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ABSTRACT
We consider (first-order) query rewritability in the context of theory-

mediated query answering. The starting point of our journey is the

FUS/FES conjecture, which states that any theory that is a finite

expansion set (FES) and admits query rewriting (BDD, FUS) must be

uniformly bounded. We show that this conjecture holds for a large

class of BDD theories, which we call “local”. Upon investigating how

“non-local” BDD theories can actually get, we discover unexpected

phenomena that, we think, are at odds with prevailing intuitions

about BDD theories.
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• Theory of computation → Logic; Automated reasoning.
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1 INTRODUCTION
The scenario we consider in this paper has been studied extensively 
both in database theory and in knowledge representation: consider 
a database instance D (also called fact set, or structure) and a theory 
T (or rule set) that consists of tuple generating dependencies (or 
rules). For a given conjunctive query 𝜙 , we ask if D and T together 
logically entail 𝜙 , written: D, T |= 𝜙 . This problem is also referred 
to as ontology-mediated query answering.
The chase. The notion of the chase is fundamental in this context. 
It denotes a structure obtained from D via the chase procedure, 
which iteratively adds new terms and atoms in order to satisfy the 
constraints from T , producing a growing sequence of structures
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D=𝐶ℎ0 (D,T), 𝐶ℎ1 (D,T), 𝐶ℎ2 (D,T), . . .. The chase 𝐶ℎ(D,T) is
then obtained as the corresponding fixpoint

⋃
𝑖∈N𝐶ℎ𝑖 (D,T).

It is known [11] that a conjunctive query is entailed if and only

if it holds in the corresponding chase, which allows for reducing

entailment to model checking:

∀T ∀D ∀𝜙
(
𝐶ℎ(D,T) |= 𝜙 ⇔ D,T |= 𝜙

)
.

Finite expansion sets.We say T enjoys the finite expansion set
property [3] (or simply is FES) if, for everyD, all conjunctive queries
satisfied in𝐶ℎ(D,T) are already jointly satisfied after finitely many

chase steps. More precisely, T is FES if:

∀D ∃𝑖 ∈N ∀𝜙
(
𝐶ℎ(D,T) |= 𝜙 ⇔ 𝐶ℎ𝑖 (D,T) |= 𝜙

)
(FES)

This is an important property, since 𝐶ℎ(D,T) is typically an

infinite structure, only existing as an abstract mathematical object,

and impossible to query, whereas𝐶ℎ𝑖 (D,T) is always finite and so
in principle it can be computed and queried.

Bounded derivation depth. An arguably even more beneficial

property a theory can enjoy in this context is the following: We say

T has the bounded derivation depth property (or is BDD) if

∀𝜙 ∃𝑖 ∈N ∀D
(
𝐶ℎ (D, T) |= 𝜙 ⇔ 𝐶ℎ𝑖 (D, T) |= 𝜙

)
, (BDD)

which means that, in order to evaluate 𝜙 , it is enough to run only

the first 𝑖 steps of the chase, with 𝑖 depending on 𝜙 but not on D.
As it turns out, BDD is equivalent [6] to FUS (finite unifica-

tion set) [3]. FUS is the class ensuring that conjunctive queries

always rewrite: for each 𝜙 one can compute a query 𝜙T , being a

union of conjunctive queries, such that for each D we have that

𝐶ℎ(D,T) |= 𝜙 exactly if D |= 𝜙T — this is known to be equivalent

to the existence of an arbitrary first-order rewriting [15].

Behold the extreme usefulness of this property: instead of query-

ing 𝐶ℎ(D,T), an elusive infinite structure, we can equivalently

query D, the only structure we have immediate access to.

No wonder the BDD/FUS property has been considered in liter-

ally hundreds of papers. Numerous classes of BDD theories have

been identified and intensively studied, among them subclasses

with decidable membership like:

• linear theories, where rules have at most one body atom;

• guarded BDD theories (while not all guarded theories are BDD, it

is decidable to determine if a guarded theory is BDD [4, 9]), gener-

alizing linear theories;

• sticky theories, defined by a reasonably natural syntactic restric-

tion on the use of joins [8].

Apart from the decidable subclasses of BDD, there are also natu-

ral undecidable subclasses:

• bounded Datalog theories, already studied decades before the

class BDD itself was discovered [12];

• binary BDD theories, where the arity of relation symbols is at
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most 2 (also studied in the context of description logics [1]);

• backward shy theories [18], a superclass of sticky theories.

As we expose in this paper, despite this extensive body of work,

we still understand very little about the deeper mathematical prop-

erties of BDD theories. In particular, we are going to show that the

intuition of BDD theories as being “local”, “only depending on the

small pieces of D”, and “unable to look too far” while (more or less)

correct for all aforementioned classes of BDD theories is blatantly

incorrect for BDD theories in general.

The FUS/FES conjecture. There is a striking similarity between

formulas (BDD) and (FES), inspiring a natural conjecture, which

we call the FUS/FES conjecture: For any BDD theory that is also FES,

it should be possible to choose the number 𝑖 in a uniform way,
independently from both D and 𝜙 . In other words, the conjecture

says that if T is both BDD and FES then:

∃𝑖 ∈N ∀𝜙 ∀D
(
𝐶ℎ(D,T) |= 𝜙 ⇔ 𝐶ℎ𝑖 (D,T) |= 𝜙

)
(UBDD)

This conjecture was studied earlier [10] and a proof was proposed,

which however turned out to be incorrect and was later withdrawn.

Later, it was shown that the conjecture would hold if the assumption

that T is FES were replaced by a stronger property [5].

Main results. We identify the new, generic class of local BDD
theories. Informally, such theories enforce that the creation of every

chase atom depends only on a constant number of facts from the

database. Importantly, this new class not only includes most of the

aforementioned subclasses of BDD (with sticky and backward shy

being notable exceptions) but also all BDD theories over signatures

with a maximum predicate arity of 2.

With this new class of theories defined (and the above inclusions

proved), we present our three main results: First that the FUS/FES
conjecture holds for local theories (Theorem 2). Second that the

conjecture holds for every BDD theory over a binary signature

(Corollary 1) – an immediate consequence of the fact that such

theories are local (Theorem 1).

Yet, as least as interesting as these insights we find our third
result (reflected in Theorem 3): the discovery of very much non-

local (and not even what we call bounded-degree local) theories that
are still BDD. Such theories not only defy many of the popular

intuitions about the BDD class, but also shows that all previous

investigations into that class have probably barely scratched its

surface and that there is a lot of room for new decidable/syntactic

classes of BDD theories, richer than all hitherto considered. One

plausible reason why this new world exhibits counterintuitive phe-

nomena and has gone entirely unnoticed is that it requires theories

of arity higher than 2. Binary theories are much easier to imagine

and they are mainly responsible for shaping our intuitions.

Summarizing, the main message of this paper is: even if a

(finite) counterexample to the FUS/FES conjecture should exist, it

is going to be found nowhere near the familiar avenues of the BDD

class. But we also show that the known avenues only reach a small

part of the BDD class and there is a lot of uncharted territory left.

Organisation of this paper. Apart from its preliminary sections

(Sections 2–7), the paper is organized as follows:

In Section 8 we define local theories. Later we state our first

result Theorem 1 and present a brief insight into its proof.

In Section 9 we state our second result – that the FUS/FES con-

jecture holds for local theories (Theorem 2) – and prove it. Also we

note that the conjecture holds for theories over binary signatures

(Corollary 1).

