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Abstract. Quantitative information plays an increasingly important role in knowl-
edge representation. To this end, many formalisms have been proposed that enrich
traditional KR formalisms by counting and some sort of arithmetics. Baader and
Ecke (2017) propose an extension of the description logic ALC by axioms which
express correspondences between the cardinalities of concepts by means of Pres-
burger arithmetics. This paper extends their results, enhancing the expressivity
of the underlying logic as well as the constraints while preserving complexities.
It also widens the scope of investigation from finite models to the classical se-
mantics where infinite models are allowed. We also provide first results on query
entailment in such logics. As opposed to prior work, our results are established
by polynomially encoding the cardinality constraints in the underlying logic.

Keywords: Ff Major - B Major.

Prelude: Dedication

This work is inspired by Franz. It was him who introduced me to the idea of extend-
ing the quantitative capabilities in description logics using Presburger arithmetic con-
straints. Quite fittingly, this happened during a colloquial discussion at a workshop of
our DFG PhD training group QuantLA — Quantitative Logics and Automata. Already
back then, I was musing that it should be possible to encode certain cardinality con-
straints in expressive description logics, using some auxiliary vocabulary.

Thankfully, this festschrift provided the most suitable occasion, motivation, and pres-
sure! to explore that option thoroughly, arguably with quite decent results. I’d like to
dedicate this “composition” to Franz and thank him for bringing up this interesting topic
and, generally, for plenty of inspiring discussions, occupational support, and pleasant
collaboration.

"I hereby sincerely apologize to Anni, Carsten, Cesare, Frank, and Uli for pushing the submis-
sion deadline.
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1 Introduction: Toward Quantitative Description Logics

Enriching knowledge representation formalisms with features for counting and basic
arithmetic regarding domain individuals is a worthwhile endeavor. So far, mainstream
description logics provide only very limited support in this respect: (qualified) number
restrictions allow for enforcing concrete upper and lower bounds on the number of an
individual’s role neighbors. These limited capabilities fall short of some basic practical
knowledge representation requirements, such as expressing statistical information [21].
As an example, assume that on the occasion of a distinguished scientist’s 60th birthday,
fellow researchers group together to produce a festschrift consisting of distinct con-
tributed papers. The publisher requires the festschrift to have not less than 140 and not
more than 800 pages. This could intuitively be expressed by a statement like

140 < |Page| < 800,

assuming Page denotes the class of all the festschrift’s pages. Let’s say, the editors
manage to recruit a total of 73 authors:

|Author| = 73.
They assume that the average number of contributors per paper is between 2 and 3:
2 - |Paper| < |Author| < 3 - |Paper]|.
They impose the condition that each paper must have at least 10 and at most 40 pages:
Paper C >10 OnPage. T I <40 OnPage.T.

They also notice that just one author (the “outlier”) contributes to two papers, whereas
the others contribute to one.

AuthorM—{outlier} C =1 Contributes.T  {outlier} C =2Contributes.T

Some background knowledge for our domain needs to be specified: roughly speaking,
authors are precisely contributors, papers are precisely “contributees” and they are pre-
cisely the things occurring on pages and on nothing but pages.

Author = dContributes.T Paper = dContributes™.T
Paper = J0nPage. T Page = J0nPage™.T

As an important last ingredient, it needs to be specified that no two distinct papers can
occur on the same page (i.e., OnPage is inverse functional):

T E <1 OnPage™ . T.

If a reasoner supporting all the modeling features in this specification existed, the editors
could now find out by a satisfiability check if the planned festschrift can be published
under the given assumptions (which is the case). Also, by removing the first statement
and checking for its entailment instead, they could find out if the publisher’s space



Presburger Concept Cardinality Constraints in Very Expressive Description Logics

constraints are guaranteed to be met in view of the given information (which is not

the case). Alas, currently, axioms alike the first three statements are not supported by

mainstream description logics.

In a line of recent work, Franz and others have addressed the shortcomings in descrip-

tion logics on the quantitative side. For instance, extending results from [12], Franz

proposed ALCSCC [1], an extension of the basic description logic ALC by constraints
expressed in the quantifier-free fragment of Boolean Algebra with Presburger Arith-
metic (QFBAPA) [19] over role successors. The described constraints are local, as they
always refer to an individual under consideration, as opposed to global constraints,
which range over the full domain and compare cardinalities of concepts. The latter
were introduced in [5], giving rise to the notions of ALC extended cardinality boxes

(ECboxes) and — striving for more favorable complexity results — their “light version”

ALC restricted cardinality boxes (RCboxes). As a natural next step, [2] introduced and

investigated ALCSCC ECboxes and RCboxes, enabling both local and global cardi-

nality constraints in a joint formalism. Pushing the envelope further, [3] showed that
local and global constraints can be tightly integrated leading to the starkly more expres-
sive logic ALCSCCH™, for which ECbox consistency checking is still NEXPTIME-
complete. On the downside, conjunctive query entailment becomes undecidable in this
logic. Moreover, as an (albeit massively calculation-enhanced) version of plain ALC,

ALCSCC™ is lacking basic modeling features that are normally taken for granted in

description logics. Most notably, it does not feature role inverses, which are crucial to

draw level with popular logics from other families, such as two-variable logics.

