Lecture 4: Denotational Semantics - Direct Style Semantics

 Concurrency TheoryDr. Stephan Mennicke
April 23 ${ }^{\text {rd }}, 2024$
TU Dresden, Knowledge-Based Systems Group

Review WHILE-Programs

Overview

Part 0: Completing the Introduction

- learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages

- WHILE - an old friend
- denotational semantics (a baseline and an exercise of the inductive method) (today)
- natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages

- bisimilarity and its success story
- deep-dive into induction and coinduction
- algebraic properties of bisimilarity

Part 3: Expressive Power

- Calculus of Communicating Systems (CCS)
- Petri nets

Syntactic Categories

The following categories are pairwaise disjoint sets.

- Num is the set of numerals (e.g., $n, n_{1}, n_{2}, \ldots, 0,1, \ldots, 42, \ldots$)
- Var is the set of variables (e.g., x, y, z, \ldots)
- Aexp is the set of arithmetic expressions (e.g., $a, a_{1} \star a_{2}, \ldots$)
- Bexp is the set of Boolean expressions (e.g., true, $\neg b, a_{1}<a_{2}, \ldots$)
- Stm is the set of all statements (to be defined next)

WHILE Syntax

$$
\begin{array}{r}
a::=n|x| a \oplus a|a \star a| a \ominus a \\
b::=\text { true } \mid \text { false }|a \equiv a| a \leqq a|\neg b| b \wedge b \\
S::=x:=a \mid \text { skip }|S ; S| \text { if } b \text { then } S \text { else } S \mid \text { while } b \text { do } S
\end{array}
$$

where $n \in$ Num and $x \in$ Var.
These are all the syntactic categories, rigorously defined by grammars. Really all?
Exercise: Provide a definition for numerals and variables.

Semantic Functions

Assumptions:

1. numerals are given in decimal notation
2. semantic function $\mathcal{N} \llbracket \cdot \rrbracket:$ Num $\rightarrow \mathbb{Z}$

In contrast to Num $=\{0,1,-1,2, \ldots\}$ we have $\mathbb{Z}=\{0,1,-1,2, \ldots\}$
A state is a function from variables to \mathbb{Z}.

$$
\text { State }=\mathbb{Z}^{\text {Var }}
$$

Need semantic functions for the syntactic categories

- $\mathcal{A}: \operatorname{Aexp} \rightarrow($ State $\rightarrow \mathbb{Z})$
- $\mathcal{B}: \operatorname{Bexp} \rightarrow($ State $\rightarrow \mathbb{B})($ where $\mathbb{B}=\{t t, f f\})$
- $\mathcal{S}: \mathbf{S t m} \rightarrow($ State \hookrightarrow State $)$

Warm-up: Semantics of Expressions

Expressions in a Single Slide

$$
\begin{aligned}
& \mathcal{B} \llbracket \mathrm{true} \rrbracket s:=\mathrm{tt} \\
& \mathcal{B} \text { 【false】 } s:=\mathrm{ff} \\
& \begin{array}{ll}
\mathcal{A} \llbracket n \rrbracket s & :=\mathcal{N} \llbracket n \rrbracket \\
\mathcal{A} \llbracket x \rrbracket s & :=s x \\
\mathcal{A} \llbracket a_{1} \oplus a_{2} \rrbracket s & :=\mathcal{A} \llbracket a_{1} \rrbracket s+\mathcal{A} \llbracket a_{-} 2 \rrbracket s \\
\mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket s & :=\mathcal{A} \llbracket a_{1} \rrbracket s \cdot \mathcal{A} \llbracket a_{-} 2 \rrbracket s \\
\mathcal{A} \llbracket a_{1} \ominus a_{2} \rrbracket s:=\mathcal{A} \llbracket a_{-} 1 \rrbracket s-\mathcal{A} \llbracket a_{-} 2 \rrbracket s
\end{array} \\
& \mathcal{B} \llbracket a_{1} \equiv a_{2} \rrbracket s:=\left\{\begin{array}{l}
\mathrm{tt} \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s=\mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathrm{ff} \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s \neq \mathcal{A} \llbracket a_{2} \rrbracket s
\end{array}\right. \\
& \mathcal{B} \llbracket a_{1} \leqq a_{2} \rrbracket s:=\left\{\begin{array}{l}
\mathrm{tt} \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s \leq \mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathrm{ff} \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s>\mathcal{A} \llbracket a_{2} \rrbracket s
\end{array}\right. \\
& \mathcal{B} \llbracket \neg b \rrbracket s:=\left\{\begin{array}{l}
\mathrm{tt} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathrm{ff} \\
\mathrm{ff} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathrm{tt}
\end{array}\right. \\
& \mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket s:=\left\{\begin{array}{l}
\mathrm{tt} \text { if } \mathcal{B} \llbracket b_{i} \rrbracket s=\mathrm{tt} \text { for } i \in\{1,2\} \\
\mathrm{ff} \text { else. }
\end{array}\right.
\end{aligned}
$$