In Section 10, we notice that sticky theories, while BDD, are not

always local. We define another, weaker, notion, of bounded-degree-
local theories (or bd-local) and note that it covers sticky. Later we

discuss properties of this newly defined class.

In Section 11 we examine the intuition that “BDD theories are

unable to look too far”. We define the notion of distancing theories,

and show that if a theory is local then it is also distancing. We also

notice that backward shy theories are distancing, so that most of the

previously known examples of BDD theories are indeed distancing.

We show however, that there exists a BDD theory T𝑑 that is not

distancing. As a corollary we get that, for this BDD theory, the

rewriting 𝜙T𝑑 (which is a disjunction of conjunctive queries) of a

query 𝜙 can require disjuncts of exponential size with respect to the

size of 𝜙 . This is in stark contrast to any BDD theories previously

considered.

Finally in Section 12, we conclude and discuss future work.

The complete proofs of all results are included in the appendix

of an extended technical report, which is available online [17].

2 PRELIMINARIES
Queries and TGDs. A conjunctive query (CQ) is a formula𝜓 (𝑦) =
∃𝑥 𝛽 (𝑥,𝑦) with 𝛽 being a non-empty conjunction of atomic formu-

las over some signature (or schema) Σ (which is a finite set of relation

symbols) and over some set of variables and set of constants. So,

for example ∃𝑥 𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐴𝑏𝑒𝑙, 𝑥), 𝐹𝑒𝑚𝑎𝑙𝑒 (𝑥) is a CQ.
A boolean CQ (short: BCQ) is a CQ with all variables quantified

(as in the preceding example). We refer to 𝛽 as the body of 𝜓 (𝑦).
By a union of conjunctive queries (UCQ) we mean a formula being a

disjunction of CQs. By the size of a CQ, denoted |𝜓 (𝑦) |, we mean the

number of atomic formulas it is built of. By the width of a UCQ we

will mean the size of its greatest disjunct. Also, we will sometimes

treat UCQs as sets of CQs.

A theory or a rule set is a finite set of tuple generating dependencies
(TGDs, often just referred to as rules). A rule is a first-order logic
formula of the form ∀𝑥,𝑦

(
𝛽 (𝑥,𝑦) ⇒ ∃𝑤̄ 𝛼 (𝑦, 𝑤̄)

)
, where 𝑥 , 𝑦 and

𝑤̄ are pairwise disjoint lists of variables, 𝛽 (𝑥,𝑦) (the rule’s body) is
a conjunction of atomic formulas and 𝛼 (𝑦, 𝑤̄) (the rule’s head) is
an atomic formula. The frontier 𝑦 of a rule 𝜌 , denoted fr (𝜌), is the
set of all variables that occur both in the body and the head of the

rule. We omit universal quantifiers when writing rules and treat

conjunctions of atoms (such as 𝛽) as sets of atoms.

Note that, in database theory terminology, our rules are “single

head” TGDs. This is the only reasonable choice in this context,

since we want to talk about theories over a binary signature: if

we allowed rule heads to comprise several atoms, then rules with

predicates of any arity could be easily simulated using only arity

2 predicates. On the other hand, this does not restrict our results

in the cases where we do not assume that the signature is binary,

since every multi-head theory can be rewritten into a single-head

one, using higher-arity auxiliary predicates, and this rewriting does

not affect the property of being FUS or FES.
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Structures and entailment. A database instance (or structure or
fact set) is a set of facts – atomic formulas over Σ. For a structure F
over Σ we let 𝑑𝑜𝑚(F) denote its active domain – the set of all terms

that appear in the facts of F. For 𝑐, 𝑐 ′ ∈ 𝑑𝑜𝑚(F), we let 𝑑𝑖𝑠𝑡F (𝑐, 𝑐 ′)
denote the distance between 𝑐 and 𝑐 ′ in the Gaifman graph of F:
the vertices of this graph are elements of 𝑑𝑜𝑚(F) and two vertices

are connected by an edge if and only if they appear in the same

fact. We define the degree of F as the degree of F’s Gaifman graph.

F is a model of T (written: F |= T ) if F satisfies all TGDs from

T . For a pair T ,D, a CQ 𝜙 (𝑦), and a tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | , we
write T ,D |= 𝜙 (𝑎) (or T ,D, 𝑎 |= 𝜙 (𝑦)) to indicate that T and D
jointly entail 𝜙 (𝑎), which means that 𝜙 (𝑎) holds in each structure F
satisfying F |= T ,D, which serves as a shortcut for F |= T ∧ D ⊆ F.

Example 1. Consider the instance D𝑎 = {𝐻𝑢𝑚𝑎𝑛(𝐴𝑏𝑒𝑙)} and the
theory T𝑎 consisting of the following two rules:

𝐻𝑢𝑚𝑎𝑛(𝑦) ⇒ ∃𝑧 𝑀𝑜𝑡ℎ𝑒𝑟 (𝑦, 𝑧)
𝑀𝑜𝑡ℎ𝑒𝑟 (𝑥,𝑦) ⇒ 𝐻𝑢𝑚𝑎𝑛(𝑦)

Then T𝑎,D𝑎 |= ∃𝑦, 𝑧 𝑀𝑜𝑡ℎ𝑒𝑟 (𝐴𝑏𝑒𝑙,𝑦), 𝑀𝑜𝑡ℎ𝑒𝑟 (𝑦, 𝑧).

Homomorphisms and query containment. For structures D, F,
a homomorphism from D to F is a function ℎ : 𝑑𝑜𝑚(D) → 𝑑𝑜𝑚(F)
such that 𝐴(ℎ( ®𝑥)) ∈ F for each fact 𝐴( ®𝑥) ∈ D and that ℎ(𝑎) = 𝑎 for

any constant 𝑎 ∈ 𝑑𝑜𝑚(D). Given a fact 𝛼 = 𝐴( ®𝑥) ∈ D, we will use
ℎ(𝛼) to denote 𝐴(ℎ( ®𝑥)).

For two CQs 𝜙 (𝑦) and𝜓 (𝑦), with the same set of free variables,

we say that 𝜙 (𝑦) contains 𝜓 (𝑦) if for every structure D and for

every tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | if D |= 𝜓 (𝑎) than also D |= 𝜙 (𝑎). It
is well known that 𝜙 (𝑦) contains 𝜓 (𝑦) if and only if there is a

homomorphism
1
from 𝜙 (𝑦) to𝜓 (𝑦) that is the identity on 𝑦.

Core of a structure. A substructure H of a finite structure G is

a core of G (see [14]) if there exists a homomorphism ℎ : G → H
but there is no homomorphism from G to H′ where H′ is a proper
substructure of H. Note that the definition of homomorphisms

ensures that ℎ(𝑎) = 𝑎 for every constant 𝑎 ∈ 𝑑𝑜𝑚(G).
It is well known that [14]:

(1) Every finite structure has a core.

(2) Cores of a finite structure are unique up to isomorphism.

(3) If H is a core (of any structure) then it is a core of itself.

Given a (finite) structure G, we let 𝐶𝑜𝑟𝑒 (G) denote a function
that returns some induced substructure of G that is a core.

Connected queries, rules and theories. For a CQ, one can define
its Gaifman graph in the natural way: Variables are the vertices of

this graph and two variables are connected by an edge if and only if

they both appear in the same atomic formula. A conjunctive query

is connected if its Gaifman graph is connected. A TGD is connected
if its body is. A theory is connected if each of its rules is.

