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Abstract. The Bernays-Schönfinkel first-order logic fragment over simple linear real
arithmetic constraints BS(SLR) is known to be decidable. We prove that BS(SLR)
clause sets with both universally and existentially quantified verification conditions
(conjectures) can be translated into BS(SLR) clause sets over a finite set of first-order
constants. For the Horn case, we provide a Datalog hammer preserving validity and
satisfiability. A toolchain from the BS(LRA) prover SPASS-SPL to theDatalog reasoner
VLog establishes an effective way of deciding verification conditions in the Horn
fragment. This is exemplified by the verification of supervisor code for a lane change
assistant in a car and of an electronic control unit for a supercharged combustion engine.

1 Introduction

Modern dynamic dependable systems (e.g., autonomous driving) continuously update software
components to fix bugs and to introduce new features. However, the safety requirement
of such systems demands software to be safety certified before it can be used, which is
typically a lengthy process that hinders the dynamic update of software. We adapt the
continuous certification approach [15] of variants of safety critical software components using
a supervisor that guarantees important aspects through challenging, see Fig. 1. Specifically,
multiple processing units run in parallel – certified and updated not-certified variants that
produce output as suggestions and explications. The supervisor compares the behavior of
variants and analyses their explications. The supervisor itself consists of a rather small set of
rules that can be automatically verified and run by a reasoner. The reasoner helps the supervisor
to check if the output of an updated variant is in agreement with the output of a respective
certified variant. The absence of discrepancy between the two variants for a long-enough period
of running both variants in parallel allows to dynamically certify it as a safe software variant.

While supervisor safety conditions formalized as existentially quantified properties can
often already be automatically verified, conjectures about invariants formalized as universally
quantified properties are a further challenge. In this paper we show that supervisor safety
conditions and invariants can be automatically proven by a Datalog hammer. Analogous to
the Sledgehammer project [7] of Isabelle [30] translating higher-order logic conjectures to
first-order logic (modulo theories) conjectures, our Datalog hammer translates first-order
Horn logic modulo arithmetic conjectures into pure Datalog programs, equivalent to Horn
Bernays-Schönfinkel clause fragment, called HBS.

More concretely, the underlying logic for both formalizing supervisor behavior and
formulating conjectures is the hierarchic combination of the Bernays-Schönfinkel first-order
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Fig. 1. The supervisor architecture.

fragment with real linear arithmetic, BS(LRA), also called Superlog for Supervisor Effective
Reasoning Logics [15]. Satisfiability of BS(LRA) clause sets is undecidable [13,21], in
general, however, the restriction to simple linear real arithmetic BS(SLR) yields a decidable
fragment [17,20]. Our first contribution is decidability of BS(SLR) with respect to universally
quantified conjectures, Section 3, Lemma 10.

Inspired by the test point method for quantifier elimination in arithmetic [25] we show
that instantiation with a finite number of first-order constants is sufficient to decide whether
a universal/existential conjecture is a consequence of a BS(SLR) clause set.

For our experiments of the test point approach we consider two case studies: verification
conditions for a supervisor taking care of multiple software variants of a lane change assistant
in a car and a supervisor for a supercharged combustion engine, also called an ECU for
Electronical Control Unit. The supervisors in both cases are formulated by BS(SLR) Horn
clauses, the HBS(SLR) fragment. Via our test point technique they are translated together
with the verification conditions to Datalog [1] (HBS). The translation is implemented in our
Superlog reasoner SPASS-SPL. The resulting Datalog clause set is eventually explored by the
Datalog engine VLog [11]. This hammer constitutes a decision procedure for both universal
and existential conjectures. The results of our experiments show that we can verify non-trivial
existential and universal conjectures in the range of secondswhile state-of-the-art solvers cannot
solve all problems in reasonable time. This constitutes our second contribution, Section 5.

