
Lecture 4: Denotational Semantics – Direct Style Semantics
Concurrency Theory Summer 2024

Dr. Stephan Mennicke

April 23rd, 2024
TU Dresden, Knowledge-Based Systems Group

Review WHILE-Programs

Overview

Part 0: Completing the Introduction
• learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages
• WHILE – an old friend
• denotational semantics (a baseline and an exercise of the inductive method) (today)
• natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages
• bisimilarity and its success story
• deep-dive into induction and coinduction
• algebraic properties of bisimilarity

Part 3: Expressive Power
• Calculus of Communicating Systems (CCS)
• Petri nets

Dr. Stephan Mennicke Concurrency Theory 3 / 44

Syntactic Categories

The following categories are pairwaise disjoint sets.

• Num is the set of numerals (e.g., 𝑛, 𝑛1, 𝑛2, …, 𝟶, 𝟷, …, 𝟺𝟸, …)
• Var is the set of variables (e.g., 𝑥, 𝑦, 𝑧, …)
• Aexp is the set of arithmetic expressions (e.g., 𝑎, 𝑎1 ⋆ 𝑎2, …)
• Bexp is the set of Boolean expressions (e.g., true, ¬𝑏, 𝑎1 < 𝑎2, …)
• Stm is the set of all statements (to be defined next)

Dr. Stephan Mennicke Concurrency Theory 4 / 44

WHILE Syntax

𝑎 ⩴ 𝑛 | 𝑥 | 𝑎 ⊕ 𝑎 | 𝑎 ⋆ 𝑎 | 𝑎 ⊖ 𝑎

𝑏 ⩴ true | false | 𝑎 ≡ 𝑎 | 𝑎 ≦ 𝑎 | ¬𝑏 | 𝑏 ∧ 𝑏

𝑆 ⩴ 𝑥 := 𝑎 | skip | 𝑆 ; 𝑆 | if 𝑏 then 𝑆 else 𝑆 | while 𝑏 do 𝑆

where 𝑛 ∈ Num and 𝑥 ∈ Var.

These are all the syntactic categories, rigorously defined by grammars. Really all?

Exercise: Provide a definition for numerals and variables.

Dr. Stephan Mennicke Concurrency Theory 5 / 44

Semantic Functions

Assumptions:
1. numerals are given in decimal notation
2. semantic function 𝒩⟦·⟧ : Num → ℤ

In contrast to Num = {𝟶, 𝟷, −𝟷, 𝟸, …} we have ℤ = {0, 1, −1, 2, …}

A state is a function from variables to ℤ.

State = ℤVar

Need semantic functions for the syntactic categories
• 𝒜 : Aexp → (State → ℤ)
• ℬ : Bexp → (State → 𝔹) (where 𝔹 = {𝚝𝚝, 𝚏𝚏})
• 𝒮 : Stm → (State ↪ State)

Dr. Stephan Mennicke Concurrency Theory 6 / 44

Warm-up: Semantics of Expressions

Expressions in a Single Slide

𝒜⟦𝑛⟧ 𝑠 ≔ 𝒩⟦𝑛⟧
𝒜⟦𝑥⟧ 𝑠 ≔ 𝑠 𝑥
𝒜⟦𝑎1 ⊕ 𝑎2⟧ 𝑠 ≔ 𝒜⟦𝑎1⟧ 𝑠 + 𝒜⟦𝑎_2⟧ 𝑠
𝒜⟦𝑎1 ⋆ 𝑎2⟧ 𝑠 ≔ 𝒜⟦𝑎1⟧ 𝑠 ⋅ 𝒜⟦𝑎_2⟧ 𝑠
𝒜⟦𝑎1 ⊖ 𝑎2⟧ 𝑠 ≔ 𝒜⟦𝑎_1⟧ 𝑠 − 𝒜⟦𝑎_2⟧ 𝑠