All the theories we consider in this paper are connected
with the important exception of theories over a binary signature.

Forcing theories to be connected will help us to better express

the nuances of the BDD class in Sections 10–11. This assumption

does not reduce the expressive power of such theories due to the

following trivial trick: add a fresh variable as an additional, first

variable in all the atoms appearing in the rules of the theory. This

will make the theory connected, and it will obviously preserve its

1
The queries 𝜙 (𝑦) and𝜓 (𝑦) are seen as structures here: the active domains of these

structures are the sets of variables of 𝜙 (𝑦) and𝜓 (𝑦) .

BDD and FES status. But it will increase the arity – so if we care

about the arity we do not get connectivity for free.

Note that after applying the trivial trick to an instance F the
distance between each 𝑐 and 𝑐 ′ from 𝑑𝑜𝑚(F) will be at most 2. Also,

applying this trick turns any instance with a Gaifman graph of a

low (bounded) degree into one with a high degree Gaifman graph.

3 THE SKOLEM CHASE.
The chase procedure is a standard algorithm, studied in a plethora

of papers. It can be used to semi-decide whether T ,D |= 𝜙 (𝑎) for
given theory T , instance D, CQ 𝜙 (𝑦) and tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | . In
fact the algorithm comes in many variants and flavors. The best way

to present our results is by using a variant of the the semi-oblivious
Skolem chase, which we define in this section.

We say that two CQs have the same isomorphism type when one

can be obtained from the other by means of bijective renaming of

variables. For a CQ Φ define 𝜏 (Φ) as the isomorphism type of Φ.
For each possible isomorphism type 𝜏 = 𝜏 (𝜙 (𝑦)) of some atomic

conjunctive query 𝜙 (𝑦), and for each natural number 1 ≤ 𝑖 ≤
𝑎𝑟𝑖𝑡𝑦 (𝐸), where 𝐸 is the relation symbol of𝜙 (𝑦), let 𝑓 𝜏

𝑖
be a function

symbol, with arity equal to |𝑦 |, that is the number of free variables

in 𝜙 (𝑦).

Definition 2 (Skolemization). For a given TGD 𝜌 , of the form
𝛽 (𝑥,𝑦) ⇒ ∃𝑤̄ 𝛼 (𝑥, 𝑤̄) by sh(𝜌) we denote the Skolemization of

the head of 𝜌 , that is the atom 𝛼 (𝑥, 𝑤̄), with each variable 𝑤 ∈ 𝑤̄

replaced by the term 𝑓 𝜏
𝑖
(𝑥), where 𝑖 is the earliest position in 𝛼 (𝑥, 𝑤̄)

where the variable𝑤 occurs.

Let, for example 𝜌 be 𝐸 (𝑥,𝑦, 𝑧), 𝑃 (𝑥) ⇒ ∃𝑣 𝑅(𝑦, 𝑣, 𝑧, 𝑣). Then sh(𝜌)
will be the atom 𝑅(𝑦, 𝑓 𝜏

2
(𝑦, 𝑧), 𝑧, 𝑓 𝜏

2
(𝑦, 𝑧)) where 𝜏 is the isomor-

phism type of ∃𝑣 𝑅(𝑦, 𝑣, 𝑧, 𝑣). Notice that sh(𝜌) does not depend on
the body of 𝜌 , only on its head. In particular it does not depend on

the non-frontier variables
2
of the body of 𝜌 .

Now we can define the procedure of rule application. Parameters

of this procedure are an instance F, a rule 𝜌 , and a mapping 𝜎

assigning elements of the active domain of F to the variables that

occur in the body of 𝜌 :

Definition 3 (Rule application). Let 𝜌 be a rule of the form
𝛽 (𝑥,𝑦) ⇒ ∃𝑤̄ 𝛼 (𝑦, 𝑤̄), and let F be a fact set.

• Define H𝑜𝑚(𝜌, F) as the set of all mappings 𝜎 from variables
in 𝑥 ∪ 𝑦 to 𝑑𝑜𝑚(F) such that 𝜎 (𝛽 (𝑥,𝑦)) ⊆ F (which means
that all the atoms from 𝛽 are in F after we apply 𝜎 to them).

• For 𝜎 ∈ H𝑜𝑚(𝜌, F), define 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) = 𝜎 (sh(𝜌)).

With these notions in place, we can now define the chase proce-

dure as a whole. Given an instance D and a theory T , it produces a

sequence (Ch𝑖 (T ,D))𝑖∈N of instances and the structure Ch(T ,D),
according to the following definition.

Definition 4 (Semi-oblivious Skolem chase procedure).

• Ch0 (T ,D) = D,
• Ch𝑖+1 (T ,D) = Ch𝑖 (T ,D) ∪

{𝑎𝑝𝑝𝑙 (𝜌, 𝜎) | 𝜌 ∈T , 𝜎 ∈H𝑜𝑚(𝜌,Ch𝑖 (T ,D))},
• Ch(T ,D) = ⋃

𝑖∈N Ch𝑖 (T ,D).
2
Including non-frontier variables as arguments of the functions 𝑓 𝜏

𝑖
(like 𝑥 in the

current example) would lead to the oblivious chase. Note that the names of the terms

do not identify 𝜌 (their “rule of origin”), which is important in the proof of Theorem 1.
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It is well known that Ch(T ,D) is a universal model for T and D
(i.e., a model that can be homomorphically mapped into any other

model). Thus, this structure can be used to solve CQ entailment: for

any theory T , CQ 𝜙 (𝑦), instance D and 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | , we have:
𝐶ℎ(T ,D) |= 𝜙 (𝑎) ⇔ D,T |= 𝜙 (𝑎)

Example 5. Let T𝑎 and D𝑎 be as in Example 1, then
• Ch0 (T𝑎,D𝑎) = D𝑎 = {𝐻𝑢𝑚𝑎𝑛(𝐴𝑏𝑒𝑙)},
• Ch1 (T𝑎,D𝑎) = Ch0 (T𝑎,D𝑎) ∪ {𝑀𝑜𝑡ℎ𝑒𝑟 (𝐴𝑏𝑒𝑙,𝑚𝑢𝑚(𝐴𝑏𝑒𝑙))},
• Ch2 (T𝑎,D𝑎) = Ch1 (T𝑎,D𝑎) ∪

{𝑀𝑜𝑡ℎ𝑒𝑟 (𝑚𝑢𝑚(𝐴𝑏𝑒𝑙),𝑚𝑢𝑚(𝑚𝑢𝑚(𝐴𝑏𝑒𝑙)))},
and so on (we use the function symbol “mum” as an alias for the ugly
Skolem function symbol from Definition 2).

Now note that there is nothing in Definition 4 that could prevent

us from taking D = Ch2 (T𝑎,D𝑎) and running the chase for such D.
It is easy to see that in that case we obtain Ch(T𝑎,D) = Ch(T𝑎,D𝑎).
This leads to the following easy insight:

Observation 6. If D⊆F⊆Ch(T,D) then Ch(T, F) =Ch(T,D).

Note that that equality in Observation 6 is to be understood

literally (rather than “up to isomorphism”). This is crucial for our

treatise and it constitutes the main reason why we use the Skolem

naming convention.

Finally, let us state another property of the chase – a direct

consequence of the fact that Ch(T ,D) is a universal model.

Property 7. Let T be a theory and let D and F be fact sets sat-
isfying D ⊆ F ⊆ Ch(T ,D) as well as F |= T . Then there exists a
homomorphism from Ch(T ,D) to F that is the identity on 𝑑𝑜𝑚(F).

