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abstract. Every normal modal logic L gives rise to the consequence

relation ϕ |=L ψ which holds if, and only if, ψ is true in a world of an
L-model whenever ϕ is true in that world. We consider the following al-

gorithmic problem for L. Given two modal formulas ϕ1 and ϕ2, decide

whether ϕ1∧ϕ2 is a conservative extension of ϕ1 in the sense that whenever
ϕ1 ∧ϕ2 |=L ψ and ψ does not contain propositional variables not occurring

in ϕ1, then ϕ1 |=L ψ. We first prove that the conservativeness problem

is coNExpTime-hard for all modal logics of unbounded width (which have
rooted frames with more than N successors of the root, for any N < ω).

Then we show that this problem is (i) coNExpTime-complete for S5 and K,

(ii) in ExpSpace for S4 and (iii) ExpSpace-complete for GL.3 (the logic of
finite strict linear orders). The proofs for S5 and K use the fact that these

logics have uniform interpolants of exponential size.

1 Introduction

A theory T2 is said to be a conservative extension of a theory T1 if any
consequence of T2, which only uses symbols from T1, is a consequence of
T1 as well. This notion plays an important role in mathematical logic and
the foundations of mathematics. For example, the result that the Bernays–
Gödel set theory BG (or BGC) is a conservative extension of the Zermelo–
Fraenkel set theory ZF (or ZFC) means the relative consistency of BG(C):
if ZF(C) is consistent then BG(C) is also consistent.

Rather surprisingly, in modal logic the notion of conservative extension
has hardly been investigated. Indeed, modal theories—similarly to first-
order theories—have become fundamental tools for representing various do-
mains. For example, in epistemic logic, modal theories represent the (pos-
sibly introspective) knowledge of an agent; in temporal logic, theories serve
as specifications of concurrent systems; in description logic, theories (called
TBoxes) are ontologies used to fix the terminology of an application do-
main, etc. In all these examples, the notion of a conservative extension
can be used to compare different theories and derive important information
about their relation to each other: for instance, a temporal specification T2

can be regarded as a ‘safe’ refinement of another temporal specification T1

if, and only if, T2 is a conservative extension of T1 (see, e.g., [14]). A de-
scription logic ontology T2 is a ‘safe’ extension of another description logic
ontology T1 if, and only if, T2 is a conservative extension of T1 (see [1, 5]).

One of the main reasons for using modal logic instead of full first-order
logic in the applications above is that reasoning in modal logic is often
decidable. To employ the notion of conservative extension for modal logics,
it is therefore crucial to analyse the algorithmic problem of deciding whether
one modal theory is a conservative extension of another modal theory.
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In this paper, we investigate the notion of conservative extension for a
number of basic modal logics and, in particular, determine the computational
complexity of the conservativeness problem for these logics.

In modal logic, the notion of conservative extension depends on the conse-
quence relation we are interested in. Of particular importance are the ‘local
consequence relation’ according to which a formula ϕ follows from a formula
ψ if ϕ is true in every world where ψ is true, and the ‘global consequence
relation’ according to which ϕ follows from ψ if ϕ is true everywhere in a
model whenever ψ is true everywhere in this model (see, e.g., [9]). In this
paper, we concentrate on the local consequence relation. Some information
about the global consequence relation is provided in the final section.

We begin by showing that deciding non-conservativeness is NExpTime-
hard for all modal logics of unbounded width (which have rooted frames
with more than N successors of the root, for any N < ω). This result
covers almost all standard modal logics, for example, K, S4, S5, and S4.3.
Thus, deciding conservativeness turns out to be much harder than decid-
ing satisfiability. We also observe that for tabular modal logics (see, e.g.,
[2, 17]) non-conservativeness is NPNP-complete, which coincides with the
complexity of non-conservativeness in classical propositional logic [10]. The
proof of this result and many other proofs in this paper are based on some
elementary facts connecting conservativeness with bisimulations.

Next, to warm up, we consider the modal logic S5 and show that in
this case non-conservativeness is NExpTime-complete by proving that one
can construct a uniform interpolant of exponential size in exponential time
(in the size of a given formula) and using the fact that S5-satisfiability is
decidable in NP. This proof is based on a general result connecting conser-
vativeness with uniform interpolation (see [11, 16] for a discussion of this
variant of interpolation).

A slightly different technique is used to prove that for K non-conservati-
veness is NExpTime-complete. Here we employ a result from [13] according
to which there exist uniform interpolants for K of (only) exponential size,
and then provide a direct algorithm deciding non-conservativeness without
computing the uniform interpolant.

After that we consider the non-conservativeness problem for S4 and es-
tablish an ExpSpace upper bound. As this upper bound (probably) does
not match the NExpTime lower bound, we leave the exact complexity as
an open problem. The logic S4 does not have uniform interpolation [7], and
therefore a ‘direct’ algorithm had to be found. Similar arguments show that
non-conservativeness is decidable in ExpSpace for K4, Grz and GL.

Finally, we prove that conservativeness is ExpSpace-complete for GL.3,
the logic of finite strict linear orders. Here we again give direct proofs for
both lower and upper bounds. Similar proofs show ExpSpace-completeness
of conservativeness for K4.3 and S4.3.

Because of space limit, in many cases we had to move proofs to the
appendix or completely omit them; the reader can find all details in [6].
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2 Preliminaries

We consider the language ML of propositional unimodal logic with count-
ably many propositional variables p1, p2, . . . , the Booleans ∧ and ¬, and the
modal operator 2. Other Boolean operators and the modal diamond 3 are
defined as usual. Given an ML-formula ϕ, we denote by var(ϕ) the set of
propositional variables occurring in ϕ.

A (Kripke) frame F = (W,R) is a nonempty set W of points (or worlds)
with a binary relation R on it. A (Kripke) model M = (F,V) consists of
a frame and a valuation V giving truth-values to propositional variables in
the worlds of W . The satisfaction relation ‘(M, w) |= ϕ’ between pointed
models (M, w) (where w ∈W ) and ML-formulas ϕ is defined as usual. (If
M is clear from the context, instead of (M, w) |= ϕ we often write w |= ϕ.)
A formula ϕ is said to be valid in a frame F if (M, w) |= ϕ holds for every
model M based on F and every point w in it.

Consider now a Kripke complete normal modal logic L (i.e., a subset L
of ML for which there exists a class F of frames such that L is the set of
all formulas that are valid in every F ∈ F). The local consequence relation
‘ϕ1 |=L ϕ2’ for L is defined as follows: ϕ1 |=L ϕ2 holds if, and only if, for
every pointed model (M, w) based on a frame for L, we have (M, w) |= ϕ2

whenever (M, w) |= ϕ1.
Given a Kripke complete normal modal logic L and two ML-formulas

ϕ1 and ϕ2, we say that ϕ1 ∧ϕ2 is a conservative extension of ϕ1 in L if, for
every ψ ∈ML with var(ψ) ⊆ var(ϕ1 ), ϕ1 ∧ ϕ2 |=L ψ implies ϕ1 |=L ψ.

