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Abstract. Several types of dependencies have been proposed for the
static analysis of existential rule ontologies, promising insights about
computational properties and possible practical uses of a given set of
rules, e.g., in ontology-based query answering. Unfortunately, these de-
pendencies are rarely implemented, so their potential is hardly realised
in practice. We focus on two kinds of rule dependencies – positive re-
liances and restraints – and design and implement optimised algorithms
for their efficient computation. Experiments on real-world ontologies of
up to more than 100,000 rules show the scalability of our approach, which
lets us realise several previously proposed applications as practical case
studies. In particular, we can analyse to what extent rule-based bottom-
up approaches of reasoning can be guaranteed to yield redundancy-free
“lean” knowledge graphs (so-called cores) on practical ontologies.
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1 Introduction

Existential rules are a versatile knowledge representation language with rele-
vance in ontological reasoning [1,5,6,10], databases [13,11,15], and declarative
computing in general [3,9,4]. In various semantic web applications, existential
rule engines have been used to process knowledge graphs and ontologies, often
realising performance advantages on large data sets [2,7,22,3].

Existential rules extend Datalog with the facility for value invention, ex-
pressed by existentially quantified variables in conclusions. This ability to refer
to “unknown” values is an important similarity to description logics (DLs) and
the DL-based ontology standard OWL, and many such ontologies can equiv-
alently be expressed in existential rules. This can be a practical approach for
ontology-based query answering [10,8]. For reasoning, many rule engines rely on
materialisation, where the input data is expanded iteratively until all rules are
satisfied (this type of computation is called chase). With existentials, this can
require adding new “anonymous” individuals – called nulls –, and the process
may not terminate. Several acyclicity conditions define cases where termination
is ensured, and were shown to apply to many practical ontologies [10].
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Nulls correspond to blank nodes in RDF, and – like bnodes in RDF [20]
– are not always desirable. Avoiding nulls entirely is not an option in chase-
based reasoning, but one can still avoid some “semantically redundant” nulls. For
example, given a fact person(alice) and a rule person(x) → ∃y. parent(x, y), the
chase would derive parent(alice, n) for a fresh null n. However, if we already know
that parent(alice, bob), then this inference is redundant and can be omitted. In
general, structures that are free of such redundancies are mathematically known
as cores. An RDF-graph that is a core is called a lean graph [16]. Unfortunately,
the computation of cores is expensive, and can in general not be afforded during
the chase. Sometimes, however, when rules satisfy a condition known as core
stratification, practical chase algorithms can also produce a core directly [17].

Interestingly, both of the previously mentioned types of conditions – acyclic-
ity and core stratification – are detected by analysing dependencies1 that indi-
cate possible semantic interactions between rules. Early works focussed on cases
where a rule ρ2 positively relies on a rule ρ1 in the sense that an application of
rule ρ1 might trigger an application of rule ρ2. They are used to detect several
forms of acyclity [1,11,21]. When adding negation, a rule might also inhibit an-
other, and such negative reliances are used to define semantically well-behaved
fragments of nonmonotonic existential rules [17,19]. A third kind of dependency
are restraints, which indicate that the application of one rule might render an-
other one redundant: restraints were used to define core stratified rule sets [17],
and recently also to define a semantics for queries with negation [12].

Surprisingly, given this breadth of applications, rule dependencies are hardly
supported in practice. To our knowledge, positive reliances are only computed
by the Graal toolkit [2], whereas negative reliances and restraints have no im-
plementation at all. A possible reason is that such dependency checks are highly
intractable, typically ΣP

2 -complete, and therefore not easy to implement effi-
ciently. This is critical since their proposed uses are often related to the choice
of a rule-processing strategy, so that their computation adds to overall reasoning
time. Moreover, as opposed to many other static analyses, dependency compu-
tation is not mainly an application of algorithms that are already used in rule
reasoning. Today’s use of dependencies in optimisation and analysis therefore
falls short of expectations.

To address this problem, we design optimised algorithms for the computation
of positive reliances and restraints. We propose global optimisations, reducing
the number of relevant checks, and local optimisations, reducing the work needed
to execute a specific check. The latter include an improved search strategy that
often avoids the full exploration of exponentially many subsets of rule atoms,
which may be necessary in the worst case. The underlying ideas can also be
adapted to negative reliances and any of the modified definitions of positive
reliances found in the literature.

We implement our methods and conduct extensive experiments with over
200 real-world ontologies of varying sizes. Considering the effectiveness of our

1 We use the term only informally, since (tuple-generating) dependencies are also a
common name for rules in databases.
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optimisations, we find that local and global techniques both make important
contributions to overall performance, enabling various practical uses:

– We conduct the first analysis of the practical prevalence of core stratification
[17] using our implementation of restraints. We find this desirable property
in a significant share of ontologies from a curated repository and provide
preliminary insights on why some rule sets are not core stratified.

– Comparing the computation of all positive reliances to Graal, we see speed-
ups of more than two orders of magnitude. Our stronger definition yields an
acyclic graph of rule dependencies [1] in more cases.

– The graph of positive reliances allows for showing how to speed up the expen-
sive rule analysis algorithm MFA [10]. Compared to the MFA implementation
of VLog [7], we observe speed-ups of up to four orders of magnitude.

2 Preliminaries

We build expressions from countably infinite, mutually disjoint sets V of vari-
ables, C of constants, N of labelled nulls, and P of predicate names. Each predi-
cate name p ∈ P has an arity ar(p) ≥ 0. Terms are elements of V ∪N ∪C. We
use t to denote a list t1, . . . , t|t| of terms, and similar for special types of terms.
An atom is an expression p(t) with p ∈ P, t a list of terms, and ar(p) = |t|.
Ground terms or atoms contain neither variables nor nulls. An interpretation I
is a set of atoms without variables. A database D is a finite set of ground atoms.

Syntax An existential rule (or just rule) ρ is a formula

ρ = ∀x,y. φ[x,y] → ∃z. ψ[y, z], (1)

where φ and ψ are conjunctions of atoms using only terms from C or from
the mutually disjoint lists of variables x,y, z ⊆ V. We call φ the body (denoted
body(ρ)) and ψ the head (denoted head(ρ)). We may treat conjunctions of atoms
as sets, and we omit universal quantifiers in rules. We require that all variables
in y do really occur in φ (safety). A rule is Datalog if it has no existential
quantifiers.

Semantics Given a set of atoms A and an interpretation I, a homomorphism
h : A → I is a function that maps the terms occurring in A to the (variable-free)
terms occurring in I, such that: (i) for all c ∈ C, h(c) = c; (ii) for all p ∈ P,
p(t) ∈ A implies p(h(t)) ∈ I, where h(t) is the list of h-images of the terms t.
If (ii) can be strengthened to an “if, and only if”, then h is strong. We apply
homomorphisms to a formula by applying them individually to all of its terms.

A match of a rule ρ in an interpretation I is a homomorphism body(ρ) → I.
A match h of ρ in I is satisfied if there is a homomorphism h′ : head(ρ) → I that
agrees with h on all variables that occur in body and head (i.e., variables y in
(1)). Rule ρ is satisfied by I, written I |= ρ, if every match of ρ in I is satisfied.
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A set of rules Σ is satisfied by I, written I |= Σ, if I |= ρ for all ρ ∈ Σ. We
write I |= D, Σ to express that I |= Σ and D ⊆ I. In this case, I is a model of
Σ and D.

