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Review WHILE-Programs



Overview

Part 0: Completing the Introduction
o learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages
« WHILE - an old friend
- denotational semantics (a baseline and an exercise of the inductive method) (today)
- natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages
« bisimilarity and its success story
o deep-dive into induction and coinduction
- algebraic properties of bisimilarity

Part 3: Expressive Power
« Calculus of Communicating Systems (CCS)
« Petri nets
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Syntactic Categories

The following categories are pairwaise disjoint sets.

« Num is the set of numerals (e.g., n,n,n5,...,0,1,...,42, ..)

Var is the set of variables (e.g., x, vy, 2, ...)

Aexp is the set of arithmetic expressions (e.g., a, a; * as, ...)

Bexp is the set of Boolean expressions (e.g., true, =b, a; < a,, ...)
Stm is the set of all statements (to be defined next)
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WHILE Syntax

as=n|x|ada|axa|aBSa
b == true | false |a=a |a<a | -b| bAD
S :==1x:=a | skip | §;5 | if bthen SelseS | whilebdo S
where n € Num and x € Var.
These are all the syntactic categories, rigorously defined by grammars. Really all?

Exercise: Provide a definition for numerals and variables.
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Semantic Functions

Assumptions:
1. numerals are given in decimal notation
2. semantic function N [-]| : Num — Z

In contrast to Num = {0,1,—1,2,...} we have Z = {0,1,—1,2, ...}
A state is a function from variables to Z.
State = ZV2r

Need semantic functions for the syntactic categories
« A:Aexp — ( State — Z)
- B :Bexp — ( State — B) (where B = {tt,ff})
« §:Stm — ( State <> State)
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Warm-up: Semantics of Expressions



Expressions in a Single Slide

Dr. Stephan Mennicke

Aln] s := N[n]

Alz] s =S

Alay @ ay] s := Ala,] s + Ala_2] s
Alay *x as] s = Alaq] s- Ala_2] s
Ala, © ay] s := Ala_1] s — Ala_2] s

Bltrue] s := tt
B(false] s:= ff

Bla, = ay] s:

Blay £ ay] s

B[—b] s :

Blby ANby] s :

<(tt if A[
|£E i A

\ff it A

{tt if B[

ff else.

Concurrency Theory

(£t if A

<(tt if B[b]
(£ ifB[b]s = tt

b;] s =tt fori e {1,2}
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Properties of Expressions

Definition 1 (Free Variables): For an expression a € Aexp, define FV(a) inductively by
- FV(n):=10,
- FV(z) :={z}, and
« FV(a; Xa,) :=FV(a;) UFV(a,) for [X € {&,x,0}.

Theorem 2: Let s,s” € State such that sx = s” x for all x € FV(a). Then Afa]s =
Ala]s’.
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Properties of Expressions

Proof: By structural induction on a: Base case 1: a = n for some n € Num, we get
Ala]s = N[n] = Afa]s’. Base case 2: a = x for some x € Var, we have (a) x € FV(a)
(i.e., sz = s’ x by assumption). Hence, A[a]s = sz = s" © = Afa]s’.

For a = a; X a,, we get FV(a) =FV(a;) UFV(a,) and, by induction hypothesis,
Ala;]s = Ala;]s" (i =1, 2). Thus,

/l[[a]]s = ‘/l[[a1 X] as]s

= A[[al]]s o Alay]s

H _
o Ala;]s" o Alay]s’

Def
"4[[0’1 N as]s’

Dr. Stephan Mennicke Concurrency Theory 10/ 44



Semantics of Statements



Semantics of Statements

S us==x:i=a | skip | §; 8 | ifbthenSelseS | whilebdo S

aim for function § : Stm — (State <> State)

* CS’ds
e S [skip] :=1id

* Sy :51 ’ 52]] = Sds[[SQ]] ° Sds[[Sl]]

r :=a]s:=slz— Ala] s]
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Regarding Partiality

State < State is for partial functions. For g : State — State, we denote that g is undefined for
value x € State by gz = undef.