Decidability and complexity results for the logics discussed above were established via

the solution of large systems of (in)equalities as well as elaborate constructions and

transformations of models. We show that, if we limit our attention to global cardinal-
ity constraints, we can use an alternative, reduction-based approach, and expand the
existing results simultaneously in three directions:

e [ncorporation of role inverses. As stated earlier, the existing results are for descrip-
tion logics without the feature of role inverses. In fact, it is notoriously difficult to
incorporate this feature into the (in)equality-system-based machinery hitherto used.
Interestingly, the method proposed in this paper not only allows for incorporating
role inverses, it actually does require their presence in the logic.

e Relaxation of restrictions on RCboxes. As mentioned above, RCboxes were intro-
duced as a light version of ECboxes in order to obtain more favorable complexity
results. We show that some of the restrictions made can be relaxed without endanger-
ing this complexity gain. This actually motivates us to introduce extended restricted
cardinality boxes (ERCboxes) as low-complexity, high-expressivity middle-ground
between ECboxes and RCboxes.

e Reasoning over finite and arbitrary models. Previous results confine themselves to a
finite-model setting, which is arguably the right choice for practical modeling tasks
in concrete scenarios where arithmetic is applied. However, the traditional semantics
of description logics allows for infinite models. Hence we extend the scope of our
investigations to also include the case of arbitrary models. Next to an appropriate
extension of the underlying arithmetic (as described in the beginning of Section 2)
this raises some deeper model-theoretic concerns, which we address in Section 5.

3
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2 Ostinato: Preliminaries

Numbers. We recall that N denotes the set of natural numbers (including 0). Through-
out this paper, whenever natural numbers occur in some expression, we assume binary
encoding. We let N = N U {oo}. Basic arithmetic and comparison operations are
extended from N to N°° in the straightforward way, in particular adding anything to
oo yields 0o, 0 - 00 = 0, and n - co = oo for every n > 1. For n € N*°, we let
[n] = {i | i < n}, in particular [oo] = N. For some set S, we let |.S| denote the number
of elements of S if it is finite and oo otherwise.

Description Logics. We give the definition of the extremely expressive description
logic SROZ QB which is obtained from the well-known description logic SROZQ [16]
by allowing arbitrary Boolean constructors on simple roles. We assume that the reader
is familiar with description logics [4,6,26].

The description logics considered in this paper are based on four disjoint sets of individ-
ual names Ny, concept names N ¢, simple role names N, and non-simple role names
N§# (containing the universal role T € Ng). Furthermore, we let Ng = N U NR.

Definition 1 (syntax of SROZQB). A SROZQB Rbox for NR is based on a set R
of atomic roles defined as R .= Ng U{R~ | R € Ngr}, where we set Inv(R) := R~
and Inv(R™) = R to simplify notation. In turn, we distinguish simple atomic roles
R’ := Nj UInv(Ng ) and non-simple roles R" := N{ U Inv(NRg).

The set of simple roles B is defined as follows:

B:=N5|-B|BNB|BUB|B\B.

Moreover, a simple role will be called safe, if it does not contain —.
A generalized role inclusion axiom (RIA) is a statement of the form S T R with simple
roles S and R, or of the form

Sio0...05,C R

where each S; is a (simple or non-simple) role, and where R is a non-simple atomic role,
none of them being T. A set of such RIAs will be called a generalized role hierarchy. A
role hierarchy is regular if there is a strict partial order < on the non-simple roles R"
such that

e S<R iff Inv(S) <R, and
e cvery RIA is of one of the forms

RoRCR R CR Sio0...05,C R RoSio...05,C R Sjo...05,o0RC R

such that R € NR is a (non-inverse) role name, and S; < R fori = 1,...,n
whenever S; is non-simple.

A SROIQB Rbox is a regular role hierarchy.

% The original definition of SROTQ Rboxes also features explicit axioms expressing role re-
flexivity, asymmetry, and role disjointness. However, in the presence of (safe) Boolean role
constructors, these can be expressed, so we omit them here.
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Table 1: Semantics of SROZQB role and concept constructors for interpretation Z = (A%, .T).

Name Syntax ~ Semantics
inverse role R~ {(z,y) € AT x AT | (y,x) € R*}
universal role T AT x AT
role negation =S {(z,y) € AT x AT | (x,y) & R}

role conjunction SN R ST N R
role disjunction SUR ST UR?
role difference S\ R ST\ R*

top T AT
bottom 1 0
negation -C AT\ C*
conjunction cnbD CctTnbD*
disjunction cub ctub?
nominals {a} {aT}

univ. restriction ~ VR.C' {z € A" | (z,y) € R" impliesy € C*}

exist. restriction ~ IR.C {z € AT | forsomey € AT, (z,y) € RT andy € C*}
Self concept 38.Self  {z e AT | (z,2) € ST}

qualified number <nS.C  {z € AT | ‘{y E AT | (z,y) € STandy € C*}| < n}
restriction >nS.C {weA” | {ye AT | (z,y) € ST andy € C*}| > n}

Given a SROZQB Rbox R, the set of concept expressions (short: concepts) C is
inductively defined as follows:
e NcCC, TeC Le(C,
e for C, D € C concepts, R € BUR" a (simple or non-simple) role, S € B a simple

role, a € Ny, and n € N a non-negative integer, the expressions -C, C'11 D, C' U D,
{a}, VR.C, 3R.C, 35.Self, <n S.C, and >n S.C are also concepts.

Throughout this paper, the symbols C, D will be used to denote concepts. A SROZQB
Tbox is a set of general concept inclusion axioms (GClIs) of the form C T D. We use
C = D as a shorthand for C C D, D C C.

An individual assertion can have any of the following forms: C(a), R(a,b), =S(a,b),
a~b, a®b, witha,b € Ny individual names, C € C a concept, and R, S € BUR"
roles with S simple. A SROZQB Abox is a set of individual assertions.

