Lecture 4: Denotational Semantics – Direct Style Semantics

Concurrency Theory

Summer 2024

Dr. Stephan Mennicke

April 23rd, 2024

TU Dresden, Knowledge-Based Systems Group

Review WHILE-Programs

Overview

Part 0: Completing the Introduction

• learning about *bisimilarity* and *bisimulations*

Part 1: Semantics of (Sequential) Programming Languages

- WHILE an old friend
- denotational semantics (a baseline and an exercise of the inductive method) (today)
- natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages

- bisimilarity and its success story
- deep-dive into induction and coinduction
- algebraic properties of bisimilarity

Part 3: Expressive Power

- Calculus of Communicating Systems (CCS)
- Petri nets

The following categories are pairwaise disjoint sets.

- Num is the set of numerals (e.g., $n, n_1, n_2, ..., 0, 1, ..., 42, ...)$
- Var is the set of variables (e.g., x, y, z, ...)
- Aexp is the set of arithmetic expressions (e.g., $a, a_1 \star a_2, ...$)
- **Bexp** is the set of Boolean expressions (e.g., true, $\neg b$, $a_1 < a_2$, ...)
- **Stm** is the set of all statements (to be defined next)

 $a \ \coloneqq \ n \ \mid x \ \mid a \oplus a \ \mid a \star a \ \mid a \ominus a$ $b \ \coloneqq \ true \ \mid false \ \mid a \equiv a \ \mid a \leq a \ \mid \neg b \ \mid b \wedge b$ $S \ \coloneqq \ x := a \ \mid skip \ \mid S \ ; S \ \mid if \ b \ then \ S \ else \ S \ \mid while \ b \ do \ S$

where $n \in \mathbf{Num}$ and $x \in \mathbf{Var}$.

These are *all* the syntactic categories, rigorously defined by grammars. Really all? **Exercise:** Provide a definition for numerals and variables.

Assumptions:

- 1. numerals are given in decimal notation
- 2. semantic function $\mathcal{N}\llbracket\cdot
 rbracket : \mathbf{Num} \to \mathbb{Z}$

In contrast to $\mathbf{Num} = \{\mathbf{0}, \mathbf{1}, -\mathbf{1}, \mathbf{2}, ...\}$ we have $\mathbb{Z} = \{0, 1, -1, 2, ...\}$

A *state* is a function from variables to \mathbb{Z} .

State =
$$\mathbb{Z}^{Var}$$

Need semantic functions for the syntactic categories

- $\mathcal{A} : \mathbf{Aexp} \to (\mathbf{State} \to \mathbb{Z})$
- $\mathcal{B} : \mathbf{Bexp} \to (\mathbf{State} \to \mathbb{B}) \text{ (where } \mathbb{B} = \{\mathtt{tt}, \mathtt{ff}\})$
- $S : \mathbf{Stm} \to (\mathbf{State} \hookrightarrow \mathbf{State})$

Warm-up: Semantics of Expressions

Expressions in a Single Slide

$$\begin{aligned} \mathcal{A}\llbracket n \rrbracket s &:= \mathcal{N}\llbracket n \rrbracket \\ \mathcal{A}\llbracket x \rrbracket s &:= s x \\ \mathcal{A}\llbracket a_1 \oplus a_2 \rrbracket s &:= \mathcal{A}\llbracket a_1 \rrbracket s + \mathcal{A}\llbracket a_2 2 \rrbracket s \\ \mathcal{A}\llbracket a_1 \star a_2 \rrbracket s &:= \mathcal{A}\llbracket a_1 \rrbracket s \cdot \mathcal{A}\llbracket a_2 2 \rrbracket s \\ \mathcal{A}\llbracket a_1 \star a_2 \rrbracket s &:= \mathcal{A}\llbracket a_1 \rrbracket s \cdot \mathcal{A}\llbracket a_2 2 \rrbracket s \\ \mathcal{A}\llbracket a_1 \oplus a_2 \rrbracket s &:= \mathcal{A}\llbracket a_1 \rrbracket s - \mathcal{A}\llbracket a_2 2 \rrbracket s \end{aligned}$$