Related Work: Reasoning about BS(LRA) clause sets is supported by SMT (Satisfiability
Modulo Theories) [29,28]. In general, SMT comprises the combination of a number of
theories beyond LRA such as arrays, lists, strings, or bit vectors. While SMT is a decision
procedure for the BS(LRA) ground case, universally quantified variables can be considered
by instantiation [34]. Reasoning by instantiation does result in a refutationally complete
procedure for BS(SLR), but not in a decision procedure. The Horn fragment HBS(LRA)
out of BS(LRA) is receiving additional attention [18,6], because it is well-suited for software
analysis and verification. Research in this direction also goes beyond the theory of LRA and
considers minimal model semantics in addition, but is restricted to existential conjectures.
Other research focuses on universal conjectures, but over non-arithmetic theories, e.g., invariant
checking for array-based systems [12] or considers abstract dedidability criteria incomparable
with the HBS(LRA) class [33]. Hierarchic superposition [2] and Simple Clause Learning
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over Theories [9] (SCL(T)) are both refutationally complete for BS(LRA). While SCL(T) can
be immediately turned into a decision procedure for even larger fragments than BS(SLR) [9],
hierarchic superposition needs to be refined by specific strategies or rules to become a decision
procedure already because of the Bernays-Schönfinkel part [19]. Our Datalog hammer
translates HBS(SLR) clause sets with both existential and universal conjectures into HBS
clause setswhich are also subject to first-order theoremproving. Instance generating approaches
such as iProver [23] are a decision procedure for this fragment,whereas superposition-based [2]
first-order provers such as E [37], SPASS [41], Vampire [35], have additional mechanisms
implemented to decide HBS. In our experiments, Section 5, we will discuss the differences
between all these approaches on a number of benchmark examples in more detail.

The paper is organized as follows: after a section on preliminaries, Section 2, we present
the theory of our new Datalog hammer in Section 3. Section 4 introduces our two case studies
followed by experiments on respective verification conditions, Section 5. The paper ends
with a discussion of the obtained results and directions for future work, Section 6. Binaries
of our tools and all benchmark problems can be found under https://github.com/knowsys/
eval-datalog-arithmetic and an extended version of this paper including proofs on arXiv [8].

2 Preliminaries

We briefly recall the basic logical formalisms and notations we build upon. We use a standard
first-order language with constants (denoted 0,1,2), without non-constant function symbols,
variables (denoted F,G,H,I), and predicates (denoted %,&,') of some fixed arity. Terms
(denoted C,B) are variables or constants. We write Ḡ for a vector of variables, 0̄ for a vector
of constants, and so on. An atom (denoted �,�) is an expression %(C̄) for a predicate % of
arity = and a term list C̄ of length =. A positive literal is an atom � and a negative literal is
a negated atom ¬�. We define comp(�)=¬�, comp(¬�)=�, |�|=� and |¬�|=�. Literals
are usually denoted !, ,�.

A clause is a disjunction of literals, where all variables are assumed to be universally
quantified. �,� denote clauses, and # denotes a clause set. We write atoms(-) for the set
of atoms in a clause or clause set -. A clause is Horn if it contains at most one positive literal,
and a unit clause if it has exactly one literal. A clause �1∨...∨�=∨¬�1∨...∨¬�< can be
written as an implication �1∧...∧�=→�1∨...∨�<, still omitting universal quantifiers. If
. is a term, formula, or a set thereof, vars(.) denotes the set of all variables in . , and . is
ground if vars(.)=∅. A fact is a ground unit clause with a positive literal.

Datalog and the Bernays-Schönfinkel Fragment: The Bernays-Schönfinkel fragment (BS)
comprises all sets of clauses. The more general form of BS in first-order logic allows arbitrary
formulas over atoms, i.e., arbitrary Boolean connectives and leading existential quantifiers.
However, both can be polynomially removed with common syntactic transformations while
preserving satisfiability and all entailments that do not refer to auxiliary constants and pred-
icates introduced in the transformation [31]. Sometimes, we still refer explicitly to formulas
when it is more beneficial to apply these transformations after some other processing steps. BS
theories in our sense are also known as disjunctive Datalog programs [14], specifically when
written as implications. A set of Horn clauses is also called a Datalog program. (Datalog is
sometimes viewed as a second-order language. We are only interested in query answering,
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which can equivalently be viewed as first-order entailment or second-order model checking
[1].) Again, it is common to write clauses as implications in this case.