Let s € State. Then

-

s” if s/ exists such that §,.[S;] s = s and §,[S;] s" = s”
S$4[S1 5 93] s = < undef if §,[S;] s = undef or
if s’ exists such that §,[S;] s = s’ but §,[S5] s’ = undef
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Semantics of Conditionals

e §4[[if b then S; else S,] := cond( B[b] ,5;,95)

cond : (State — B) x (State < State) x (State <> State) — (State — State)

g, sifps =tt

cond(p,g+,95)S := ,
(P:91,92) {9231fps:ff

-

s’ if B[b] s = tt and s’ exists with Sy [S;]s= ¢’
or if B[b] s = £ and s’ exists with §4[S5] s = s
undef if B[b] = tt and §,[S;] s = undef
or if B[] = £f and §4[S,] s = undef

Sy [[if b then S; else S,] s = <
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Semantics of While-Loops

Intuition
S4[while b do S| = Sy [if b then (S;while b do S) else skip]

— cond( B[b], S, [while b do S]o8.[S],id)

Consequence
Thus, § . [while b do S] is a fixed point of the functional F":

F g = cond( B[b] g S&.[S] ,id)

e Sy Jwhile b do S| =FIX F

We define FIX formally throughout this lecture, but let’s first live with our intuition.
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Fixed Points by Example

while —(x = 0) do skip
The corresponding functional is F” such that

gsifsx #0

s ifsx=0

(F"g)s = {
Surely, g; with

{undef ifsxz #+0
g1 8 = )
S ifsz =0

is a fixed point of F" since
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Fixed Points by Example

(F' g,)s {gls ifsx #0

s ifsxz =0

{undef ifsxz #+0
S ifsz =0
9198
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Non-Fixed Points by Example

while —(x = 0) do skip
The corresponding functional is F” such that

gsifsx #0

s ifsx =0

(F’g)s={

Function g, such that g, s = undef for all s € State is not a fixed point of F”:

For state s” with " x = 0, we get (F’ g5)s’ = s’ but g, s* = undef.
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Direct Style Semantics at a Glance

[ :=a] s:=s|z — Ala] s]

[skip] :=id

s[S1 7 o]l i= S4s[Sa] © Syl 51

e S, [[if b then S; else S,] := cond( B[b],5;,55)
[while b do S| = FIX F

Issues to Overcome

1. there are functionals with more than one fixed point (e.g., F"’)
2. functionals with no fixed point

if g =
Fng{gl g =9y

g»  otherwise
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Requirements on Fixed Points

Consider a statement
while bdo S

from state s,.
Option A: Termination
Option B: Local Looping

Option C: Global Looping
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Option A: Termination

while b do S in state s,

Then there are states sy, ..., s,, such that

B[b] s;

{ttifi<n
ffifi=n

and

S4slS] 8; = 8,41 fori <n
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Option A: Termination

while0 < x do x := x61

Let g, be any fixed point of F' (i.e., F' gy = ¢,). For i < n,

9o Si — (FQO)Si

= cond( B[[0=Sx] ,gp° S [x 1= x ©1],id )s;
= (gg ° Sgslx = x©1])s;
= Y90 5i+1
and for 1 = n,
9o Sn = (FgO>Sn
= cond( B[[0=Sx] ,gp° S [x = x ©1],id )s,,

=ids, = s,

Every fixed point g of F' will satisfy g s5 = s,,.
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Option B: Local Looping

while b do S in state s
Similar observation as before, every fixed point g of F' yields g s, = undef.

Exercise: Why?
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Option C: Global Looping

while b do S in state s,

Then there are infinitely many states sy, s,, ... such that for all 7 > 0,
B[—b] s; = tt
and

S4slS] s; = Si+1
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Option C: Global Looping

while =(z = 0) do skip
Let g, be any fixed point of F'.
We get gy s; = g 5,41 and, thus,
9o So =9ps; foralli >0
The functional

gsifsx #0

s ifsx=0

(F’g)8={

has various fixed points: every partial function g satistying g s = s if s = 0 is one.
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Requirements on Fixed Points

Consider a statement

from state s,.
Option A: Termination
Option B: Local Looping

Option C: Global Looping
Which fixed point to prefer?