$$\begin{split} &\mathcal{B}\llbracket \texttt{frue} \rrbracket s \coloneqq \texttt{tt} \\ &\mathcal{B}\llbracket \texttt{false} \rrbracket s \coloneqq \texttt{ff} \\ &\mathcal{B}\llbracket a_1 \equiv a_2 \rrbracket s \coloneqq \left\{ \begin{array}{l} \texttt{tt} \text{ if } \mathcal{A}\llbracket a_1 \rrbracket s = \mathcal{A}\llbracket a_2 \rrbracket s \\ &\texttt{ff} \text{ if } \mathcal{A}\llbracket a_1 \rrbracket s \neq \mathcal{A}\llbracket a_2 \rrbracket s \\ &\texttt{ff} \text{ if } \mathcal{A}\llbracket a_1 \rrbracket s \neq \mathcal{A}\llbracket a_2 \rrbracket s \\ &\mathcal{B}\llbracket a_1 \leq a_2 \rrbracket s \coloneqq \left\{ \begin{array}{l} \texttt{tt} \text{ if } \mathcal{A}\llbracket a_1 \rrbracket s \leq \mathcal{A}\llbracket a_2 \rrbracket s \\ &\texttt{ff} \text{ if } \mathcal{A}\llbracket a_1 \rrbracket s > \mathcal{A}\llbracket a_2 \rrbracket s \\ &\texttt{ff} \text{ if } \mathcal{A}\llbracket a_1 \rrbracket s > \mathcal{A}\llbracket a_2 \rrbracket s \\ &\texttt{ff} \text{ if } \mathcal{A}\llbracket a_1 \rrbracket s > \mathcal{A}\llbracket a_2 \rrbracket s \\ &\mathcal{B}\llbracket \neg b \rrbracket s \coloneqq \left\{ \begin{array}{l} \texttt{tt} \text{ if } \mathcal{B}\llbracket b \rrbracket s = \texttt{ff} \\ &\texttt{ff} \text{ if } \mathcal{B}\llbracket b \rrbracket s = \texttt{tt} \\ &\texttt{ff} \text{ if } \mathcal{B}\llbracket b \rrbracket s = \texttt{tt} \\ &\mathcal{B}\llbracket b_1 \wedge b_2 \rrbracket s \coloneqq \left\{ \begin{array}{l} \texttt{tt} \text{ if } \mathcal{B}\llbracket b_i \rrbracket s = \texttt{tt} &\texttt{for } i \in \{1,2\} \\ &\texttt{ff} \text{ else.} \end{array} \right. \end{split}$$

Dr. Stephan Mennicke

Definition 1 (Free Variables): For an expression $a \in Aexp$, define FV(a) inductively by

- $\operatorname{FV}(n) \coloneqq \emptyset$,
- $FV(x) \coloneqq \{x\}$, and
- $\bullet \ \operatorname{FV}(a_1 \boxtimes a_2) \coloneqq \operatorname{FV}(a_1) \cup \operatorname{FV}(a_2) \text{ for } \boxtimes \in \{\oplus, \star, \ominus\}.$

Theorem 2: Let $s, s' \in$ **State** such that s x = s' x for all $x \in FV(a)$. Then $\mathcal{A}[\![a]\!]s = \mathcal{A}[\![a]\!]s'$.

Properties of Expressions

Proof: By structural induction on a: Base case 1: a = n for some $n \in$ Num, we get $\mathcal{A}[\![a]\!]s = \mathcal{N}[\![n]\!] = \mathcal{A}[\![a]\!]s'$. Base case 2: a = x for some $x \in$ Var, we have (a) $x \in$ FV(a) (i.e., s x = s' x by assumption). Hence, $\mathcal{A}[\![a]\!]s = s x = s' x = \mathcal{A}[\![a]\!]s'$.