ℬ⟦true⟧ 𝑠 ≔ 𝚝𝚝
ℬ⟦false⟧ 𝑠 ≔ 𝚏𝚏

ℬ⟦𝑎1 ≡ 𝑎2⟧ 𝑠 ≔ {
𝚝𝚝 if 𝒜⟦𝑎1⟧ 𝑠 = 𝒜⟦𝑎2⟧ 𝑠
𝚏𝚏 if 𝒜⟦𝑎1⟧ 𝑠 ≠ 𝒜⟦𝑎2⟧ 𝑠

ℬ⟦𝑎1 ≦ 𝑎2⟧ 𝑠 ≔ {
𝚝𝚝 if 𝒜⟦𝑎1⟧ 𝑠 ≤ 𝒜⟦𝑎2⟧ 𝑠
𝚏𝚏 if 𝒜⟦𝑎1⟧𝑠 > 𝒜⟦𝑎2⟧ 𝑠

ℬ⟦¬𝑏⟧ 𝑠 ≔ {
𝚝𝚝 if ℬ⟦𝑏⟧ 𝑠 = 𝚏𝚏
𝚏𝚏 if ℬ⟦𝑏⟧ 𝑠 = 𝚝𝚝

ℬ⟦𝑏1 ∧ 𝑏2⟧ 𝑠 ≔ {𝚝𝚝 if ℬ⟦𝑏𝑖⟧ 𝑠 = 𝚝𝚝 for 𝑖 ∈ {1, 2}
𝚏𝚏 else.

Dr. Stephan Mennicke Concurrency Theory 8 / 44

Properties of Expressions

Definition 1 (Free Variables) : For an expression 𝑎 ∈ Aexp, define FV(𝑎) inductively by
• FV(𝑛) ≔ ∅,
• FV(𝑥) ≔ {𝑥}, and
• FV(𝑎1 ⨝ 𝑎2) ≔ FV(𝑎1) ∪ FV(𝑎2) for ⨝ ∈ {⊕, ⋆, ⊖}.

Theorem 2 : Let 𝑠, 𝑠′ ∈ State such that 𝑠 𝑥 = 𝑠′ 𝑥 for all 𝑥 ∈ FV(𝑎). Then 𝒜⟦𝑎⟧𝑠 =
𝒜⟦𝑎⟧𝑠′.

Dr. Stephan Mennicke Concurrency Theory 9 / 44

Properties of Expressions

Proof : By structural induction on 𝑎: Base case 1: 𝑎 = 𝑛 for some 𝑛 ∈ Num, we get
𝒜⟦𝑎⟧𝑠 = 𝒩⟦𝑛⟧ = 𝒜⟦𝑎⟧𝑠′. Base case 2: 𝑎 = 𝑥 for some 𝑥 ∈ Var, we have (a) 𝑥 ∈ FV(𝑎)
(i.e., 𝑠 𝑥 = 𝑠′ 𝑥 by assumption). Hence, 𝒜⟦𝑎⟧𝑠 = 𝑠 𝑥 = 𝑠′ 𝑥 = 𝒜⟦𝑎⟧𝑠′.

For 𝑎 = 𝑎1 ⨝ 𝑎2, we get FV(𝑎) = FV(𝑎1) ∪ FV(𝑎2) and, by induction hypothesis,
𝒜⟦𝑎𝑖⟧𝑠 = 𝒜⟦𝑎𝑖⟧𝑠′ (𝑖 = 1, 2). Thus,

𝒜⟦𝑎⟧𝑠 =
(Def.)

𝒜⟦𝑎1 ⨝ 𝑎2⟧𝑠

=
(Def.)

𝒜⟦𝑎1⟧𝑠 • 𝒜⟦𝑎2⟧𝑠

=
(IH)

𝒜⟦𝑎1⟧𝑠′ • 𝒜⟦𝑎2⟧𝑠′

=
(Def.)

𝒜⟦𝑎1 ⨝ 𝑎2⟧𝑠′

∎

Dr. Stephan Mennicke Concurrency Theory 10 / 44

Semantics of Statements

Semantics of Statements

𝑆 ⩴ 𝑥 := 𝑎 | skip | 𝑆 ; 𝑆 | if 𝑏 then 𝑆 else 𝑆 | while 𝑏 do 𝑆

• aim for function 𝒮𝖽𝗌 : Stm → (State ↪ State)

• 𝒮𝖽𝗌⟦𝑥 := 𝑎⟧ 𝑠 ≔ 𝑠[𝑥 ↦ 𝒜⟦𝑎⟧ 𝑠]

• 𝒮𝖽𝗌⟦skip⟧ ≔ id

• 𝒮𝖽𝗌⟦𝑆1 ; 𝑆2⟧ ≔ 𝒮𝖽𝗌⟦𝑆2⟧ ∘ 𝒮𝖽𝗌⟦𝑆1⟧

Dr. Stephan Mennicke Concurrency Theory 12 / 44

Regarding Partiality

State ↪ State is for partial functions. For 𝑔 : State ↪ State, we denote that 𝑔 is undefined for
value 𝑥 ∈ State by 𝑔 𝑥 = 𝚞𝚗𝚍𝚎𝚏.