Applying rules A rule ρ of form (1) is applicable to an interpretation I if there
is an unsatisfied match h in I (i.e., h cannot be extended to a homomorphism
ψ → I). Applying ρ for h yields the interpretation I ∪ ψ[h′(y), h′(z)], where h′
is a mapping such that h′(y) = h(y) for all y ∈ y, and for all z ∈ z, h′(z) ∈ N is
a distinct null not occurring in I. The (standard) chase is a reasoning algorithm
obtained by applying rules to a given initial database, such that all applicable
rules are eventually applied (fairness).

Core models A model I is a core if every homomorphism h : I → I is strong
and injective. For finite models, this is equivalent to the requirement that every
such homomorphism is an isomorphism, and this will be the only case we are
interested in for this work. Intuitively, the condition states that the model does
not contain a strictly smaller substructure that is semantically equivalent for
conjunctive query answering.

Unification For atom sets A and B, partial function m : A → B is an atom
mapping, where dom(m) ⊆ A is the set of all atoms for which m is defined. A
substitution is a function θ : C∪V∪N → C∪V∪N, such that θ(c) = c for all c ∈
C∪N. Denote the application of θ to term t by tθ, naturally extending to atoms
and atom sets by term-wise application. The concatenation of substitutions σ
and θ is σθ where tσθ = (tσ)θ. A substitution is a unifier for atom mapping m
if for all α ∈ dom(m), αθ = (m(α))θ. A unifier µ for m is a most general unifier
(mgu) for m if for all unifiers ν of m, there is a substitution σ, such that µσ = ν.

3 Dependencies and their naive computation

We first introduce the two kinds of rule dependencies that we consider: positive
reliances and restraints. Our definitions largely agree with the literature, but
there are some small differences that we comment on.

Definition 1. A rule ρ2 positively relies on a rule ρ1, written ρ1 ≺+ ρ2, if there
are interpretations Ia ⊆ Ib and a function h2 such that

(a) Ib is obtained from Ia by applying ρ1 for the match h1 extended to h′1,
(b) h2 is an unsatisfied match for ρ2 on Ib, and
(c) h2 is not a match for ρ2 on Ia.

Definition 1 describes a situation where an application of ρ1 immediately
enables a new application of ρ2. Condition (b) takes into account that only
unsatisfied matches can lead to rule applications in the standard chase. The same
condition is used by Krötzsch [17], whereas Baget et al. [1,2] – using what they
call piece-unifier – only require h2 to be a match. In general, weaker definitions
are not incorrect, but may lead to unnecessary dependencies.
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Example 1. Consider the following ontology. We provide three axioms in DL
syntax (left-hand side) and their translation into existential rules (right-hand
side).

A ⊑ ∃R.B a(x) → ∃v. r(x, v) ∧ b(v) (ρ1)

R− ◦R ⊑ T r(y, z1) ∧ r(y, z2) → t(z1, z2) (ρ2)

∃R−.A ⊑ B a(t) ∧ r(t, u) → b(u) (ρ3)

For this rule set, we find ρ1 ≺+ ρ2 by using Ia = {a(c)}, Ib = {a(c), r(c, n)},
and h2 = {y 7→ c, z1 7→ n, z2 7→ n}. Note that ρ3 does not positively rely on ρ1
although the application of ρ1 may lead to a new match for ρ3. However, this
match is always satisfied, so condition (b) of Definition 1 is not fulfilled.

The definition of restraints considers situations where the nulls introduced
by applying rule ρ2 are at least in part rendered obsolete by a later application
of ρ1. This obsolescence is witnessed by an alternative match that specifies a
different way of satisfying the rule match of ρ2.

Definition 2. Let Ia ⊆ Ib be interpretations such that Ia was obtained by
applying the rule ρ for match h which is extended to h′. A homomorphism
hA : h′(head(ρ)) → Ib is an alternative match of h′ and ρ on Ib if

(1) hA(t) = t for all terms t in h(body(ρ)), and
(2) there is a null n in h′(head(ρ)) that does not occur in hA(h′(head(ρ))).

Now ρ1 restrains ρ2 if it creates an alternative match for it:

Definition 3. A rule ρ1 restrains a rule ρ2, written ρ1 ≺□ ρ2, if there are
interpretations Ia ⊆ Ib such that

(a) Ib is obtained by applying ρ1 for match h1 extended to h′1,
(b) Ia is obtained by applying ρ2 for match h2 extended to h′2,
(c) there is an alternative match hA of h′2 and ρ2 on Ib, and
(d) hA is no alternative match of h′2 and ρ2 on Ib \ h′1(head(ρ1)).

Our definition slightly deviates from the literature [17], where (d) made a
stronger requirement:

(d’) h2 has no alternative match h′2(head(ρ2)) → Ib \ h′1(head(ρ1)).

As we will see, our modification allows for a much more efficient implementation,
but it also leads to more restraints. Since restraints overestimate potential inter-
actions during the chase anyway, all formal results of prior works are preserved.

Example 2. For the rules ρ1 = r(y, y) → ∃w. r(y, w) ∧ b(w) and ρ2 = a(x) →
∃v. r(x, v), we find ρ1 ≺□ ρ2 by Definition 3, where we set Ia = {a(c), r(c, n1)},
Ib = Ia ∪ {r(c, c), r(c, n2), b(n2)}, and hA = {c 7→ c, n1 7→ n2}. However, these
Ia and Ib do not satisfy the stricter condition (d’), since hB = {c 7→ c, n1 7→ c}
is an alternative match, too. Indeed, when ρ2 is applicable in such a way as to
produce an alternative match w.r.t. an application of ρ1, another one must have
already existed.
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Example 2 is representative of situations where (d) leads to different re-
straints than (d’): the body of the restraining rule ρ1 must contain a pattern that
enforces an additional alternative match (here: r(y, y)), while not being satisfi-
able by the conclusion of ρ2 (here: r(y, n1)). To satisfy the remaining conditions,
head(ρ1) must further produce a (distinct) alternative match. Such situations are
very rare in practice, so that the benefits of (d) outweigh the loss of generality.

Checking for positive reliances and restraints is ΣP
2 -complete. Indeed, we can

assume Ia and Ib to contain at most as many elements as there are distinct terms
in the rule, so that they can be polynomially guessed. The remaining conditions
can be checked by an NP-oracle. Hardness follows from the ΣP

2 -hardness of
deciding if a rule has an unsatisfied match [15].

The existence of alternative matches in a chase sequence indicates that the
resulting model may contain redundant nulls. Ordering the application of rules
during the chase in a way that obeys the restraint relationship (≺□) ensures
that the chase sequence does not contain any alternative matches and therefore
results in a core model [17].

Example 3. Consider again the rule set from Example 1. For the interpretation
I0 = {a(c), r(c, d)} all three rules are applicable. Disregarding ρ3 ≺□ ρ1 and
applying ρ1 first results in I1 = I0∪{r(c, n), b(n)}, which leads to the alternative
match hA = {c 7→ c, n 7→ d} after applying ρ3. If we, on the other hand, start
with ρ3, we obtain I ′

1 = I0∪{b(d)}. Rule ρ1 is now satisfied and the computation
finishes with a core model after applying ρ2.

The ontology from Example 1 is an example of a core stratified rule set. A
set of rules is core stratified if the graph of all ≺+ ∪ ≺□ edges does not have
a cycle that includes a ≺□ edge. This property allows us to formulate a rule
application strategy that respects the restraint relationship as follows: Given
ρ1 ≺□ ρ2, apply the restrained rule ρ2 only if neither ρ1 nor any of the rules ρ1
directly or indirectly positively relies on is applicable.