If ϕ1 ∧ ϕ2 is not a conservative extension of ϕ1 in L, then there is a
formula ψ with var(ψ) ⊆ var(ϕ1 ) such that ϕ1 ∧ψ is satisfiable in a model
based on a frame for L, while ϕ1 ∧ ϕ2 ∧ ψ is not satisfiable in any such
model. In this case we call ψ a (non-conservativeness) witness formula (or
simply a witness) for the pair (ϕ1, ϕ2) in L.

The notion of conservative extension turns out to be closely connected
with the notion of uniform interpolation. We remind the reader that a
modal logic L is said to have uniform interpolation if, for every formula ϕ
and every finite set p of variables, there exists a formula ∃Lp.ϕ such that

• var(∃Lp.ϕ) ⊆ var(ϕ) \ p,

• ϕ |=L ∃Lp.ϕ, and

• ϕ |=L ψ implies ∃Lp.ϕ |=L ψ, for every formula ψ with var(ψ)∩p = ∅.

LEMMA 1. If L has uniform interpolation, then ϕ1 ∧ ϕ2 is a conservative
extension of ϕ1 in L iff ϕ1 |=L ∃Lp.(ϕ1∧ϕ2), where p = var(ϕ2)\var(ϕ1).

Proof. Suppose that ϕ1 ∧ϕ2 is not a conservative extension of ϕ1. Take
a formula ψ with var(ψ) ⊆ var(ϕ1 ) such that ϕ1 ∧ ϕ2 |=L ψ and ϕ1 6|=L ψ.
Then we must have ∃Lp.(ϕ1 ∧ϕ2) |=L ψ, from which ϕ1 6|=L ∃Lp.(ϕ1 ∧ϕ2).

Conversely, suppose ϕ1 6|=L ∃Lp.(ϕ1 ∧ ϕ2). But then ϕ1 ∧ ϕ2 cannot be
a conservative extension of ϕ1 because ϕ1 ∧ ϕ2 |=L ∃p.(ϕ1 ∧ ϕ2). ❏
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This lemma suggests the following procedure for deciding the conserva-
tiveness problem for a modal logic L with uniform interpolation: given ϕ1

and ϕ2, construct ∃Lp.(ϕ1∧ϕ2) with p = var(ϕ2)\var(ϕ1) and then check
whether ϕ1 |=L ∃Lp.(ϕ1 ∧ ϕ2). Below, we will follow this approach for the
modal logic S5. Many standard modal logics, such as S4, K4 or S4.3, do
not have uniform interpolation, however [7]. In these cases we will provide
direct proofs.

An important notion that can be used for analysing conservative exten-
sions (as well as uniform interpolation) is the standard bisimulation between
Kripke models [8]: for a finite set p of propositional variables and two
models (M1, w1) and (M2, w2) a p-bisimulation ∼p between (M1, w1) and
(M2, w2) is a relation between the two models satisfying the standard con-
ditions for bisimulations for the variables in p. If (M1, w1) and (M2, w2) are
p-bisimilar, then we write (M1, w1) �p (M2, w2). The first important prop-
erty of bisimilar models is that if (M1, w1) �p (M2, w2) then (M1, w1) |= ϕ
iff (M2, w2) |= ϕ, for all formulas ϕ with var(ϕ) ⊆ p. To discuss the second
important property, we remind the reader that a frame F = (W,R) (and
a model based on F) is said to be m-transitive, for m ≥ 1, if whenever
uRx1R . . . RxmRv then there exist k < m and points y1, . . . , yk ∈ W such
that uRy1R . . . RykRv (in this sense, standard transitivity is 1-transitivity).
A Kripke complete normal modal logic L is called m-transitive if the frames
validating it are m-transitive.

We will be using the following property of m-transitive models: for every
finite set p of variables and every finite pointed m-transitive model (M, w),
one can construct a formula χp(M, w) containing only variables from p such
that, for every pointed m-transitive model (M′, w′),

(M′, w′) |= χp(M, w) iff (M, w) �p (M′, w′).

χp(M, w) is called the characteristic formula for (M, w) and p. Notice
that χp(M, w) is uniquely determined modulo equivalence in the minimal
m-transitive modal logic.

LEMMA 2. For every m-transitive modal logic L with the finite model prop-
erty, the following conditions are equivalent:

• ϕ1 ∧ ϕ2 is a conservative extension of ϕ1 in L,

• for every finite pointed model (M, w) based on a frame for L, if (M, w) |=
ϕ1 then there exists a finite var(ϕ1 )-bisimilar model (M′, w′) based on
a frame for L and such that (M′, w′) |= ϕ2.

Moreover, if ϕ1 ∧ ϕ2 is not a conservative extension of ϕ1 in L, then
there exists a finite pointed model (M, w) based on a frame for L such that
χvar(ϕ1 )(M, w) is a witness for (ϕ1, ϕ2) in L.

As a first application of Lemma 2, one can prove the following result for
tabular modal logics. (Recall that a modal logic L is called tabular if L is
the logic of a finite set of finite frames [2].)
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THEOREM 3. The non-conservativeness problem for each tabular logic L
is NPNP-complete.

A proof can be found in the full paper [6].

3 The NExpTime lower bound

Say that a Kripke complete modal logic L is of unbounded width if, for every
N < ω, there exist a Kripke frame F = (W,R) for L and a point w ∈W such
that the number of R-successors of w is at least N , or |{v ∈W | wRv}| ≥ N ,
to be more precise. Many standard modal logics such as K, K4, S4, GL,
S4.3, S5 are clearly of unbounded width.

Given a model M and a set q of variables, we call a model M′ a q-
variant of M if M′ can be obtained from M by changing the valuation of
some variables in q (but nothing else).

THEOREM 4. Let L be a Kripke complete normal modal logic of unbounded
width. Then the conservativeness problem for L is coNExpTime-hard.

Proof. The proof is by reduction of the complement of the well-known
NExpTime-complete 2n × 2n-bounded tiling problem (see, e.g., [15]): given
n < ω, a finite set T of tile types and a t0 ∈ T , decide whether T can tile the
2n × 2n grid in such a way that t0 is placed onto (0, 0). More precisely, let
H and V be the binary relations on T ×T such that (t, t′) ∈ H ((t, t′) ∈ V )
iff the colours of the right (upper) edge of t and the left (bottom) edge of
t′ coincide. Then T is said to tile the 2n × 2n grid if there is a function
τ : 2n × 2n → T such that

• if τ(i, j) = t and τ(i + 1, j) = t′ then (t, t′) ∈ H, for all i < 2n − 1,
j < 2n,

• if τ(i, j) = t and τ(i, j + 1) = t′ then (t, t′) ∈ V , for all i < 2n,
j < 2n − 1,

• τ(0, 0) = t0.

