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Abstract

Flexibility and robustness of visual SLAM systems have been shown to ben-
efit from an inverse depth parameterisation of features. However the in-
creased number of 6 parameters per feature presents a problem to real-time
EKF SLAM implementations because their computational complexity scales
quadratically with the size of the state vector. Recent work tackles this for
instance by converting the representation of well-established features from
inverse to regular depth. In this paper, we propose a parameterisation where
bundles of features share a common representation of the view-point they
were initially observed from. According to the experiments performed, a fea-
ture occupies effectively about 1.5 state parameters in the proposed approach,
allowing real-time performance for maps with more than 200 features.

1 Introduction
Simultaneous localisation and mapping (SLAM) is concerned with estimating the pose of
a mobile robot while simultaneously building a map of the environment it is navigating.
The problem is formulated in a Bayesian framework where noisy measurements are inte-
grated over time to update a probability distribution of the state of a dynamical system,
consisting of landmark positions and the robot’s pose. Since the seminal work by Davi-
son [3] visual SLAM, tackling this problem with a camera (monocular or stereo, typically
hand-held) as the only sensor, has received a lot of attention from both the vision and
robotics communities. Davison’s approach of using the Extended Kalman Filter (EKF) as
the underlying probabilistic mechanism has been adopted widely, e.g. [3, 5].

In [3] and related systems 3D landmarks (or features) are parameterised by their Eu-
clidean scene coordinates. From the beginning, it was well understood that the Euclidean
parameterisation is not well suited to the low-parallax situations occurring with very dis-
tant or newly initialised features whose depth estimate has not yet converged. The shape
of the uncertainty region for such features is not approximated well by a Gaussian in
Euclidean space. Montiel et al. [7] proposed an inverse depth parameterisation which
successfully handles these cases. However, one issue with this parameterisation is that
with 6 parameters a inverse depth feature occupies a portion of the state vector that is
twice as large as for the Euclidean representation. Given the quadratic complexity of the
EKF with respect to state size this leads to severely restricted map sizes (60-80 features)
feasible for real-time operation. Civera et al. [1] address this issue by converting inverse
depth features to the Euclidean parameterisation once their uncertainty region approaches



Gaussianity. An approach to further reduce the state size has been presented by Gee et
al. [5]. They detect groups of features lying in a common plane. These features can then
share a representation of the plane, requiring only two additional state entries per feature
to describe its location within the plane.

In this paper, we propose a new feature parameterisation which is based on a simi-
lar idea. Instead of grouping features by co-planarity, we form groups of features which
have been initialized from the same camera frame, i.e., from the same point of view. The
result is an inverse depth parameterisation where a group of features shares a common
6 parameter anchor. Only one additional state entry per feature is required, making the
representation more efficient than Euclidean parameters when 4 or more features are ini-
tialised from the same frame.

Pupilli and Calway [9] use a similar representation in the context of a particle filtering
SLAM framework. They also point out the potential decrease in state size, although they
make no attempt to actively exploit this. To keep the state small we try to minimize the
number of camera frames used for feature initialisation, and initialise many features in
each of these frames. This is related to the ideas of using keyframes [6] and represent-
ing features in local coordinate frames [4]. Klein and Murray [6] perform mapping on
a sparse set of keyframes using bundle adjustment. Our work differs in that we use all
feature measurements from all frames to refine the map. Eade and Drummond [4] parti-
tion measurements into a set of nodes where inverse depth features are represented with
respect to local coordinate frames. These nodes form a graph which is globally optimized.
In contrast to their work, we represent the map in a single state vector, maintaining full
correlations between all features.

In the next section we review the general EKF framework for visual SLAM. Forming
the main contribution of this paper, Section 3 introduces the inverse depth bundle param-
eterisation starting from an alternative inverse depth parameterisation. In Section 4 we
provide some details about the complete visual SLAM system used for experimentation.
After presenting experimental results in Section 5, we conclude with Section 6.

2 EKF-Based Visual SLAM
We assume a stereo camera moving freely but smoothly in a static scene. The position
of the camera with respect to a fixed scene coordinate frame is to be estimated, while
simultaneously building a map of 3D points in the scene. The belief about the joint state
x of the system is modelled as a multivariate Gaussian represented by its mean vector µx
and covariance matrix Σx. The state vector can be divided into parts describing the state
of the camera xv and of map features yi.

µx =


µxv

µy1
...

µyn

 Σx =


Σxvxv Σxvy1 . . . Σxvyn

Σy1xv Σy1y1 . . . Σy1yn
...