4 Computing positive reliances

The observation that positive reliances can be decided in ΣP
2 is based on an

algorithm that considers all possible sets Ia and Ib up to a certain size. This
is not practical, in particular for uses where dependencies need to be computed
as part of the (performance-critical) reasoning, and we therefore develop a more
goal-oriented approach.

In the following, we consider two rules ρ1 and ρ2 of form ρi = bodyi →
∃zi. headi, with variables renamed so that no variable occurs in both rules. Let
V∀ and V∃, respectively, denote the sets of universally and existentially quanti-
fied variables in ρ1 and ρ2. A first insight is that the sets Ia and Ib of Definition 1
can be assumed to contain only atoms that correspond to atoms in ρ1 and ρ2,
with distinct universal or existential variables replaced by distinct constants or
nulls, respectively. For this replacement, we fix a substitution ω that maps each
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Algorithm 1: extend+

Input: rules ρ1, ρ2, atom mapping m
Output: true iff the atom mapping can be extended successfully

1 for i ∈ {maxidx(m)+ 1, . . . , |body2|} do
2 for j ∈ {1, . . . , |head1|} do
3 m′ ← m ∪ {body2[i] 7→ head1[j]ω∃}
4 if η ← unify(m′) then
5 if check+(ρ1,ρ2,m′,η) then return true

6 return false

variable in V∃ to a distinct null, and each variable in V∀ to a distinct constant
that does not occur in ρ1 or ρ2.

A second insight is that, by (c), ρ1 must produce some atoms that are relevant
for a match of ρ2, so that our algorithm can specifically search for a mapped
subset bodym2 ⊆ body2 and a substitution η such that bodym2 η ⊆ head1η. Note
that η represents both matches h1 and h2 from Definition 1, which is possible
since variables in ρ1 and ρ2 are disjoint. The corresponding set Ia then is (body1∪
(body2 \ bodym2 ))ηω. Unfortunately, it does not suffice to consider singleton sets
for bodym2 , as shown by Example 4:

Example 4. Consider the rules from Example 1. Trying to map either one of the
atoms of body(ρ2) to head(ρ1) yields an Ia = {a(c), r(c, c′)}, to which ρ1 is not
applicable. The correct Ia = {a(c)} as given in Example 1 is found by unifying
both atoms of body(ρ2) with (an instance of) head(ρ1).

Therefore, we have to analyse all subsets bodym2 ⊆ body2 for possible matches
with head1. We start the search from singleton sets, which are successively ex-
tended by adding atoms. A final important insight is that this search can often
be aborted early, since a candidate pair for Ia and Ib may fail Definition 1 for
various reasons, and considering a larger bodym2 is not always promising. For
example, if η is a satisfied match for ρ2 over Ib (b), then adding more atoms to
bodym2 will never succeed.

These ideas are implemented in Algorithms 1 (extend+) and 2 (check+),
explained next. For a substitution θ, we write θ∀ (θ∃, resp.), to denote the sub-
stitution assigning existential variables (universal variables, resp.) to themselves,
and otherwise agrees with θ.

Function extend+ iterates over extensions of a given candidate set. To spec-
ify how atoms of body2 are mapped to head1, we maintain an atom mapping
m : body2 → head1 whose domain dom(m) corresponds to the chosen bodym2 ⊆
body2. To check for the positive reliance, we initially call extend+(ρ1,ρ2,∅). Note
that ρ1 and ρ2 can be based on the same rule (a rule can positively rely on itself);
we still use two variants that ensure disjoint variable names.

We treat rule bodies and heads as lists of atoms, and write φ[i] for the ith
atom in φ. The expression maxidx(m) returns the largest index of an atom in
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Algorithm 2: check+

Input: rules ρ1, ρ2, atom mapping m with mgu η
Output: true if a positive reliance is found for m

7 bodym2 ← dom(m)

8 bodyℓ2 ← {body2[j] ∈ (body2\ bodym2 ) | j < maxidx(m)}
9 bodyr2 ← {body2[j] ∈ (body2\ bodym2 ) | j > maxidx(m)}

10 if body1η contains a null then return false
11 if bodyℓ2η contains a null then return false
12 if bodyr2η contains a null then return extend+(ρ1,ρ2,m)
13 Ia ← (body1 ∪ bodyℓ2 ∪ bodyr2)ηω
14 if Ia |= ∃z1. head1ηω∀ then return extend+(ρ1,ρ2,m)
15 if body2ηω ⊆ Ia then return extend+(ρ1,ρ2,m)
16 Ib ← Ia ∪ head1ηω
17 if Ib |= ∃z2. head2ηω∀ then return false
18 return true

dom(m), or 0 if dom(m) = ∅. By extending m only with atoms of larger index
(L1), we ensure that each dom(m) is only considered once. We then construct
each possible extension of m (L3), where we replace existential variables by
fresh nulls in head1. In Line 4, unify(m′) is the most general unifier η of m′

or undefined if m′ cannot be unified. With variables, constants, and nulls as the
only terms, unification is an easy polynomial algorithm.

Processing continues with check+, called in Line 5 of extend+. We first
partition body2 into the matched atoms bodym2 , and the remaining atoms to the
left bodyℓ2 and right bodyr2 of the maximal index of m. Only bodyr2 can still be
considered for extending m. Six if-blocks check all conditions of Definition 1, and
true is returned if all checks succeed. When a check fails, the search is either
stopped (L10, L11, and L17) or recursively continued with an extended mapping
(L12, L14, and L15). The three checks in L10–L12 cover cases where Ia (L13)
would need to contain nulls that are freshly introduced by ρ1 only later. L10
applies, e.g., when checking ρ2 ≺+ ρ1 for ρ1, ρ2 as in Example 2, where we would
get a(n) ∈ Ia (note the swap of rule names compared to our present algorithm).
Further extensions of m are useless for L10, since they could only lead to more
specific unifiers, and also for L11, where nulls occur in “earlier” atoms that are
not considered in extensions of m. For case L12, however, moving further atoms
from bodyr2 to bodym2 might be promising, so we call extend+ there.

In L14, we check if the constructed match of ρ1 on Ia is already satisfied.
This might again be fixed by extending the mapping, since doing so makes
bodyr2 and hence Ia smaller. If we reach L15, we have established condition (a)
of Definition 1. L15 then ensures condition (c), which might again be repaired
by extending the atom mapping so as to make Ia smaller. Finally, L17 checks
condition (b). If this fails, we can abort the search: unifying more atoms of body2
with head1 will only lead to a more specific Ib and η, for which the check would
still fail.
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Theorem 1. For rules ρ1 and ρ2 that (w.l.o.g.) do not share variables, ρ1 ≺+ ρ2
iff extend+(ρ1,ρ2,∅) = true.

5 Computing restraints

We now turn our attention to the efficient computation of restraints. In spite
of the rather different definitions, many of the ideas from Section 4 can also be
applied here. The main observation is that the search for an alternative match
can be realised by unifying a part of head2 with head1 in a way that resembles
our unification of body2 with head1 in Section 4.

To realise this, we define a function extend□ as a small modification of
Algorithm 1, where we simply replace body2 in L1 and L3 by head2, and check+
in L5 by check□, which is defined in Algorithm 3 and explained next.