Definition 1 (Free Variables): For an expression $a \in$ Aexp, define FV (a) inductively by

- $\operatorname{FV}(n):=\emptyset$,
- $\operatorname{FV}(x):=\{x\}$, and
- $\operatorname{FV}\left(a_{1} \bowtie a_{2}\right):=\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right)$ for $\bowtie \in\{\oplus, \star, \ominus\}$.

Theorem 2: Let $s, s^{\prime} \in$ State such that $s x=s^{\prime} x$ for all $x \in \mathrm{FV}(a)$. Then $\mathcal{A} \llbracket a \rrbracket s=$ $\mathcal{A} \llbracket a \rrbracket s^{\prime}$.

Properties of Expressions

Proof: By structural induction on a : Base case 1: $a=n$ for some $n \in$ Num, we get $\mathcal{A} \llbracket a \rrbracket s=\mathcal{N} \llbracket n \rrbracket=\mathcal{A} \llbracket a \rrbracket s^{\prime}$. Base case 2: $a=x$ for some $x \in \operatorname{Var}$, we have (a) $x \in \mathrm{FV}(a)$ (i.e., $s x=s^{\prime} x$ by assumption). Hence, $\mathcal{A} \llbracket a \rrbracket s=s x=s^{\prime} x=\mathcal{A} \llbracket a \rrbracket s^{\prime}$.

For $a=a_{1} \bowtie a_{2}$, we get $\operatorname{FV}(a)=\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right)$ and, by induction hypothesis, $\mathcal{A} \llbracket a_{i} \rrbracket s=\mathcal{A} \llbracket a_{i} \rrbracket s^{\prime}(i=1,2)$. Thus,

$$
\begin{aligned}
\mathcal{A} \llbracket a \rrbracket s & \stackrel{(\text { Def. })}{=} \mathcal{A} \llbracket a_{1} \bowtie a_{2} \rrbracket s \\
& \stackrel{\text { (Def.) }}{=} \mathcal{A} \llbracket a_{1} \rrbracket s \bullet \mathcal{A} \llbracket a_{2} \rrbracket s \\
& \stackrel{\text { (IH) }}{=} \mathcal{A} \llbracket a_{1} \rrbracket s^{\prime} \bullet \mathcal{A} \llbracket a_{2} \rrbracket s^{\prime} \\
& \stackrel{\text { (Def.) }}{=} \mathcal{A} \llbracket a_{1} \bowtie a_{2} \rrbracket s^{\prime}
\end{aligned}
$$

Semantics of Statements

$$
S::=x:=a \mid \text { skip }|S ; S| \text { if } b \text { then } S \text { else } S \mid \text { while } b \text { do } S
$$

- aim for function $\mathcal{S}_{\mathrm{ds}}: \mathbf{S t m} \rightarrow($ State \hookrightarrow State $)$
- $\mathcal{S}_{\mathrm{ds}} \llbracket x:=a \rrbracket s:=s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]$
- $\mathcal{S}_{\mathrm{ds}} \llbracket$ skip $\rrbracket:=\mathrm{id}$
- $\mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket:=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket$

Regarding Partiality

State \hookrightarrow State is for partial functions. For $g:$ State \hookrightarrow State, we denote that g is undefined for value $x \in$ State by $g x=$ undef.