For $a = a_1 \boxtimes a_2$, we get $FV(a) = FV(a_1) \cup FV(a_2)$ and, by induction hypothesis, $\mathcal{A}\llbracket a_i \rrbracket s = \mathcal{A}\llbracket a_i \rrbracket s'$ (i = 1, 2). Thus,

$$\begin{split} \mathcal{A}\llbracket a \rrbracket s \stackrel{(\mathrm{Def.})}{=} \mathcal{A}\llbracket a_1 \bigotimes a_2 \rrbracket s \\ \stackrel{(\mathrm{Def.})}{=} \mathcal{A}\llbracket a_1 \rrbracket s \bullet \mathcal{A}\llbracket a_2 \rrbracket s \\ \stackrel{(\mathrm{IH})}{=} \mathcal{A}\llbracket a_1 \rrbracket s' \bullet \mathcal{A}\llbracket a_2 \rrbracket s' \\ \stackrel{(\mathrm{Def.})}{=} \mathcal{A}\llbracket a_1 \rrbracket s' \bullet \mathcal{A}\llbracket a_2 \rrbracket s' \end{split}$$

Semantics of Statements

$$S \; \coloneqq \; x := a \; \mid \; \mathsf{skip} \; \mid \; S \; ; \; S \; \mid \; \mathsf{if} \; b \; \mathsf{then} \; S \; \mathsf{else} \; S \; \mid \; \mathsf{while} \; b \; \mathsf{do} \; S$$

- aim for function $\mathcal{S}_\mathsf{ds}:\mathbf{Stm}\to(\mathbf{State}\hookrightarrow\mathbf{State})$
- $\bullet \ \mathcal{S}_{\mathsf{ds}}[\![x \ := a]\!] \, s := s[x \mapsto \mathcal{A}[\![a]\!] \, s]$
- $\mathcal{S}_{\mathsf{ds}}[\![\mathsf{skip}]\!] := \mathrm{id}$
- $\bullet \ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \ \text{;} \ S_2 \rrbracket \coloneqq \mathcal{S}_{\mathsf{ds}}\llbracket S_2 \rrbracket \circ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket$

State \hookrightarrow **State** is for *partial functions*. For g : **State** \hookrightarrow **State**, we denote that g is *undefined* for value $x \in$ **State** by g x = undef.

Let $s \in$ **State**. Then

$$\mathcal{S}_{\mathsf{ds}}\llbracket S_1 \ ; \ S_2 \rrbracket s = \begin{cases} s'' & \text{if } s' \text{ exists such that } \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket s = s' \text{ and } \mathcal{S}_{\mathsf{ds}}\llbracket S_2 \rrbracket s' = s'' \\ \text{undef if } \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket s = \text{undef or} \\ & \text{if } s' \text{ exists such that } \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket s = s' \text{ but } \mathcal{S}_{\mathsf{ds}}\llbracket S_2 \rrbracket s' = \text{undef} \end{cases}$$

 $\bullet \ \mathcal{S}_{\mathsf{ds}}\llbracket \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \rrbracket \coloneqq \mathsf{cond}(\ \mathcal{B}\llbracket b \rrbracket, S_1, S_2)$

 $\mathsf{cond}: (\mathbf{State} \to \mathbb{B}) \times (\mathbf{State} \hookrightarrow \mathbf{State}) \times (\mathbf{State} \hookrightarrow \mathbf{State}) \to (\mathbf{State} \hookrightarrow \mathbf{State})$

$$\mathsf{cond}(p,\!g_1,\!g_2)s \coloneqq \begin{cases} g_1\,s \text{ if } p\,s = \mathtt{tt} \\ g_2\,s \text{ if } p\,s = \mathtt{ff} \end{cases}$$

$$\mathcal{S}_{\mathsf{ds}}\llbracket \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \rrbracket s = \begin{cases} s' & \mathsf{if} \ \mathcal{B}\llbracket b \rrbracket \ s = \mathsf{tt} \ \mathsf{and} \ s' \ \mathsf{exists} \ \mathsf{with} \ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket \ s = s' \\ & \mathsf{or} \ \mathsf{if} \ \mathcal{B}\llbracket b \rrbracket \ s = \mathsf{ff} \ \mathsf{and} \ s' \ \mathsf{exists} \ \mathsf{with} \ \mathcal{S}_{\mathsf{ds}}\llbracket S_2 \rrbracket \ s = s' \\ & \mathsf{undef} \ \mathsf{if} \ \mathcal{B}\llbracket b \rrbracket = \mathsf{tt} \ \mathsf{and} \ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket \ s = \mathsf{undef} \\ & \mathsf{or} \ \mathsf{if} \ \mathcal{B}\llbracket b \rrbracket = \mathsf{ff} \ \mathsf{and} \ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket \ s = \mathsf{undef} \\ & \mathsf{or} \ \mathsf{if} \ \mathcal{B}\llbracket b \rrbracket = \mathsf{ff} \ \mathsf{and} \ \mathcal{S}_{\mathsf{ds}}\llbracket S_2 \rrbracket \ s = \mathsf{undef} \end{cases}$$