Dr. Stephan Mennicke

while bdo S

Least Fixed Points (if they exist)

Concurrency Theory
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Fixed Point Theory



Partially Ordered (po) Partial Functions

For any function F', we want FIX F' to share its result with all other fixed points of F'.
Define C on partial functions State — State:
g1 C g5 if g; s = s" implies g, s = s’ for all s,s” : State < State.

Examples

g, s = s for all s

{s iftsx >0
go $ =

undef otherwise.

_Is ifsx =0
g3 s =

undef otherwise.

S ifsz <0
gqg S — i
undef otherwise.
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A po-setis a pair (D, <) where D is a set and <, is a reflexive, transitive, and anti-symmetric
binary relation on D,

Lemma 3: If a po-set (D, <) has a least element d € D, then d is unique.

Proof: Follows from anti-symmetry of <. O
The least element of a poset (D, =<p) is denoted by L ;, or just L.

Generally, if <, is clear from the context and we just write (D, <)
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Partially-Ordered State Transformers

Lemma 4: (State <> State, C) forms a po-set with | : State < State, such that | s :=
undef for all s, is its least element.

Now,
1. FIX F'is a fixed point of F’ (i.e., F'(FIX F') = FIX F), and
2. FIX F'is a least fixed point of F', meaning F' g = g implies FIX F'C ¢

But which functionals admit least fixed points?
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Completeness for po-sets

For po-set (D, =<X) and Y C D, we are looking for an element d € D summarizing all the in-
formation in Y.

Such an element d is called upper bound of Y it
Vd'eY :d' Xd
An upper bound d of Y is a least upper bound if
for any upper bound d’ of Y, we have d < d’.

Lemma 5: If Y has a least upper bound, then it is unique.
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Completeness for po-sets

Proof: Let dy,dy € D be least upper bounds of Y, meaning they are upper bounds of Y’
(i.e.,d < d, for all d € Y') and they are least under all upper bounds. Hence, d; < d, and
dy < d;. By antisymmetry of <, we get d; = d,. O

We denote the least upper bound of Y by | | Y.
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(chain-)complete po-sets — (c)cpo

For po-set (D, <) we callY C D a chain if

for any two elements d,,d, € Y, d; < d,y or d, <X d.

Definition 6: A po-set (D, ) is chain-complete (i.e., a chain-complete partially ordered
set, or ccpo) of | |Y exists for all chains Y C D. It is called a complete latticeif | | Y exists
for all subsets Y of D.
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(chain-)complete po-sets — (c)cpo

Lemma 7: If (D, <) is a ccpo, then it has a least element | given by L= |(.

Proof: Since () is (trivially) a chain, | |() € D by the ccpo property. We need to show that
| |0 X dforalld € D.

Vdeh:d=| |0

Suppose there was a least element d, € D — {| |0}. Then d, < | |0 and d,, is an upper
bound of () as well. Since | | is the least upper bound of (), we get | | < d,, entailing
= | | (0. Hence, | |0 is the unique least element | of D. M

Exercise: Show that State — State is not a complete lattice.
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An Example Chain

Let g,, : State — State be the following partial function

undef ifsz >n
g,s=< sz —1]if0<szrandsz <n
S ifsz <0

It holds that g,, < ¢g,,, whenever n < m.
The set Y; = {g,, |n > 0} is a chain and

{s[a:l—)—l] if 0 <sx
gs =
S ifsz <0

is its least upper bound | | Y},
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State Transformers are ccpo

Lemma 8: (State <> State,C) is a ccpo. The least upper bound | |Y of a chain Y is
given by

(| ]Y)s =s" ifand only if gs = s’ for some g € Y.

Proof: By Lemma 4, (State — State, C) is a po. Let Y be a chain of State — State.

We first show that | | Y as defined above is a partial function. Assume, for partial func-
tions g,,9, € Y we have g; s = s; and g, s = s,. As Y is a chain, (a) g; C g, or (b)
g C g;. In either case, we get that s; = s,. Thus, | |Y is a partial function.