Frontier and birth atoms. Let 𝛼 be an atom from 𝐶ℎ(T ,D) \ D,
created as 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) for some 𝜌 ∈ T and 𝜎 ∈ 𝐻𝑜𝑚(𝜌,D). We let

the frontier of 𝛼 (written: fr (𝛼)) denote the set of terms 𝜎 (fr (𝜌)).
Notice that there may be more than one rule application creating

the same atom 𝛼 , but:

Observation 8. For every 𝜌, 𝜌 ′ ∈ T and every 𝜎 ∈ 𝐻𝑜𝑚(𝜌,D)
if 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) = 𝑎𝑝𝑝𝑙 (𝜌 ′, 𝜎 ′) then heads of 𝜌 and 𝜌 ′ when treated as
CQs have the same isomorphism type.

Clearly, for each 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(T ,D)) either 𝑡 ∈ 𝑑𝑜𝑚(D) or
𝑡 was created by the chase procedure as a Skolem term. Notice

that, despite the name of the rule of T that created 𝑡 not being

indicated in the name of 𝑡 (as per our Skolem naming convention),

the following still holds:

Observation 9. For some 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(T ,D)) \ 𝑑𝑜𝑚(D), there
is exactly one atom 𝛼 ∈ 𝐶ℎ(T ,D) with 𝑡 appears in 𝛼 abd 𝑡 ∉ fr (𝛼).

We will refer to such an atom 𝛼 as the birth atom of 𝑡 .

For the proof of the last observation notice that one can uniquely

reconstruct 𝛼 using only 𝑡 . This is because 𝑡 contains both the

isomorphism type of 𝛼 (so that one can reconstruct 𝛼 up to bijective

renaming of its terms) and its frontier terms.

4 THE THREE CLASSES
For a theory T , an instanceD, a natural number𝑛 and a conjunctive

query 𝜙 (𝑦) we will write 𝐸𝑛𝑜𝑢𝑔ℎ(𝑛, 𝜙 (𝑦),D,T) as a shorthand for:

∀𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 |
(
𝐶ℎ(T ,D) |= 𝜙 (𝑎) ⇔ 𝐶ℎ𝑛 (T ,D) |= 𝜙 (𝑎)

)
.

Meaning that “it is enough to run 𝑛 steps of the T -chase on D to

fully evaluate 𝜙”.

Now we will provide definitions for three separate classes: BDD,

FES, and UBDD [3, 7].

Definition 10 (BDD). A theory T has the bounded derivation

depth property if:
∀Φ ∃𝑛Φ ∀D 𝐸𝑛𝑜𝑢𝑔ℎ(𝑛Φ,Φ,D,T)

Definition 11 (FES). A theory T has the finite expansion set

property if:
∀D ∃𝑛D ∀Φ 𝐸𝑛𝑜𝑢𝑔ℎ(𝑛D,Φ,D,T)

Definition 12 (UBDD). Theory T is uniformly BDD if:
∃𝑐T ∀D ∀Φ 𝐸𝑛𝑜𝑢𝑔ℎ(𝑐T ,Φ,D,T)

Notice the striking similarity between the above expressions.

Connections between those classes will be discussed later in Sec-

tion 7, but before we need to explore BDD and FES in greater detail.

5 BDD AND FINITE UNIFICATION SETS
As with many important notions, it happens that the same concept

is defined by multiple communities using different properties. This

is exactly the case with finite unification set property [3] and BDD.

Definition 13 (FUS). A theory T has the finite unification set

property if every conjunctive query𝜓 (𝑦) has a rewriting — a UCQ,
denoted𝜓 rew (𝑦), such that the following holds:
For each instance D and each tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | we have

𝐶ℎ(T ,D), 𝑎 |= 𝜓 (𝑦) ⇐⇒ D, 𝑎 |= 𝑟𝑒𝑤 (𝜓 (𝑦)) .
It is well known that T is BDD if and only if it is FUS [6], so

we will use the two terms interchangeably. For simplicity of our

arguments and without loss of generality, we will require the set

𝑟𝑒𝑤 (𝜓 (𝑦)) to be minimal: If 𝜙 (𝑦) ≠ 𝜙 ′(𝑦) are two elements of

𝑟𝑒𝑤 (𝜓 (𝑦)) then 𝜙 (𝑦) is not contained in 𝜙 ′(𝑦).
The BDD/FUS class admits several interesting properties. The

following will be used later: facts about terms are produced by the

chase soon after the terms are created (with only a constant delay).

Observation 14. There exists a natural number 𝑛𝑎𝑡 (depending
only on T ) such that for any instance D, for any 𝑖 ∈ N, for any
tuple 𝑡 of domain elements from 𝑑𝑜𝑚(𝐶ℎ𝑖 (T ,D)) and for any 𝑅 ∈ Σ,
𝐶ℎ(T ,D) |= 𝑅(𝑡) implies 𝐶ℎ𝑖+𝑛𝑎𝑡 (T ,D) |= 𝑅(𝑡).

Proof (sketch). For any query 𝜙 , let 𝑛𝜙 denote the constant

from Definition 10. Note, that there is only a finite number of

non-isomorphic atomic queries. Therefore, we can obtain 𝑛𝑎𝑡 as

max({𝑛𝜙 | 𝜙 is an atomic query}). □

The BDD property – exercises. Now, we would like to encourage
the reader to solve a few exercises. While they are not part of the

actual proofs, we believe they might provide valuable insights.

Exercise 15. Consider the theory T𝑝 over schema {𝐸} consisting
of just one rule 𝐸 (𝑥,𝑦) ⇒ ∃𝑧 𝐸 (𝑦, 𝑧). Show that this theory is BDD.

Comment: This can be easily generalized: it is well known that all

linear theories are BDD [7] (a theory is linear if each rule only has

one atom in its body).
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Exercise 16. Show that, if T is BDD and connected then there
exists some 𝑑 ∈ N such that for each D and for each two terms 𝑐, 𝑐 ′

of 𝑑𝑜𝑚(D), if 𝑑𝑖𝑠𝑡𝐶ℎ (T,D) (𝑐, 𝑐 ′) = 1 then 𝑑𝑖𝑠𝑡D (𝑐, 𝑐 ′) ≤ 𝑑 .

Comment: the didactic purpose of Exercise 16 is to evoke or reinforce
the intuition of BDD as a “locality” property: if terms from 𝑑𝑜𝑚(D)
appear in one atom somewhere in 𝐶ℎ(T ,D) then they could not

possibly be far away from each other already in D.

6 FES AND CORE TERMINATION
FES theories always (regardless of the initial structure D) produce
all the positive information present in 𝐶ℎ(T ,D) already after a

finite number of chase steps (this number can depend onD though).

This is, as well, the case with the core termination [3, 11]:

Definition 17. A theory T is core-terminating if for each fact
set D there exists a 𝑘 ∈ N such that for each 𝑖 ≥ 𝑘 :

𝐶𝑜𝑟𝑒 (Ch𝑖 (T ,D)) is isomorphic to 𝐶𝑜𝑟𝑒 (Ch𝑖+1 (T ,D)) .

It is well known that T is core-terminating if and only if it is

FES [2], so we will use the two terms interchangeably. Moreover,

the smallest numbers 𝑛D and 𝑘 satisfying Definitions 11 and 17

(respectively) are equal; from now on this number will be denoted

with 𝑐T,D. It is also known [11] that 𝐶𝑜𝑟𝑒 (Ch𝑐T,D (T ,D)) |= T ,D.