Dr. Stephan Mennicke

Intuition

$$\begin{split} \mathcal{S}_{\mathsf{ds}}\llbracket \mathsf{while}\; b\; \mathsf{do}\; S \rrbracket &= \mathcal{S}_{\mathsf{ds}}\llbracket \mathsf{if}\; b\; \mathsf{then}\; (S\; \mathsf{;while}\; b\; \mathsf{do}\; S)\; \mathsf{else}\; \mathsf{skip} \rrbracket \\ &= \mathsf{cond}(\; \mathcal{B}\llbracket b \rrbracket \,, \mathcal{S}_{\mathsf{ds}}\llbracket \mathsf{while}\; b\; \mathsf{do}\; S \rrbracket \circ \mathcal{S}_{\mathsf{ds}}\llbracket S \rrbracket \,, \mathrm{id}\;) \end{split}$$

Consequence

Thus, S_{ds} [while b do S] is a *fixed point* of the functional F:

 $F\,g \coloneqq \mathsf{cond}(\,\mathcal{B}[\![b]\!]\,,\!g \circ \mathcal{S}_\mathsf{ds}[\![S]\!]\,,\mathrm{id}\,)$

- $\mathcal{S}_{\mathrm{ds}}[\![\mathrm{while}\ b\ \mathrm{do}\ S]\!] = \mathrm{FIX}\ F$

We define FIX formally throughout this lecture, but let's first live with our intuition.

while $\neg(x\equiv 0) \; \mathrm{do} \; \mathrm{skip}$

The corresponding functional is F' such that

$$(F' g)s = \begin{cases} g s & \text{if } s x \neq 0 \\ s & \text{if } s x = 0 \end{cases}$$

Surely, g_1 with

$$g_1 s = \begin{cases} \texttt{undef } \text{if } s \, x \neq 0 \\ s & \text{if } s \, x = 0 \end{cases}$$

is a fixed point of F' since

Dr. Stephan Mennicke

$$(F' g_1)s = \begin{cases} g_1 s \text{ if } s x \neq 0\\ s \text{ if } s x = 0 \end{cases}$$
$$= \begin{cases} \text{undef if } s x \neq 0\\ s \text{ if } s x = 0\\ = g_1 s \end{cases}$$

Dr. Stephan Mennicke

while $\neg(x\equiv 0) \; \mathrm{do} \; \mathrm{skip}$

The corresponding functional is F' such that

$$(F' g)s = \begin{cases} g s \text{ if } s x \neq 0 \\ s \text{ if } s x = 0 \end{cases}$$

Function g_2 such that $g_2 s =$ undef for all $s \in$ State is not a fixed point of F': For state s' with s' x = 0, we get $(F' g_2)s' = s'$ but $g_2 s' =$ undef.

Dr. Stephan Mennicke

Direct Style Semantics at a Glance

- $\bullet \ \mathcal{S}_{\mathsf{ds}}[\![x \, := a]\!] \, s := s[x \mapsto \mathcal{A}[\![a]\!] \, s]$
- $\mathcal{S}_{\mathsf{ds}}[\![\mathsf{skip}]\!] := \mathrm{id}$
- $\bullet \ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \ \text{;} \ S_2 \rrbracket \coloneqq \mathcal{S}_{\mathsf{ds}}\llbracket S_2 \rrbracket \circ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket$
- $\bullet \ \mathcal{S}_{\mathsf{ds}}\llbracket \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \rrbracket \coloneqq \mathsf{cond}(\ \mathcal{B}\llbracket b \rrbracket, S_1, S_2)$
- + $\mathcal{S}_{\mathrm{ds}}[\![\mathrm{while}\ b\ \mathrm{do}\ S]\!] = \mathrm{FIX}\ F$

Issues to Overcome

- 1. there are functionals with more than one fixed point (e.g., F')
- 2. functionals with no fixed point

$$F_1 g = \begin{cases} g_1 & \text{ if } g = g_2 \\ g_2 & \text{ otherwise} \end{cases}$$

Dr. Stephan Mennicke

Consider a statement

while $b \; \mathrm{do} \; S$

from state s_0 .