...
. . .

...
Σynxv Σyny1 . . . Σynyn

 (1)

The state estimate is updated sequentially using the predict-update cycle of the EKF.
Whenever a new image is acquired by the camera, measurements of map features can
be made and used to update the state estimate, resulting in a decrease of uncertainty in
the update step. In the prediction step, a process model is used to project the estimate



forward in time. The process model describes how the state evolves during the period
of “temporal blindness” between images. Similar to [3] the camera is assumed to be
moving with constant linear and angular velocity. The (unknown) accelerations that cause
deviation from this assumption are modelled as noise. The camera state is modelled as
xv =

(
r q v ω

)>. Position and orientation of the camera with respect to the world
frame W are described by the 3D position vector r and the quaternion q. Translational
and angular velocity are described by v and ω .

The EKF update step integrates new information from measurements of map features
into the state estimate. A generative measurement model

z = h(x)+δ (2)

describes the measurement vector z as a function of the (true, unknown) state, affected by
zero-mean Gaussian measurement noise δ . In the case of a stereo camera a measurement
z =

(
u,v,d

)
consists of the coordinates u, v of the projection of a feature in the reference

camera and the disparity d. The current (prior) state estimate can be used to predict the
expected measurement. The difference between the predicted and actual measurement is
then used in the EKF update to improve the state estimate.

3 Parameterising Features by Inverse Depth Bundles
In this section we first introduce a view-point based feature parameterisation. This can
be seen as an alternative representation to inverse depth features [7]. Using 7 parameters
instead of 6 it is slightly less efficient than the “traditional” representation. The advantage
here is the fact that 6 of the 7 parameters can be shared among features initialised from
the same camera frame, leading to the bundle representation discussed in Section 3.2.

3.1 View-Point Based Feature Parameterisation
Based on the idea of inverse depth parameterisation [7], we introduce a new feature rep-
resentation. We will refer to this representation as view-point based because it describes
features in terms of the initial view-point, i.e., the camera pose at the time of initialisation.

In the probabilistic state, the i-th 3D point feature is parameterised by the 7-dimensional
vector

yi =
(
ci φ i ρi

)>
. (3)

Here, the 3-vector ci =
(
xi,yi,zi

)
is the camera position at the time of the first observation

of the feature. The 3-vector φ i =
(
φ x

i ,φ y
i ,φ z

i
)

is an exponential rotation representing the
camera rotation for this first observation. Finally ρi is the inverse depth of the feature on
a ray in direction mi.

The ray to the feature is represented in the initialisation camera coordinate frame
〈ci,φ i〉. Thus, the unit vector mi simply encodes the direction to the pixel where the
feature was detected in the initial image. With respect to the initialisation camera frame
there is no uncertainty about where the projection of the feature was observed, thus mi is
a fixed component of the model and not part of the probabilistic state vector. Furthermore,
a template T of the appearance of the feature in the reference image is stored. The view-
point based feature model is illustrated in Figure 1.
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Figure 1: View-point based feature model: The relative orientation of world frame W and
initialisation camera frame I is given by translation ci and rotation φ i. The unit vector
mi defines a ray to the feature centre, and ρi is the inverse depth along this ray.

In comparison to the the classical inverse depth model [7], by parameterising the full
camera rotation φ i one additional degree of freedom is introduced, namely rotation about
the ray to the feature. This is not observable from point measurements

(
u,v,d

)
of the

feature directly. However, via its (perfect) correlation to the camera rotation estimate at
the time of initialisation it becomes correlated to other state variables. Hence, additional
information on rotation about the ray to feature yi is provided by measurements of other
features. For future measurements, prior to correlation search, the template T is warped to
account for varying appearance caused by view-point changes. Because the full rotation
φ i is used in warping the template, updating it’s estimate can improve the accuracy of the
predicted feature appearance for correlation search.