Algorithm 3: check□

Input: rules ρ1, ρ2, atom mapping m with mgu η
Output: true if a restraint is found for m

19 headm
2 ← dom(m)

20 headℓ
2 ← {head2[j] ∈ (head2\ headm

2 ) | j < maxidx(m)}
21 headr

2 ← {head2[j] ∈ (head2\ headm
2 ) | j > maxidx(m)}

22 if xη ∈ N for some x ∈ V∀ then return false
23 if zη ∈ N for some z ∈ V∃ in headℓ

2 then return false
24 if zη ∈ N for some z ∈ V∃ in headr

2 then
25 return extend□(ρ1,ρ2,m)

26 if headm
2 contains no existential variables then

27 return extend□(ρ1,ρ2,m)

28 Ĩa ← body2η∀ω∀

29 if Ĩa |= ∃z2. head2η∀ω∀ then return false
30 Ia ← Ĩa ∪ head2η∀ω

31 Ĩb ← Ia ∪ (body1 ∪ headℓ
2 ∪ headr

2)ηω

32 if Ĩb |= ∃z1. head1η∀ω∀ then return extend□(ρ1,ρ2,m)
33 if head2ηω ⊆ Ĩb then return extend□(ρ1,ρ2,m)
34 return true

We use the notation for ρ1, ρ2, ω, V∃, and V∀ as introduced in Section 4, and
again use atom mapping m to represent our current hypothesis for a possible
match. What is new now is that unified atoms in dom(m) can contain existen-
tially quantified variables, though existential variables in the range of m (from
head1) are still replaced by nulls as in Algorithm 1, L5. An existential variable
in head2 might therefore be unified with a constant, null, or universal variable
of head1. In the last case, where we need a unifier η with zη = xη for z ∈ V∃
and x ∈ V∀, we require that xη = zη ∈ V∀ so that η only maps to variables in
V∀. η simultaneously represents the matches h1, h2, and hA from Definition 3.
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Example 5. For rules ρ1 = r(x, y) → s(x, x, y) and ρ2 = a(z) → ∃v. s(z, v, v) ∧
b(v), and mapping m = {s(z, v, v) 7→ s(x, x, y)}, we obtain a unifier η that maps
all variables to x (we could also use y, but not the existential v). Let xω = c be the
constant that x is instantiated with. Then we can apply ρ2 to Ĩa = {a(z)ηω} =
{a(c)} with match h2 = {z 7→ c, v 7→ n} to get Ia = Ĩa ∪ {s(c, n, n), b(n)},
and ρ1 to Ĩb = Ia ∪ {r(c, c), b(c)} with match h1 = {x 7→ c, y 7→ c} to get
Ib = Ĩb ∪ {s(c, c, c)}. Note that we had to add b(c) to obtain the required
alternative match hA, which maps n to vηω = c and c to itself.

As in the example, a most general unifier η yields a candidate hA that maps
every null of the form vω∃ to vη∃ω∀. Likewise, for i ∈ {1, 2}, hi = η∀ω are
the (extended) matches, while η∀ω∀ are the body matches. The image of the
instantiated head2η∀ω under the alternative match hA is given by head2ηω. The
corresponding interpretations are Ia = body2η∀ω∀ ∪ head2η∀ω and Ib = Ia ∪
body1η∀ω∀∪head1η∀ω∪ (head\dom(m))ηω, where (head2 \dom(m))ηω provides
additional atoms required for the alternative match but not in the mapped atoms
of head2. With these intuitions, Algorithm 3 can already be understood.

It remains to explain the conditions that are checked before returning true.
As before, we partition dom(m) into mapped atoms headm2 and left and right
remainder atoms. Checks in L22–L24 ensure that the only variables mapped by
η to nulls (necessarily from head1ω∃) are existential variables in headm2 : such
mappings are possible by hA. Extending m further is only promising if the nulls
only stem from atoms in headr2.

Check L26 continues the search when no atoms with existentials have been
selected yet. Selecting other atoms first might be necessary by our order, but
no alternative matches can exist for such mappings (yet). Lines L29 and L32
check that the matches h1 and h2 are indeed unsatisfied. Extending m might fix
L29 by making Ĩa smaller, whereas L32 cannot be fixed. Finally, L33 ensures
condition (d) of Definition 3.

Example 6. Consider rules ρ1 = b(x, y) → r(x, y, x, y) ∧ q(x, y), ρ2 = a(u, v) →
∃w. r(u, v, w,w)∧ r(v, u, w,w), and mapping m = {r(u, v, w,w) 7→ r(x, y, x, y)}.
We obtain unifier η mapping all variables to a single universally quantified vari-
able, say x. We reach Ĩb = {a(c, c), r(c, c, n, n), b(c, c), r(c, c, c, c)}, based on
Ĩa = {a(c, c)} (xω = c), for which ρ1 is applicable but hA = {n 7→ c, c 7→ c} is
already an alternative match on Ĩb, recognized by L33.

Theorem 2. For rules ρ1 and ρ2 that (w.l.o.g.) do not share variables, ρ1 ≺□ ρ2
holds according to Definition 3 for some Ia ̸= Ib iff extend□(ρ1,ρ2,∅) = true.

The case Ia = Ib, which Theorem 2 leaves out, is possible [17, Example 5], but
requires a slightly different algorithm. We can adapt Algorithm 3 by restricting
to one rule, for which we map from atoms in head to atoms in headω∃. The checks
(for head2) of Algorithm 3 remain as before, but we only need to compute a single
I that plays the role of Ia and Ib. Check L33 is replaced by a new check

if head η∃ = headω∃ then return false
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ensuring that at least one null is mapped differently in the alternative match.
With these modifications, we can show an analogous result to Theorem 2 for the
case Ia = Ib.

6 Implementation and Global Optimisations

We provide a C++ implementation of our algorithms, which also includes some
additional optimisations and methods as described next. Our prototype is build
on top of the free rule engine VLog (Release 1.3.5) [23], so that we can use its fa-
cilities for loading rules and checking MFA (see Section 7). Reasoning algorithms
of VLog are not used in our code.

The algorithms of Sections 4 and 5 use optimisations that are local to the
task of computing dependencies for a single pair of rules. The quadratic number
of potential rule pairs is often so large, however, that even the most optimised
checks lead to significant overhead. We therefore build index structures that map
predicates p to rules that use p in their body or head, respectively. For each rule
ρ1, we then check ρ1 ≺+ ρ2 only for rules ρ2 that mention some predicate from
head(ρ1) in their body, and analogously for ρ1 ≺□ ρ2.

Specifically for large rule sets, we further observed that many rules share the
exact same structure up to some renaming of predicates and variables. For every
rule pair considered, we therefore create an abstraction that captures the co-
occurrence of predicates but not the concrete predicate names. This abstraction
is used as a key to cache results of prior computations that can be re-used when
encountering rule pairs with the exact same pattern of predicate names.

Besides these optimisations, we also implemented unoptimised variants of
the algorithms of Sections 4 and 5 to be used as a base-line in experiments.
Instead of our goal-directed check-and-extend strategy, we simply iterate over
all possible mappings until a dependency is found or the search is completed.

7 Evaluation

We have evaluated our implementation regarding (1) efficiency of our optimi-
sations and (2) utility for solving practical problems. The latter also led to the
first study of so-called core stratified real-world rule sets. Our evaluation machine
is a mid-end server (Debian Linux 9.13; Intel Xeon CPU E5-2637v4@3.50GHz;
384GB RAM DDR4; 960GB SSD), but our implementation is single-threaded
and did not use more than 2GB of RAM per individual experiments.

Experimental Data All experiments use the same corpus of rule sets, cre-
ated from real-world OWL ontologies of the Oxford Ontology Repository (http:
//www.cs.ox.ac.uk/isg/ontologies/). OWL is based on a fragment of first-order
logic that overlaps with existential rules. OWL axioms that involve datatypes
were deleted; any other axiom was syntactically transformed to obtain a Horn

https://github.com/karmaresearch/vlog/releases/tag/v1.3.5
http://www.cs.ox.ac.uk/isg/ontologies/
http://www.cs.ox.ac.uk/isg/ontologies/
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Table 1: Number of rule sets achieving a given order of magnitude of speed-up for
computing ≺+ (left) and ≺□ (right) from one variant to another; t.o. gives the number
of avoided timeouts

N/L
G/A
N/G
L/A

=
1

<
10

<
10
2

<
10
3

≥1
0
3

t.o
.