Let 𝑠 ∈ State. Then

𝒮𝖽𝗌⟦𝑆1 ; 𝑆2⟧ 𝑠 =

⎩
{
⎨
{
⎧𝑠″ if 𝑠′ exists such that 𝒮𝖽𝗌⟦𝑆1⟧ 𝑠 = 𝑠′ and 𝒮𝖽𝗌⟦𝑆2⟧ 𝑠′ = 𝑠″

𝚞𝚗𝚍𝚎𝚏 if 𝒮𝖽𝗌⟦𝑆1⟧ 𝑠 = 𝚞𝚗𝚍𝚎𝚏 or
if 𝑠′ exists such that 𝒮𝖽𝗌⟦𝑆1⟧ 𝑠 = 𝑠′ but 𝒮𝖽𝗌⟦𝑆2⟧ 𝑠′ = 𝚞𝚗𝚍𝚎𝚏

Dr. Stephan Mennicke Concurrency Theory 13 / 44

Semantics of Conditionals

• 𝒮𝖽𝗌⟦if 𝑏 then 𝑆1 else 𝑆2⟧ ≔ 𝖼𝗈𝗇𝖽(ℬ⟦𝑏⟧ ,𝑆1,𝑆2)

𝖼𝗈𝗇𝖽 : (State → 𝔹) × (State ↪ State) × (State ↪ State) → (State ↪ State)

𝖼𝗈𝗇𝖽(𝑝,𝑔1,𝑔2)𝑠 ≔ {
𝑔1 𝑠 if 𝑝 𝑠 = 𝚝𝚝
𝑔2 𝑠 if 𝑝 𝑠 = 𝚏𝚏

𝒮𝖽𝗌⟦if 𝑏 then 𝑆1 else 𝑆2⟧ 𝑠 =

⎩{
{{
⎨
{{
{⎧𝑠′ if ℬ⟦𝑏⟧ 𝑠 = 𝚝𝚝 and 𝑠′ exists with 𝒮𝖽𝗌⟦𝑆1⟧ 𝑠 = 𝑠′

or if ℬ⟦𝑏⟧ 𝑠 = 𝚏𝚏 and 𝑠′ exists with 𝒮𝖽𝗌⟦𝑆2⟧ 𝑠 = 𝑠′

𝚞𝚗𝚍𝚎𝚏 if ℬ⟦𝑏⟧ = 𝚝𝚝 and 𝒮𝖽𝗌⟦𝑆1⟧ 𝑠 = 𝚞𝚗𝚍𝚎𝚏
or if ℬ⟦𝑏⟧ = 𝚏𝚏 and 𝒮𝖽𝗌⟦𝑆2⟧ 𝑠 = 𝚞𝚗𝚍𝚎𝚏

Dr. Stephan Mennicke Concurrency Theory 14 / 44

Semantics of While-Loops

Intuition
𝒮𝖽𝗌⟦while 𝑏 do 𝑆⟧ = 𝒮𝖽𝗌⟦if 𝑏 then (𝑆;while 𝑏 do 𝑆) else skip⟧

= 𝖼𝗈𝗇𝖽(ℬ⟦𝑏⟧ , 𝒮𝖽𝗌⟦while 𝑏 do 𝑆⟧ ∘ 𝒮𝖽𝗌⟦𝑆⟧ , id)

Consequence
Thus, 𝒮𝖽𝗌⟦while 𝑏 do 𝑆⟧ is a fixed point of the functional 𝐹 :

𝐹 𝑔 ≔ 𝖼𝗈𝗇𝖽(ℬ⟦𝑏⟧ ,𝑔 ∘ 𝒮𝖽𝗌⟦𝑆⟧ , id)

• 𝒮𝖽𝗌⟦while 𝑏 do 𝑆⟧ = 𝖥𝖨𝖷 𝐹

We define 𝖥𝖨𝖷 formally throughout this lecture, but let’s first live with our intuition.