Given a set T = {t1, . . . , tm} of tile types, we are going to construct two
formulas ϕ1 and ϕ2 such that (i) the lengths |ϕ1| and |ϕ2| of ϕ1 and ϕ2 are
polynomial in m and n, and (ii) ϕ1 ∧ ϕ2 is a conservative extension of ϕ1

in L iff T cannot tile the 2n × 2n grid in such a way that t0 is placed onto
(0, 0).

To construct ϕ1 and ϕ2, we will use the following propositional variables

• p = {p1, . . . , pn} and q = {q1, . . . , qn} to represent the points (i, j) of
the 2n× 2n grid in models by means of the standard binary encoding;
for example, (1, 2) is represented by a point w of some model iff

w |= p1 ∧ ¬p2 ∧ · · · ∧ ¬pn and w |= ¬q1 ∧ q2 ∧ ¬q3 ∧ · · · ∧ ¬qn

(we will call a p-literal any conjunction ¬1p1 ∧ · · · ∧ ¬npn where each
¬i is either ¬ or blank),
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• t = {t1, . . . , tm}: w |= ti will mean that the grid point represented by
w is covered by a tile of type ti,

• the set A of auxiliary variables P1, . . . , Pn, Q1, . . . , Qn, T1, . . . , Tm;
these variables will occur in ϕ2, but not in ϕ1.

The formula

ϕ1 = (¬p1 ∧ · · · ∧ ¬pn) ∧ (¬q1 ∧ · · · ∧ ¬qn) ∧ t0 ∧2

m∨
i=1

ti.

is supposed to say that if (M, w) |= ϕ1 then w represents (0, 0), which is
covered by t0, and each point of the grid represented by some R-successor
of w is covered by at least one tile of a type from T .

We say that a pointed model (M, w) represents a proper tiling of the
2n × 2n grid by T if (M, w) |= ρT ,n, where ρT ,n is the conjunction of the
following formulas:

3+(l1 ∧ l2),

3+(l1 ∧ l2 ∧ t) → 2+
(
l1 ∧ l2 → (t ∧ ¬

∨
t′ 6=t

t′)
)
,

3+(l1 ∧ l2 ∧ t) → 3+
∨

(t,t′)∈H

(
(l1 + 1) ∧ l2 ∧ t′)

)
, for l1 < 2n − 1

3+(l1 ∧ l2 ∧ t) → 3+
∨

(t,t′)∈V

(
l1 ∧ (l2 + 1) ∧ t′

)
, for l2 < 2n − 1

for all possible p-literals l1, q-literals l2, and t, t′ ∈ t. Here we use the
abbreviations 2+ψ = ψ∧2ψ, 3+ψ = ψ∨3ψ, and if li represents a number
k < 2n − 1 then li + 1 represents k + 1.

The formula ϕ2 to be constructed below will have the property that, for
every model M based on a frame (W,R) with (M, w) |= ϕ1, the following
conditions are equivalent:

1. there is an A-variant M′ of M such that (M′, w) |= ϕ2,

2. (M, w) does not represent a proper tiling of the 2n × 2n grid by T .

Suppose for the moment that we have managed to construct such a formula
ϕ2 of length polynomial in m and n. We claim then that ϕ1 ∧ ϕ2 is a
conservative extension of ϕ1 in L iff T cannot tile the 2n × 2n grid in such
a way that t0 is placed onto (0, 0). Indeed, assume first that T cannot tile
the grid in this way, and consider any model M based on a frame for L and
satisfying ϕ1 at its root w. Then (M, w) cannot represent a proper tiling of
the grid by means of T , and so we can find an A-variant M′ of M such that
(M′, w) |= ϕ2. Clearly, this means that ϕ1 ∧ ϕ2 is a conservative extension
of ϕ1 in L.

Now suppose that T can tile the grid. Clearly, we can satisfy ϕ1 ∧ ρT ,n
in a model based on a frame for L. But then ρT ,n is a witness for (ϕ1, ϕ2)
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in L because a model (M, w) with (M, w) |= ϕ1 ∧ ϕ2 ∧ ρT ,n would trivially
satisfy the former condition above but not the latter.

Now we construct the required formula ϕ2. How to ensure that a point
and its successors do not represent a tiling properly? There can be three
different types of defects:

1. two different tiles cover the same point or two different tiles cover two
points representing the same pair (i, j) on the grid,

2. there is a point representing (i, j) but here is no point representing
(i+1, j), for i < 2n−1, or no point representing (i, j+1), for j < 2n−1,

3. colour mismatch.

The formula ϕ2 (with the additional variables A) expressing the existence
of at least one of these defects, as well as the remaining part of the proof
can be found in the appendix. ❏

4 The upper bound for S5

It is well known that the modal logic S5 has uniform interpolation. One can
easily construct a uniform interpolant ∃S5q.ϕ of double exponential size in
|ϕ| using the fact that every formula in n variables is equivalent in S5 to
a formula of length 22O(n)

. It follows from Lemma 1 and the decidability
of S5 in coNP that the non-conservativeness problem for S5 is decidable in
non-deterministic 2ExpTime.

In this section, we improve this bound by showing that S5 has uniform
interpolants of exponential size (which can be constructed in exponential
time). Thus, we obtain, by Lemma 1 and Theorem 4, that the conserva-
tiveness problem for S5 is coNExpTime-complete.

Suppose ϕ(p,q) with disjoint p and q and |p ∪ q| = n is given. The
p-literal given by a model M and a point x in it will be denoted by lM(x)
or simply l(x) if M is understood. Thus,

l(x) =
∧
{pi | (M, x) |= pi} ∪ {¬pi | (M, x) 6|= pi}.

Denote by M(ϕ) the number of occurrences of the modal operator 2 in ϕ
plus one.

A uniform interpolant ∃S5q.ϕ of size at most exponential in |ϕ| can be
constructed in the following way. First we take the set of all pairwise non-
isomorphic rooted S5-models over p and q1 with at most M(ϕ) worlds and
such that no two distinct worlds in a model validate precisely the same
variables from p and q. The total number of such models is not exceed-
ing 22n·M(ϕ). Then we partition this set of models into (disjoint) subsets,
say K1, . . . ,Km, such that all models from the same Ki validate the same
subformulas of ϕ starting with 2 (recall that we use 3 as an abbreviation).