Definition 18. Given a FES theory T and an instance D, we let
𝐶𝑜𝑟𝑒 (T ,D) denote 𝐶𝑜𝑟𝑒 (Ch𝑐T,D (T ,D)).

Exercises Also this section comes with a few exercises. Again, we

expect them to provide valuable insight, but they are not required

for our subsequent proofs.

Exercise 19. Show that the theory from Exercise 15 is not FES.

Exercise 20. Show that the theory consisting of two rules
𝐸 (𝑥,𝑦) ⇒ ∃𝑧 𝐸 (𝑦, 𝑧) and 𝐸 (𝑥, 𝑥 ′) ⇒ 𝐸 (𝑥, 𝑥) is FES.

7 THE FUS/FES CONJECTURE
It is very easy to produce examples of BDD theories that are not

UBDD (see Exercise 15). However, all examples we could produce

are not core-terminating. Likewise, it is easy to produce examples

of core-terminating theories that are not UBDD, but they are not

BDD either (all unbounded Datalog theories will be very happy to

serve as examples). This gives rise to the following conjecture.

Conjecture 1 (The FUS/FES conjecture). Any theory that is
both FUS and FES is also UBDD.

This conjecture was studied in [10] where an incorrect proof was

proposed, and in [5] where it was proved that it would hold true

if the assumption that T is FES was replaced by the significantly

stronger assumption that it is all-instances Skolem chase terminat-
ing. Note that the conjecture would be false if infinite theories, over
infinite (yet just binary) schemas were allowed:

Example 21. Suppose a relation symbol 𝐸𝑖 for every 𝑖 ∈ N. Let the
theory T∞ consist of all rules of the form 𝐸𝑖 (𝑥,𝑦) ⇒ ∃𝑧 𝐸𝑖−1 (𝑦, 𝑧)
for 𝑖 ∈ N+. Then T∞ is BDD and core-terminating, but it is not UBDD.
To see why this is the case, notice that only facts from a finite number
of relations can appear in every given finite instance.

8 LOCAL THEORIES.
We are now ready to introduce the central notion of local theories.
As it will turn out, not only the FUS/FES conjecture holds for these

(Theorem 2) but they also subsume all BDD theories over binary

signatures (Theorem 1). Notwithstanding, as we will argue near

the end of the paper, there exists an untapped potential within the

BDD class beyond the veils of locality (Theorem 3).

Definition 22. A theory T is local if there exists some number
𝑙T ∈ N such that for every instance D the following holds:

Ch(T ,D) =
⋃
F⊆D, |F | ≤𝑙T

Ch(T , F)

Note that the Skolem naming convention is important here.With-

out it, it would be unclear or at least ambiguous what a union of

chases is supposed to mean. Importantly, we obtain that locality

implies the BDD property.

Observation 23. If a theory is local then it is BDD.

Proof (sketch). Given a local theory T and a CQ Φ, we show
that there exists a natural number 𝑛Φ satisfying Definition 10. Due

to T being local, we can, for every F with F |= Φ, identify some

D ⊆ F with D |= Φ and |D| ≤ 𝑙T |Φ|. Therefore, we let F =

{D | Ch(T ,D) |=Φ ∧ |D| ≤ 𝑙T |Φ|}. For any D ∈ F , define 𝑛D as

the minimal natural number such that Ch𝑛D (T ,D) |= Φ. As F
contains just a finite number of non-isomorphic instances, picking

𝑛Φ = max{𝑛D | D ∈ F } witnesses that Definition 10 applies. □

We defer any further discussion about locality until later sections.

And now, let us state our first result.

Theorem 1. Every BDD theory over binary signature is local.

The detailed proof is presented in Appendix A in [17]. Here, we

just outline the proof idea. We start by observing that the atoms

created in the chase by rules that contain existentially quantified

variables form a forest. This is a crucial property of single-head rule

sets over binary signatures as any such rule must have a frontier of

size ≤1. (Obviously, this property ceases to hold for signatures of

higher arities.) Essentially, as the chase progresses, the existential

atoms (those produced through “proper” existential rules) are cre-

ated further and further away from the instance. If we were able

to bound the number of each such atom’s ancestors — the atom

set required for its creation — then we could finish the proof by

slightly extending Observation 14. The forest shape, however, is

not immediately sufficient to bound the ancestors of its atoms. To

overcome this issue, we propose a normalization technique, that,

given a BDD theory T over binary signature, produces a new the-

ory T𝑁𝐹 , which might no longer be BDD but admits two important

properties: First, the sets of existential atoms produced by T and

by T𝑁𝐹 on any instance coincide (Lemma 48 in [17]). Second, it

is straightforward to find the mentioned bound on the number

of ancestors for every atom produced by T𝑁𝐹 (Lemma 57 in [17]).

These two properties grant us Theorem 1. But how does such a

normalization work? In simple words, it relies on the fact that T is

BDD. In the absence of both disconnected and Datalog rules, the

normalization would be rather simple: we could take any existential

rule 𝛽 ⇒ 𝛼 ∈ T and replace it with rules 𝛾 ⇒ 𝛼 for all 𝛾 ∈ 𝑟𝑒𝑤 (𝛽).
Dealing with disconnected bodies and Datalog rules complicates

matters somewhat.
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We are very confident that our proof can be generalized to all

frontier-guarded BDD theories. As this is not yet spelled out in full

detail, we prefer to be cautious and formulate it as conjecture.

Conjecture 2. Every frontier-guarded BDD theory is local.

9 THE FUS/FES CONJECTURE IS TRUE FOR
LOCAL THEORIES

We proceed by presenting the second of our three main results.

Theorem 2. If a theory T is FES and local then it is UBDD.

This means that the FUS/FES conjecture holds for local theories.

Before we start our proof, let us note that by Theorem 1 and The-

orem 2, we can immediately conclude that Conjecture 1 holds for

theories over binary signatures:

Corollary 1. If a theory T over a binary signature is both FES
and BDD then it is UBDD.

Also, Theorem 1 implies that any counterexample to the conjec-

ture – should it exist – would have to be outside the realm of local

classes. We explore this uncharted lands in Section 11.

Proof of Theorem 2
As any UBDD theory is core-terminating as well, it is easy to see

that a theory T is UBDD if and only if there exists some 𝑐T ∈ N
such that𝐶𝑜𝑟𝑒 (T ,D) ⊆ Ch𝑐T (T ,D) holds for any instanceD. Note
that the numbers 𝑐T here and in Definition 12 are equal. Thus we

can reformulate Theorem 2 as follows:

Theorem 2 (alternative). Let T be a core-terminating local the-
ory. Then there exists a 𝑐T ∈ N such that𝐶𝑜𝑟𝑒 (T ,D) ⊆ Ch𝑐T (T ,D)
holds for any instance D .

Until the end of this section, we will consider T a fixed theory

that is both core-terminating and local (so also BDD). To simplify

notation, Ch(T ,D) will be shortened to Ch(D).
Definition 24. For an instance D define ID as the family of sets

{F | F ⊆ D, |F| ≤ 𝑙T }. Define CD =
⋃
F∈ID 𝐶𝑜𝑟𝑒 (T , F).

Lemma 25. There exists a 𝑘T ∈ N depending only on T (but not
on D), such that CD ⊆ Ch𝑘T (D).