Let $s \in$ State. Then

$$
\mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket s= \begin{cases}s^{\prime \prime} & \text { if } s^{\prime} \text { exists such that } \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket s=s^{\prime} \text { and } \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket s^{\prime}=s^{\prime \prime} \\ \text { undef if } \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket s=\text { undef or } \\ \text { if } s^{\prime} \text { exists such that } \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket s=s^{\prime} \text { but } \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket s^{\prime}=\text { undef }\end{cases}
$$

- $\mathcal{S}_{\text {ds }} \llbracket$ if b then S_{1} else $S_{2} \rrbracket:=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, S_{1}, S_{2}\right)$

$$
\text { cond }:(\text { State } \rightarrow \mathbb{B}) \times(\text { State } \hookrightarrow \text { State }) \times(\text { State } \hookrightarrow \text { State }) \rightarrow(\text { State } \hookrightarrow \text { State })
$$

$$
\operatorname{cond}\left(p, g_{1}, g_{2}\right) s:=\left\{\begin{array}{l}
g_{1} s \text { if } p s=\mathrm{tt} \\
g_{2} s \text { if } p s=\mathrm{ff}
\end{array}\right.
$$

Intuition

$$
\begin{aligned}
\mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket & =\mathcal{S}_{\mathrm{ds}} \llbracket i \mathrm{if} b \text { then }(S \text {;while } b \text { do } S) \text { else skip } \rrbracket \\
& =\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket, \text { id }\right)
\end{aligned}
$$

Consequence

Thus, $\mathcal{S}_{\text {ds }} \llbracket$ while b do $S \rrbracket$ is a fixed point of the functional F :

$$
F g:=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket, \mathrm{id}\right)
$$

- $\mathcal{S}_{\text {ds }} \llbracket$ while b do $S \rrbracket=$ FIX F

We define FIX formally throughout this lecture, but let's first live with our intuition.

Fixed Points by Example

$$
\text { while } \neg(x \equiv 0) \text { do skip }
$$

The corresponding functional is F^{\prime} such that

$$
\left(F^{\prime} g\right) s=\left\{\begin{array}{lr}
g s & \text { if } s x \neq 0 \\
s & \text { if } s x=0
\end{array}\right.
$$

Surely, g_{1} with

$$
g_{1} s= \begin{cases}\text { undef } & \text { if } s x \neq 0 \\ s & \text { if } s x=0\end{cases}
$$

is a fixed point of F^{\prime} since

$$
\begin{aligned}
\left(F^{\prime} g_{1}\right) s & = \begin{cases}g_{1} s & \text { if } s x \neq 0 \\
s & \text { if } s x=0\end{cases} \\
& = \begin{cases}\text { undef if } s x \neq 0 \\
s & \text { if } s x=0\end{cases} \\
& =g_{1} s
\end{aligned}
$$

$$
\text { while } \neg(x \equiv 0) \text { do skip }
$$

The corresponding functional is F^{\prime} such that

$$
\left(F^{\prime} g\right) s= \begin{cases}g s & \text { if } s x \neq 0 \\ s & \text { if } s x=0\end{cases}
$$

Function g_{2} such that $g_{2} s=$ undef for all $s \in$ State is not a fixed point of F^{\prime} :
For state s^{\prime} with $s^{\prime} x=0$, we get $\left(F^{\prime} g_{2}\right) s^{\prime}=s^{\prime}$ but $g_{2} s^{\prime}=$ undef.

Direct Style Semantics at a Glance

- $\mathcal{S}_{\mathrm{ds}} \llbracket x:=a \rrbracket s:=s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]$
- $\mathcal{S}_{\text {ds }} \llbracket s k i p \rrbracket:=\mathrm{id}$
- $\mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket:=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket$
- $\mathcal{S}_{\text {ds }} \llbracket$ if b then S_{1} else $S_{2} \rrbracket:=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, S_{1}, S_{2}\right)$
- $\mathcal{S}_{\text {ds }} \llbracket$ while b do $S \rrbracket=$ FIX F

Issues to Overcome

1. there are functionals with more than one fixed point (e.g., F^{\prime})
2. functionals with no fixed point

$$
F_{1} g= \begin{cases}g_{1} & \text { if } g=g_{2} \\ g_{2} & \text { otherwise }\end{cases}
$$