1This means that we restrict valuations in models to the variables in p and q.
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For each M ∈ Ki based on a frame (W,R) and each point x in M with
x |= ϕ, let

χM(x) = l(x) ∧
∧

w∈W\{x}

3l(w),

and let ψi be the disjunction of all such χM(x), for all M ∈ Ki and x in M
with x |= ϕ. Denote by Ti the set of all p-literals that are not satisfied in
any model from Ki, and set

χi = ψi ∧
∧
l∈Ti

¬3l , ∃S5q.ϕ =
m∨
i=1

χi.

Clearly, the size of ∃S5q.ϕ is at most exponential in the size of ϕ, and it
can be constructed in exponential time. The proof of the following theorem
can be found in the appendix.

THEOREM 5. ∃S5q.ϕ is a uniform interpolant for ϕ in S5.

5 The upper bound for K

As in the case of S5, it is known [16, 4] that the modal logic K has uni-
form interpolation, with a uniform interpolant for a given formula and set
of variables being constructed in an effective way. Moreover, it has been
recently shown in [13] that one can construct a uniform interpolant ∃Kq.ϕ
for ϕ in such a way that the size of ∃Kq.ϕ is at most exponential in the size
|ϕ| of ϕ — 2p(|ϕ|) for a certain polynomial p which does not depend on ϕ,
to be more exact, — and its modal depth does not exceed the modal depth
of ϕ.

Using this result, the fact that the decision problem for K is PSpace-
complete, and the algorithm from Section 2, one can obtain an algorithm
deciding the conservativeness problem for K using exponential space in
the size of the input formulas. In this section we improve this bound by
providing a coNExpTime algorithm. Thus, we obtain

THEOREM 6. The conservativeness problem for K is coNExpTime-comp-
lete.

The coNExpTime lower bound follows from Theorem 4. Here we present
a nondeterministic exponential time algorithm for deciding the complement
of the conservativeness problem for K. Suppose that we are given formulas
ϕ1(p) and ϕ2(p,q) with disjoint p = {p1, . . . , pn} and q = {q1, . . . , qn}.
Denote by sub(ϕi), i = 1, 2, the closure under single negation of the set of
all subformulas of ϕi. As usual, by a ϕi-type t we mean a Boolean-closed
subset of sub(ϕi), i.e.,

• ψ ∈ t iff ¬ψ /∈ t, for every ¬ψ ∈ sub(ϕi),

• ψ ∧ χ ∈ t iff ψ ∈ t and χ ∈ t, for every ψ ∧ χ ∈ sub(ϕi).

Denote by tpi the set of all types for ϕi; clearly, |tpi| ≤ 2|ϕi|. Let d be
the maximum of the modal depths of ϕ1 and ϕ2. Now, the algorithm is
presented in Fig. 1.
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Input: formulas ϕ1(p) and ϕ2(p,q).

1. Guess a Kripke model M over the variables in p such that

• M is based on an irreflexive intransitive tree F = (W,R),

• the depth of F is ≤ d,

• the branching factor of F is bounded by N = |ϕ2| · 2p(|ϕ1∧ϕ2|).

2. Check whether (M, r) |= ϕ1, where r is the root of M. If this is not the
case, return ‘ϕ1 ∧ ϕ2 is a conservative extension of ϕ1.’ Else

3. label the points x of F with subsets `(x) of tp2 by induction starting from
the leaves as follows:

• If x ∈ W is a leaf of F, then `(x) consists of all types t ∈ tp2 such
that pi ∈ t iff x |= pi, for all pi ∈ p, and t contains all formulas of
the form 2ψ ∈ sub(ϕ2).

• Suppose now that x ∈W is not a leaf and all R-successors of x have
already been labelled. Consider a type t ∈ tp2 and let 2ϑ1, . . . ,2ϑm

be all the box formulas in t and ¬2ψ1, . . . ,¬2ψk be all the negated
box formulas in t. Then t ∈ `(x) iff the following conditions hold:

(a) pi ∈ t iff x |= pi, for all pi ∈ p,

(b) for each R-successor y of x, there exists a t′ ∈ `(y) with
{ϑ1, . . . , ϑm} ⊆ t′,

(c) there are pairwise distinct R-successors y1, . . . , yk of x and types
t1 ∈ `(y1), . . . , tk ∈ `(yk) such that {¬ψi, ϑ1, . . . , ϑm} ⊆ ti, for
1 ≤ i ≤ k.

4. Check whether there is a t ∈ `(r) such that ϕ2 ∈ t. If this is the case
return ‘ϕ1 ∧ ϕ2 is a conservative extension of ϕ1’; otherwise return ‘it is
not.’

Figure 1. Deciding non-conservativeness for K.

LEMMA 7. The algorithm in Fig. 1 returns ‘ϕ1 ∧ ϕ2 is a conservative
extension of ϕ1’ iff this is indeed the case.

A proof of this lemma can be found in the appendix. To complete the
proof of Theorem 6, we note that the algorithm above runs in exponential
time: the guessed model M is at most exponentially large and checking
whether ϕ1 is true in r can be done in exponential time. It remains to
consider the `(·) labelling procedure. We have to label |W | points—i.e.,
at most exponentially many. For each point x, we have to check for |tp2|
(exponentially) many types whether or not they should be included in `(x).
Condition (a) can be checked in polynomial time. Condition (b) can be
checked in exponential time, since there are at most exponentially many
successors in M. For condition (c) we have to consider all k-tuples of pairs
(y, t) with y a successor of x and t ∈ `(y). It is clear that there are at most
exponentially many such tuples.
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6 The upper bound for S4

In this section we present an algorithm deciding the conservativeness prob-
lem for S4 in ExpSpace in the size of the input formulas.

Before proceeding to the technical details, we remind the reader that
Kripke models for S4 are based on quasi-orders F = (W,R), that is, R
is transitive and reflexive. A subset C ⊆ W is called a cluster in F if
C = {y ∈W | xRy & yRx} for some x ∈W ; in this case we also say that C
is the cluster generated by x and denote it by C(x). Recall that every rooted
model for S4 is a p-morphic image of a model based on a tree of clusters,
that is, a rooted quasi-order (W,R) such that, for all x, y, z ∈W , if xRz and
yRz, then either xRy or yRx or C(x) = C(y). Without loss of generality we
assume in this section that all our models are based on finite trees of clusters.
Given a quasi-order F = (W,R), we say that a cluster C(x), for x ∈ W , is
an immediate strict predecessor of a cluster C(y) if xRy, C(x) 6= C(y) and
whenever xRzRy then either C(z) = C(x) or C(z) = C(y). By the depth of
F we understand the length n of the longest sequence C(x1), . . . , C(xn) of
clusters in F such that C(xi) is an immediate strict predecessor of C(xi+1).
A point y is a strict successor of a point x iff xRy and C(x) 6= C(y). The
branching factor of F is the maximal number of immediate strict successor
clusters of a cluster in F.