Proof. The set A = {F | |F| ≤ 𝑙T } of all instances (over Σ)
of size at most 𝑙T is finite (up to isomorphisms). Recall that T is

core-terminating and let 𝑘T = max{𝑐T,D | D ∈ A}. □

If we were able able to find a homomorphism
¯ℎD from 𝐶ℎ(D) to

CD, the alternative formulation of Theorem 2would be proved. Also,

since T is core-terminating, we know that for each F ∈ ID there

exists a homomorphism ℎF from 𝐶ℎ(F) to CD and we know that⋃
F∈ID 𝐶ℎ(F) = 𝐶ℎ(D). So can’t we just define

¯ℎD =
⋃
F∈ID ℎF?

Unfortunately not, because the domains of ℎF and ℎF′ may overlap

(for some F ≠ F′) and there is no guarantee that ℎF and ℎF′ will

agree on the terms that are in both domains. If
¯ℎD could be produced

this way, CD |= T would always hold. Yet, we found an example

(not included here) of a pair D, T for which CD ̸ |= T .

Luckily, the idea to build a global homomorphism
¯ℎD using the

local homomorphisms ℎF can be put to use in a different way, and

the set of facts CD will indeed prove very useful in this context.

The following lemma will be crucial in this endeavor:

Lemma 26. For any instance D there exists a homomorphism ¯ℎD
from 𝐶ℎ(D) to 𝐶ℎ(D) such that for each 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(D)) there is
¯ℎD (𝑡) ∈ 𝑑𝑜𝑚(CD).

Let us first discuss howTheorem 2 can be concluded from Lemma 26.

Suppose someD is fixed and
¯ℎD is a homomorphism as in Lemma 26.

We know that 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(D)) implies
¯ℎD (𝑡) ∈ 𝑑𝑜𝑚(CD) and we

know thatCD ⊆ 𝐶ℎ𝑘T (D). So one might be tempted to immediately

conclude
¯ℎD (Ch(D)) ⊆ 𝐶ℎ𝑘T (D). But it is not quite that simple.

Admittedly, Lemma 26 tells us that all the terms of
¯ℎD (Ch(D))

will indeed appear in 𝐶ℎ𝑘T (D). But it says nothing like that about

the atoms of
¯ℎD (Ch(D)). Rather, it might be that there are atoms

in
¯ℎD (Ch(D)) that, despite having all their terms in 𝑑𝑜𝑚(CD) are

not themselves in CD. To overcome this little problem, we recall

Observation 14 and let 𝑐T = 𝑘T +𝑛𝑎𝑡 . Then ¯ℎD (Ch(D)) ⊆ 𝐶ℎ𝑐T (D)
follows as desired.

This means what remains to be presented in this section is the

proof of Lemma 26:

Definition 27. Let D be a set of facts and let F ⊆ D. We let
𝑀F denote3 the substructure of Ch(D) induced by the set of terms
𝑑𝑜𝑚(Ch(D)) \

(
𝑑𝑜𝑚(Ch(F)) \ 𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F))

)
.

In the following, the terms of 𝑑𝑜𝑚(Ch(F)) \ 𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F)
will be referred to as banned terms.

Lemma 28. For any instance D and for any F ⊆ D, the structure
𝑀F is a model of T and D.

Proof. Clearly𝑀F |= D. In order to prove𝑀F |= T , consider any

𝜌 ∈ T and any 𝜎 ∈ H𝑜𝑚(𝜌,𝑀F). Of course, 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) ∈ Ch(D),
since Ch(D) is by definition closed under rule applications.

In the following, the atom 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) will be mentioned often

enough to deserve a shorter name, so we will call it 𝛼 .

It is now sufficient (and necessary) to prove that there exists a

homomorphism from 𝛼 to some atom 𝛼 ′ ∈ 𝑀F, that is the identity

on fr (𝛼). In other words, we need to show that if the body of the

rule 𝜌 matches 𝑀F (via mapping 𝜎), then we can find an atom in

𝑀F that witnesses satisfaction of 𝜌 . Such an 𝛼 ′
needs to have the

same terms as 𝛼 in the frontier positions and may have arbitrary

terms in the positions of the existentially quantified variables in

ℎ𝑒𝑎𝑑 (𝜌), except that if 𝛼 had equal terms on two such positions

then the respective terms in 𝛼 ′
must also be equal.

If 𝛼 ∈ 𝑀F then of course we pick 𝛼 ′ = 𝛼 . So, for the rest of the

proof, assume 𝛼 ∉ 𝑀F. Note that the only reason for 𝛼 to be in

Ch(D) but not in𝑀F is that 𝛼 contains some banned term 𝑡 .

But 𝜎 (𝑏𝑜𝑑𝑦 (𝜌)) ⊆ 𝑀F. Thus fr (𝛼) ⊆ 𝑑𝑜𝑚(𝑀F) and so 𝑡 ∉ fr (𝛼).
At this point, we can be sure that 𝜌 is not a Datalog rule – atoms

derived via a Datalog rule do not have non-frontier terms.

Term 𝑡 being a non-frontier term of 𝛼 means that 𝛼 is the birth

atom of 𝑡 in Ch(D). But 𝑡 ∈ 𝑑𝑜𝑚(Ch(F)) so from Observation 9, we

know that 𝛼 is the birth atom of 𝑡 in Ch(F) and thus 𝛼 ∈ Ch(F).
Note that fr (𝛼) ⊆ 𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F)) (∗), as fr (𝛼) ⊆ 𝑑𝑜𝑚(Ch(F))

and none of the terms in fr (𝛼) are banned.
Now let ℎ∗F : Ch(F) → 𝐶𝑜𝑟𝑒 (T , F) be a homomorphism as in

Property 7. Since 𝛼 ∈ Ch(F), we obtain ℎ∗F (𝛼) ∈ 𝐶𝑜𝑟𝑒 (T , F) and

3
To be precise we should call this new structure𝑀D,F , but D will be fixed and clear

from the context.
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thus ℎ∗F (𝛼) ∈ 𝑀F. As ℎ
∗
F is a retraction, ℎ

∗
F (fr (𝛼)) = fr (𝛼) follows

from (∗). Hence,ℎ∗F (𝛼) can serve as our𝛼
′
, concluding the proof. □

Lemma 29. For any instance D and any F ⊆ D there exists a
homomorphism ℎ∗

𝑀F
from Ch(D) to itself that maps all terms to

𝑑𝑜𝑚(𝑀F) and is the identity on 𝑑𝑜𝑚(𝑀F).

Proof. Note that 𝑀F |= T (Lemma 28) and D ⊆ 𝑀F. Then

Property 7 ensures the existence of the claimed homomorphism. □

Let HD be the set of all homomorphisms ℎ∗
𝑀F

for F ∈ ID.
Each ℎ∗

𝑀F
∈ HD has as its domain the set 𝑑𝑜𝑚(Ch(𝑀F)), that is

equal to 𝑑𝑜𝑚(Ch(D)), and has as its image a subset of this domain.

This means that one can compose such homomorphisms, and the

resulting function will also be a homomorphism from Ch(D) to
Ch(D) (and it will be the identity on 𝑑𝑜𝑚(D), since each ℎ𝑀F is).

Now the rabbit is going to be pulled out of the hat: let us compose

all homomorphisms ℎ𝑀F ∈ HD, in any order. Call the resulting

(“global”) homomorphism
¯ℎD.