Dr. Stephan Mennicke Concurrency Theory 15 / 44

Fixed Points by Example

while ¬(𝑥 ≡ 0) do skip

The corresponding functional is 𝐹 ′ such that

(𝐹 ′ 𝑔)𝑠 = {𝑔 𝑠 if 𝑠 𝑥 ≠ 0
𝑠 if 𝑠 𝑥 = 0

Surely, 𝑔1 with

𝑔1 𝑠 = {𝚞𝚗𝚍𝚎𝚏 if 𝑠 𝑥 ≠ 0
𝑠 if 𝑠 𝑥 = 0

is a fixed point of 𝐹 ′ since

Dr. Stephan Mennicke Concurrency Theory 16 / 44

Fixed Points by Example

(𝐹 ′ 𝑔1)𝑠 = {𝑔1 𝑠 if 𝑠 𝑥 ≠ 0
𝑠 if 𝑠 𝑥 = 0

= {𝚞𝚗𝚍𝚎𝚏 if 𝑠 𝑥 ≠ 0
𝑠 if 𝑠 𝑥 = 0

= 𝑔1 𝑠

Dr. Stephan Mennicke Concurrency Theory 17 / 44

Non-Fixed Points by Example

while ¬(𝑥 ≡ 0) do skip

The corresponding functional is 𝐹 ′ such that

(𝐹 ′ 𝑔)𝑠 = {𝑔 𝑠 if 𝑠 𝑥 ≠ 0
𝑠 if 𝑠 𝑥 = 0

Function 𝑔2 such that 𝑔2 𝑠 = 𝚞𝚗𝚍𝚎𝚏 for all 𝑠 ∈ State is not a fixed point of 𝐹 ′:

For state 𝑠′ with 𝑠′ 𝑥 = 0, we get (𝐹 ′ 𝑔2)𝑠′ = 𝑠′ but 𝑔2 𝑠′ = 𝚞𝚗𝚍𝚎𝚏.

Dr. Stephan Mennicke Concurrency Theory 18 / 44

Direct Style Semantics at a Glance

• 𝒮𝖽𝗌⟦𝑥 := 𝑎⟧ 𝑠 ≔ 𝑠[𝑥 ↦ 𝒜⟦𝑎⟧ 𝑠]
• 𝒮𝖽𝗌⟦skip⟧ ≔ id
• 𝒮𝖽𝗌⟦𝑆1 ; 𝑆2⟧ ≔ 𝒮𝖽𝗌⟦𝑆2⟧ ∘ 𝒮𝖽𝗌⟦𝑆1⟧
• 𝒮𝖽𝗌⟦if 𝑏 then 𝑆1 else 𝑆2⟧ ≔ 𝖼𝗈𝗇𝖽(ℬ⟦𝑏⟧ ,𝑆1,𝑆2)
• 𝒮𝖽𝗌⟦while 𝑏 do 𝑆⟧ = 𝖥𝖨𝖷 𝐹

Issues to Overcome
1. there are functionals with more than one fixed point (e.g., 𝐹 ′)
2. functionals with no fixed point

𝐹1 𝑔 = {
𝑔1 if 𝑔 = 𝑔2
𝑔2 otherwise

Dr. Stephan Mennicke Concurrency Theory 19 / 44

Requirements on Fixed Points

Consider a statement

while 𝑏 do 𝑆

from state 𝑠0.

Option A: Termination

Option B: Local Looping

Option C: Global Looping

Dr. Stephan Mennicke Concurrency Theory 20 / 44

Option A: Termination

while 𝑏 do 𝑆 in state 𝑠0

Then there are states 𝑠1, …, 𝑠𝑛 such that

ℬ⟦𝑏⟧ 𝑠𝑖 = {𝚝𝚝 if 𝑖 < 𝑛
𝚏𝚏 if 𝑖 = 𝑛

and

𝒮𝖽𝗌⟦𝑆⟧ 𝑠𝑖 = 𝑠𝑖+1 for 𝑖 < 𝑛

Dr. Stephan Mennicke Concurrency Theory 21 / 44

Option A: Termination

while 𝟶 ≦ x do x := x ⊖ 𝟷

Let 𝑔0 be any fixed point of 𝐹 (i.e., 𝐹 𝑔0 = 𝑔0). For 𝑖 < 𝑛,

𝑔0 𝑠𝑖 = (𝐹 𝑔0)𝑠𝑖

= 𝖼𝗈𝗇𝖽(ℬ⟦𝟶≦x⟧ ,𝑔0∘ 𝒮𝖽𝗌⟦x := x ⊖𝟷⟧ , id)𝑠𝑖

= (𝑔0 ∘ 𝒮𝖽𝗌⟦x := x ⊖ 𝟷⟧)𝑠𝑖
= 𝑔0 𝑠𝑖+1

and for 𝑖 = 𝑛,

𝑔0 𝑠𝑛 = (𝐹 𝑔0)𝑠𝑛

= 𝖼𝗈𝗇𝖽(ℬ⟦𝟶≦x⟧ ,𝑔0∘ 𝒮𝖽𝗌⟦x := x ⊖𝟷⟧ , id)𝑠𝑛

= id 𝑠𝑛 = 𝑠𝑛

Every fixed point 𝑔 of 𝐹 will satisfy 𝑔 𝑠0 = 𝑠𝑛.
Dr. Stephan Mennicke Concurrency Theory 22 / 44

Option B: Local Looping

while 𝑏 do 𝑆 in state 𝑠0

Similar observation as before, every fixed point 𝑔 of 𝐹 yields 𝑔 𝑠0 = 𝚞𝚗𝚍𝚎𝚏.