A SROZQB knowledge base K is a triple (A, T, R) where R is a regular Rbox while
A and T are an Abox and a Thox for R, respectively. We use the term axiom to uni-
formly refer to any single statement contained in A, T, or R.

We further provide the semantics of SROZ QB knowledge bases.

Definition 2 (semantics of SROZQB). An interpretation T = (AL, 1) consists of a
set AT called domain together with a function - mapping individual names to elements
of A%, concept names to subsets of AT, and role names to subsets of AT x AT.

The function - is inductively extended to roles and concepts as shown in Table 1. An

interpretation T satisfies an axiom o (written: T |= ) if the respective condition is
satisfied:
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e T=SC RIifST C RY,

eZESi0...08, CR ifSlz 0...0 Sf C R% (o being overloaded to denote the
standard composition of binary relations here),

e ZIECL DifC* C DY,

e T C(a)ifal € C7,

e 7= R(a,b)if(a%,vt) € RY,

e 7 |=-5(a,b) if (af,b?) ¢ S%,

e TE=a~bifal =b?,

e TE=a®bifal #bl.

An interpretation T satisfies a knowledge base K (we then also say that T is a model

of K and write T |= K) if it satisfies all axioms of K. A knowledge base K is (finitely)

satisfiable if it has a (finite) model. Two knowledge bases are equivalent if they have

exactly the same models. They are (finitely) equisatisfiable if either both are (finitely)

unsatisfiable or both are (finitely) satisfiable.

The description logic SHOZ QB is obtained from SROZ OB by discarding the univer-
sal role T as well as the Self concept and allowing only RIAs of the form R C S or
Ro R C R.If we also disallow Ro R C R, we obtain ALCHOZQB. For any of these
three logics, replacing B in the name by b disallows role negation (but preserves role
difference) while removing B entirely also disallows role conjunction, disjunction and
difference. Dropping O from any description logic’s name disables nominal concepts
{0}, while dropping Z disables role inverses - ~, and dropping H disables RIAs of the
form R C S. For any description logic £ that does not feature the Self concept (the
universal role T), we denote by £ (by £+) the logic with this feature added.

Queries. In queries, we use variables from a countably infinite set V. A Boolean
positive two-way regular path query (P2RPQ) is a formula Jx.p, where ¢ is a positive
Boolean expression (i.e., one using only A and V) over atoms of the form C(t) or
T(s,t), where s and t are elements of & U Ny, C is a concept, and T is a regular role
expression from T, defined by

T:=R|TUT|ToT|T"|id(C).

If ¢ does not use disjunction and all 7" are simple roles, it is called a conjunctive query
(CQ). A variable assignment 7 for T is a mapping V. — AZ. For x € V, we set
257" == n(z); for ¢ € Ny, we set c©™ := cZ. T(s,t) evaluates to true under 7 and
Tif (sTm,#1™) € TZ, with TT obtained as detailed in Table 2. C(¢) evaluates to true
under 7 and Z if t7™ € CT. A P2RPQ ¢ = Jx.¢p is satisfied by T (written: Z |= q) if
there is a variable assignment 7 (called match) such that ¢ evaluates to true under Z and

7. A P2RPQ q is (finitely) entailed from a KB /C if every (finite) model of K satisfies g.
3 Subject: Extending Knowledge Bases by Presburger-Style
Concept Cardinality Constraints

In this section, we introduce extended cardinality boxes (and several restricted versions
thereof) as means for expressing quantitative global knowledge.
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Table 2: Semantics of regular role expressions for interpretation 7 = (AI , T ).

Name Syntax Semantics
union TUuT, TEUTE
concatenation Ty o7, TEoT¥E
Kleene star T Ujso(TF)

concept test 1d(C) {(z,z) |z € CT}

Definition 3 (concept cardinality constraint, ECbox, RCbox, ERCbox). A concept
cardinality constraint (short: constraint) ¢ is an expression of the form

no + nilAr] + ...+ nglAg] < mo 4+ mq[By| + ... + my|By, (D

where Ay, ..., A;,B1,...,Byare concept names and all n; and m; are natural numbers.
A concept cardinality constraint is restricted if ng = mg = 0 and semi-restricted if
mo = 0. An extended cardinality box (ECbox) is a positive Boolean combination of
concept cardinality constraints. A restricted cardinality box (RCbox) is a conjunction
of restricted cardinality constraints. An extended restricted cardinality box (ERCbox) is
a positive Boolean combination of semi-restricted cardinality constraints.

Satisfaction of a concept cardinality constraint ¢ by an interpretation I (written as
T |= ) is verified as follows: every expression |A| is mapped to |AT|. The constraint is
evaluated in the straightforward way over N*°. Satisfaction of constraints is then lifted
to satisfaction of ECboxes in the obvious manner.

Definition 4 (EKB, ERKB, RKB). For some description logic L, an extended £ knowl-
edge base (L EKB) is a quadruple (A, T,R,E) where (A, T,R) is an L knowledge
base and £ is an ECbox. An EKB is a restricted knowledge base (RKB) if £ is an RCbox.
It is an extended restricted knowledge base (ERKB) if € is an ERCbox.

Obviously, RKBs (RCboxes) are properly subsumed by ERKBs (ERCboxes) which
in turn are properly subsumed by EKBs (ECboxes). One general insight of this pa-
per is that upper complexity bounds persist when generalizing the previously defined
RCboxes to the newly defined, more expressive ERCboxes.