Now recall that the proof of Lemma 26 (and thus also of Theo-

rem 2) will be finished once we can show that
¯ℎD (𝑡) ∈ 𝑑𝑜𝑚(CD)

does indeed hold for each term 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(D)).
Recall our notion of banned terms. Now F is no longer fixed, i.e.,

for each F ∈ ID there is a set 𝑏𝑎𝑛F of terms that occur somewhere

in Ch(F) but not in 𝐶𝑜𝑟𝑒 (T , F). Each ℎ∗
𝑀F

∈ HD is the identity on

all terms except those of 𝑏𝑎𝑛F, and maps the terms from 𝑏𝑎𝑛F into

𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F)), which means into 𝑑𝑜𝑚(CD).
Now suppose we apply

¯ℎD to any 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(D)). If there is
any ℎ∗

𝑀F
∈ HD with ℎ∗

𝑀F
(𝑡) ≠ 𝑡 then of course

¯ℎD (𝑡) ∈ 𝑑𝑜𝑚(CD).
In case ℎ∗

𝑀F
(𝑡) = 𝑡 for each ℎ∗

𝑀F
, consider any F𝑡 ∈ ID for which

𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(F𝑡 )). Then 𝑡 ∈ 𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F𝑡 )) ⊆ 𝑑𝑜𝑚(CD).

10 BEYOND LOCALITY: STICKY THEORIES
Unfortunately, our notion of locality fails to characterize the entire

BDD class, as demonstrated in the following example.

Example 30. Let 𝐸 be a relation of arity 4 and 𝑅 one of arity 2.
Read 𝐸 (𝑎, 𝑏, 𝑏 ′, 𝑐) as “𝑎 sees an edge from 𝑏 to 𝑏 ′ colored with color 𝑐”
and 𝑅(𝑎, 𝑐) as “𝑎 considers 𝑐 a color”. The following one-rule sticky
theory T is not local:

𝐸 (𝑥,𝑦,𝑦′, 𝑡), 𝑅(𝑥, 𝑡 ′) ⇒ ∃𝑦′′ 𝐸 (𝑥,𝑦′, 𝑦′′, 𝑡 ′)
(meaning “if 𝑥 sees an edge from 𝑦 to 𝑦′ and considers 𝑡 ′ a color, then
𝑥 must also see another edge from 𝑦′ to some 𝑦′′ of color 𝑡 ′”).

To see that it is indeed not local, suppose it were and let 𝑙T be the
corresponding constant as in Definition 22. Now take an instance D
consisting of 𝑙T +1 atoms: one atom 𝐸 (𝑎, 𝑏1, 𝑏2, 𝑐1) and atoms 𝑅(𝑎, 𝑐𝑖 )
for 1 ≤ 𝑖 ≤ 𝑙T . It is not hard to see that there are atoms in 𝐶ℎ(T ,D)
that require all the atoms from D to be produced.

The only reason, however, for connected sticky theories to be

non-local are high-degree vertices, like the 𝑎 in the example. This

leads to a natural generalization of the notion of locality:

Definition 31. A theory T will be called bounded-degree local

(or bd-local) if for any 𝑘 ∈ N there exists a constant 𝑙T (𝑘) such that
for every instance D having degree at most 𝑘 , the following holds:⋃

F⊆D, |F | ≤𝑙T (𝑘)
Ch(T , F) = Ch(T ,D)

As of yet, we have been unable to show that the FUS/FES conjecture

holds for bounded-degree local theories, but we believe that with

some additional effort, the ideas from Section 9 could probably be

adapted to work also for such theories. And of course they do work

if only instances of fixed degree are considered.

It is not hard to show that sticky theories are indeed bd-local

(cf. Appendix E in [17]). Hence, in view of Conjecture 2, it seems

that most known decidable BDD classes are bounded-degree local.

Perhaps surprisingly, unlike local theories, not all bounded-degree

local theories are BDD:

Example 32. It is easy to see that the following single-rule theory
is bounded-degree local but not BDD: 𝐸 (𝑥,𝑦, 𝑧), 𝑅(𝑥, 𝑧) ⇒ 𝑅(𝑦, 𝑧).

But even if not all bd-local theories are BDD, it is not straight-

forward to come up with a BDD theory that is not bd-local. So a

natural question arises: are there BDD theories that are not local in

this generalized sense? We found it quite surprising to realize that

the answer is positive:

Example 33. The following BDD theory T𝑐 is not bd-local:
𝐸 (𝑥,𝑦) ⇒ ∃𝑥 ′, 𝑦′ 𝑅(𝑥,𝑦, 𝑥 ′, 𝑦′)

𝑅(𝑥,𝑦, 𝑥 ′, 𝑦′), 𝐸 (𝑦, 𝑧) ⇒ ∃𝑧′ 𝑅(𝑦, 𝑧,𝑦′, 𝑧′)
To prove that it is BDD one can notice that if T𝑐 ,D |= 𝜙 (𝑎), for someD
and some 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑎 | then𝐶ℎ |𝜙 (𝑦) | |= 𝜙 (𝑎). In order to prove that
it is not bd-local consider, for each 𝑛 ∈ N, the instance D𝑛 consisting
of atoms 𝐸 (𝑎1, 𝑎2), 𝐸 (𝑎2, 𝑎3) . . ., 𝐸 (𝑎𝑛, 𝑎1). The degree of this instance
is 2. And there are atoms in 𝐶ℎ𝑛 (T𝑐 ,D𝑛) that are not in 𝐶ℎ𝑛 (T𝑐 , F)
for any proper subset F of D𝑛 .

We were, however, not able to find an example of a theory that

would be hereditary BDD — a BDD theory such that every its sub-

sets is BDD as well — but not bd-local. We think it reasonable to

conjecture that there are no such theories.

11 FAR BEYOND LOCALITY: BDD THEORIES
WITHOUT SMALL REWRITINGS

As we know, any local theory is also BDD. Additionally, local theo-

ries admit rewritings of linear width:

Observation 34. For each local theory T and for each CQ Ψ, the
size of the greatest disjunct in the rewriting is at most 𝑙T |Ψ|.

Clearly, the linear bound on the width of 𝑟𝑒𝑤 (Ψ) gives us an
immediate exponential upper bound on the number of its disjuncts.

A matching lower bound is trivial to obtain:

Observation 35. LetT consist of the two rules: 𝐸 (𝑥,𝑦) ⇒ 𝑅(𝑥,𝑦)
and 𝐸 ′(𝑥,𝑦) ⇒ 𝑅(𝑥,𝑦). Then T is BDD and the number of disjuncts
in 𝑟𝑒𝑤 (Ψ) can be exponential in the size of Ψ.

Recall the notion of backwards shy theories [18] – these are BDD

theories such that, for every query𝜓 (𝑦) if 𝜙 (𝑦) ∈ 𝑟𝑒𝑤 (𝜓 (𝑦)) then
only variables from 𝑦 can occur more than once in 𝜙 (𝑦). Sticky the-

ories are backward shy. It is easy to see that backward shy theories

admit rewritings of linear width as well and, in consequence, also

all sticky theories do. This is related to another notion of locality:

Definition 36. We call a theory Tdistancing if there is a 𝑑T ∈ N
such that for any instance D, any 𝑐, 𝑐 ′ ∈ 𝑑𝑜𝑚(D), and any 𝑛 ∈ N if
𝑑𝑖𝑠𝑡𝐶ℎ (T,D) (𝑐, 𝑐 ′) ≤ 𝑛 then 𝑑𝑖𝑠𝑡D (𝑐, 𝑐 ′) ≤ 𝑑T𝑛.