Suppose that we are given two formulas ϕ1 and ϕ2. The central role in
our algorithm will be played by the following notion of a realisable triple
for ϕ1, ϕ2. Consider a triple t = (t,Γ,∆) where t is a ϕ1-type and Γ, ∆ are
sets of ϕ1 ∧ ϕ2-types. We call t realisable if there exists a pointed model
(M, x) based on a tree of clusters with root x such that

• t = t1M(x) (where, as before, t1M(x) = {ψ ∈ sub(ϕ1) | (M, x) |= ψ}),

• Γ is the set of all ϕ1 ∧ ϕ2-types s such that
∧
σ∈s σ ∧ χvar(ϕ1 )(M, x)

is satisfiable,

• ∆ is the set of all ϕ1 ∧ ϕ2-types s for which there exists a point y in
M such that

∧
σ∈s σ ∧ χvar(ϕ1 )(M, y) is satisfiable. (In what follows

we will often not distinguish between the type t and the conjunction∧
σ∈t σ, and write, for example, t ∧ χ instead of

∧
σ∈t σ ∧ χ.)

In this case we say that t = (t,Γ,∆) is realised by (M, x). Observe that if
(t,Γ,∆) is realisable, then Γ ⊆ ∆ and, as follows from the main property
of characteristic formulas and bisimulations, t ⊆ s for every s ∈ Γ. The
meaning of realisable triples will become clear from the following lemma.

LEMMA 8. The following two conditions are equivalent for any formulas
ϕ1 and ϕ2:

(1) ϕ1 ∧ ϕ2 is not conservative extension of ϕ1,

(2) there exists a realisable triple t = (t,Γ,∆) (for ϕ1, ϕ1) such that ϕ1 ∈ t
but ϕ1 ∧ ϕ2 /∈ s for any s ∈ Γ.
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Moreover, for any finite model (M, x) based on a tree of clusters, the formula
χvar(ϕ1 )(M, x) is a witness for (ϕ1, ϕ2) iff the triple t realised by (M, x)
satisfies condition (2).

We first use the notion of realisable triple to show that whenever ϕ1∧ϕ2 is
not a conservative extension of ϕ1, then there exists a witness χvar(ϕ1)(M, x)
of a certain bounded size. First, with every realisable triple t = (t,Γ,∆) we
associate the set

Φt = {{2ψ1, . . . ,2ψk} ⊆ sub(ϕ1 ∧ ϕ2) | ∀s ∈ Γ {2ψ1, . . . ,2ψk} 6⊆ s}.

LEMMA 9. For every realisable triple t = (t,Γ,∆) for ϕ1, ϕ2, there is a
realisable triple t′ = (t,Γ′,∆′) such that Γ ⊇ Γ′, ∆ ⊇ ∆′, and t′ can be
realised in a model M′ based on a tree of clusters F′ such that

• each cluster in F′ contains at most 2|ϕ1| points,

• the branching factor of F′ is bounded by 2|ϕ1∧ϕ2|,

• the depth of F′ is bounded by 1 + 2|ϕ1∧ϕ2|.

Moreover, for any two points x, y such that y is a strict successor of x in
F′ and x is not in the root cluster of F′, Φty ( Φtx , for the triples tx and ty
realised by (M′, x) and (M′, y), respectively.

A sketch of a proof is presented in the appendix, and all details are in
[6]. We are now in a position to present a NExpSpace algorithm deciding
the non-conservativeness problem for S4. The ExpSpace upper bound is
then obtained from the fact that NExpSpace = ExpSpace. To formulate
the algorithm, we require the following definition. Let R be some set of
realisable triples. We say that a triple t is obtained in one step from R if
there exists a pointed model (M, w) based on a tree of clusters with root w
such that

(a) (M, w) realises t,

(b) for every strict immediate successor C(y) of C(w) in M, there is some
x ∈ C(y) such that the triple realised by (M, x) belongs to R,

(c) every triple from R is realised by (M, y), for some strict immediate
successor C(y) of C(w).

The algorithm is shown in Fig. 2; it uses the procedure realise described in
Fig. 3.

The following lemma shows that this ‘algorithm’ can be refined in such
a way that it indeed runs in ExpSpace. (A proof can be found in [6]).

LEMMA 10. (i) It can be decided in ExpSpace (in the size of ϕ1, ϕ2)
whether a triple (t,Γ,∆) is realisable in a finite pointed model (M, w) based
on a cluster. (ii) It is decidable in ExpSpace (in the size of ϕ1, ϕ2) whether
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Input: formulas ϕ1, ϕ2.

1. Choose, non-deterministically, a triple (t,Γ,∆), where t is a ϕ1-type con-
taining ϕ1 and Γ,∆ are sets of ϕ1 ∧ ϕ2-types such that ϕ1 ∧ ϕ2 6∈ s for
any s ∈ Γ.

2. Return ‘ϕ1 ∧ ϕ2 is not a conservative extension of ϕ1’ iff realise0(t,Γ,∆)
returns ‘true.’

Figure 2. Deciding non-conservativeness for S4.

Input: a triple t = (t,Γ,∆), where t is a ϕ1-type and Γ,∆ are sets of ϕ1 ∧ ϕ2-
types.

realise(t) returns ‘true’ iff t is realisable in a pointed model based on a cluster or
there exists a set R of triples with |R| ≤ 2|ϕ1∧ϕ2| such that

(1) for all t′ ∈ R, Φt′ ( Φt,

(2) for all t′ ∈ R, realise(t′) returns ‘true,’

(3) t is obtained in one step from R.

The procedure realise0 is defined in the same way as realise with the exception

that condition (1) is omitted. (In particular, it still calls realise in (2)).

Figure 3. Procedures realise(t,Γ,∆) and realise0(t,Γ,∆).

a triple is obtained in one step from a set R of triples of cardinality not
exceeding 2|ϕ1∧ϕ2|.

We can now analyse the algorithm in Fig. 2. By Lemma 10 and condi-
tion (1) of the procedure realise, the procedures realise and realise0 always
terminate and require exponential space only.

Suppose that ϕ1∧ϕ2 is not a conservative extension of ϕ1. Then there is
a realisable triple (t,Γ,∆) such that ϕ1 ∈ t but ϕ1 ∧ ϕ2 6∈ s, for any s ∈ Γ.
Take a pointed model (M, w) with the properties of Lemma 9 which realises
a t′ = (t,Γ′,∆′) with Γ′ ⊆ Γ and ∆′ ⊆ ∆. Now, let the algorithm in Fig. 2
guess the triple t′. Then it obviously returns ‘ϕ1 ∧ ϕ2 is not a conservative
extension of ϕ1.’ Observe that we start with the procedure realise0 rather
than realise because we have not proved that Φt′ ) Φt′′ for every triple t′′

realised in a strict successor of w.
In conclusion, we obtain:

THEOREM 11. The conservativeness problem for S4 is decidable in Ex-
pSpace.