Requirements on Fixed Points

Consider a statement

$$
\text { while } b \text { do } S
$$

from state s_{0}.
Option A: Termination
Option B: Local Looping
Option C: Global Looping

Option A: Termination

$$
\text { while } b \text { do } S \text { in state } s_{0}
$$

Then there are states s_{1}, \ldots, s_{n} such that

$$
\mathcal{B} \llbracket b \rrbracket s_{i}=\left\{\begin{array}{l}
\mathrm{tt} \text { if } i<n \\
\mathrm{ff} \text { if } i=n
\end{array}\right.
$$

and

$$
\mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket s_{i}=s_{i+1} \text { for } i<n
$$

$$
\text { while } 0 \leqq x \text { do } x:=x \ominus 1
$$

Let g_{0} be any fixed point of F (i.e., $F g_{0}=g_{0}$). For $i<n$,

$$
\begin{aligned}
g_{0} s_{i} & =\left(F g_{0}\right) s_{i} \\
& =\operatorname{cond}\left(\mathcal{B} \llbracket 0 \leqq \mathrm{x} \rrbracket, g_{0} \circ \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{x}:=\mathrm{x} \ominus 1 \rrbracket, \mathrm{id}\right) s_{i} \\
& =\left(g_{0} \circ \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{x}:=\mathrm{x} \ominus 1 \rrbracket\right) s_{i} \\
& =g_{0} s_{i+1}
\end{aligned}
$$

and for $i=n$,

$$
\begin{aligned}
g_{0} s_{n} & =\left(F g_{0}\right) s_{n} \\
& =\operatorname{cond}\left(\mathcal{B} \llbracket 0 \leqq \mathrm{x} \rrbracket, g_{0} \circ \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{x}:=\mathrm{x} \ominus 1 \rrbracket, \mathrm{id}\right) s_{n} \\
& =\operatorname{id} s_{n}=s_{n}
\end{aligned}
$$

Every fixed point g of F will satisfy $g s_{0}=s_{n}$.

$$
\text { while } b \text { do } S \text { in state } s_{0}
$$

Similar observation as before, every fixed point g of F yields $g s_{0}=$ undef. Exercise: Why?

$$
\text { while } b \text { do } S \text { in state } s_{0}
$$

Then there are infinitely many states s_{1}, s_{2}, \ldots such that for all $i \geq 0$,

$$
\mathcal{B} \llbracket \neg b \rrbracket s_{i}=\mathrm{tt}
$$

and

$$
\mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket s_{i}=s_{i+1}
$$

$$
\text { while } \neg(x \equiv 0) \text { do skip }
$$

Let g_{0} be any fixed point of F.
We get $g_{0} s_{i}=g_{0} s_{i+1}$ and, thus,

$$
g_{0} s_{0}=g_{0} s_{i} \text { for all } i \geq 0
$$

The functional

$$
\left(F^{\prime} g\right) s= \begin{cases}g s & \text { if } s x \neq 0 \\ s & \text { if } s x=0\end{cases}
$$

has various fixed points: every partial function g satisfying $g s=s$ if $s x=0$ is one.

Requirements on Fixed Points

Consider a statement

$$
\text { while } b \text { do } S
$$

from state s_{0}.
Option A: Termination
Option B: Local Looping
Option C: Global Looping
Which fixed point to prefer?
Least Fixed Points (if they exist)

Fixed Point Theory

Partially Ordered (po) Partial Functions

For any function F, we want FIX F to share its result with all other fixed points of F.
Define \sqsubseteq on partial functions State \hookrightarrow State:

$$
g_{1} \sqsubseteq g_{2} \text { if } g_{1} s=s^{\prime} \text { implies } g_{2} s=s^{\prime} \text { for all } s, s^{\prime}: \text { State } \hookrightarrow \text { State. }
$$

Examples

$$
\begin{aligned}
& g_{1} s=s \text { for all } s \\
& g_{2} s= \begin{cases}s & \text { if } s x \geq 0 \\
\text { undef } & \text { otherwise }\end{cases} \\
& g_{3} s= \begin{cases}s & \text { if } s x=0 \\
\text { undef } & \text { otherwise }\end{cases} \\
& g_{4} s= \begin{cases}s & \text { if } s x \leq 0 \\
\text { undef } & \text { otherwise. }\end{cases}
\end{aligned}
$$

A po-set is a pair $\left\langle D, \preccurlyeq_{D}\right\rangle$ where D is a set and \preccurlyeq_{D} is a reflexive, transitive, and anti-symmetric binary relation on D.