48 104 14 1 2 32
103 67 9 1 0 21
24 1 27 33 60 56
5 33 30 41 47 45

=
1

<
10

<
10
2

<
10
3

≥1
0
3

t.o
.

53 92 17 2 2 35
90 81 9 1 0 20
35 11 53 30 20 52
17 72 48 10 17 37

clause that can be written as a rule. This may fail if axioms use unsupported fea-
tures, especially those related to (positive) disjunctions and equality. We dropped
ontologies that could not fully be translated or that required no existential quan-
tifier in the translation. Thereby 201 of the overall 787 ontologies were converted
to existential rules, corresponding largely to those ontologies in the logic Horn-
SRI [18]. The corpus contains 63 small (18–1,000 rules), 90 medium (1,000–
10,000 rules), and 48 large (10,000–167,351 rules) sets. Our translation avoided
normalisation and auxiliary predicates, which would profoundly affect depen-
dencies. This also led to larger rule bodies and heads, both ranging up to 31
atoms.

Optimisation impact We compare four software variants to evaluate the util-
ity of our proposed optimisations. Our baseline N is the unoptimised version
described in Section 6, while L uses the locally optimised algorithms of Sec-
tions 4 and 5. Version G is obtained from N by enabling the global optimisations
of Section 6, and A combines all optimisations of L and G. For each of the four
cases, we measured the total time of determining all positive reliances and all
restraints for each rule set. A timeout of 60sec was used. The number of timeouts
for each experiment was as follows:

≺+ N L G A
80 48 24 3

≺□ N L G A
87 52 35 15

To present the remaining results, we focus on speed-up, i.e., the ratio of
runtime of a less optimised variant over runtime of a more optimised one. Table 1
classifies the observed speed-ups in several scenarios by their order of magnitude.
For example, in the left table, the number 14 in line N/L and column “<102”
means that for 14 of the 201 rule sets, L was between 10–102 times faster than
N. Note that G/A shows the effect of adding local optimisations to G. Column
“=1” shows cases where both variants agree, and column “t.o.” cases where the
optimisation avoided a prior timeout (the speed-up cannot be computed since
the timeout does not correspond to a time).

We conclude that both L and G can lead to significant performance gains
across a range of ontologies. Strong effects are seen against the baseline (N/L
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105

106
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Fig. 1: Positive reliance computation in Graal (top) and our system (bottom)

and N/G), but also (to a slightly lesser extent) against variants with the other
optimisations (G/A and L/A). Overall, ≺□ turned out to be slower than ≺+,
with the global optimisations being less effective.

Acyclic positive reliances For rule sets where the graph of positive reliances
is acyclic, query answering is possible with many existing rule engines [1]. To
evaluate how our work compares to the state of the art in computing this graph,
we measure the time taken by Graal to find all positive reliances and compare
them to our prototype A from above. The results are shown in Figure 1.

Our approach consistently outperformed Graal by about one order of magni-
tude. Overall, we can classify 178 ontologies in under 1sec, making this analysis
feasible at reasoning time. The difference in execution time is explained by our
optimisations: given two rules ρ1 and ρ2, Graal computes all (exponentially many
in the worst case) different ways to unify the head(ρ1) with body(ρ2) while our
implementation (1) stops when a positive reliance is discovered, (2) discards
atom mappings when a negative result is guaranteed, and (3) caches results of
previous computations. Recall that Graal uses a slightly weaker notion of posi-
tive reliance (cf. Sect. 3), which leads to more cycles: we find 36 acyclic sets in
Graal, but 70 such sets in our system.

Faster MFA Model-faithful acyclicity (MFA) is an advanced analysis of rule
sets that can discover decidability of query answering in many cases, but is
2ExpTime-complete [10]. However, instead of performing this costly analysis
on the whole rule set, an equivalent result can be obtained by analysing each
strongly connected components of the ≺+-graph individually. We measure the
times for both approaches using the MFA implementation of VLog and our
optimised variant A, with a timeout of 30min per rule set. The two variants are
denoted V (VLog MFA) and C (component-wise MFA).

Using C, 163 ontologies are classified as MFA, 33 fail MFA, and 5 cases time
out. V times out in 10 cases, but agrees on all other outcomes. C is slower in
three cases that still run in under 50msec. The numbers of speed-ups, grouped
by order of magnitude, are as follows:
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Speed-up = 1 < 10 < 102 < 103 ≥ 103

V/C 0 85 54 41 11

We conclude that our optimised reliance computation is a feasible approach
for speeding up MFA analysis.

Core stratification We can use our implementation to determine how common
this favourable property (cf. Sect. 3) is among real-world ontologies. The analysis
was feasible for 200 rule sets in our corpus, yielding 44 core stratified sets with
up to 121,712 rules. One can improve this result by considering pieces, minimal
subsets of rule heads where each two atoms refer to a common existentially
quantified variable [1]. Each rule can then equivalently be replaced by several
rules, each combining the original body with one of the pieces of the original
head. Applying this transformation to our rule sets leads to more fine-grained
dependencies that have fewer cycles over ≺□. With this modification, 75 rule
sets are core stratified.

Our implementation fails in one case (ontology ID 00477), containing 167,351
rules like A(x) → ∃v. located-in(x, v) ∧B(v), for various A and B. The required
> 28 × 109 checks, though mostly cached, take very long. In spite of many
≺□-relations, the set is core-stratified as it describes a proper meronomy.

The remaining 125 rule sets are not core stratified. To validate the outcome,
we have analysed these sets manually, and found several common reasons why
ontologies were indeed not core stratified (and therefore correctly classified in
our implementation). The following two examples explain two typical situations.

Example 7. In some cases, core stratification fails even though there is a natural
rule application order that always leads to a core. Consider the rules ρ1 = a(x) →
∃v. r(x, v) ∧ b(v), ρ2 = r(x, y) → s(y, x), and ρ3 = s(x, y) → r(y, x). This set is
not core stratified since we have ρ1 ≺+ ρ3, ρ2 ≺+ ρ3, ρ3 ≺+ ρ2, and ρ3 ≺□ ρ1.
However, prioritising ρ2 and ρ3 over ρ1 (i.e., using a Datalog-first strategy [9])
always leads to a core. Indeed, the positive reliance ρ1 ≺+ ρ3 over-estimates
relevant rule applications, since no new atom produced by ρ1 can (indirectly)
lead to an application of ρ3.

Example 8. In other cases, there is indeed no data-independent strategy for rule
applications that would always lead to a core. Consider the rules ρ1 = a(x) →
∃v. r(x, v)∧ b(v) and ρ2 = r(x, y)∧ r(y, z) → r(x, z). Both are common in OWL
ontologies with existential axioms and transitive roles. The rule set is not core
stratified since ρ1 ≺+ ρ2 and ρ2 ≺□ ρ1.

Consider Ia = {a(1), a(2), r(1, 2)}. Applying ρ1 over Ia to all matches yields
Ib = Ia∪{r(1, n), b(n), r(2,m), b(m)}, which makes ρ2 applicable to obtain Ic =
Ib∪{r(1,m)}. Here we have the alternative match hA = {1 7→ 1, 2 7→ 2, n 7→ m}.