Our syntactic formulation of ECboxes is somewhat more restrictive than that in prior
work [5], but we will show that the differences are immaterial. Using our more restricted
form allows for a more uniform presentation of our results.

First, the original work allows expressions |C| for arbitrary concept descriptions C.
We note that our definition does not restrict expressivity since general Tboxes allow
for axioms A = C, so complex concept expressions in cardinality constraints can be
replaced by fresh concept names and defined in the Tbox. Resorting to plain concept
names in constraints allows us to consider cardinality boxes uniformly independently
from the used description logic.

Second, instead of positive weighted sums of concept cardinalities as left and right
hand sides, the original work allows for arbitrary functions built from integers z and
expressions of the form |A| using functions + (binary) and z- (unary). It is, however,
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easy to see that each comparison on such more liberal expressions can be polynomially
translated into an equivalent comparison of positive weighted sums.

Third, the original work allows for extended cardinality constraints using other modes
of comparison than just “<”: a = 3, @ < 3, or n dvd a.. However, all these constraints
can be rewritten into (combinations of) constraints only using “<” as follows: a = 3 is
replaced by (o < B) A (B < a), a < Bby a+1 < 3,3 and n dvd a can be rewritten
into (n|A| < &) A (o < n|A|) for some fresh concept name A.

Fourth, the original work defined ECboxes as arbitrary (not just positive) Boolean com-
binations of constraints. However, this work only considered finite models. We note that
under this assumption, negated constraints can be rewritten into negation-free (com-
binations of) constraints in the following way: replace —=(a < ) by 8+1 < a,
—(a < B)by 8 < a, 7(a = B) by (a+1 < B) V (6+1 < «), and —(n dvd «)
by (n|A| + |B] < a) A (a < n|A| 4+ B]) A (1 < |B|) A (|B] + 1 < n) for fresh concept
names A and B. Note again, that this rewriting is not equivalent for infinite models.*

As observed before, ECboxes allow to express nominal concepts by enforcing that a
concept must have cardinality exactly one. However, this is not possible with RCboxes
nor ERCboxes.

4 Exposition: Statement of Results

With the notion of ECboxes, RCboxes and ERCboxes in place, we can now formally
state results that can be derived from prior work before giving an outlook on the re-
sults established in this paper. We first note some results that can be obtained as easy
consequences of previous publications.

o Finite satisfiability of Abox-free SHQOb RKBs is in EXPTIME. For ALCH Ob, this
is an immediate consequence of earlier work on ALCSCC RCboxes [2]. Adding
transitivity is possible since it can be handled via the classical “box pushing” ap-
proach [33,29].

o Finite satisfiability of SHOQB EKBs is in NEXPTIME. This follows from [3] to-
gether with the observation that the logic ALCSCCT™ considered there allows to
express qualified number restrictions, nominals (hence also Aboxes), and arbitrary
Boolean role expressions. Again, transitivity can be dealt with via “box pushing”.

o Finite CQ entailment over Abox-free ALCH Qb RKBs is in 2EXPTIME, as immedi-
ate consequence of the corresponding result for ALCSCC RCboxes in [3].

At the core of our method is the insight that expressive description logics in and of
themselves hold enough expressive means to simulate ECboxes without noteworthy
blow-up. We will show that:

3 For this, we have to postulate co < oo, which is debatable, but could be justified by the fact
that there is an injective, non-surjective mapping between any two countably infinite sets.

* In fact, the constraint expression (1 4 |A| = |A|) A =(|A| = |B|) would enforce finiteness of
the extension of B, which is not axiomatizable in first order logic, neither finitely nor infinitely.
For good reasons (see Section 5) we define ECboxes in a way that a first-order axiomatization
is still possible.
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(A) ERCboxes can be succinctly simulated in any description logic that can express
ALCI Q= GCIs and

(B) ECboxes can be succinctly simulated in any description logic that can express
ALCOIQ GClIs.

This “simulation”, made formally precise in Section 6, is sufficiently authentic for both
satisfiability checking and query entailment. Consequently, we are able to significantly
strengthen the aforementioned results as follows (further detailed in Section 7):

o Satisfiability and finite satisfiability of SHZ Qbs%s'f ERKBs is EXPTIME-complete.
e Satisfiability and finite satisfiability of SHOZ 0B EKBsis N EXPTIME-complete.

e Entailment of P2RPQs as well as finite entailment of CQs from ALCHZ Qbsfe'f
ERKBs are 2EXPTIME-complete.

e Entailment of unions of conjunctive queries from ALCHOZ Qb EKBs is decidable
and coN2EXPTIME-hard.

Yet, before going into the details of our translation, we have to take care of a nuisance,
arising from counting in the presence of infinity.

S Interlude: Countability

Dealing with infinity can be tricky [7,9,10,27]. In the general case, allowing for infinite
models might require us to account for the presence of several distinct infinite cardinal-
ities. In the realms of first-order logic, the Lowenheim-Skolem Theorem [31] ensures
that it suffices to consider models of countable cardinality, in which only one type of
infinity can occur.

In our setting, however, expressibility in first-order logic cannot be easily taken for
granted. In fact, even the very simple RCbox (|A| < |B|) A (|B| < |A]), stating that A
and B contain the same number of individuals, cannot be expressed using a first-order
sentence (as can be shown by an easy argument using Ehrenfeucht-Fraissé games).

We manage to resolve the issue by showing that ECboxes can be expressed by countable
(but possibly infinite) first-order theories, noting that Lowenheim-Skolem still applies
in this case.

Lemma 1 Let £ be an ECbox. Then there exists a countable first-order theory @¢ log-
ically equivalent to .