Lemma 3: If a po-set $\left\langle D, \preccurlyeq_{D}\right\rangle$ has a least element $d \in D$, then d is unique.

Proof: Follows from anti-symmetry of \preccurlyeq_{D}.
The least element of a poset $\left\langle D, \preccurlyeq_{D}\right\rangle$ is denoted by \perp_{D} or just \perp.
Generally, if \preccurlyeq_{D} is clear from the context and we just write $\langle D, \preccurlyeq\rangle$

Lemma 4: \langle State \hookrightarrow State, $\sqsubseteq\rangle$ forms a po-set with \perp : State \hookrightarrow State, such that $\perp s:=$ undef for all s, is its least element.

Now,

1. FIX F is a fixed point of F (i.e., $F($ FIX $F)=$ FIX F), and
2. FIX F is a least fixed point of F, meaning $F g=g$ implies FIX $F \sqsubseteq g$

But which functionals admit least fixed points?

Completeness for po-sets

For po-set $\langle D, \preccurlyeq\rangle$ and $Y \subseteq D$, we are looking for an element $d \in D$ summarizing all the information in Y.

Such an element d is called upper bound of Y if

$$
\forall d^{\prime} \in Y: d^{\prime} \preccurlyeq d
$$

An upper bound d of Y is a least upper bound if
for any upper bound d^{\prime} of Y, we have $d \preccurlyeq d^{\prime}$.

Lemma 5: If Y has a least upper bound, then it is unique.

Proof: Let $d_{1}, d_{2} \in D$ be least upper bounds of Y, meaning they are upper bounds of Y (i.e., $d \preccurlyeq d_{i}$ for all $d \in Y$) and they are least under all upper bounds. Hence, $d_{1} \preccurlyeq d_{2}$ and $d_{2} \preccurlyeq d_{1}$. By antisymmetry of \preccurlyeq, we get $d_{1}=d_{2}$.
We denote the least upper bound of Y by $\bigsqcup Y$.

For po-set $\langle D, \preccurlyeq\rangle$ we call $Y \subseteq D$ a chain if

$$
\text { for any two elements } d_{1}, d_{2} \in Y, d_{1} \preccurlyeq d_{2} \text { or } d_{2} \preccurlyeq d_{1} \text {. }
$$

Definition 6: A po-set $\langle D, \preccurlyeq\rangle$ is chain-complete (i.e., a chain-complete partially ordered set, or ccpo) of $\bigsqcup Y$ exists for all chains $Y \subseteq D$. It is called a complete lattice if $\bigsqcup Y$ exists for all subsets Y of D.

Lemma 7: If $\langle D, \preccurlyeq\rangle$ is a ccpo, then it has a least element \perp given by $\perp=\bigsqcup \emptyset$.

Proof: Since \emptyset is (trivially) a chain, $\bigsqcup \emptyset \in D$ by the ccpo property. We need to show that $\bigsqcup \emptyset \preccurlyeq d$ for all $d \in D$.

$$
\forall d \in \emptyset: d \preccurlyeq \bigsqcup \emptyset
$$

Suppose there was a least element $d_{0} \in D-\{\bigsqcup \emptyset\}$. Then $d_{0} \preccurlyeq \bigsqcup \emptyset$ and d_{0} is an upper bound of \emptyset as well. Since $\bigsqcup \emptyset$ is the least upper bound of \emptyset, we get $\bigsqcup \emptyset \preccurlyeq d_{0}$, entailing $d_{0}=\bigsqcup \emptyset$. Hence, $\bigsqcup \emptyset$ is the unique least element \perp of D.

Exercise: Show that State \hookrightarrow State is not a complete lattice.