Exercise: Why?

Dr. Stephan Mennicke Concurrency Theory 23 / 44

Option C: Global Looping

while 𝑏 do 𝑆 in state 𝑠0

Then there are infinitely many states 𝑠1, 𝑠2, … such that for all 𝑖 ≥ 0,

ℬ⟦¬𝑏⟧ 𝑠𝑖 = 𝚝𝚝

and

𝒮𝖽𝗌⟦𝑆⟧ 𝑠𝑖 = 𝑠𝑖+1

Dr. Stephan Mennicke Concurrency Theory 24 / 44

Option C: Global Looping

while ¬(𝑥 ≡ 𝟶) do skip

Let 𝑔0 be any fixed point of 𝐹 .

We get 𝑔0 𝑠𝑖 = 𝑔0 𝑠𝑖+1 and, thus,

𝑔0 𝑠0 = 𝑔0 𝑠𝑖 for all 𝑖 ≥ 0

The functional

(𝐹 ′ 𝑔)𝑠 = {𝑔 𝑠 if 𝑠 𝑥 ≠ 0
𝑠 if 𝑠 𝑥 = 0

has various fixed points: every partial function 𝑔 satisfying 𝑔 𝑠 = 𝑠 if 𝑠 𝑥 = 0 is one.

Dr. Stephan Mennicke Concurrency Theory 25 / 44

Requirements on Fixed Points

Consider a statement

while 𝑏 do 𝑆

from state 𝑠0.

Option A: Termination

Option B: Local Looping

Option C: Global Looping
Which fixed point to prefer?

Least Fixed Points (if they exist)

Dr. Stephan Mennicke Concurrency Theory 26 / 44

Fixed Point Theory

Partially Ordered (po) Partial Functions

For any function 𝐹 , we want 𝖥𝖨𝖷 𝐹 to share its result with all other fixed points of 𝐹 .

Define ⊑ on partial functions State ↪ State:

𝑔1 ⊑ 𝑔2 if 𝑔1 𝑠 = 𝑠′ implies 𝑔2 𝑠 = 𝑠′ for all 𝑠, 𝑠′ : State ↪ State.

Examples
𝑔1 𝑠 = 𝑠 for all 𝑠

𝑔2 𝑠 = {𝑠 if 𝑠 𝑥 ≥ 0
𝚞𝚗𝚍𝚎𝚏 otherwise.

𝑔3 𝑠 = {𝑠 if 𝑠 𝑥 = 0
𝚞𝚗𝚍𝚎𝚏 otherwise.

𝑔4 𝑠 = {𝑠 if 𝑠 𝑥 ≤ 0
𝚞𝚗𝚍𝚎𝚏 otherwise.

Dr. Stephan Mennicke Concurrency Theory 28 / 44

po-sets

A po-set is a pair ⟨𝐷, ≼𝐷⟩ where 𝐷 is a set and ≼𝐷 is a reflexive, transitive, and anti-symmetric
binary relation on 𝐷.

Lemma 3 : If a po-set ⟨𝐷, ≼𝐷⟩ has a least element 𝑑 ∈ 𝐷, then 𝑑 is unique.

Proof : Follows from anti-symmetry of ≼𝐷. ∎

The least element of a poset ⟨𝐷, ≼𝐷⟩ is denoted by ⊥𝐷 or just ⊥.

Generally, if ≼𝐷 is clear from the context and we just write ⟨𝐷, ≼⟩

Dr. Stephan Mennicke Concurrency Theory 29 / 44

Partially-Ordered State Transformers

Lemma 4 : ⟨State ↪ State, ⊑⟩ forms a po-set with ⊥: State ↪ State, such that ⊥ 𝑠 ≔
𝚞𝚗𝚍𝚎𝚏 for all 𝑠, is its least element.

Now,
1. 𝖥𝖨𝖷 𝐹 is a fixed point of 𝐹 (i.e., 𝐹(𝖥𝖨𝖷 𝐹) = 𝖥𝖨𝖷 𝐹), and
2. 𝖥𝖨𝖷 𝐹 is a least fixed point of 𝐹 , meaning 𝐹 𝑔 = 𝑔 implies 𝖥𝖨𝖷 𝐹 ⊑ 𝑔

But which functionals admit least fixed points?

Dr. Stephan Mennicke Concurrency Theory 30 / 44

Completeness for po-sets

For po-set ⟨𝐷, ≼⟩ and 𝑌 ⊆ 𝐷, we are looking for an element 𝑑 ∈ 𝐷 summarizing all the in-
formation in 𝑌 .