Proof. We construct @¢ from £. For convenience, we introduce some notation: Given a
concept name A and a number n € N, we let £(|A| > n) denote the first-order sentence

Jz1, ... Tp. /\A(xz) A /\ r; # xj,

1<i<n 1<i<j<n

and we let f(JA| < n) denote the first-order sentence

Vmo,xl,...xn.( /\ A(gcz)) — \/ T = xj.

0<i<n 0<i<j<n
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Note that the first-order sentences have precisely the intended meaning. Now, consider-
ing some cardinality constraint ¢ of the form

no—l—nl\Al\ +...+nk|Ak| < m0+m1|B1| —l—...—l—mg‘Bd,

we let Bad, denote the (most likely infinite) set of first-order sentences

{ /\f(|Az| > a;) A /\f(\Bi| <b) ‘ ng + Z nia; > mo + Z mibi}a

1<i<k 1<i<e 1<i<k 1<i<e

and note that Z |= ¢ if and only if Z - ¢ holds for all ¢ € Bad,. Next, let € denote the
set of all constraints occurring in £. We let Bad consist of all sets ©® C € for which the
Boolean expression obtained from £ by replacing all ¢ € © with false and all ¢ € €\ D
with true evaluates to false. Finally, we let ¢ consist of all sentences =(p1 A. .. A@y,)
for which there is some {c1,..., ¢} € Bad such that p; € Bad,, for1 <i <m. <™

As planned, we can now use this insight to make sure that even in the presence of
ECboxes, we can restrict our attention to countable models, as long as the rest of the
knowledge base is expressible in first-order logic.

Theorem 2 Let L be a description logic such that any L knowledge base (A, T, R) is
equivalent to a countable first-order logic theory V(4 T Rr).

1. Every satisfiable L EKB has a countable model.
2. An L EKB K entails a P2RPQ q iff q is satisfied by all countable models of IC.

Proof. 1. This is actually a special case of the case below: pick ¢ = Jz. L ().

2. The “only if” direction is trivial. For the “if”” direction, first observe that any Boolean
P2RPQ ¢ can be expressed as a possibly infinite disjunction \/ 7E€Qy q' of (finite)
Boolean CQs. Let £ = (A, T,R,E). Toward a contradiction, suppose K F~ ¢,
i.e., there is a model Z (of arbitrary cardinality) such that Z = K but Z [~ q.
Then, by Lemma 1, we know that Z is a model of the countable first-order theory
Yiarr) UPe U{~¢ | ¢ € Qq}. Now we can apply the Lowenheim-Skolem
Theorem downward and obtain that there must be a countable model 7 of this the-
ory as well. By construction, 7 is a countable model of K but does not satisfy ¢, a
contradiction. ~

6 Development: Eliminating Cardinality Boxes

The basic underlying idea of our method is to model satisfaction of cardinality con-
straints by performing the necessary calculations and comparisons “physically” inside
the model, using the domain elements for tallying. However, in the case of finite inter-
pretations, it might happen that evaluating the cardinality constraints produces numbers
that are greater than the number of domain elements (note that this danger is material,
since expressive description logics allow for enforcing restricted domain sizes). Hence,
we somehow have to make sure that our models are allowed to contain enough domain
elements.
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6.1 Shift: Making Space through Relativization

To this end, we employ a folklore technique called relativization, through which a (pos-
sibly domain-restricting) knowledge base K is transformed into a knowledge base kC*
that allows for models with arbitrary domain sizes (by means of admitting “silent”
or “non-active” domain elements, which do not participate in any relation), but every
model of K* “contains” a model of K in a formally defined way, so KC* is an authentic
replacement of K when it comes to satisfiability testing or querying. In the context of
description logics, similar techniques have been applied in [15,18].

Definition 5 (relativization). We let T, be a fresh concept name. The function *
mapping concepts to concepts is recursively defined as follows:

AY = A {a}* = {a}
T = Thew (VR.C)* = Tnew MVR.(~Tnew U C?)
1t =1 (3R.C)* = JR.C*
(=C) = Thew M—C* (>nS.0)* = >nS.C*
(C1NCy)t = Cincs (<nS.0)* = <nS.C*
(CLUCy)t = CiuCh (35.Self)* = 39.Self

Given a P2RPQ q, we let ¢* denote the query obtained by replacing each concept C
in g by C*. Moreover, we extend -* to EKBs K = (A, T,R,E) by letting K* =
(AT, R,E), where A’ contains

e Thew(@) for every a € Ny occurring in KC,

e for every assertion C(a) from A the assertion C*(a), and

e all assertions of the form a ~ b, a % b, =5(a,b), and R(a,b) from A,

while T’ contains

® AL Thew forevery A € Ng occurring in IC,

e IP.T L Thew and T T VP. Tyey for every P € Nr \ {T} occurring in K, as well as
e for every GCI Cy C Cy from T the GCI C% C C4.

It is now not too hard to establish the following lemma, explicating the formerly claimed
very close connection between the models of K and C*.

Lemma 3 (relativization: model synchronicity) Ler X = (A,T,R,E) be an EKB
and let 7 = (A7, -7) be in interpretation with 1,7 # ). Then J is a (finite) model
of K* if and only if there exists a (finite) set Am and a (finite) model T = (A%, 1) of K
such that AY = AT U Amand -7 = T U {Tew — AT}

Proof. (Sketch.) The not immediate cases are a direct consequence of the correspon-
dence C7 = C*7 which is proven by induction over the structure of C. ~

11
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Fig. 1: Illustration of construction enforcing constraints.