The second difference occurs with respect to initializing uncertainty of the feature
ray. In [7], this results from a combination of uncertainty in the initial camera position
and measurement uncertainty in the initial

(
u,v
)

observation. This rests on the assump-
tion that the initial measurement is subject to the same measurement error as any other
measurement. This is justifiable if measurements are of some directly observable physical
quantity, like laser range finder measurements of the distance to a wall. We argue, that
for the case of making image measurements by correlation search the situation is differ-
ent. The feature template is the projection of a scene surface in the initial camera image,
not the scene surface itself. The measurement process proceeds by back-projecting the
feature template to the (uncertain) scene surface and then projecting it to the (uncertain)
current camera frame, where the projection is used for correlation search. However if
the current camera pose is the initialisation pose this will always result exactly in the
observed initial template regardless of feature depth or scene structure. The location of
the template in the initial image is known with absolute certainty. Hence, we model the
initial uncertainty of the feature ray as resulting from the camera pose uncertainty only.
We assume no uncertainty in the pixel position

(
u,v
)

for the initial observation (and thus,
mi is fixed).1

Having established the view-point based model, we note that the initial camera poses
for features initialised in the same frame are the same and perfectly correlated to each
other. Hence, those features can share their representation of c, φ requiring only one
additional parameter for each feature, namely its inverse depth ρi. This leads to the feature

1If we would correctly model the initialisation errors for the case of correlation search, we should include
the pixel intensities of the template in the state vector and initialise their uncertainty with the variance of the
intensity noise introduced by the camera.
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Figure 2: Inverse depth feature bundle model: The anchor a j represents the relative orien-
tation of world frame W and initialisation camera frame I by translation c j and rotation
φ j. Features y j;i initialised with respect to this anchor are each represented by their in-
verse depths ρ j;i along rays m j;i.

bundle representation discussed next.

3.2 Inverse Depth Bundle Parameterisation
Given n view-based features initialised from the same camera frame, we can split their
state representation into the 6 parameter anchor

a j =
(
c j φ j

)>
, (4)

and n feature states
y j;i =

(
ρ j;i
)

(5)

(with i ∈ {1, . . . , i}) wich are represented relative to the anchor a j. For each feature a unit
vector m j;i encodes the direction to the feature with respect to the initial camera frame
that is defined by a j. The model is illustrated in Figure 2. The state vector then takes the
form

x =
(
xv a1 y1;1 . . . y1;n1 . . . am ym;1 . . . ym;nm

)> (6)

In the next subsection we will discuss the measurement model for the bundle repre-
sentation. This is followed by a discussion of the inverse measurement model, i.e., how to
initialise new anchors and features. Finally we discuss the state size reduction that can be
achieved using inverse depth bundles and initialisation heuristics to maximize this effect.

3.2.1 Measurement Model

A measurement of a feature y j;i from an inverse depth bundle can be modelled as a func-
tion of the current camera state, the anchor state, and the feature state

z j;i = h(xv,a j,y j;i)+δ , (7)

where δ ∼ N(0,R) is measurement noise with covariance R = diag(σ2
u ,σ2

v ,σ2
d ). We

proceed by deriving the function h(xv,a j,y j;i) which gives the predicted measurement(
u,v,d

)
.Given the 3D coordinates ρ

−1
j;i m j;i of the feature with respect to the anchor frame

〈c j,φ j〉 we compute the world coordinates of the feature as

yw
j;i = c j +

1
ρ j;i

Rφ j m j;i, (8)



where Rφ j is the 3×3 rotation matrix corresponding to the exponential rotation φ j. Then,
we transform the feature’s world coordinates to the current camera coordinate frame given
by 〈r,q〉, and obtain

yc
j;i = R(q−1)(y j;i− r) =

1
ρ j;i

R(q−1)
(

ρ j;i (c j − r)+Rφ j m j;i

)
=

1
ρ j;i

~y (9)

Finally, we obtain the projection of this point by the camera. For a monocular projection
only the direction~y =

(
x,y,z

)> to the feature is important. Thus, the 1/ρ j;i factor can be
dropped from Equation 9. In a stereo setting this must be compensated when computing
the disparity, resulting in the following projection function

Π(~y, ρ j;i) =

u
v
d

=

 fu
x
z +u0

fv
y
z + v0

ρ j;i fu
b
z

 , (10)

where b is the stereo baseline, (u0,v0) is the principal point, and fu resp. fv is the focal
length in multiples of pixel width resp. height. In summary, we obtain the measurement
function

h(xv,a j,y j;i) = Π

(
R(q−1)

(
ρ j;i (c j − r)+Rφ j m j;i

)
, ρ j;i

)
. (11)

3.2.2 Initialising new Anchors and Features

We now consider the initialisation of a bundle of features into the state. Assume a set
of newly detected features in the current frame is given by their initial observations
{z0

1, . . . ,z
0
n} with z0

i =
(
ui,vi,di

)>.
We start by augmenting the state with a new anchor a j which represents the current

camera position. The anchor state is obviously not dependent on any of the measurements.
It is a function of the camera state only, representing a copy of the current camera pose

a j = ga(xv) =
(

c j
φ j

)
=
(

r
log(q)