Such an element 𝑑 is called upper bound of 𝑌 if

∀𝑑′ ∈ 𝑌 : 𝑑′ ≼ 𝑑

An upper bound 𝑑 of 𝑌 is a least upper bound if

for any upper bound 𝑑′ of 𝑌 , we have 𝑑 ≼ 𝑑′.

Lemma 5 : If 𝑌 has a least upper bound, then it is unique.

Dr. Stephan Mennicke Concurrency Theory 31 / 44

Completeness for po-sets

Proof : Let 𝑑1, 𝑑2 ∈ 𝐷 be least upper bounds of 𝑌 , meaning they are upper bounds of 𝑌
(i.e., 𝑑 ≼ 𝑑𝑖 for all 𝑑 ∈ 𝑌) and they are least under all upper bounds. Hence, 𝑑1 ≼ 𝑑2 and
𝑑2 ≼ 𝑑1. By antisymmetry of ≼, we get 𝑑1 = 𝑑2. ∎

We denote the least upper bound of 𝑌 by ⨆ 𝑌 .

Dr. Stephan Mennicke Concurrency Theory 32 / 44

(chain-)complete po-sets – (c)cpo

For po-set ⟨𝐷, ≼⟩ we call 𝑌 ⊆ 𝐷 a chain if

for any two elements 𝑑1, 𝑑2 ∈ 𝑌 , 𝑑1 ≼ 𝑑2 or 𝑑2 ≼ 𝑑1.

Definition 6 : A po-set ⟨𝐷, ≼⟩ is chain-complete (i.e., a chain-complete partially ordered
set, or ccpo) of ⨆ 𝑌 exists for all chains 𝑌 ⊆ 𝐷. It is called a complete lattice if ⨆ 𝑌 exists
for all subsets 𝑌 of 𝐷.

Dr. Stephan Mennicke Concurrency Theory 33 / 44

(chain-)complete po-sets – (c)cpo

Lemma 7 : If ⟨𝐷, ≼⟩ is a ccpo, then it has a least element ⊥ given by ⊥= ⨆ ∅.

Proof : Since ∅ is (trivially) a chain, ⨆ ∅ ∈ 𝐷 by the ccpo property. We need to show that
⨆ ∅ ≼ 𝑑 for all 𝑑 ∈ 𝐷.

∀𝑑 ∈ ∅ : 𝑑 ≼ ⨆ ∅

Suppose there was a least element 𝑑0 ∈ 𝐷 − {⨆ ∅}. Then 𝑑0 ≼ ⨆ ∅ and 𝑑0 is an upper
bound of ∅ as well. Since ⨆ ∅ is the least upper bound of ∅, we get ⨆ ∅ ≼ 𝑑0, entailing
𝑑0 = ⨆ ∅. Hence, ⨆ ∅ is the unique least element ⊥ of 𝐷. ∎

Exercise: Show that State ↪ State is not a complete lattice.

Dr. Stephan Mennicke Concurrency Theory 34 / 44

An Example Chain

Let 𝑔𝑛 : State ↪ State be the following partial function

𝑔𝑛 𝑠 =
⎩{
⎨
{⎧𝚞𝚗𝚍𝚎𝚏 if 𝑠 𝑥 > 𝑛

𝑠[𝑥 ↦ −1] if 0 ≤ 𝑠 𝑥 and 𝑠 𝑥 ≤ 𝑛
𝑠 if 𝑠 𝑥 < 0

It holds that 𝑔𝑛 ≼ 𝑔𝑚 whenever 𝑛 ≤ 𝑚.

The set 𝑌0 = {𝑔𝑛 | 𝑛 ≥ 0} is a chain and

𝑔 𝑠 = {𝑠[𝑥 ↦ −1] if 0 ≤ 𝑠 𝑥
𝑠 if 𝑠 𝑥 < 0

is its least upper bound ⨆ 𝑌0.

Dr. Stephan Mennicke Concurrency Theory 35 / 44

State Transformers are ccpo

Lemma 8 : (State ↪ State, ⊑) is a ccpo. The least upper bound ⨆ 𝑌 of a chain 𝑌 is
given by

(⨆ 𝑌)𝑠 = 𝑠′ if and only if 𝑔 𝑠 = 𝑠′ for some 𝑔 ∈ 𝑌 .

Proof : By Lemma 4, (State → State, ⊑) is a po. Let 𝑌 be a chain of State → State.