Two types of conjectures, i.e., formulas we want to prove as consequences of a clause set,
are of particular interest: universal conjectures ∀Ḡq and existential conjectures ∃Ḡq, where
q is any Boolean combination of BS atoms that only uses variables in Ḡ.

A substitution f is a function from variables to terms with a finite domain dom(f)={G |
Gf≠G} and codomain codom(f)={Gf |G∈dom(f)}.We denote substitutions byf,X,d. The
application of substitutions is often written postfix, as in Gf, and is homomorphically extended
to terms, atoms, literals, clauses, and quantifier-free formulas. A substitution f is ground if
codom(f) is ground. Let . denote some term, literal, clause, or clause set. f is a grounding
for. if.f is ground, and.f is a ground instance of. in this case. We denote by gnd(.) the
set of all ground instances of. , and by gnd� (.) the set of all ground instances over a given set
of constants �. The most general unifier mgu(/1,/2) of two terms/atoms/literals /1 and /2 is
defined as usual, and we assume that it does not introduce fresh variables and is idempotent.

We assume a standard first-order logic model theory, and writeA |=q if an interpretation
A satisfies a first-order formula q. A formula k is a logical consequence of q, written q |=k,
ifA |=k for allA such thatA |=q. Sets of clauses are semantically treated as conjunctions
of clauses with all variables quantified universally.
BS with Linear Arithmetic: The extension of BS with linear arithmetic over real numbers,
BS(LRA), is the basis for the formalisms studied in this paper. For simplicity, we assume
a one-sorted extension where all terms in BS(LRA) are of arithmetic sort LA, i.e., represent
numbers. The language includes free first-order logic constants that are eventually interpreted
by real numbers, but we only consider initial clause sets without such constants, called pure
clause sets. Satisfiability of pure BS(LRA) clause sets is semi-decidable, e.g., using hierarchic
superposition [2] or SCL(T) [9]. Impure BS(LRA) is no longer compact and satisfiability
becomes undecidable, but it can be made decidable when restricting to ground clause sets [16],
which is the result of our grounding hammer.

Example 1. The following BS(LRA) clause from our ECU case study compares the values
of speed (Rpm) and pressure (KPa) with entries in an ignition table (IgnTable) to derive the
basis of the current ignition value (IgnDeg1):

G1<0∨ G1≥13∨ G2<880∨ G2≥1100∨¬KPa(G3,G1) ∨
¬Rpm(G4,G2) ∨¬IgnTable(0,13,880,1100,I) ∨ IgnDeg1(G3,G4,G1,G2,I)

(1)

Terms of sort LA are constructed from a set X of variables, a set of first-order arithmetic
constants, the set of integer constants 2∈Z, and binary function symbols+ and− (written infix).
Atoms in BS(LRA) are either first-order atoms (e.g., IgnTable(0,13,880,1100,I)) or (linear)
arithmetic atoms (e.g., G2 < 880). Arithmetic atoms may use the predicates ≤,<,≠,=,>,≥,
which are written infix and have the expected fixed interpretation. Predicates used in first-order
atoms are called free. First-order literals and related notation is defined as before. Arithmetic
literals coincide with arithmetic atoms, since the arithmetic predicates are closed under
negation, e.g., comp(G2≥1100)=G2<1100.

BS(LRA) clauses and conjectures are defined as for BS but using BS(LRA) atoms. We
oftenwrite clauses in the formΛ ‖�where� is a clause solelybuilt of free first-order literals and
Λ is amultiset of LRAatoms. The semantics of ‖ is implicationwhereΛ denotes a conjunction,
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e.g., the clause G>1∨H≠5∨¬&(G)∨'(G,H) is also written G≤1,H=5||¬&(G)∨'(G,H). For
. a term, literal, or clause, we write ints(.) for the set of all integers that occur in. .

A clause or clause set is pure if it does not contain first-order arithmetic constants, and
it is abstracted if its first-order literals contain only variables. Every clause � is equivalent
to an abstracted clause that is obtained by replacing each non-variable term C that occurs in a
first-order atom by a fresh variable G while adding an arithmetic atom G≠C to �. We asssume
abstracted clauses for theory development, but we prefer non-abstracted clauses in examples
for readability,e.g., a fact %(3,5) is considered in the development of the theory as the clause
G=3,G=5||%(G,H), this is important when collecting the necessary test points.