7 Conservative extensions in GL.3

Recall that the set of finite rooted frames for GL.3 coincides with the set
of finite strict linear orders (W,R). We are going to show the following

THEOREM 12. The conservativeness problem for GL.3 is ExpSpace-
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complete.

In what follows we will use the observation that for models based on
strict linear orders, every p-bisimulation between (M, w) and (M′, w′) is an
isomorphism between the submodels of these models generated by w and
w′, respectively, and restricted to the variables from p. To formulate the
decision procedure we require the notion of a realisable pair: a pair (t,Γ),
where t is a ϕ1-type t and Γ is a set of ϕ1 ∧ ϕ2-types, is said to be realised
in a pointed model (M, w) if

• (M, w) |= t and

• Γ is the set of ϕ1∧ϕ2-types s such that s∧χvar(ϕ1)(M, w) is satisfiable
(in a finite model for GL.3).

LEMMA 13. ϕ1∧ϕ2 is not a conservative extension of ϕ1 in GL.3 iff there
exists a pointed model (M, w) based on a strict linear order such that

• for the pair (t,Γ) realised by (M, w), ϕ1 ∈ t and ϕ1 ∧ ϕ2 6∈ s, for any
s ∈ Γ,

• for any two points x 6= y in M, the pair realised by (M, x) is different
from the pair realised by (M, y).

In particular, the length of the strict linear order underlying M does not
exceed 22|ϕ1∧ϕ2| .

We say that a pair of types (t, t′) is suitable if

• 2ψ ∈ t implies ψ,2ψ ∈ t′, and

• ¬2ψ ∈ t implies ¬ψ ∈ t′ or ¬2ψ ∈ t′.

The non-deterministic algorithm deciding non-conservativeness in GL.3
is shown in Fig. 4. Clearly, this algorithms requires exponential space only.
Using the fact that NExpSpace = ExpSpace, we obtain an ExpSpace
algorithm. The correctness of this algorithm follows from Lemma 13.

ExpSpace-hardness of the conservativeness problem for GL.3 is proved
by simulating computations of Turing machines M = (Q,Σ,Γ, q0,∆) that
solve an ExpSpace-hard problem and consume at most 2n tape cells if
started on an input of length n.

Let w = a0 · · · an−1 ∈ Σ∗ be an input to M. In [6], we construct formulas
ϕ1 and ϕ2 (depending on M and w) such that ϕ1 ∧ ϕ2 is not a conserva-
tive extension of ϕ1 if, and only if, M does accept w. More precisely, we
construct ϕ1 and ϕ2 in such a way that, if ψ is a witness for (ϕ1, ϕ2), then
rooted models of ϕ1 ∧ ψ describe an accepting computation of M on w.
In these models, each point represents a tape cell of a configuration of M,
and moving to the immediate successor of a point means moving to the
next tape cell in the same configuration, or, if we are already at the end of
the configuration, moving to the first tape cell of a successor configuration.
Such models will have depth m := 2n · 22n

since the length of computations
is bounded by 22n

.
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Input: formulas ϕ1, ϕ2.

1. Choose, non-deterministically, a pair (t,Γ), where t is a ϕ1-type containing
ϕ1 and Γ is a set of ϕ1 ∧ ϕ2-types such that t ⊆ s for all s ∈ Γ and
ϕ1 ∧ ϕ2 6∈ s for any s ∈ Γ.

2. Call real(t,Γ, 22|ϕ1∧ϕ2|
).

Definition of procedure real(t,Γ, n) (where n is a natural number coded in bi-
nary):

1. If no s in Γ contains a formula of the form ¬2ψ, then return ‘ϕ1 ∧ ϕ2 is
not a conservative extension of ϕ1’ and stop. Else,

2. if n = 0, then return ‘ϕ1 ∧ ϕ2 is a conservative extension of ϕ1’ and stop.
Else,

3. choose, non-deterministically, a pair (t′,Γ′), where t′ is a ϕ1-type and Γ′ is
a set of ϕ1∧ϕ2-types. Check whether (t′,Γ′) has the following properties:

– t′ ⊆ s′, for all s′ ∈ Γ,

– (t, t′) is a suitable pair,

– for every s ∈ Γ, there exists s′ ∈ Γ′ such that (s, s′) is a suitable
pair,

– for each ϕ1 ∧ ϕ2-type s 6∈ Γ, t 6⊆ s or there is no s′ ∈ Γ′ such that
(s, s′) is a suitable pair.

4. If (t′,Γ′) does not have these properties, return ‘ϕ1 ∧ϕ2 is a conservative
extension of ϕ1’ and stop. Else,

5. set n := n− 1.

6. Call real(t′,Γ′, n).

Figure 4. Deciding non-conservativeness for GL.3.

8 Discussion

We have investigated the complexity of the conservativeness problem for the
local consequence relation of a number of basic modal logics. One interesting
conclusion is that the complexity of deciding conservativeness is not mono-
tonically related to the complexity of the logic in question: for example,
the satisfiability problem is NP-complete for GL.3 and PSpace-complete
for K, while the conservativeness problem is (probably) more complex for
GL.3 than for K. This resembles the situation with products of modal
logics where GL.3 ×GL.3 is Π1

1-complete [12], while K ×K is decidable
[3].

In this paper, we have considered modal languages with one modal op-
erator only. It is not difficult, however, to modify the proofs above to show
that conservativeness (for the local consequence relation) is still NExpTime-
complete for multimodal S5 and multimodal K. Similarly, for multimodal
S4 and K4 it is still decidable in ExpSpace.
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For the global consequence relation the results are different: recall that
ϕ follows globally from ψ in a modal logic L if ϕ is true everywhere in a
model based on a frame for L whenever ψ is true everywhere in this model.
Conservativeness with respect to the global consequence relation is now
defined in the obvious way. Of course, for m-transitive modal logics the
complexity upper bound for deciding conservativeness with respect to the
local consequence is an upper bound for deciding conservativeness relative
to the global consequence relation as well. This applies to S5, S4 and
GL.3. For K, however, deciding conservativeness with respect to the global
consequence becomes 2ExpTime-complete, as follows from the investigation
of conservative extensions in description logics in [5]. We expect deciding
conservativeness with respect to the global consequence in multimodal S5
and S4 to be 2ExpTime-complete as well.
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Appendix

Completing the proof of Theorem 4. To encode the existence of at
least one of these defects we require our auxiliary variables Pi, Qi, and Ti
which will be used to carry, everywhere in the relevant part of the model,
the information that there exists a point representing some grid point v
covered by some tile t. The formula

n∧
i=1

(3+Pi ↔ 2+Pi) ∧
n∧
i=1

(3+Qi ↔ 2+Qi) ∧
m∧
i=1

(3+Ti ↔ 2+Ti) (1)

says that each of the Pi, Qi, and Ti has the same truth-value everywhere
in the relevant part of the model. Suppose that (1) is true at the root w of
our hypothetical model. Then, by making the formula