Session 8: Query Processing PODS ’22, June 12–17, 2022, Philadelphia, PA, USA

365



Is every BDD theory distancing? It might seem that this can

be shown using Exercise 16. However, this is not the case, since

the path from 𝑐 to 𝑐 ′ in 𝐶ℎ(T ,D) might lead through atoms not

containing any constants from the original D. Nevertheless:

Observation 37. If a BDD theory admits rewritings of linear
width, then it is distancing.

Assuming Conjecture 2, this implies that all theories from previ-

ously known BDD classes are distancing. The converse of Observa-

tion 37 does not hold, and such theories can be easily found:

Observation 38. The theory consisting of the single Datalog rule
𝐴(𝑥), 𝐸 (𝑥,𝑦) ⇒ 𝐴(𝑦) is distancing but not BDD.

So do there exist non-distancing BDD theories at all? Do there

exist BDD theories that do not admit rewritings of linear width?

The answer is given by Theorem 3, which constitutes the third

main result of this paper:

Theorem 3. There exists a BDD theory that is non-distancing and
does not even admit rewritings of polynomial width.

Definition 39. Consider a signature with two binary predicates
𝑅 and 𝐺 . Let the theory T𝑑 consist of the following rules:

(loop) 𝑡𝑟𝑢𝑒 ⇒ ∃𝑥 𝑅(𝑥, 𝑥),𝐺 (𝑥, 𝑥)
(pins) ∀𝑥 (𝑡𝑟𝑢𝑒 ⇒ ∃𝑧, 𝑧′ 𝑅(𝑥, 𝑧),𝐺 (𝑥, 𝑧′))
(grid) 𝑅(𝑥, 𝑥 ′),𝐺 (𝑥,𝑢),𝐺 (𝑢,𝑢 ′) ⇒ ∃𝑧 𝑅(𝑢 ′, 𝑧),𝐺 (𝑥 ′, 𝑧)
Note that the rules of T𝑑 are not single-head and some of them have

empty bodies. One could easily reformulate them to avoid this at

the cost of readability (see Appendix D in [17]).

We will think of instances over our signature (and of bodies of

queries) as graphs with edges colored in red or green. For 𝑛 ∈ N, let
𝐺𝑛 (𝑥0, 𝑥𝑛) denote the CQ ∃𝑥1 . . . 𝑥𝑛−1𝐺 (𝑥0, 𝑥1), . . . ,𝐺 (𝑥𝑛−1, 𝑥𝑛)
and 𝑅𝑛 (𝑥0, 𝑥𝑛) likewise. Define conjunctive queries 𝜙𝑛

𝑅
(𝑥,𝑦) by

∃𝑥 ′, 𝑦′𝑅𝑛 (𝑥, 𝑥 ′), 𝑅𝑛 (𝑦,𝑦′),𝐺 (𝑥 ′, 𝑦′) and let G𝑛 (𝑎, 𝑏) be a path of 𝑛

green edges, with 𝑎 as the first vertex and 𝑏 as the last.

The following technical lemma substantiates Theorem 3:

Lemma 40. (A) The theory T𝑑 is BDD.
(B) 𝐺2

𝑛 (𝑥,𝑦) ∈ 𝑟𝑒𝑤T𝑑 (𝜙𝑛𝑅 (𝑥,𝑦)) holds for every 𝑛 ∈ N.
Let us first prove claim (B) of the theorem, which implies that

T𝑑 is not distancing. The claim follows once we notice that: (i)

Ch(T𝑑 ,G2
𝑛 (𝑎, 𝑏)) |= 𝜙𝑛

𝑅
(𝑎, 𝑏) and (ii) if D is a proper subset of

G2
𝑛 (𝑎, 𝑏) then 𝐶ℎ(T𝑑 ,D) ̸|= 𝜙𝑛

𝑅
(𝑎, 𝑏). Establishing (i) is immediate,

as exemplified in Fig. 1 displaying the case 𝑛 = 3. To show (ii), we

note that if D is a proper subset of G2
𝑛 (𝑎, 𝑏) then 𝑎 and 𝑏 are in two

different connected components of D and, since T𝑑 is connected,

they are in two different connected components of 𝐶ℎ(T𝑑 ,D).

Figure 1: Fragment of 𝐶ℎ(T𝑑 ,G8 (𝑎0, 𝑎8)) (print in colors!)

The proof of claim (A) is much harder (see Appendix B in [17]).

It defines a rewriting procedure in the spirit of [13, 15], whose

termination for any given query 𝜙 (𝑦) is shown, via an invariant

defined by a complicated multiset ordering.

As our final exercise illustrates, the reasons why T𝑑 is BDD are

quite subtle indeed:

Exercise 41. Show that without rule (loop), T𝑑 would not be BDD.
Hint: Consider the CQ ∃𝑥,𝑦 𝑅(𝑥,𝑦),𝐺 (𝑥,𝑦).

A remark on Theorem 3. A folklore belief seems to be that the

existence of BDD theories that enforce rewritings of unbounded

width is a consequence of the the fact that it is undecidable to

check if a theory is BDD (see e.g. a recent stackexchange post

[16]). Our results call this belief into question, because being BDD

is undecidable for theories with a binary signature, and yet such

theories, if BDD, are local and thus admit rewritings of linear width.

Remark on distancing and linear width rewritings. One may

ask whether distancing is the same as admitting rewritings of linear

width. The answer is no. While Observation 37 shows one implica-

tion, the converse is not true. Consider theory T𝑑 fromDefinition 39,

but with every predicate’s arity increased by one, and the new vari-

able 𝑟 occurring in the last position in every atom. Then the new

theory is distancing (unlike T𝑑 ), but it still requires exponential size
rewritings (and, of course, it will remain BDD).

12 CONCLUSIONS AND FUTUREWORK
Our major motivation to embark on this journey was the pending

status of the FUS/FES conjecture. On our way, we realized that

any progress in that direction requires to significantly advance

our understanding of the BDD class, seperating folklore beliefs

from hard facts. To this end, we introduced several new notions,

characterizing specific properties of theories, and investigated their

correspondencies. Most notably, we defined local theories, a BDD
subclass. Our major results are the following:

• We show that the FUS/FES conjecture holds for all local

theories (Theorem 2), which include all theories over binary

signatures (Corollary 1). If the conjecture holds in the general

case, then our work may provide the basis for a complete

proof. If it does not, we now know that we must look for

counter-examples of higher arity to disprove it.

• We show that there are BDD theories that are non-distancing

and even necessitate rewritings of exponential width (Theo-

rem 3). This result highlights the limitations of existing BDD

classes [1, 8, 18], which can only characterise rule sets that

admit rewritings of polynomial width.

As for future work, we intend to explore the following:

• Study the relation between distancing and bd-local. More

precisely, find out if there are theories that are BDD and

bd-local but are not distancing.

• Extend the proof of Theorem 1 to show Conjecture 2, i.e.,

that all BDD frontier-guarded theories [3] are local and thus

the FUS/FES conjecture holds for them. Also, show if the

FUS/FES conjecture holds for bd-local theories and then, of

course, try to show the conjecture in the general case!

• Define a class of BDD theories that contains rule sets such

as the one from Definition 39. Also, define an expressive

class that captures the intuitive notion of locality, contains

all known BDD classes, and implies BDD membership.
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• Even though we extend Theorem 3 in the appendix (see

Lemma 40), we wonder if there is a theory that does not

admit an elementary bound on the width of its rewritings.
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