It remains to be shown that | |Y is the least upper bound. For function g € Y and s €
State with g s = s” we get (| |Y)s = s’ (by definition). Thus, | | Y is an upper bound of
g (and of Y)). Let g, be an upper bound of Y and let (| |Y)s = s’. Then, by definition of
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State Transformers are ccpo

| |Y, there is a function g € Y such that g s = s’. Hence, g, s = s’. This argument holds
for all states s € State, entailing | |Y C g (for all upper bounds of ). O
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Continuous Functions

Let (D, <) and (D’,<") be ccpo’s.

We call a function f : D — D’ monotone if d; <X d, implies fd; X" fd, foralld,,d, € D.

Lemma 9: Monotone functions are closed under (functional) composition.

Lemma 10: Let (D, <) and (D", ") be ccpo’s, and let f : D — D’ be monotone. If Y’
is a chain in D, then {f d|d € Y} is a chain in D’. Moreover,

| [{fdldey}y< £(||Y)
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Continuous Functions

Proof: Define Y := {fd|d € Y} andletd], d} € Y. Then there are d;, d, € D such that
fd, =dj and fd, = d; (by definition of Y). Since Y is a chain, it holds that (a) d; <
d, or (b) d, < dy. In case (a), since f is monotone, we get that d; = fd; X" fdy, = d5.
Case (b) is symmetric. Thus, T is a chain.

Letu =] |Y,ie foralld € Y,d < u. As f is monotone, fd <" fuforalld € Y. Hence,
f wis an upper bound of Y. Since | | Y is the least upper bound, we get| | ¥ <’ fu =

FUY). .
Exercise: Show that | | {fd|d € Y} = f(| |Y) does not hold in general.
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Continuous Functions

Definition 11: Let (D, <) and (D", <) be ccpo’s. A function f : D — D’ is continuous
if it is monotone and

| [{fdldey}=f(]Y)

for all non-empty chains Y of D.If 1'= f L, then f is called sirict.

Lemma 12: Continuous functions are closed under (functional) composition.
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The Special Knaster-Tarski (Fixed Point) Theorem

Theorem 13: Let f: D — D be a continuous function on the ccpo (D, <) with least
element L. Then

FIX f=| /™ L|n>0}

defines an element of D, and this element is the least fixed point of f.

Proof: Since f is continuous, it is (mon) monotone and (lub) | {fd|d € Y} = f(| |Y)
for all non-empty chains Y.

First observe that {f™ L |n > 0} is non-empty by f° L=_1. It holds that f* L =1<

fl 1= f 1 since L is the least element of D. By an inductive argument, we get that

fm 1= fm* 1 for all m > 0 since f is monotone. By reflexivity and transitivity of <

we get f7 1< f™ L whenever m < n. Therefore, { f* L |n > 0} is a non-empty chain
Dr. Stephan Mennicke Concurrency Theory
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The Special Knaster-Tarski (Fixed Point) Theorem

and, thus, | [{f™ L |n > 0} exists (i.e., defines an element of D). We next show that it is
a fixed point of f:

FILI™ Lin=0}) =] J{f(/™) L In>0}
=| {f"L|n>1}

= |{/" Ln=1}U{l})
= {f* L|n >0}

[t remains to be shown that FIX f is the least fixed point of f. For an arbitrary fixed point
d of f, we have that f d = d and, clearly, 1 < d. By monotonicity of f and an induction
on n, we get f* 1< f*d = d for all n > 0. Hence, d is an upper bound for the chain
{f™ L |n >0} andsince FIX f is the least upper bound of that chain, we directly obtain
FIX f <d. O
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What Remains to be Shown

[ :=a] s:=s[z— Ala] s]

:Skip]] = id

s[S1 7 o]l i= 84s[S1] ° Susl 51

Jif b then S; else S,] := cond( B[b],51,55)
[while b do S]s = FIX F

1. Functionals F' are continuous
2. The direct style semantics &[] exists
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