In contrast, applying ρ1 only for the match {x 7→ 2} produces I ′
b = Ia ∪

{r(2, n), b(n)}. A subsequent application of ρ2 yields I ′
c = I ′

b ∪ {r(1, n)}, which
is a core model. Indeed, core models could often be achieved in such settings, but
require fine-grained, data-dependent strategies that cannot be found by static
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analysis (concretely: we could consider r as a pre-order and apply ρ1 to the
r-greatest elements first, followed by an exhaustive application of ρ2).

Overall, our manual inspection supported the correctness of our computation
and led to interesting first insights about core stratification in practical cases.
Regarding the contribution of this work, our main conclusion of this evaluation
is that our proposed algorithms are able to solve real-world tasks that require
the computation of positive reliances and restraints over large ontologies.

8 Conclusions

We have shown that even the complex forms of dependencies that arise with ex-
istential rules can be implemented efficiently, and that doing so enables a number
of uses of practical and theoretical interest. In particular, several previously pro-
posed approaches can be made significantly faster or implemented for the first
time at all. Our methods can be adapted to cover further cases, especially the
negative reliances.

Our work opens up a path towards further uses of reliance-based analyses
in practice. Already our experiments on core stratification – though primarily
intended to evaluate the practical feasibility of our restraint algorithm – also
showed that (a) core stratification does occur in many non-trivial real-world
ontologies, whereas (b) there are also relevant cases where this criterion fails
although a rule-based core computation seems to be within reach. This could
be a starting point for refining this notion. It is also interesting to ask whether
good ontology design should, in principle, lead to specifications that naturally
produce cores, i.e., that robustly avoid redundancies. A different research path is
to ask how knowledge of dependencies can be used to speed up reasoning. Indeed,
dependencies embody characteristics of existential rule reasoning that are not
found in other rule languages, and that therefore deserve further attention.

Supplemental Material Statement We provide full proofs in the techical report
published on arXiv [14]. Our source code, experimental data, instructions for re-
peating all experiemtns, and our own raw measurements are available on GitHub.
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A Proof of Theorem 1

In the following, we may understand a substitution σ as a homomorphism and
therefore as a match for some rule ρ if the restriction of σ to the constants and
variables occurring in the body of ρ is a homomorphism or match in the defined
sense. Furthermore, for any function f we define im(f) = f(dom(f)) as the image
of f . We make use of function compositions g◦f : A→ C for functions f : A→ B
and g : B → C, defined by (g ◦ f)(x) = g(f(x)) for all x ∈ A. Recall that, in
contrast, concatenation of substitutions η and ω (which are also functions) is
denoted by ηω and is defined by (ηω)(x) = ω(η(x)).

The next lemma establishes a connection between the unifier ηω in Algo-
rithms 2 and 3 and any homomorphism h that serves a witness for a reliance
while also being a unifier for the considered atom mapping.

Lemma 1. Let m be an atom mapping and η the most general unifier for m
with im(η) ∩ im(ω) = ∅. Let h be a homomorphism which is also a unifier of m.
Then there exists a function τ : C ∪N → C ∪N such that h ⊆ τ ◦ (ηω).

Proof. We set (a) τ((ηω)(x)) = h(x) for every x ∈ dom(η) and (b) τ(c) = c for
every c ∈ (C∪N)\ im(ηω). Recall that homomorphisms, like h, map from sets of
atoms to instances (cf. Sect. 2), meaning that im(h) ⊆ C∪N. Then, h ⊆ τ ◦(ηω)
by definition of τ .

We now need to argue that τ is a function. τ is defined on all x ∈ C ∪ N
because of (a) and (b). Assume that (ηω)(x) = (ηω)(y) = t for some x, y ∈
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dom(η). If η(x) = t, then η(y) = t, and vice versa, since the images of η and
ω are disjoint. In this case we conclude that h(x) = h(y) = t as well because
η is the most general unifier. Assume now that η(x) ̸= t and η(y) ̸= t. Since ω
assigns unique constants or nulls to every variable, we have that η(x) = η(y).
But then h(x) = h(y) again follows from η being the most general unifier. ⊓⊔

In the following lemma, we have two atom sets A and B. As we assumed in
sections 4 and 5, the variables occurring in A or B divide into variables from
sets V∃ and V∀. Notice that, for a substitution θ, θ∀(v) = v for all v ∈ V∃ and
θ∃(v) = v for all v ∈ V∀. This lemma plays a key role in proving completeness
of the reliance algorithm.

Lemma 2. Let A and B be two sets of atoms, I an interpretation, and h a
homomorphism from A to I. Let η be a substitution such that h ⊆ τ ◦ (ηω)
for some τ : C ∪ N → C ∪ N with τ(c) = c for every c ∈ C ∪ N occurring
in A and B. If there is no homomorphism h⋆ from B to I that agrees with h
on all universal variables, then Aηω ̸|= ∃z. Bη∀ω∀ where z are all (existential)
variables occurring in Bη∀ω∀.

Proof. Assume for a contradiction that Aηω |= ∃z. Bη∀ω∀. Then there is a sub-
stitution η′∃ mapping the existential variables in B (i.e., z) such that Bη′∃η∀ω∀ ⊆
Aηω. Note that h∀ ⊆ τ ◦ (η∀ω∀). We define h⋆ = (τ ◦η′∃)h∀. Therefore, h⋆ agrees
with h on all universal variables.

Starting with Bη′∃η∀ω∀ ⊆ Aηω, we can concatenate τ on both sides to obtain
B(τ ◦ η′∃)(τ ◦ (η∀ω∀)) = Bh⋆ ⊆ A(τ ◦ (ηω)) = Ah and hence Bh⋆ ⊆ I. But
this implies that h⋆ is a homomorphism from B to I that agrees with h on all
universal variables. The first step requires that τ does not change any of the
constants or nulls occurring in A and B. ⊓⊔

Theorem 1. For rules ρ1 and ρ2 that (w.l.o.g.) do not share variables, ρ1 ≺+ ρ2
iff extend+(ρ1,ρ2,∅) = true.

Proof. We separate the correctness of Algorithm 2 into soundness and complete-
ness.

Soundness: The call to extend+(ρ1, ρ2, ∅) returns true iff check+(ρ1, ρ2,m, η) =
true for some atom mapping m and some mgu η, which means that L18 is
reached. We set bodym2 , bodyℓ2 and bodyr2 as in Algorithm 2. Furthermore, we
define headm1 = im(m).

L13 constructs the interpretation Ia = (body1∪bodyℓ2∪bodyr2)ηω. From this,
we can immediately conclude that ηω is a match for ρ1 over Ia. It is unsatisfied,
because of the check in L14. Therefore ρ1 is applicable with the unsatisfied match
for ηω over Ia. We define Ib as the result of applying this match, extending
existential variables in ρ1 with their image in ω∃ (as constructed in L16). Note
that Ia cannot contain any null introduced by the above application because
of the checks in L10, L11, and L12. From the check in L17, we know that ρ2 is
applicable over Ib. Thus, we have Ia ⊆ Ib and a function ηω satisfying conditions
(a) and (b) of Definition 1. Condition (c) is satisfied because of the check in L15.
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Completeness: To prove completeness, we assume ρ1 ≺+ ρ2. Hence, there are
interpretations Ja ⊆ Jb and functions h1 and h2 that satisfy Definition 1. We
may assume, w.l.o.g., that h′1 and h′2 map every existential variable v in their
domain to ω∃(v). Since h2 is a match for ρ2 over Jb but not over Ja, there
must be a partition body2 = Bm

2 ∪̇ B̄m
2 and head1 = Hm

1 ∪̇ H̄m
1 such that

h2(B
m
2 ) = h′1(H

m
1 ) and h2(B̄m

2 ) ⊆ Ja. We define h : C∪N∪V → C∪N∪V as

h(x) =

h2(x) if x is a variable in ρ2
h′1(x) if x is a variable in ρ1
x otherwise.