The semantics of BS(LRA) is based on the standard modelALRA of linear arithmetic,
which has the domain LAALRA

=R and which interprets all arithmetic predicates and functions
in the usual way. An interpretation of BS(LRA) coincides withALRA on arithmetic predicates
and functions, and freely interprets free predicates and first-order arithmetic constants. For
pure clause sets this is well-defined [2]. Logical satisfaction and entailment is defined as usual,
and uses similar notation as for BS.
Simpler Forms of Linear Arithmetic: The main logic studied in this paper is obtained by
restricting BS(LRA) to a simpler form of linear arithmetic. We first introduce a simpler logic
BS(SLR) as a well-known fragment of BS(LRA) for which satisfiability is decidable [17,20],
and then present the generalization BS(LRA)PP of this formalism that we will use.

Definition 2. The Bernays-Schönfinkel fragment over simple linear arithmetic, BS(SLR), is
a subset of BS(LRA) where all arithmetic atoms are of form G⊳2 or 3⊳2, such that 2∈Z, 3
is a (possibly free) constant, G∈X , and ⊳∈{≤,<,≠,=,>,≥}.

Example 3. The ECU use case leads to BS(LRA) clauses such as

G1<H1∨ G1≥ H2∨ G2<H3∨ G2≥ H4∨¬KPa(G3,G1) ∨
¬Rpm(G4,G2) ∨¬IgnTable(H1,H2,H3,H4,I) ∨ IgnDeg1(G3,G4,G1,G2,I).

(2)

This clause is not in BS(SLR), e.g., since G1>G5 is not allowed in BS(SLR). However, clause
(1) of Example 1 is a BS(SLR) clause that is an instance of (2), obtained by the substitution
{H1 ↦→ 0,H2 ↦→ 13,H3 ↦→ 880,H4 ↦→ 1100}. This grounding will eventually be obtained by
resolution on the IgnTable predicate, because it occurs only positively in ground unit facts.

Example 3 shows that BS(SLR) clauses can sometimes be obtained by instantiation.
Relevant instantiations can be found by resolution, in our case by hierarchic resolution,
which supports arithmetic constraints: given clauses Λ1 ‖ ! ∨�1 and Λ2 ‖  ∨�2 with
f =mgu(!,comp( )), their hierarchic resolvent is (Λ1,Λ2 ‖ �1∨�2)f. A refutation is
the sequence of resolution steps that produces a clause Λ ‖ ⊥ with ALRA |=ΛX for some
grounding X. Hierarchic resolution is sound and refutationally complete for pure BS(LRA),
since every set # of pure BS(LRA) clauses # is sufficiently complete [2], and hence hierarchic
superposition is sound and refutationally complete for # [2,5]. Resolution can be used to
eliminate predicates that do not occur recursively:

Definition 4 (Positively Grounded Predicate). Let # be a set of BS(LRA) clauses. A free
first-order predicate % is a positively grounded predicate in # if all positive occurrences of %
in # are in ground unit clauses (also called facts).
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For a positively grounded predicate % in a clause set #, let elim(%,#) be the clause set
obtained from # by resolving away all negative occurrences of % in # and finally eliminating
all clauses where % occurs negatively. We need to keep the % facts for the generation of test
points. Then# is satisfiable iff elim(%,#) is satisfiable.We can extend elim to sets of positively
groundedpredicates in theobviousway. If= is the number of% unit clauses in#,< themaximal
number of negative % literals in a clause in #, and : the number of clauses in # with a negative
% literal, then |elim(%,#)| ≤ |# |+: ·=<, i.e., elim(%,#) is exponential in the worst case.

We further assume that elim simplifies LRA atoms until they contain at most one integer
number and that LRA atoms that can be evaluated are reduced to true and false and the
respective clause simplified. For example, given the pure and abstracted BS(LRA) clause set
#={IgnTable(0,13,880,1100,2200), G1≤G2 ∨ I2≥ I1 ‖¬IgnTable(G1,G2,H1,H2,I1) ∨R(I2)},
the predicate IgnTable is positively grounded. Then elim(IgnTable,#)={I2≥2200 ‖R(I2)}
where the unifier f= {G1 ↦→0,G2 ↦→13,H1 ↦→880,H2 ↦→110,I1 ↦→2200} is used to eliminate
the literal ¬IgnTable(G1,G2,H1,H2,I1) and (G1≤G2)f becomes true and can be removed.