)
, (12)

where log(·) represents the conversion of a quaternion rotation to exponential coordinates.
The anchor is appended to the state vector and the covariance matrix is updated as

Σx := JΣxJ
> with J =

(
I

∂ga (xv)
∂xv

0 · · · 0

)
. (13)

This is followed by the initialisation of the features y j;i. For each feature, we first compute
the unit vector m j;i as the ray from the projection centre through the pixel

(
ui,vi

)
. As

discussed above, we do not assume that ui, vi are subject to measurement error.
The ray m j;i is represented with respect to the current camera coordinate frame. Con-

sequently, the inverse depth ρ j;i of the feature along this ray is not dependent on the
current camera, anchor, or any other features. The new feature state is a function of the
observed disparity di only2

y j;i = gy(di) =
(
ρ j;i
)

= di
mz

j;i

fub
. (14)

2For the monocular case, no disparity is available, and the inverse depth would be initialised to some heuris-
tically determined value with a large uncertainty.



Here, mz
j;i denotes the z component of the unit vector m j;i. The new feature is appended to

the state vector. Because it is initially uncorrelated to the rest of the state, the covariance
update is

Σx :=
(

Σx 0
0> σ2

y j;i

)
with σ

2
y j;i

=
∂gy(di)

∂di
σ

2
d

∂gy(di)
∂di

>
. (15)

3.2.3 Benefits of the Bundle Parameterisation

A bundle of n features (together with their shared anchor) occupies 6 + n entries in the
state. This means, that for n ≥ 2 the bundle parameterisation will be more efficient than a
straightforward inverse depth parameterisation. For n > 3 the bundle parameterisation is
even more efficient than a Euclidean parameterisation of features by their 3D coordinates.

The actual benefits depend on the strategy employed to decide when to initialise new
features. The strategy should be designed to minimize the number of anchors and en-
suring that each anchor is shared by many features. As long as there is a minimum of 3
features per anchor, the bundle representation is at least as efficient as the Euclidean pa-
rameterisation. Currently we use the following initialisation heuristic. The camera image
area is divided into a 4×4 grid. While making feature measurements in each new image
we determine the number of empty grid cells. A grid cell is counted as empty if either,
there are no features predicted to be visible in this cell, or, all attempts to measure visible
features in this cell failed. If the fraction of empty cells is larger than a threshold (70%
in our experiments) a new bundle of features is initialised. New feature candidates are
selected to lie on salient image areas and to be evenly distributed in the image. At most
20 new features are initialised per bundle. In Section 5 we experimentally show that even
with this simple strategy the bundle parameterisation allows to sustain real-time operation
for maps of more than 200 features.

More complex strategies can be envisioned to further increase efficiency. For instance,
the map could be divided into fixed features and temporary features. The map is contin-
ually augmented with temporary features until a camera pose is reached where no fixed
features are observable. Then temporary features are removed from the state and a new
bundle of fixed features is initialised. In this way “spatial overlap” between bundles would
be reduced, while some accuracy would be sacrificed (hopefully only temporarily).

4 Description of the complete stereo SLAM system
This section provides some details on the stereo SLAM system that was used for ex-
perimentation. Images are acquired by a Point Grey Bumblebee R© stereo camera with a
resolution of 640× 480 at 30 Hz. The raw images are then Bayer decoded and rectified
on the GPU. Somewhat deviating from pure top-down SLAM methodology, we proceed
by exhaustively searching both images for corners using the FAST corner detector [10].
The detected corners serve two purposes. First, they are used to determine candidate loca-
tions for new features (should we choose to initialise a new feature bundle in this frame).
Second, they help to further reduce the number of pixels considered for correlation search
during the measurement process.

After the camera pose for the current frame has been predicted the image projection
and visibility of features is predicted. For each of the visible features a template for



correlation search is then obtained by warping the feature template according to the ho-
mography induced by the current estimates of camera pose, anchor, and feature state. To
restrict the camera poses from which each feature can be observed to a meaningful range,
the size in pixels of the warped template is compared to that of the original template.
Measurements are only attempted for features where the sizes diverge by no more than a
empirically fixed threshold.