An Example Chain

Let $g_{n}:$ State \hookrightarrow State be the following partial function

$$
g_{n} s= \begin{cases}\text { undef } & \text { if } s x>n \\ s[x \mapsto-1] & \text { if } 0 \leq s x \\ s & \text { if } s x<0\end{cases}
$$

It holds that $g_{n} \preccurlyeq g_{m}$ whenever $n \leq m$.
The set $Y_{0}=\left\{g_{n} \mid n \geq 0\right\}$ is a chain and

$$
g s= \begin{cases}s[x \mapsto-1] & \text { if } 0 \leq s x \\ s & \text { if } s x<0\end{cases}
$$

is its least upper bound $\bigsqcup Y_{0}$.

Lemma 8: (State \hookrightarrow State,$\sqsubseteq)$ is a ccpo. The least upper bound $\bigsqcup Y$ of a chain Y is given by

$$
(\bigsqcup Y) s=s^{\prime} \text { if and only if } g s=s^{\prime} \text { for some } g \in Y
$$

Proof: By Lemma 4, (State \rightarrow State,\sqsubseteq) is a po. Let Y be a chain of State \rightarrow State.
We first show that $\bigsqcup Y$ as defined above is a partial function. Assume, for partial functions $g_{1}, g_{2} \in Y$ we have $g_{1} s=s_{1}$ and $g_{2} s=s_{2}$. As Y is a chain, (a) $g_{1} \sqsubseteq g_{2}$ or (b) $g_{2} \sqsubseteq g_{1}$. In either case, we get that $s_{1}=s_{2}$. Thus, $\bigsqcup Y$ is a partial function.
It remains to be shown that $\bigsqcup Y$ is the least upper bound. For function $g \in Y$ and $s \in$ State with $g s=s^{\prime}$ we get $(\bigsqcup Y) s=s^{\prime}$ (by definition). Thus, $\bigsqcup Y$ is an upper bound of g (and of Y). Let g_{0} be an upper bound of Y and let $(\bigsqcup Y) s=s^{\prime}$. Then, by definition of

State Transformers are ccpo

$\bigsqcup Y$, there is a function $g \in Y$ such that $g s=s^{\prime}$. Hence, $g_{0} s=s^{\prime}$. This argument holds for all states $s \in$ State, entailing $\bigsqcup Y \sqsubseteq g$ (for all upper bounds of Y).

Continuous Functions

Let $\langle D, \preccurlyeq\rangle$ and $\left\langle D^{\prime}, \preccurlyeq '^{\prime}\right\rangle$ be ccpo's.
We call a function $f: D \rightarrow D^{\prime}$ monotone if $d_{1} \preccurlyeq d_{2}$ implies $f d_{1} \preccurlyeq^{\prime} f d_{2}$ for all $d_{1}, d_{2} \in D$.

Lemma 9: Monotone functions are closed under (functional) composition.

Lemma 10: Let $\langle D, \preccurlyeq\rangle$ and $\left\langle D^{\prime}, \preccurlyeq^{\prime}\right\rangle$ be ccpo's, and let $f: D \rightarrow D^{\prime}$ be monotone. If Y is a chain in D, then $\{f d \mid d \in Y\}$ is a chain in D^{\prime}. Moreover,

$$
\bigsqcup^{\prime}\{f d \mid d \in Y\} \preccurlyeq^{\prime} f(\bigsqcup Y)
$$

Proof: Define $\Upsilon:=\{f d \mid d \in Y\}$ and let $d_{1}^{\prime}, d_{2}^{\prime} \in \Upsilon$. Then there are $d_{1}, d_{2} \in D$ such that $f d_{1}=d_{1}^{\prime}$ and $f d_{2}=d_{2}^{\prime}$ (by definition of Υ). Since Y is a chain, it holds that (a) $d_{1} \preccurlyeq$ d_{2} or (b) $d_{2} \preccurlyeq d_{1}$. In case (a), since f is monotone, we get that $d_{1}^{\prime}=f d_{1} \preccurlyeq^{\prime} f d_{2}=d_{2}^{\prime}$. Case (b) is symmetric. Thus, Υ is a chain.