6.2 Episode: Illustrative Example

We now know how to ensure that a model can contain enough elements for counting
and hence are able to avoid “out of memory errors” in the course of our model-internal
computation. Next, we describe in detail how to express concept cardinality constraints
and consequently ECboxes polynomially with in-house means of expressive description
logics, requiring just some extra vocabulary.

We first describe the core idea behind our modeling by means of an easy example.
Assume, we would like to implement the constraint

144 |Female| <2+ 3- [Male|

on the set of this volume’s editors, which, of course, can be simplified by subtracting one
on both sides, but we will not do so for the sake of the example. Assume that, by means
of relativization, we have already ensured that as many as needed “silent elements” can
be present in a model. In order to ensure that the constraint is satisfied, we proceed as
follows (aiming at a setting as displayed in Fig. 1, where the silent elements are in the
top line while the “proper elements” can be found in the bottom line): we introduce
several types of left-hand-side roles (denoted LHS _, depicted by solid arrows in the fig-
ure) and right-hand-side roles (denoted RHS_, depicted by dashed arrows in the figure)
and we make sure that every individual in Female has (at least) four outgoing (single-
line) left-hand-side roles, while every individual in Male has (at most) three outgoing
(single-line) right-hand-side roles and any individual not in Male has no such outgoing
roles whatsoever. Also, to account for the left- and right-hand-side constant terms, we
pick one volunteering domain element, say Anni, as the source of one (double-line)
left-hand-side role and of two (double-line) right-hand side roles. Then, we make sure
that every domain element may receive at most one left-hand-side role. Under these
circumstances, the “<” condition can be enforced by requiring that any element receiv-
ing a left-hand-side role must also be receiving a right-hand-side role. This (somewhat
simplified) example will hopefully elucidate the modeling presented in the following.
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6.3 Modulation: General Construction and Proof

After explaining the underlying ideas of our construction, we now provide the general
definition of the technique of eliminating ECboxes from EKBs yielding plain KBs.
We introduce the applied transformation and formally show that it has the announced
properties.

Definition 6 (knowledge base transformation, K*). Let ¢ be the following cardinality
constraint:

n0+n1‘A1‘ +...+nk|Ak| < m0+m1|B1| +...+mg‘Bg|.

Then the Thox T, contains the following axioms (with fresh role names AUX, RHS, LHS!
and — if needed — a fresh individual name o):

T C 3AUX. (Thew 1 =>noLHSY. T) )

A; C >n,LHSL.T for 1<i<k 3)

JLHS: . TM3LHS! .TC L for 0<i<ji<k 4

TLC <L.LHS: .T for 0<i<k (5)

HRHsg.T C L incase mog=0 (6)

JRESY. T C {o} incase mo >0 (7)

3RHS..T C B; for 1<i</t (8)

T C <m,.RHS! for 0<i</t )

Cstrt. M |_| 3LHS! . T C |_| JRHS! . T (10
0<i<k 0<i<e

Given an ECbox &, let Cg be the concept expression obtained from & by replacing
every ¢ in € by Cstrt,, every A by IN, and every V by L. Let Sync(Cstrt,) denote
{3T.Cstrt. C Cstrt.} if the underlying description logic supports the universal role
T and {T C JAUX™ .{o}, JAUX.Cstrt, C VAUX.Cstrt,} otherwise.
Then, we let

Te ={TCCslU U 7. U Sync(Cstrt,). an

¢ from €

Finally, for an EKB K = (A, T,R,E) with K} = (A, T',R,E) let K¥ = (A", T' U
Te, R, 0) be the corresponding transformed KB.

The following observations are immediate from the construction of K¥.
Lemma 4 (syntactic properties of K*) For any EKB K in some description logic L:

1. K* can be computed from K in polynomial time.
2. If L subsumes ALCT Q= and K is an ERKB, then K* is a (plain) L KB.
3. If L subsumes ALCOLQ, then K* is a (plain) L KB.

Next we prove a rather close relationship between the models of K and ¥,

13
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Lemma 5 (semantic properties of K*) For an EKB K in some description logic L,
the following hold:

1.

2.

For every (finite) model J = (A7 ,-7) of K*, the interpretation T = (AL, -T) with
AT =T and - the appropriate restriction of -7 is a (finite) model of K.

For every (finite) countable model T = (AT, -1) of K there is a (finite) countable
model J = (A7 -7 of K such that with AT = T.7 and T is the appropriate
restriction of -7 .

Proof. Let K = (A, T,R,E). We show the two parts consecutively.

1.

To show the first part, assume a (finite) model J = (A7, -7) of K*. We now show
that Z = (AZ, 1) is a model of K. For all Abox, Tbox, and Rbox axioms, satisfac-
tion follows from Lemma 3. Now consider £. We pick an arbitrary § € A7 and let
¢ = {c| § € Cstrt? }. Due to the axiom T C Cg, we know that € is such that
simultaneous satisfaction of all ¢ € € implies satisfaction of £. Hence we proceed
to prove that this is indeed the case. First note that the axioms Sync(Cstrt,) ensure
Cstrt? = A7 forevery ¢ € €. Furthermore, for any ¢ € € of the form

n0—|—n1|A1| —|—...—|—nk\Ak| < m0+m1|81| —|—...+mg|Bg|,

satisfaction of the ¢ by 7 follows from the following three inequalities:

k
i J
no + A |+ .. +ngla]| <D S| (8,0) € LHSL ), )
=0
k S 14 .
D> o1 (6,6) eLHsy | <Y {6 | (¢,0) € RHSIT Y, (%)
1=0 =0
‘ i J
D {61 (6',6) € RESY }| < mo +ma[BY | + ... + me[B]|. %)
1=0

