbani, J., Jacobs, C., Krötzsch, M.: Column-oriented Datalog materialization for large
knowledge graphs. In: Schuurmans, D., Wellman, M.P. (eds.) Proc. 30th AAAI Conf. on
Artificial Intelligence (AAAI’16). pp. 258–264. AAAI Press (2016)

51. Urbani, J., Krötzsch, M., Jacobs, C.J.H., Dragoste, I., Carral, D.: Efficient model construction
for Horn logic with VLog: System description. In: Galmiche, D., Schulz, S., Sebastiani, R.
(eds.) Proc. 9th Int. Joint Conf. on Automated Reasoning (IJCAR’18). LNCS, vol. 10900,
pp. 680–688. Springer (2018)

52. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Commun. ACM
57(10) (2014)

53. Wagner, C., Graells-Garrido, E., Garcia, D., Menczer, F.: Women through the glass ceiling:
gender asymmetries in Wikipedia. EPJ Data Science 5(1), 5 (2016)

54. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on
hyperplanes. In: Brodley, C.E., Stone, P. (eds.) Proc. 28th AAAI Conf. on Artif. Intell.
(AAAI’14). pp. 1112–1119. AAAI Press (2014)

http://www.opencypher.org/resources
http://www.opencypher.org/resources
https://www.wired.com/story/inside-the-alexa-friendly-world-of-wikidata/
https://www.wired.com/story/inside-the-alexa-friendly-world-of-wikidata/