We first show that ⨆ 𝑌 as defined above is a partial function. Assume, for partial func-
tions 𝑔1, 𝑔2 ∈ 𝑌 we have 𝑔1 𝑠 = 𝑠1 and 𝑔2 𝑠 = 𝑠2. As 𝑌 is a chain, (a) 𝑔1 ⊑ 𝑔2 or (b)
𝑔2 ⊑ 𝑔1. In either case, we get that 𝑠1 = 𝑠2. Thus, ⨆ 𝑌 is a partial function.

It remains to be shown that ⨆ 𝑌 is the least upper bound. For function 𝑔 ∈ 𝑌 and 𝑠 ∈
State with 𝑔 𝑠 = 𝑠′ we get (⨆ 𝑌)𝑠 = 𝑠′ (by definition). Thus, ⨆ 𝑌 is an upper bound of
𝑔 (and of 𝑌). Let 𝑔0 be an upper bound of 𝑌 and let (⨆ 𝑌)𝑠 = 𝑠′. Then, by definition of

Dr. Stephan Mennicke Concurrency Theory 36 / 44

State Transformers are ccpo

⨆ 𝑌 , there is a function 𝑔 ∈ 𝑌 such that 𝑔 𝑠 = 𝑠′. Hence, 𝑔0 𝑠 = 𝑠′. This argument holds
for all states 𝑠 ∈ State, entailing ⨆ 𝑌 ⊑ 𝑔 (for all upper bounds of 𝑌). ∎

Dr. Stephan Mennicke Concurrency Theory 37 / 44

Continuous Functions

Let ⟨𝐷, ≼⟩ and ⟨𝐷′, ≼′⟩ be ccpo’s.

We call a function 𝑓 : 𝐷 → 𝐷′ monotone if 𝑑1 ≼ 𝑑2 implies 𝑓 𝑑1 ≼′ 𝑓 𝑑2 for all 𝑑1, 𝑑2 ∈ 𝐷.

Lemma 9 : Monotone functions are closed under (functional) composition.

Lemma 10 : Let ⟨𝐷, ≼⟩ and ⟨𝐷′, ≼′⟩ be ccpo’s, and let 𝑓 : 𝐷 → 𝐷′ be monotone. If 𝑌
is a chain in 𝐷, then {𝑓 𝑑 | 𝑑 ∈ 𝑌 } is a chain in 𝐷′. Moreover,

⨆
′
{𝑓 𝑑 | 𝑑 ∈ 𝑌 } ≼′ 𝑓(⨆ 𝑌)

Dr. Stephan Mennicke Concurrency Theory 38 / 44

Continuous Functions

Proof : Define Υ ≔ {𝑓 𝑑 | 𝑑 ∈ 𝑌 } and let 𝑑′
1, 𝑑′

2 ∈ Υ. Then there are 𝑑1, 𝑑2 ∈ 𝐷 such that
𝑓 𝑑1 = 𝑑′

1 and 𝑓 𝑑2 = 𝑑′
2 (by definition of Υ). Since 𝑌 is a chain, it holds that (a) 𝑑1 ≼

𝑑2 or (b) 𝑑2 ≼ 𝑑1. In case (a), since 𝑓 is monotone, we get that 𝑑′
1 = 𝑓 𝑑1 ≼′ 𝑓 𝑑2 = 𝑑′

2.
Case (b) is symmetric. Thus, Υ is a chain.

Let 𝑢 = ⨆ 𝑌 , i.e. for all 𝑑 ∈ 𝑌 , 𝑑 ≼ 𝑢. As 𝑓 is monotone, 𝑓 𝑑 ≼′ 𝑓 𝑢 for all 𝑑 ∈ 𝑌 . Hence,
𝑓 𝑢 is an upper bound of Υ. Since ⨆′ Υ is the least upper bound, we get ⨆′ Υ ≼′ 𝑓 𝑢 =
𝑓(⨆ 𝑌). ∎

Exercise: Show that ⨆′{𝑓 𝑑 | 𝑑 ∈ 𝑌 } = 𝑓(⨆ 𝑌) does not hold in general.

Dr. Stephan Mennicke Concurrency Theory 39 / 44

Continuous Functions

Definition 11 : Let ⟨𝐷, ≼⟩ and ⟨𝐷′, ≼′⟩ be ccpo’s. A function 𝑓 : 𝐷 → 𝐷′ is continuous
if it is monotone and

⨆
′
{𝑓 𝑑 | 𝑑 ∈ 𝑌 } = 𝑓(⨆ 𝑌)

for all non-empty chains 𝑌 of 𝐷. If ⊥′= 𝑓 ⊥, then 𝑓 is called strict.