Option A: Termination

Option B: Local Looping

Option C: Global Looping

while $b \ \mathrm{do} \ S$ in state s_0

Then there are states $s_1, ..., s_n$ such that

$$\mathcal{B}[\![b]\!] \, s_i = \begin{cases} \texttt{tt if } i < n \\ \texttt{ff if } i = n \end{cases}$$

and

$$\mathcal{S}_{\mathsf{ds}}[\![S]\!] \, s_i = s_{i+1} \text{ for } i < n$$

Dr. Stephan Mennicke

while $0 \leq x$ do $x := x \ominus 1$

Let g_0 be any fixed point of F (i.e., $F g_0 = g_0$). For i < n,

$$\begin{split} g_0 \, s_i &= (F \, g_0) s_i \\ &= \operatorname{cond}(\, \mathcal{B}[\![0 \leqq \mathsf{x}]\!] \,, g_0 \circ \mathcal{S}_{\mathsf{ds}}[\![\mathsf{x} \ := \ \mathsf{x} \ominus \mathsf{1}]\!] \,, \mathrm{id} \,) s_i \\ &= (g_0 \circ \mathcal{S}_{\mathsf{ds}}[\![\mathsf{x} \ := \ \mathsf{x} \ominus \mathsf{1}]\!]) s_i \\ &= g_0 \, s_{i+1} \end{split}$$

and for i = n,

$$\begin{split} g_0 \, s_n &= (F \, g_0) s_n \\ &= \operatorname{cond}(\, \mathcal{B}[\![0 \leqq \mathsf{x}]\!] \,, g_0 \circ \mathcal{S}_\mathsf{ds}[\![\mathsf{x} \ := \ \mathsf{x} \ominus \mathsf{1}]\!] \,, \mathrm{id} \,) s_n \\ &= \operatorname{id} s_n = s_n \end{split}$$

Every fixed point g of F will satisfy $g s_0 = s_n$.

Dr. Stephan Mennicke

while $b \ \mathrm{do} \ S$ in state s_0

Similar observation as before, every fixed point g of F yields $gs_0 = undef$. Exercise: Why?

Dr. Stephan Mennicke

while $b \ \mathrm{do} \ S$ in state s_0

Then there are infinitely many states s_1, s_2, \dots such that for all $i \ge 0$,

 $\mathcal{B}[\![\neg b]\!]\,s_i = \texttt{tt}$

and

$$\mathcal{S}_{\mathsf{ds}}[\![S]\!]\,s_i = s_{i+1}$$

while $\neg(x\equiv \mathbf{0}) \; \mathrm{do} \; \mathrm{skip}$

Let g_0 be any fixed point of F.

We get $g_0 s_i = g_0 s_{i+1}$ and, thus,

$$g_0 s_0 = g_0 s_i$$
 for all $i \ge 0$

The functional

$$(F' g)s = \begin{cases} g s & \text{if } s x \neq 0 \\ s & \text{if } s x = 0 \end{cases}$$

has various fixed points: every partial function g satisfying g s = s if s x = 0 is one.

Dr. Stephan Mennicke

Consider a statement

while $b \; \mathrm{do} \; S$

from state s_0 .

Option A: Termination

Option B: Local Looping

Option C: Global Looping

Which fixed point to prefer?

Least Fixed Points (if they exist)

Fixed Point Theory

For any function F, we want FIX F to share its result with all other fixed points of F. Define \sqsubseteq on partial functions **State** \hookrightarrow **State**:

$$g_1 \sqsubseteq g_2$$
 if $g_1 s = s'$ implies $g_2 s = s'$ for all $s, s' :$ **State** \hookrightarrow **State**.