Definition 5 (Positively Grounded BS(SLR): BS(SLR)P). A clause set # is out of the
fragment positively grounded BS(SLR), BS(SLR)P if elim((,#) is out of the BS(SLR)
fragment, where ( is the set of all positively grounded predicates in #.

Pure BS(SLR)P clause sets are called BS(SLR)PP and are the starting point for our
Datalog hammer.

3 The Theory of the Hammer

We define two hammers that help us solve BS(SLR)PP clause sets with both universally
and existentially quantified conjectures. Both are equisatisfiability preserving and allow us
to abstract BS(SLR)PP formulas into less complicated logics with efficient and complete
decision procedures.

The first hammer, also called grounding hammer, translates any BS(SLR)PP clause set #
withauniversally/existentiallyquantifiedconjecture intoanequisatisfiablegroundandno longer
pure BS(SLR) clause set over a finite set of first-order constants called test points. This means
we reduce a quantified problem over an infinite domain into a ground problem over a finite do-
main.The size of the groundproblemgrowsworst-case exponentially in thenumber of variables
and the number of numeric constants in# and the conjecture. For theHorn case,HBS(SLR)PP,
we define a Datalog hammer, i.e. a transformation into an equisatisfiable Datalog program that
is based on the same set of test points but does not require an overall grounding. It keeps the
original clauses almost one-to-one instead of greedily computing all ground instances of those
clausesover the testpoints.TheDataloghammeradds insteada finite setofDatalog facts that cor-
respond to all theory atoms over the given set of test points.With the help of these facts and the
original rules, the Datalog reasoner can then derive the same conclusions as it could have done
with the ground HBS(SLR) clause set, however, all groundings that do not lead to new ground
facts are neglected. Therefore, the Datalog approach is much faster in practice because the
Datalog reasoner wastes no time (and space) on trivially satisfied ground rules that would have
been part of the greedily computed groundHBS(SLR) clause set.Moreover, Datalog reasoners
are well suited to the resulting structure of the problem, i.e. many facts but a small set of rules.
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Note that we never compute or work on elim((,#) although the discussed clause sets
are positively grounded. We only refer to elim((,#) because it allows us to formulate our
theoretical results more concisely. We avoid working on elim((,#) because it often increases
the number of non-fact clauses (by orders of magnitude) in order to simplify the positively
grounded theory atoms to variable bounds. This is bad in practice because the number of
non-fact clauses has a high impact on the performance of Datalog reasoners. Our Datalog
hammer resolves this problem by dealing with the positively grounded theory atoms in a
different way that only introduces more facts instead of non-fact clauses. This is better in
practice because Datalog reasoners are well suited to handling a large number of facts. Since
the grounding hammer is meant primarily as a stepping stone towards the Datalog hammer,
we also defined it in such a way that it avoids computing and working on elim((,#).

Hammering BS(SLR) Clause Sets with a Universal Conjecture: Our first hammer, takes
a BS(SLR)PP clause set # and a universal conjecture ∀H̄.q as input and translates it into
a ground BS(SLR) formula. We will later show that the cases for no conjecture and for
an existential conjecture can be seen as special cases of the universal conjecture. Since q
is a universal conjecture, we assume that q is a quantifier-free pure BS(SLR) formula and
vars(q)=vars(H̄). Moreover, we denote by ( the set of positively grounded predicates in #
and assume that none of the positively grounded predicates from ( appear in q. There is not
much difference developing the hammer for the Horn or the non-Horn case. Therefore, we
present it for the general non-Horn case, although our second Datalog hammer is restricted to
Horn. Note that a conjecture ∀H̄.q is a consequence of #, i.e. # |=∀H̄.q, if ∀H̄.q is satisfied by
every interpretationA that also satisfies #, i.e. ∀A.(A |=#→∀H̄.q). Conversely, ∀H̄.q is not
a consequence of # if there exists a counter example, i.e. one interpretationA that satisfies
# but does not satisfy ∀H̄.q, or formally: ∃A.(A |=#∧∃H̄.¬q).