Lemma 12 : Continuous functions are closed under (functional) composition.

Dr. Stephan Mennicke Concurrency Theory 40 / 44

The Special Knaster-Tarski (Fixed Point) Theorem

Theorem 13 : Let 𝑓 : 𝐷 → 𝐷 be a continuous function on the ccpo ⟨𝐷, ≼⟩ with least
element ⊥. Then

𝖥𝖨𝖷 𝑓 = ⨆{𝑓𝑛 ⊥ | 𝑛 ≥ 0}

defines an element of 𝐷, and this element is the least fixed point of 𝑓 .

Proof : Since 𝑓 is continuous, it is (mon) monotone and (lub) ⨆{𝑓 𝑑 | 𝑑 ∈ 𝑌 } = 𝑓(⨆ 𝑌)
for all non-empty chains 𝑌 .

First observe that {𝑓𝑛 ⊥ | 𝑛 ≥ 0} is non-empty by 𝑓0 ⊥=⊥. It holds that 𝑓0 ⊥=⊥≼
𝑓1 ⊥= 𝑓 ⊥ since ⊥ is the least element of 𝐷. By an inductive argument, we get that
𝑓𝑚 ⊥≼ 𝑓𝑚+1 ⊥ for all 𝑚 ≥ 0 since 𝑓 is monotone. By reflexivity and transitivity of ≼
we get 𝑓𝑚 ⊥≼ 𝑓𝑛 ⊥ whenever 𝑚 ≤ 𝑛. Therefore, {𝑓𝑛 ⊥ | 𝑛 ≥ 0} is a non-empty chain

Dr. Stephan Mennicke Concurrency Theory 41 / 44

The Special Knaster-Tarski (Fixed Point) Theorem

and, thus, ⨆{𝑓𝑛 ⊥ | 𝑛 ≥ 0} exists (i.e., defines an element of 𝐷). We next show that it is
a fixed point of 𝑓 :

𝑓(⨆{𝑓𝑛 ⊥ | 𝑛 ≥ 0}) = ⨆{𝑓(𝑓𝑛) ⊥ | 𝑛 ≥ 0}

= ⨆{𝑓𝑛 ⊥ | 𝑛 ≥ 1}

= ⨆({𝑓𝑛 ⊥ | 𝑛 ≥ 1} ∪ {⊥})

= ⨆{𝑓𝑛 ⊥ | 𝑛 ≥ 0}

It remains to be shown that 𝖥𝖨𝖷 𝑓 is the least fixed point of 𝑓 . For an arbitrary fixed point
𝑑 of 𝑓 , we have that 𝑓 𝑑 = 𝑑 and, clearly, ⊥≼ 𝑑. By monotonicity of 𝑓 and an induction
on 𝑛, we get 𝑓𝑛 ⊥≼ 𝑓𝑛 𝑑 = 𝑑 for all 𝑛 ≥ 0. Hence, 𝑑 is an upper bound for the chain
{𝑓𝑛 ⊥ | 𝑛 ≥ 0} and since 𝖥𝖨𝖷 𝑓 is the least upper bound of that chain, we directly obtain
𝖥𝖨𝖷 𝑓 ≼ 𝑑. ∎

Dr. Stephan Mennicke Concurrency Theory 42 / 44

What Remains to be Shown

What Remains to be Shown

• 𝒮𝖽𝗌⟦𝑥 := 𝑎⟧ 𝑠 ≔ 𝑠[𝑥 ↦ 𝒜⟦𝑎⟧ 𝑠]
• 𝒮𝖽𝗌⟦skip⟧ ≔ id
• 𝒮𝖽𝗌⟦𝑆1 ; 𝑆2⟧ ≔ 𝒮𝖽𝗌⟦𝑆1⟧ ∘ 𝒮𝖽𝗌⟦𝑆1⟧
• 𝒮𝖽𝗌⟦if 𝑏 then 𝑆1 else 𝑆2⟧ ≔ 𝖼𝗈𝗇𝖽(ℬ⟦𝑏⟧ ,𝑆1,𝑆2)
• 𝒮𝖽𝗌⟦while 𝑏 do 𝑆⟧ 𝑠 = 𝖥𝖨𝖷 𝐹

1. Functionals 𝐹 are continuous
2. The direct style semantics 𝒮𝖽𝗌⟦⋅⟧ exists

Dr. Stephan Mennicke Concurrency Theory 44 / 44

	Intuition
	Consequence
	Issues to Overcome
	Option A: Termination
	Option B: Local Looping
	Option C: Global Looping
	Option A: Termination
	Option B: Local Looping
	Option C: Global Looping
	Examples