Examples

$$\begin{array}{l} g_1\,s=s \,\, {\rm for \,\, all}\,\,s\\ g_2\,s=\begin{cases} s & {\rm if}\,s\,x\geq 0\\ {\rm undef}\,\,\, {\rm otherwise.} \end{cases}\\ g_3\,s=\begin{cases} s & {\rm if}\,s\,x=0\\ {\rm undef}\,\,\, {\rm otherwise.} \end{cases}\\ g_4\,s=\begin{cases} s & {\rm if}\,s\,x\leq 0\\ {\rm undef}\,\,\, {\rm otherwise.} \end{cases} \end{array}$$

Dr. Stephan Mennicke

A *po-set* is a pair $\langle D, \preccurlyeq_D \rangle$ where *D* is a set and \preccurlyeq_D is a reflexive, transitive, and anti-symmetric binary relation on *D*.

Lemma 3: If a po-set $\langle D, \preccurlyeq_D \rangle$ has a least element $d \in D$, then d is unique.

Proof: Follows from anti-symmetry of \preccurlyeq_D .

The *least element of a poset* $\langle D, \preccurlyeq_D \rangle$ is denoted by \perp_D or just \perp .

Generally, if \preccurlyeq_D is clear from the context and we just write $\langle D, \preccurlyeq \rangle$

Dr. Stephan Mennicke

Lemma 4: \langle **State** \hookrightarrow **State**, $\sqsubseteq \rangle$ forms a po-set with \bot : **State** \hookrightarrow **State**, such that $\bot s :=$ undef for all *s*, is its least element.

Now,

- 1. FIX F is a fixed point of F (i.e., F(F|X|F) = F|X|F), and
- 2. FIX F is a *least fixed point* of F, meaning F g = g implies FIX $F \sqsubseteq g$

But which functionals admit least fixed points?

For po-set $\langle D, \preccurlyeq \rangle$ and $Y \subseteq D$, we are looking for an element $d \in D$ summarizing all the information in Y.

Such an element d is called *upper bound of* Y if

 $\forall d' \in Y : d' \preccurlyeq d$

An upper bound d of Y is a *least upper bound* if

for any upper bound d' of Y, we have $d \preccurlyeq d'$.

Lemma 5: If *Y* has a least upper bound, then it is unique.

Dr. Stephan Mennicke

Proof: Let $d_1, d_2 \in D$ be least upper bounds of Y, meaning they are upper bounds of Y(i.e., $d \preccurlyeq d_i$ for all $d \in Y$) and they are least under all upper bounds. Hence, $d_1 \preccurlyeq d_2$ and $d_2 \preccurlyeq d_1$. By antisymmetry of \preccurlyeq , we get $d_1 = d_2$.

We denote the least upper bound of *Y* by $\bigsqcup Y$.

For po-set $\langle D, \preccurlyeq \rangle$ we call $Y \subseteq D$ a *chain* if

for any two elements $d_1, d_2 \in Y$, $d_1 \preccurlyeq d_2$ or $d_2 \preccurlyeq d_1$.

Definition 6: A po-set $\langle D, \preccurlyeq \rangle$ is *chain-complete* (i.e., a chain-complete partially ordered set, or *ccpo*) of $\bigsqcup Y$ exists for all chains $Y \subseteq D$. It is called a *complete lattice* if $\bigsqcup Y$ exists for all subsets Y of D.

Lemma 7: If $\langle D, \preccurlyeq \rangle$ is a ccpo, then it has a least element \perp given by $\perp = \bigsqcup \emptyset$.

Proof: Since \emptyset is (trivially) a chain, $\bigcup \emptyset \in D$ by the ccpo property. We need to show that $\bigcup \emptyset \preccurlyeq d$ for all $d \in D$.

$$\forall d \in \emptyset : d \preccurlyeq \bigsqcup \emptyset$$

Suppose there was a least element $d_0 \in D - \{ \bigsqcup \emptyset \}$. Then $d_0 \preccurlyeq \bigsqcup \emptyset$ and d_0 is an upper bound of \emptyset as well. Since $\bigsqcup \emptyset$ is the least upper bound of \emptyset , we get $\bigsqcup \emptyset \preccurlyeq d_0$, entailing $d_0 = \bigsqcup \emptyset$. Hence, $\bigsqcup \emptyset$ is the unique least element \bot of D.