The reference image of the stereo pair is divided into a 4×4 grid. For each grid cell
measurements are attempted until one feature could be successfully measured, starting
with the feature with the largest uncertainty region. Measurements are obtained by cor-
relation search for the warped template in gated 3σ search ellipses in both images of the
stereo pair. Additionally, correlation search is restricted to image pixels which have at
least one FAST corner in their 8-neighbourhood. For the left image search is further re-
stricted to the epipolar line corresponding to the maximum found in the reference image.

Next we try to detect measurements which are due to erroneous feature matchings.
The largest jointly consistent subset of successful measurements is computed using the
Joint Compatibility Branch and Bound algorithm [8] in the form described in [2]. This
consistent subset is then used in the EKF update of the state estimate. Features that did
not pass the Joint Compatibility test are removed from the map.

We determine whether a new bundle of features should be initialised using the heuris-
tic discussed in Section 3.2.2. For this purpose the KLT score is computed for the maxima
among the detected FAST corners in the reference image. For pixels whose KLT score is
above an empirically fixed threshold we search for a stereo correspondence in the left im-
age. Among the successfully matched pixels a set of new features is selected that are well
distributed in the reference image and sufficiently far from existing features. A bundle of
these new features is then initialised into the state as discussed in Section 3.2.2.

5 Experimental Results
The proposed representation was evaluated with respect to state size and processing time
on real image sequences. The pre-recorded sequences were processed on a 2 GHz Intel
Core 2 Duo (using one core). The timing results given below include image acquisition
times measured during sequence recording. We present results for two sequences here.

The first, “indoor,” sequence is recorded in a structured office environment. The cam-
era moves in a single room where translational motion is restricted to a volume of approx-
imately 1× 1× 2 meters. Here, the need to initialise new feature bundles arises mainly
because the camera rotates away from known features. At the end of the sequence the
map contains 211 features and 20 anchors. Figure 4 shows views of the map before and
after closing a loop. Throughout, the processing time stays within the real-time constraint
of 33 ms per frame. The following table gives a breakdown of processing time for a rep-
resentative frame towards the end of the sequence (the full map size has been reached):

3.5 ms image acquisition, rectification
4.5 ms corner detection

8 ms feature prediction and correlation search
0.3 ms Joint Compatibility test
10 ms EKF update
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Figure 3: Evolution of the state vector size for the indoor (left) and outdoor (right) exper-
iments. The solid curve on the bottom show the actual state size that was obtained with
the bundle parameterisation. The dashed and dotted curves show the (hypothetical) state
size when using inverse depth respective Euclidean coordinates.

Occasionally, initialisation of a new feature bundle is required. Depending on the number
of new features and current size of the map this takes additional 0.3−3 ms.

The second, “outdoor,” sequence shows a less structured environment and a more ex-
ploratory kind of motion. Here, the camera translates forward on a path of approximately
15 meters, roughly in the viewing direction. Initialisation is required less often in this sce-
nario. New feature bundles have to be initialised, because mapped features have moved
too close to, or past the camera. At the end of the outdoor sequence the map contains 232
features and 13 anchors. Processing times are very similar to that of the indoor sequence.

The evolution of the state size for both sequences is shown in Figure 3. The plots
include the state size that would arise using 6-parameter inverse depth respective 3-
parameter Euclidean features. Clearly, in both experiments the bundle parameterisation
is effective in keeping the state vector small. Throughout both sequences the state size
remains well below the hypothetical “Euclidean” state size. The effective state size per
feature is 1.6 for the indoor respective 1.3 for the outdoor sequence.

Concluding, we wish to note that the threshold of initialising at most 20 features was
empirically selected to ensure stable tracking while simultaneously keeping the number
of anchors small (and not to produce artificially dense maps to the disadvantage of the
other parameterisations). Lowering the threshold generates more anchors while producing
maps of similar size.

6 Conclusion
In this paper we have presented a new feature parameterisation for visual SLAM. Our
inverse depth bundle parameterisation exploits the fact that features initialised from the
same camera frame can share large parts of their state representation, requiring only one
additional parameter per feature. A simple initialisation heuristic was proposed which has
proven successful in keeping the number of anchors small while ensuring stable tracking
performance. Experimental results for two real stereo sequences have been presented. In
both cases fully correlated maps with more than 200 features were processed in real-time
– which would not have been possible using inverse depth or Euclidean parameterisations.



Figure 4: Two views of the map obtained for the indoor sequence, before and after loop
closure. Pyramids indicate the location of the anchors with their uncertainties shown
as filled ellipses. Feature locations are plotted as dots. The uncertainty ellipses for the
features result from the anchor uncertainty and feature uncertainty wrt. the anchor.
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