We will now consecutively show each of these statements.
(1) On one hand, the axioms T C gl.LHSl; . T make sure that

{61 (5",0) e Lust”}| = |uasi”].
On the other hand, whenever 1 < i < k, the axiom A; C >n7;LHSﬁ.T ensures
47| n; < LESE |,

while for 7 = 0, the axiom T C EIAUX.}nOLHSS.T enforces that there must be
some & € (>noLHSY.T)7 and consequently

no < |LHSY .
Putting everything together, we obtain

k k k
no+ > nmila?| < S [LEsiT| = S5 ] (¢,6) € Lasi Y|
i=1 =0 =0

as claimed.
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(%) First note that the axioms of the form ILHS! . T 11 HLHS{ T C L ensure
J - J
{6 ] (¢",6) e LHSL”, 0 <i <k} => [{0](&,0) € LHS{™ }|.
i=0

Also, the axiom Cstrt, M| |j<;<, ILHSL . T C | Jo <, FRHSL . T enforces
(51(5,0) ernsi” 0<i<kyC{s](¥,0) erusi”, 0<i<e)
(remembering that Cstrt? = A7) and consequently
{6 | (8,8) e Lusi” 0 <i <k} < {5 ] (¢,6) e ruSI, 0 < i < ¢}].

It remains to note that
¢
{61 (8",6) erusi’, 0<i< e} <Y {5 ] (6',9) € st}
i=0

holds unconditionally, so putting the established correspondences together shows
our claim.
(4) First note that, the axiom JRHSY. T C {o} (or, alternatively, HRHSQ.T C 1lin

J
87

case mg = 0) ensures § = o/ whenever we find (,4’) € RHS?” . But therefrom,

using the axiom T C <m0.RHSS, we can derive
J
|RHSY” | < my.

Likewise, for 1 < i < ¢, we obtain ¢’ € By for each (§’,6) € RHSﬁJ due to the
axiom JRHS..T C B;. Yet, for every such ¢’, at most m; distinct corresponding &
can exist due to the axiom T T <m,;.RHS! and hence

i J
[RHS:” | < |BY| - m;.
Moreover, as projecting will never increase the size of a set, we obtain
{6 | (5",6) € rus'”}| < [RusY|.

Yet then, combining these statements yields
I

0 0

SO0 1 (9',0) e rusiTH < D [RuSET| < mo+ Y milB] |

i=0 i=0 i=1
as claimed.
. Let Z = (AZ, %) be a (finite) countable model of K. We first give a construction
for 7 = (A7,-7) and then show modelhood for K*. Let ny., € N> be the
largest value obtained when evaluating all the left and right hand sides of all the
constraints in €. Then let A7 = AZ U [nyay]. Note that A7 is finite, whenever A7
is. We let -7 coincide with -Z for all individual names, concept names and role
names from K. It remains to define the fresh auxiliary vocabulary of K*. To this
end, let € be the set of cardinality constraints occurring in £ which are satisfied
in Z. Now, pick one ¢’ from AZ and let

15
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o 07 =,
o AUXY = A7 x {§'},
o TI = AT,

new

e Cstrt? = A7 whenever ¢ € € and Cstrt? = () otherwise,
e For any c of the form ng +n1|A1|+. ..+ ng|Ax| < mo+mq|Bi|+. ..+ my|Bel,

let
£ = {0} x[no] U {1}x[ni]xa{ U...U{k}x[ng]xA{ and
Re = {0} x[mo] U {1} x[m1]xBY U... U {£}x[m]xB.

Then we let - : € — [|€|] and - : R, — [|9.|] be bijective enumeration
functions for £, and R.. Now we let

LHS?” = {(9",(0,)%) | j € [mol},

Lusi? = {(6, (i,5,0)%) | 6 € A, j € [na]}. for 1 < i < k,

RHS?” = {(8',(0,)®) | j € [mo]}. and

RES = {(6, (4,5,0)) | 6 € B, j € [my]}, for 1 < i < £,

It is now straightforward to check that by construction, J satisfies all axioms from

Te. As far as the relativized Abox and Tbox axioms and the unchanged Rbox ax-
ioms from /C* are concerned, their satisfaction follows from Lemma 3. ~

With these model correspondences in place, we can now establish the results regarding
preservation of satisfiability and query entailment as well as their complexities.

Theorem 6 (eliminability of ECboxes) Let K be an EKB in some (finitely or at least
countably) first-order expressible description logic L. Then the following hold:

1.
2.
3.

4.

K and K* are (finitely) equisatisfiable.

Given a P2RPQ q, K (finitely) entails q exactly if IC* (finitely) entails ¢*.

If L subsumes ALCT Q-, then the complexities of (finite) satisfiability and (finite)
CQ or P2RPQ entailment for L ERKBs coincide with those of plain L KBs.

If L subsumes ALCOTLQ, then the complexities of (finite) satisfiability and (finite)
CQ or P2RPQ entailment for L EKBs coincide with those of plain L KBs.

Proof. 1. On one hand, given a (finite) model of K, Theorem 2 makes sure that we

2.

3.
4.

can assume it is countable and thus, Item 2 of Lemma 5 provides us with a (finite)
model of K. On the other hand, given a (finite) model of K*, we can invoke Item 1
of Lemma 5 to obtain a (finite) model of K.