Exercise: Show that **State** \hookrightarrow **State** is not a complete lattice.

Dr. Stephan Mennicke

Let $g_n: \mathbf{State} \hookrightarrow \mathbf{State}$ be the following partial function

$$g_n s = \begin{cases} \texttt{undef} & \text{if } s \, x > n \\ s[x \mapsto -1] & \text{if } 0 \le s \, x \text{ and } s \, x \le n \\ s & \text{if } s \, x < 0 \end{cases}$$

It holds that $g_n \preccurlyeq g_m$ whenever $n \le m$.

The set $Y_0 = \{g_n \mid n \ge 0\}$ is a chain and

$$g s = \begin{cases} s[x \mapsto -1] & \text{if } 0 \le s x \\ s & \text{if } s x < 0 \end{cases}$$

is its least upper bound $\bigsqcup Y_0$.

Dr. Stephan Mennicke

Lemma 8: (State \hookrightarrow State, \sqsubseteq) is a ccpo. The least upper bound $\bigsqcup Y$ of a chain Y is given by

$$(\bigsqcup Y)s = s'$$
 if and only if $gs = s'$ for some $g \in Y$.

Proof: By Lemma 4, (**State** \rightarrow **State**, \sqsubseteq) is a po. Let *Y* be a chain of **State** \rightarrow **State**.

We first show that $\bigsqcup Y$ as defined above is a partial function. Assume, for partial functions $g_1, g_2 \in Y$ we have $g_1 s = s_1$ and $g_2 s = s_2$. As Y is a chain, (a) $g_1 \sqsubseteq g_2$ or (b) $g_2 \sqsubseteq g_1$. In either case, we get that $s_1 = s_2$. Thus, $\bigsqcup Y$ is a partial function.

It remains to be shown that $\bigsqcup Y$ is the least upper bound. For function $g \in Y$ and $s \in$ **State** with g s = s' we get $(\bigsqcup Y)s = s'$ (by definition). Thus, $\bigsqcup Y$ is an upper bound of g (and of Y). Let g_0 be an upper bound of Y and let $(\bigsqcup Y)s = s'$. Then, by definition of

Dr. Stephan Mennicke

 $\bigsqcup Y$, there is a function $g \in Y$ such that g s = s'. Hence, $g_0 s = s'$. This argument holds for all states $s \in$ **State**, entailing $\bigsqcup Y \sqsubseteq g$ (for all upper bounds of Y).

Let $\langle D, \preccurlyeq \rangle$ and $\langle D', \preccurlyeq' \rangle$ be ccpo's.

We call a function $f: D \to D'$ monotone if $d_1 \preccurlyeq d_2$ implies $f d_1 \preccurlyeq' f d_2$ for all $d_1, d_2 \in D$.

Lemma 9: Monotone functions are closed under (functional) composition.

Lemma 10: Let $\langle D, \preccurlyeq \rangle$ and $\langle D', \preccurlyeq' \rangle$ be ccpo's, and let $f : D \to D'$ be monotone. If Y is a chain in D, then $\{f \ d \mid d \in Y\}$ is a chain in D'. Moreover,

 $\bigsqcup' \{ f \, d \, | \, d \in Y \} \preccurlyeq' f \Bigl(\bigsqcup Y \Bigr)$

Proof: Define $\Upsilon := \{f \ d \ | \ d \in Y\}$ and let $d'_1, d'_2 \in \Upsilon$. Then there are $d_1, d_2 \in D$ such that $f \ d_1 = d'_1$ and $f \ d_2 = d'_2$ (by definition of Υ). Since Y is a chain, it holds that (a) $d_1 \preccurlyeq d_2$ or (b) $d_2 \preccurlyeq d_1$. In case (a), since f is monotone, we get that $d'_1 = f \ d_1 \preccurlyeq' f \ d_2 = d'_2$. Case (b) is symmetric. Thus, Υ is a chain.