The above function is well-defined because ρ1 and ρ2 are presumed to not share
any variables. By definition of h we have that Bm

2 h = Hm
1 h, implying that Bm

2

and Hm
1 are unifiable and that there is an atom mapping m with dom(m) = Bm

2

and im(m) = Hm
1 such that h is a unifier of m. Therefore, there is also a most

general unifier η of m. Since ω is assumed to assign terms only to constants and
nulls not contained in ρ1 or ρ2, we can conclude that im(η)∩ im(ω) = ∅, and, by
Lemma 1, that h ⊆ τ ◦ (ηω) for some τ : C ∪N → C ∪N.

In the following, we show that each if-condition in Algorithm 2 when called on
m and η fails, which implies that true is returned. Note that B̄m

2 = bodyℓ2∪bodyr2.
Any variable assigned to a null by η must also be assigned to the same

null in h, since η is more general than h. But then Ja would need to contain
a null introduced by the application of ρ2. This follows because h(body1) =
h1(body1) ⊆ Ja and h(B̄m

2 ) = h2(B̄
m
2 ) ⊆ Ja.

We handle the remaining checks with Lemma 2. Note that since η does not
assign any existential variables η = η∀. For L14, we set A1 = body1 ∪ B̄m

2 ,
B1 = head1 and I1 = Ja. Then we have Ia = A1ηω and by Lemma 2 that
Ia ̸|= ∃z. head1η∀ω∀. Hence, the check on L14 fails. For L15 we set A2 = A1,
B2 = body2 and I2 = Ja. Note here that body2ωη ⊆ Ia is equivalent to stating
Ia |= ∃z. body2η∀ω∀. For L17 we have A3 = A2 ∪ head1ηω, B = head2 and
I3 = Jb.

It remains to be shown that the iteration in function extend+(ρ1, ρ2, ∅) even-
tually reaches the postulated mapping m or terminates with result true before.
Recall that the overall procedure only stops and returns false if all atoms from
body2 have been tried to be the initial mapping. Hence, false cannot be returned
before either m is reached (in which case it must return true as shown above)
or some non-empty subset m′ of m is considered.

Because there is a unifier η for m, there is one for every non-empty subset
m′ ⊆ m. As the order in which atom mappings are created depends on the
assumed order of the atoms (in rule bodies and heads), we need to show that
if any such mapping m′ with mgu η′ is reached, it is not rejected by the call of
check+(ρ1, ρ2,m

′, η′). As η′ is an mgu and m′ ⊆ m, we have η ⊆ τ ′ ◦ (η′ω) for
some τ ′ : C ∪N → C ∪N by Lemma 1.

L10: Every variable that is assigned to a null by η′ must also be assigned to
the same null in η, since the latter is more general. But this is not possible
because this check failed for check+(ρ1, ρ2,m′, η).
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L11: Because of the fixed order of atoms, it holds that bodyl2 obtained in the
iteration with mapping m′ is a subset of bodyl2 obtained in the iteration
with atom mapping m. Therefore, if bodyl2η′ for m′ contains a null, so does
bodyl2η for m. However, we have already proven that the latter is not the
case.

L17: Here we may employ Lemma 2 again. We write Im
b and Im′

b to distinguish
the interpretations constructed in L16 of Algorithm 2 when called on m and
m′ respectively. We set Bm′

2 = dom(m′) and B̄m′

2 = body2 \ Bm′

2 . While
extending m′ to m, body atoms from B̄m′

2 get added to Bm
2 . We define

B∆
2 = B̄m′

2 ∩ Bm
2 . Then, B̄m′

2 = Bm
2 ∪ B∆

2 . In order to apply Lemma 2,
we define A = body1 ∪ B̄m′

2 ∪ head1ω∃, B = head2 and I = Im
b . From the

definition of A it is apparent that Aη′ω = Im′

b . What needs to be shown is
that ηω is a homomorphism from A to I = Im

b . From the construction of Im
b

we immediately obtain that (body1 ∪ head1ω∃ ∪ B̄m
2 )ηω ⊆ Im

b . From η being
a unifier between Bm

2 and Hm
1 we get B∆

2 ηω ⊆ Bm
2 ηω ⊆ Hm

1 ω∃ηω ⊆ Im
b .

Therefore, Aηω ⊆ Im
b .

As every one of the above-mentioned checks fails on m′ and η′, the algorithm
either returns true and the computation finishes or it goes on by extending m′

towards m and ultimately accepting it. Hence, the algorithm is complete.

B Proof of Theorem 2

Beyond the proof of Theorem 2, we provide additional details on the case where
a rule restrains itself, as outlined in the paper.

Theorem 2. For rules ρ1 and ρ2 that (w.l.o.g.) do not share variables, ρ1 ≺□ ρ2
holds according to Definition 3 for some Ia ̸= Ib iff extend□(ρ1,ρ2,∅) = true.

Proof. Similar to the proof of Theorem 1, we separate our arguments into sound-
ness and completeness.

Soundness: The call to extend□(ρ1, ρ2, ∅) returns true iff check□(ρ1, ρ2,m, η) =
true for some atom mapping m and mgu η, meaning L34 is reached in that call.
We set headm2 , headℓ2 and headr2 as in Algorithm 3 when called on m and η. In
addition, we set headm1 = im(m).

L28 constructs an interpretation Ĩa from body2ηω. This makes ηω a match
for ρ2 over Ĩa that is unsatisfied due to the check in L29. L31 builds the inter-
pretation Ĩb = Ia∪(body1∪headℓ2∪headr2)ηω. By construction, ηω is a match for
ρ1 over that interpretation. It is also unsatisfied, which results from the check in
L32. We define the interpretation Ib as the result of applying ρ1 with the match
ηω, extending existential variables with their image under ω. Note that Ĩa does
not contain nulls introduced by applying ρ1 or ρ2 because of the checks in L22
and the fact that η may not map anything to existential variables (and hence
no body variable can be mapped to a null by ω). Similarly, Ĩb does not contain
nulls introduced from the application of ρ1, which is implied by the checks in
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L22, L24 and L23. In summary, we obtain interpretations Ia ⊆ Ib, such that
ω∃η∀ω∀ satisfies conditions (a) and (b) of Definition 3.

The alternative match is given by ηA : head2η∀ω → Ib with ηA(t) = tηω. It
is clear that ηA(t) = t for all terms in body2ηω. The check in L26 ensures that
ηA maps at least one null to some new term that is not present in head2η∀ω. By
construction, (headℓ2 ∪ headr2)ηω is contained in Ib. Furthermore, we have that
(headm2 )η = (headm1 )ω∃η and therefore that (headm2 )ηω = (headm1 )ω∃ηω∀ ⊆ Ib.
Thus we have head2ηω ⊆ Ib, which implies that ηA is a homomorphism from
head2 to Ib. Note that ηA is not an alternative match over Ĩb because of the
check in L33.