We show the equivalent statement that X does not (finitely) entail ¢ exactly if *
does not (finitely) entail ¢*. Consider a (finite) Z with Z = K but Z |~ q. Theorem 2
allows us to assume that Z is countable. Then Item 2 of Lemma 5 ensures that there
is a model of JC* which by construction does not satisfy ¢*. Vice versa, consider a
(finite) J with 7 = K* but J [~ ¢*. Then Item 1 of Lemma 5 provides us with a
(finite) model of IC not satisfying g by construction.

This follows from the two previous items and Lemma 4, Items 1 and 2.

This follows from the two previous items and Lemma 4, Items 1 and 3. o)
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We note that this theorem does not only hold for CQs and P2RPQs, but it easily extends
to all query formalisms where non-satisfaction can be expressed via countable first-
order theories. Among others, this includes all Datalog queries [28].

7 Recapitulation: Results

Theorem 6 can now be put to use by harvesting a number of findings from known
results. We will go through the results announced in Section 4 and discuss their prove-
nance and possible further ramifications.

o Satisfiability and finite satisfiability of SHZ Qbsfehc ERKBs is EXPTIME-complete.
Noting that transitivity can be equisatisfiably removed via box-pushing (along the
lines of [33,29)), yielding ALCHT Qbsfe'f, EXPTIME-completeness for the latter can
be obtained via minor extensions of [33] for arbitrary models and [20] for finite mod-
els. Both also follow from the corresponding result for GC?, the guarded two-variable
fragment as defined by Pratt-Hartmann [23]. Using these results, the application of
standard techniques [11,17,29] allow to establish 2EXPTIME-completeness for finite
and arbitrary satisfiability of SRZQb ERKBs.

e Satisfiability and finite satisfiability of SHOZ QB> EKBs is NEXPTIME-complete.
Again, as laid out in [29], transitivity can be removed preserving satisfiability (yield-
ing ACCHOZL 0B>"), which is just a syntatic variant of C2, the two-variable frag-
ment of first-order logic, for which the respective complexity results were estab-
lished by Pratt-Hartmann [22]. Based on these findings, N2EXPTIME-completeness
of finite and arbitrary satisfiability of SROZQB EKBs is a rather direct conse-
quence [17,29].

e P2RPQ entailment as well as finite CQ entailment from ALCHZL Qbs%elf ERKBs are
2EXPTIME-complete. Note that ALCHT Qbs?elf is a syntactic variant of QCQ, there-
fore 2EXPTIME-completeness of finite entailment of CQs follows from [24], while
P2RPQ entailment is a consequence of [8].

e Entailment of unions of CQs from ALCHOZ Qb EKBs is decidable and coON2EXP-
TIME-hard. This is a consequence of the respective results for plain ALCHOZ Qb
KBs [27,14].

8 Coda: Conclusion

Inspired by previous work on quantitative extensions of ALC driven by Franz [1,5,2,3],
we investigated the possibility of extending the expressivity of the underlying logic in
the presence of global cardinality constraints. Using a novel idea of simulating the car-
dinality information via modeling features readily available in mainstream description
logics, we were able to show that significant complexity-neutral extensions are possi-
ble. Moreover, we laid the formal foundations for adequately dealing with models of
infinite domain size.

There are plenty of avenues for future work. We reiterate, that the logics considered here
are tailored toward “global counting”, whereas “local counting” (that is Presburger con-
straints over individuals’ role successors) is not supported. For example, ALCSCC [1]

17
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would allow us to express that some course is gender-balanced if and only if it has as
many female participants as it has male ones. While this is beyond the capabilities of
any of the logics considered here, the presence of inverses and nominals allows us to
at least enforce that a concrete given course tcs is indeed gender-balanced, using the
following Tbox and ERCbox statements:

MalInC = Male JhasParticipant™.{tcs} (12)
FemInC = Female N JhasParticipant™ .{tcs} (13)
([MalInC| < |[FemInC|) A (|[FemInC| < |[MalInC|) (14)

In fact, we can even go one step further and express that tcs is gender-balenced exactly
if GendBal(tcs) holds as follows:

MalInC = Male N JhasParticipant™.{tcs} (15)
FemInC = Female 1 JhasParticipant™.{tcs} (16)
BalTCS = GendBal M {tcs} (17)

(|BalC|<0 A (|MalInC|+1<|FemInC|V |FemInC|+1<[MalInC|))
V (1<[Balc|) A (|MalInC|<|FemInC| A |[FemInC|<|MalInC|)) (18)

A more thorough investigation about which local counting features can be realized by
global ones using advanced description logic modeling features is clearly an interesting
starting point for future work.

On another note, in the case of reasoning with arbitrary models, it would be very handy
from a modeler’s perspective to have a way of expressing that a concept may have only
finitely many elements. As mentioned before, with such statements, we leave the realms
of first-order logic for good. However, for instance, an inspection of Pratt-Hartmann’s
work on the two-variable fragment of first-order logic with counting strongly suggests
that such “finiteness constraints” can be accommodated at no additional complexity
cost [22,25].

Finally, the reduction presented in this paper could potentially turn out to be of prac-
tical value, since it allows to express elaborate quantitative information by means of
standardized ontology languages, which are supported by existing, highly optimized
reasoning engines [13,30,32]. This having said, this proposal would only work for rea-
soning under the classical (i.e., arbitrary-model) semantics and, admittedly, it is also
rather questionable if existing reasoners would cope well with large values in qualified
number restrictions. Yet, conversely, this work might motivate developers of reason-
ing engines to come up with better implementations as to support statistical and other
quantitative modeling.
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