Let $u = \bigsqcup Y$, i.e. for all $d \in Y$, $d \preccurlyeq u$. As f is monotone, $f d \preccurlyeq' f u$ for all $d \in Y$. Hence, f u is an upper bound of Υ . Since $\bigsqcup' \Upsilon$ is the least upper bound, we get $\bigsqcup' \Upsilon \preccurlyeq' f u = f(\bigsqcup Y)$.

Exercise: Show that $\bigsqcup' \{ f d \mid d \in Y \} = f(\bigsqcup Y)$ does not hold in general.

Definition 11: Let $\langle D, \preccurlyeq \rangle$ and $\langle D', \preccurlyeq' \rangle$ be ccpo's. A function $f: D \to D'$ is *continuous* if it is monotone and

for all non-empty chains *Y* of *D*. If $\perp' = f \perp$, then *f* is called *strict*.

Lemma 12: Continuous functions are closed under (functional) composition.

Theorem 13: Let $f: D \to D$ be a continuous function on the ccpo $\langle D, \preccurlyeq \rangle$ with least element \bot . Then

$$\mathsf{FIX} \ f = \bigsqcup \{ f^n \perp | n \ge 0 \}$$

defines an element of D, and this element is the least fixed point of f.

Proof: Since f is continuous, it is (mon) monotone and (lub) $\bigsqcup \{f d \mid d \in Y\} = f(\bigsqcup Y)$ for all non-empty chains Y.

First observe that $\{f^n \perp | n \ge 0\}$ is non-empty by $f^0 \perp = \perp$. It holds that $f^0 \perp = \perp \preccurlyeq f^1 \perp = f \perp$ since \perp is the least element of D. By an inductive argument, we get that $f^m \perp \preccurlyeq f^{m+1} \perp$ for all $m \ge 0$ since f is monotone. By reflexivity and transitivity of \preccurlyeq we get $f^m \perp \preccurlyeq f^n \perp$ whenever $m \le n$. Therefore, $\{f^n \perp | n \ge 0\}$ is a non-empty chain Dr. Stephan Mennicke Concurrency Theory

and, thus, $\bigsqcup \{f^n \perp | n \ge 0\}$ exists (i.e., defines an element of *D*). We next show that it is a fixed point of *f*:

$$\begin{split} f\Big(\bigsqcup\{f^n \perp \mid n \ge 0\}\Big) &= \bigsqcup\{f(f^n) \perp \mid n \ge 0\} \\ &= \bigsqcup\{f^n \perp \mid n \ge 1\} \\ &= \bigsqcup(\{f^n \perp \mid n \ge 1\} \cup \{\bot\}) \\ &= \bigsqcup\{f^n \perp \mid n \ge 0\} \end{split}$$

It remains to be shown that FIX f is the least fixed point of f. For an arbitrary fixed point d of f, we have that f d = d and, clearly, $\perp \preccurlyeq d$. By monotonicity of f and an induction on n, we get $f^n \perp \preccurlyeq f^n d = d$ for all $n \ge 0$. Hence, d is an upper bound for the chain $\{f^n \perp \mid n \ge 0\}$ and since FIX f is the least upper bound of that chain, we directly obtain FIX $f \preccurlyeq d$.

Dr. Stephan Mennicke

What Remains to be Shown

- $\bullet \ \mathcal{S}_{\mathsf{ds}}[\![x \, := a]\!] \, s := s[x \mapsto \mathcal{A}[\![a]\!] \, s]$
- $\mathcal{S}_{\mathsf{ds}}[\![\mathsf{skip}]\!] := \mathrm{id}$
- $\bullet \ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \ \text{;} \ S_2 \rrbracket \coloneqq \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket \circ \mathcal{S}_{\mathsf{ds}}\llbracket S_1 \rrbracket$
- $\bullet \ \mathcal{S}_{\mathsf{ds}}\llbracket \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \rrbracket \coloneqq \mathsf{cond}(\ \mathcal{B}\llbracket b \rrbracket, S_1, S_2)$
- $\mathcal{S}_{\mathrm{ds}}[\![\mathrm{while}\ b\ \mathrm{do}\ S]\!]\,s = \mathrm{FIX}\ F$
- 1. Functionals F are continuous
- 2. The direct style semantics $\mathcal{S}_{\mathsf{ds}} \llbracket \cdot \rrbracket$ exists