Completeness: To prove completeness, we assume that ρ1 ≺□ ρ2, and hence that
there are interpretations Ja ⊂ Jb and the functions h1, h2 and hA satisfying the
conditions of Definition 3. We may assume w.l.o.g. that h′1 and h′2 map every
existential variable v in their domain to ω∃(v). Since hA is an alternative match
for h′2 and ρ2 on Jb but is not for h2 and ρ2 on J̃b = Jb \ h′1(head1), there must
be a partition head2 = Hm

2 ∪̇ H̄m
2 and a partition head1 = Hm

1 ∪̇ H̄m
1 such

that hA(h′2(Hm
2 )) = h′1(H

m
1 ) and hA(h′2(H̄

m
2 )) ⊆ J̃b. We define a substitution

h : C ∪N ∪V → C ∪N ∪V as

h(x) =

hA(h′2(x)) if x is a variable in ρ2
h′1(x) if x is a variable in ρ1
x otherwise.

The above function is well-defined because because ρ1 and ρ2 do not share any
variables. By definition of h we have Hm

2 h = Hm
1 h, implying that Hm

2 and Hm
1

are unifiable and that there is an atom mapping m with dom(m) = Hm
2 and

im(m) = Hm
1 such that h is a unifier of m. Hence we also obtain a most general

unifier η of m. Since ω is assumed to assign terms only to constants and nulls not
contained in ρ1 or ρ2, we can conclude that im(η) ∩ im(ω) = ∅ and by Lemma 1
that h ⊆ τ ◦ (ηω) for some τ : C ∪N → C ∪N.

In the following, we argue why each if-condition in Algorithm 3 when called
on m and η fails. Every variable assigned to a null by η must also be assigned to
the same null in h since η is the most general unifier. But then either Ja or J̃b

would contain a null introduced by the application of ρ1. This follows from the
fact that h is a homomorphism from body2 to Ja and a homomorphism from
body1 to J̃b. By this reasoning, the if-conditions on lines L22, L23 and L24 all
fail.

To show that the check in L26 fails, assume that Hm
2 does not contain any

existential variables. Then hA(h′2(H
m
2 )) = h′2(H

m
2 ) ⊆ Ja ⊂ J̃b as h′2(head2) ⊇

h′2(H
m
2 ) results from applying ρ2 with match h2. We further have hA(h′2(H̄m

2 )) ⊆
J̃b. Overall this implies hA(h′2(head2) ⊆ J̃b, which contradicts condition (d) of
Definition 3.

We continue with the checks in L29 and L32. We use Lemma 2 in both
cases to show that if either one of the checks passes, then h1 or h2 would
have been satisfied. For L29, we define J̃a = Ja \ h′2(head2). We have that h
is an homomorphism from A1 = body2 to I1 = J̃a, since h2 is a match for ρ2.
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Also there is no extension of h2 and therefore of h to a homomorphism from
B2 = head2 to J̃a. Furthermore, we have Ĩa = body2ηω. Therefore, we can use
Lemma 2 to show that Ĩa ̸|= ∃z. head2η∀ω∀. A similar idea can be used for
the check in L32. This time, we set A2 = (body2 ∪ body1 ∪ H̄m

2 ∪ head2ω∃),
B2 = head1 and I2 = J̃b. We have that h(body2) = h2(body2) ⊆ J̃a because
h2 is a match for ρ2; h(body1) = h1(body1) ⊆ J̃b because h1 is a match
for ρ1; h(H̄m

2 ) = hA(h′2(H̄
m
2 )) ⊆ J̃b by the initial assumption; and finally

h(head2ω∃) = h′1(head2) ⊆ J̃b because the result of applying ρ2 is contained
in J̃b. It is now easy to see that A2ηω = Ĩb.

For the check in line L33 observe that head2ηω ⊆ A2ηω. It follows from that
head2(τ ◦ (ηω)) = head2h = hA(h2(head2)) ⊆ A2(τ ◦ (ηω)) ⊆ J̃b. But this would
contradict condition (d) of Definition 3.

As in Theorem 2, it remains to be shown that the iteration in function
extend□(ρ1, ρ2, ∅) reaches the postulated mapping m or returns true earlier.
Let m′ be any atom mapping that can be extended to m. Because η is a unifier
for m, η is also a unifier for m′. This implies that there is a most general unifier
η′ for m′ and by Lemma 1. Therefore η ⊆ τ ′ ◦(η′ω) for some τ ′ : C∪N → C∪N.
We now need to argue that Algorithm 3 does not return false on m′.

L22: Any universal variable assigned to a null by η′ must also be assigned to
the same null by η, since η′ is more general. Because we already know that
this check fails for m, we can conclude that it fails for m′ as well.

L23: From the way an atom mapping is extended by the modification of Algo-
rithm 1, we know that if an atom is contained in headℓ2 for m′, then it is also
contained in headℓ2 for m. Hence, this if-check would also have to fail for m,
which we already ruled out.

L29: We set A = body2, B = head2 and I = Ĩa. Then, η is a homomorphism
from A to I that cannot be extended to a homomorphism from B to I. From
Lemma 2 we immediately obtain body2η′ω ̸|= ∃z. head2η′∀ω∀. Therefore this
check fails. ⊓⊔

Algorithm 4 specifies the central function that we use for checking the special
case where a rule restrains itself through a single rule application (rather than
two distinct applications as considered before). extend□self(ρ,m) works the same
way as the regular extend□(ρ1, ρ2, m) function. However, since we are dealing
with only a single rule application now, no renaming of variables is required.
However, head atoms in the domain of the atom mapping may still contain
existential variables, whereas those in its range have such variables replaced by
nulls. The essential correctness result for the self-restraining case is as follows:

Theorem 3. Given a rule ρ, extend□self(ρ,∅) = true iff ρ ≺□ ρ holds according
to Definition 3 for some Ia = Ib.

Proof. As before, we divide our argument for soundness and completeness.

Soundness: Assume that check□self(ρ,m, η)= true for some atom mapping m
and mgu η. We define ω′ to be a substitution mapping variables to the same
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Algorithm 4: check□self
Input: rules ρ : body→ ∃v.head, atom mapping m with mgu η
Output: true if a self-restraint is found for m

35 headm ← dom(m)

36 headℓ ← {head[j] ∈ (head\ headm) | j < maxidx(m)}
37 headr ← {head[j] ∈ (head\ headm) | j > maxidx(m)}
38 if headη∃ = headω∃ then return false
39 if xη ∈ N for some x ∈ V∀ then return false
40 if zη ∈ N for some z ∈ V∃ in headℓ then
41 return false

42 if zη ∈ N for some z ∈ V∃ in headr then
43 return extend□self(ρ, m)

44 Ĩ ← (body ∪ headℓ ∪ headr)ηω

45 if Ĩ |= ∃v. headη∀ω∀ then return extend□self(ρ, m)
46 return true

terms as ω except for nulls that do not appear in im(η), which are assigned to
unique constants instead. We set Ĩ = (body ∪ headℓ ∪ headr)ηω′ similarly as in
L44. Furthermore, let I = Ĩ ∪headω∃η∀ω∀ be an interpretation. By construction
of Ĩ we have that η∀ω∀ is a match for Ĩ. The check in L45 ensures that it is
unsatisfied. Note that Ĩ does not contain any nulls introduced by applying ρ
because of the checks in L39, L40, L42 and our definition of ω′. The alternative
match is given by ηA : headη∀ω′ → Ib with ηA(t) = tηω′. From the check in L38
it follows ηA maps a null not present in η∀ω. Therefore we have Ia = Ib = I
and the functions η∀ω∀ and the alternative match ηA satisfying conditions (a),
(b) and (c) of Definition 3. Condition (d) does not need to be verified since there
cannot be an alternative match for ρ before its application.

Completeness: Completeness can be handled with similar arguments as in The-
orem 2. Here, we briefly describe how to apply Lemma 2 for L45. We set
A = body ∪ headℓ ∪ headr, B = head and I = Ĩ. ⊓⊔
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