Let $u=\bigsqcup Y$, i.e. for all $d \in Y, d \preccurlyeq u$. As f is monotone, $f d \preccurlyeq^{\prime} f u$ for all $d \in Y$. Hence, $f u$ is an upper bound of Υ. Since $\bigsqcup^{\prime} \Upsilon$ is the least upper bound, we get $\bigsqcup^{\prime} \Upsilon \preccurlyeq^{\prime} f u=$ $f(\bigsqcup Y)$.
Exercise: Show that $\bigsqcup^{\prime}\{f d \mid d \in Y\}=f(\bigsqcup Y)$ does not hold in general.

Definition 11: Let $\langle D, \preccurlyeq\rangle$ and $\left\langle D^{\prime}, \preccurlyeq^{\prime}\right\rangle$ be ccpo's. A function $f: D \rightarrow D^{\prime}$ is continuous if it is monotone and

$$
\bigsqcup^{\prime}\{f d \mid d \in Y\}=f(\bigsqcup Y)
$$

for all non-empty chains Y of D. If $\perp^{\prime}=f \perp$, then f is called strict.

Lemma 12: Continuous functions are closed under (functional) composition.

The Special Knaster-Tarski (Fixed Point) Theorem

Theorem 13: Let $f: D \rightarrow D$ be a continuous function on the ccpo $\langle D, \preccurlyeq\rangle$ with least element \perp. Then

$$
\text { FIX } f=\bigsqcup\left\{f^{n} \perp \mid n \geq 0\right\}
$$

defines an element of D, and this element is the least fixed point of f.

Proof: Since f is continuous, it is (mon) monotone and (lub) $\bigsqcup\{f d \mid d \in Y\}=f(\bigsqcup Y)$ for all non-empty chains Y.

First observe that $\left\{f^{n} \perp \mid n \geq 0\right\}$ is non-empty by $f^{0} \perp=\perp$. It holds that $f^{0} \perp=\perp \preccurlyeq$ $f^{1} \perp=f \perp$ since \perp is the least element of D. By an inductive argument, we get that $f^{m} \perp \preccurlyeq f^{m+1} \perp$ for all $m \geq 0$ since f is monotone. By reflexivity and transitivity of \preccurlyeq we get $f^{m} \perp \preccurlyeq f^{n} \perp$ whenever $m \leq n$. Therefore, $\left\{f^{n} \perp \mid n \geq 0\right\}$ is a non-empty chain

The Special Knaster-Tarski (Fixed Point) Theorem

and, thus, $\bigsqcup\left\{f^{n} \perp \mid n \geq 0\right\}$ exists (i.e., defines an element of D). We next show that it is a fixed point of f :

$$
\begin{aligned}
f\left(\bigsqcup\left\{f^{n} \perp \mid n \geq 0\right\}\right) & =\bigsqcup\left\{f\left(f^{n}\right) \perp \mid n \geq 0\right\} \\
& =\bigsqcup\left\{f^{n} \perp \mid n \geq 1\right\} \\
& =\bigsqcup\left(\left\{f^{n} \perp \mid n \geq 1\right\} \cup\{\perp\}\right) \\
& =\bigsqcup\left\{f^{n} \perp \mid n \geq 0\right\}
\end{aligned}
$$

It remains to be shown that $\operatorname{FIX~} f$ is the least fixed point of f. For an arbitrary fixed point d of f, we have that $f d=d$ and, clearly, $\perp \preccurlyeq d$. By monotonicity of f and an induction on n, we get $f^{n} \perp \preccurlyeq f^{n} d=d$ for all $n \geq 0$. Hence, d is an upper bound for the chain $\left\{f^{n} \perp \mid n \geq 0\right\}$ and since FIX f is the least upper bound of that chain, we directly obtain FIX $f \preccurlyeq d$.

What Remains to be Shown

- $\mathcal{S}_{\mathrm{ds}} \llbracket x:=a \rrbracket s:=s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]$
- $\mathcal{S}_{\text {ds }} \llbracket$ skip】 $:=\mathrm{id}$
- $\mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket:=\mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket$
- $\mathcal{S}_{\text {ds }} \llbracket$ if b then S_{1} else $S_{2} \rrbracket:=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, S_{1}, S_{2}\right)$
- $\mathcal{S}_{\text {ds }} \llbracket$ while b do $S \rrbracket s=$ FIX F

1. Functionals F are continuous
2. The direct style semantics $\mathcal{S}_{\text {ds }} \llbracket!\rrbracket$ exists