∃p, q, t = 3+
( n∧
i=1

(
(pi ↔ Pi) ∧ (qi ↔ Qi)

)
∧

m∧
i=1

(ti ↔ Ti)
)

true at w, we send—via the Pi, Qi and Ti—to all worlds accessible from
w (and w itself) the information that there is a point v in the model rep-
resenting some grid point and covered by some tiles. In particular, the
formula

atP,Q =
n∧
i=1

(
(pi ↔ Pi) ∧ (qi ↔ Qi)

)
is true at a point u accessible from the root or the root itself iff u and v
represent the same grid point, and

atP,Q, T =
n∧
i=1

(
(pi ↔ Pi) ∧ (qi ↔ Qi)

)
∧

m∧
i=1

(ti ↔ Ti)

is true at u iff u and v represent the same grid point and are covered by the
same tiles. Using these formulas we can now express that the model under
consideration contains a defect of type 1:

∃p, q, t ∧
∨
i 6=j

(
3+(atP,Q ∧ ti) ∧3+(atP,Q ∧ tj)

)
. (2)

To describe defects of type 2, we require the formulas

∃p+, q, t =

3+
(
¬

n∧
k=1

pk ∧
∧
k≤n

(( ∧
i<k

pi ∧ ¬pk
)
→

∧
i<k

¬Pi ∧ Pk ∧
n∧

j=k+1

(pj ↔ Pj)
)
∧

n∧
i=1

(qi ↔ Qi) ∧
m∧
i=1

(ti ↔ Ti)
)
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and

∃p, q+, t =

3+
(
¬

n∧
k=1

qk ∧
∧
k≤n

(( ∧
i<k

qi ∧ ¬qk
)
→

∧
i<k

¬Qi ∧Qk ∧
n∧

j=k+1

(qj ↔ Qj)
)
∧

n∧
i=1

(pi ↔ Pi) ∧
m∧
i=1

(ti ↔ Ti)
)
.

The latter, for instance, says that, for some point in the relevant part of
the model representing some grid point (k, l) and covered by some tiles t,
the variables Pi represent k, the Qi represent l + 1, and the Ti represent
the same tiles t. (For describing defects of type 2 we do not need the last
conjuncts for ti in these formulas. They will be required for defects of type
3.)

The existence of a defect of type 2 can be guaranteed then by the formula

(3) (∃p+, q, t ∧ ¬3+atP,Q) ∨ (∃p, q+, t ∧ ¬3+atP,Q),

and the existence of a defect of type 3 can be ensured by the formula(
∃p+, q, t ∧3+

(
atP,Q ∧ ¬

∨
(ti,tj)∈H

(Ti ∧ tj)
))
∨

(
∃p, q+, t ∧3+

(
atP,Q ∧ ¬

∨
(ti,tj)∈V

(Ti ∧ tj)
))
. (4)

Finally, we define ϕ2 by taking

ϕ2 = (1) ∧
(
(2) ∨ (3) ∨ (4)

)
.

It is easy to see that ϕ2 is as required. We leave details to the reader.

Proof of Theorem 5. To show that ϕ |=S5 ∃S5q.ϕ, consider an arbitrary
rooted S5-model M based on a frame (W,W ×W ) and such that x |= ϕ for
some x ∈W . Let i ∈ {1, . . . ,m} be such that M validates precisely the same
subformulas of ϕ starting with 2 or 3 as the models from Ki. Now observe
that, for every point y ∈W , we can always find a subset Y ⊆W containing
y such that the restriction of M to Y is (isomorphic to) some model from
Ki (just pick up one ‘witness’ satisfying ¬ψ for every subformula 2ψ of ϕ
such that y |= ¬2ψ. It follows that (M, x) |= χi, and so (M, x) |= ∃S5q.ϕ

Suppose now that we have a formula ψ with var(ψ) ∩ q = ∅. We need
to prove that if ∃S5q.ϕ 6|=S5 ψ then ϕ 6|=S5 ψ. Let ∃S5q.ϕ 6|=S5 ψ. Take
a model M = (F,V) with F = (W,W ×W ) such that (M, w) |= ∃S5q.ϕ
and (M, w) 6|= ψ for some w ∈ W . By the definition of ∃S5q.ϕ, we can
find i ∈ {1, . . . ,m}, N ∈ Ki, and x in N such that (M, w) |= χi and
(M, w) |= χN(x). We know that (N, x) |= ϕ. Now, with the help of M, we
extend N to a model K such that (K, x) |= ϕ and (K, x) 6|= ψ.
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Let N = (G,U) and G = (U,U × U). By the definition of χN(x), for
every u ∈ U there is wu ∈ W such that lN(u) = lM(wu). Clearly, we can
take wx = w. We can also assume that W is disjoint from U . Now define a
new model K = (H,W) based on the frame H = (V, V × V ), where

V = U ∪ (W \ {wu | u ∈ U})

and, for each u ∈ U ,

W(p, u) =

{
U(p, u), for p ∈ p ∪ q
V(p, wu), otherwise.

For the remaining points of V the valuation W is defined as follows. For
each v ∈ V \U we can find, by the second conjunct of χi, a model Nv ∈ Ki
(with a valuation Uv) and a point zv in it such that lNv

(zv) = lM(v). Then
we set, for all such v,

W(p, v) =

{
Uv(p, zv), for p ∈ p ∪ q
V(p, v), otherwise.

We have (K, x) |= ϕ because, restricted to the variables from p∪q, the model
K consists of N ∈ Ki together with some points from other models in Ki
validating, by definition, precisely the same subformulas of ϕ starting with
2. Finally, we have (K, x) 6|= ψ because var(ψ)∩q = ∅, and, restricted to the
variables in var(ψ), the model K is isomorphic to M with x corresponding
to w.

Proof of Lemma 7. (⇐) Suppose ϕ1 ∧ ϕ2 is not a conservative extension
of ϕ1. By Lemma 1, we have ϕ1 6|=K ∃Kq.(ϕ1 ∧ ϕ2). According to [13],
there exists a uniform interpolant ∃Kq.(ϕ1∧ϕ2) whose size does not exceed
N ′ = 2p(|ϕ1∧ϕ2|) and whose modal depth is ≤ d. So there is a model M
based on an irreflexive and intransitive tree F = (W,R) of depth ≤ d and
branching factor ≤ N ′ such that both ϕ1 and ¬∃Kq.(ϕ1 ∧ ϕ2) are true at
the root r of F. Without loss of generality we may assume that, for every
x ∈W , if x |= ¬2ψ1∧· · ·∧¬2ψk for pairwise distinct ¬2ψi ∈ sub(ϕ2) then
there are k distinct R-successors y1, . . . , yk of x such that yi |= ¬ψi; if this
is not the case, we can duplicate some relevant subtrees, thereby increasing
the branching factor to ≤ N . Thus, we may assume that, restricted to the
variables in p, the algorithm above guesses the model M.

Clearly, in Step 2 of the algorithm, we are in the ‘else-case.’ Suppose
now that there is a t0 ∈ `(r) with ϕ2 ∈ t0, that is, the algorithm returns
‘ϕ1 ∧ ϕ2 is a conservative extension of ϕ1’. Define a function f that maps
each x ∈W to an element of `(x) by induction starting from the root:

• Set f(r) = t0.

• If f(x) is already defined, but f(·) is not defined for the R-successors
of x, then do the following. Let the negated box formulas in f(x) be
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¬2ψ1, . . . ,¬2ψk and the box formulas 2ϑ1, . . . ,2ϑh. As f(x) ∈ `(x),
by the definition of ` there are distinct R-successors y1, . . . , yk of x
and types t1 ∈ `(y1), . . . , tk ∈ `(yk) such that {¬ψi, ϑ1, . . . , ϑh} ⊆ ti
for 1 ≤ i ≤ k. Set f(yi) = ti for 1 ≤ i ≤ k. For each R-successor y of x
such that y /∈ {y1, . . . , yk}, there is t ∈ `(y) such that {ϑ1, . . . , ϑh} ⊆ t.
Set f(y) = t.

Now define a q-variant M′ of M by taking, for all x ∈W and all p ∈ q,

x |= p iff p ∈ f(x).

We still have (M′, r) |= ϕ1. Moreover, it can be easily shown by induction
that (M′, x) |=

∧
ψ∈f(x) ψ for all x ∈ W . Since ϕ2 ∈ f(r), we must have

(M′, r) |= ϕ2. But then (M, r) |= ∃Kq.(ϕ1 ∧ ϕ2), which is a contradiction.

(⇒) Suppose now that our algorithm returns that ϕ1 ∧ ϕ2 is not con-
servative extension of ϕ1. Let M be the model guessed by the algorithm
and based on a tree F = (W,R) with root r. Without loss of generality
we may assume that, whenever xRy in F then there are |ϕ2|-many distinct
R-successors z of x with t1M(z) = t1M(y), where t1M(x) the ϕ1-type of x in
M, that is,

t1M(x) = {ψ ∈ sub(ϕ1) | (M, x) |= ψ}.

With each x ∈ W we associate inductively a formula ψ(x) over p starting
from the leaves of F:

• if x ∈W is a leaf, then

ψ(x) = 2⊥ ∧
∧
x|=pi

pi ∧
∧
x6|=pi

¬pi,

• if x ∈W is a non-leaf and y1, . . . , yk are its R-successors, then

ψ(x) =
∧
x|=pi

pi ∧
∧
x6|=pi

¬pi ∧
∧

1≤i≤k

3ψ(yi) ∧2
∨

1≤i≤k

ψ(yi).

Now one can show that ϕ1 ∧ϕ2 |=K ¬ψ, but ϕ1 6|=K ¬ψ, which means that
ϕ1 ∧ ϕ2 is not a conservative extension of ϕ1.

Proof of Lemma 9. Suppose that a triple t = (t,Γ,∆) for ϕ1, ϕ2 is
realised in a model (M, x) based on a finite tree of clusters F = (W,R)
with root x. The upper bound on the cardinality of clusters follows from
the simple fact that if two points y and y′ validate the same variables from
ϕ1 then we can omit one of these points and the resulting models will be
var(ϕ1 )-bisimilar to the original one.

Consider now some y ∈ W and denote by ty = (ty,Γy,∆y) the triple for
ϕ1, ϕ2 realised by (M, y). For every ϕ1 ∧ ϕ2-type s /∈ Γy we take the set
{2ψ1, . . . ,2ψk} of all box formulas in s and choose a maximal (with respect
R) strict successor z of y such that there does not exist a type s′ ∈ Γz with
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{2ψ1, . . . ,2ψk} ⊆ s′, if such a strict R-successor exists. Observe that (since
ty ⊆ s for every s ∈ Γy) for each ¬2ψ ∈ ty we have also chosen a maximal
strict R-successor z of y with (M, z) |= ¬2ψ, if such a successor exists.

Now remove from the submodel My of M generated by y all clusters
C(u) such that C(u) 6= C(y), yRu and for no chosen point z do we have
zRu. Denote the resulting model by N. Denote by t′ = (t′,Γ′,∆′) the triple
realised by (N, y). Our aim is to show

• ty = t′,

• Γ′ ⊆ Γy,

• ∆′ ⊆ ∆y.

If this shown, then we can replace My in M with N where the number
of immediate strict successors of C(y) does not exceed 2|ϕ1∧ϕ2|. It can be
shown that t = t′′, Γ′′ ⊆ Γ, and ∆′′ ⊆ ∆ for the triple (t′′,Γ′′,∆′′) realised
in the resulting model (M′, x).

Now, since every ¬2ψ ∈ ty has a witness in N, we clearly have ty = t′.
To prove that Γ′ ⊆ Γy, suppose otherwise. Then we have some s ∈ Γ′

such that s /∈ Γy. Two cases are possible now. Case 1 : there is a strict
successor z of y in My such that there does not exist a type s′ ∈ Γz with
{2ψ1, . . . ,2ψk} ⊆ s′ (where {2ψ1, . . . ,2ψk} are all box formulas in s).
Then a (possibly different) point with this property was chosen for N. From
this one can easily derive a contradiction with s being in Γ′. Case 2 : there
is no such z in My. Let C(y1), . . . , C(ym) be all immediate strict successors
of C(y) which do not belong to N. Denote by Mi the submodel of My

generated by yi. For each yi there exists a pointed model (M′
i, y

′
i) which is

var(ϕ1 )-bisimilar to (Mi, yi) such that (M′
i, y

′
i) |= 2ψi for every 2ψ ∈ s.

Let K be a model based on a tree of clusters with root v which is var(ϕ1 )-
bisimilar to (N, y) and satisfies s at v. Add the models M′

i to K as immediate
strict successors of the points which are var(ϕ1 )-bisimilar to y and denote
the resulting model by K′. Clearly, (K′, v) is var(ϕ1 )-bisimilar to (My, y).
On the other hand, s is still satisfied by (K′, v), contrary to s /∈ Γy.

Finally, the inclusion ∆′ ⊆ ∆y follows from Γ′ ⊆ Γy and the fact that
if a point from a non-root cluster is chosen for N then all of its successors
belong to N as well.

By recursively performing this operation whenever possible for some y,
we obtain a model with the properties required.
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