Our hammer is going to abstract the counter example formulation into a ground BS(SLR)
formula. This means the hammered formula will be unsatisfiable if and only if the conjecture
is a consequence of #. The abstraction to the ground case works because we can restrict our
solution space from the infinite reals to a finite set of test points and still preserve satisfiability.
To bemore precise, we partitionR into intervals such that any variable bound in elim((,#) and
q either satisfies all points in one such interval � or none. Then we pick <=max(1,|vars(q)|)
test points from each of those intervals because any counter example, i.e. any assignment for
¬q, contains at most < different points per interval.

We get the interval partitioning by first determining the necessary set of interval borders
based on the variable bounds in elim((,#) and q. Then, we sort and combine the borders
into actual intervals. The interval borders are extracted as follows: We turn every variable
bound G⊳2 with ⊳∈ {≤,<,>,≥} in elim((,#) and q into two interval borders. One of them
is the interval border implied by the bound itself and the other its negation, e.g., G≥5 results
in the interval border [5 and the interval border of the negation 5). Likewise, we turn every
variable bound G⊳2 with ⊳∈{=,≠} into all four possible interval borders for 2, i.e. 2), [2, 2],
and (2. The set of interval endpoints C is then defined as follows:

C= {2],(2 |G⊳2∈atoms(elim((,#))∪atoms(q) where ⊳∈{≤,=,≠,>}}∪
{2),[2 |G⊳2∈atoms(elim((,#))∪atoms(q) where ⊳∈{≥,=,≠,<}} ∪ {(−∞,∞)}
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It is not necessary to compute elim((,#) to compute C. It is enough to iterate over all theory
atoms in # and compute all of their instantiations in elim((,#) based on the facts in # for
predicates in (. This can be done in $(=C ·=� ·==E( ), where =E is the maximum number of
variables in any theory atom in #, =� is the number of theory atoms in #, =( is the number
of facts in # for predicates in (, and =C is the size of the largest theory atom in # with respect
to the number of symbols.

The intervals themselves can be constructed by sorting C in an ascending order such that
we first order by the border value—i.e. X<n if X∈{2),[2,2],(2}, n ∈{3),[3,3],(3}, and 2<3—
and then by the border type—i.e. 2)< [2<2]< (2. The result is a sequence [...,X;,XD,...], where
we always have one lower border X;, followed by one upper border XD. We can guarantee that
an upper border XD follows a lower border X; because C always contains 2) together with [2 and
2] together with (2 for 2∈Z, so always two consecutive upper and lower borders. Together with
(−∞ and∞) this guarantees that the sortedC has the desired structure. Ifwe combine every two
subsequent borders X;, XD in our sorted sequence [...,X;,XD,...], then we receive our partition
of intervals I. For instance, if G<5 and G=0 are the only variable bounds in elim((,#) and
q, then C={5),[5,0),[0,0],(0,(−∞,∞)} and if we sort it we get {(−∞,0),[0,0],(0,5),[5,∞)}.

Corollary 6. Let ⊳∈ {<,≤,=,≠,≥,>}. For each interval � ∈I, every two points 0,1∈ �, and
every variable bound G⊳2∈atoms(elim((,#))∪atoms(q), 0⊳2 if and only if 1⊳2.

The above Corollary states that two points 0,1 ∈ � belonging to the same interval � ∈I
satisfy the same theory atoms in elim((,#) and q. However, two points 0,1 ∈ � do not
necessarily satisfy the same non-theory atom under an arbitrary interpretationA; not even
if A satisfies #∧∃H̄.¬q. E.g., A may evaluate %(0) to true and %(1) to false. Sometimes
this is even necessary or we would be unable to find a counter example:

Example 7. Let q = (0 ≤ G,G ≤ 1,0 ≤ H,H ≤ 1||¬%(G)∨%(H)) be our conjecture and # = ∅
be our clause set. Informally, the property ∀G,H.q states that % must be uniform over the
interval [0,1], i.e. either all points in the interval [0,1] satisfy % or none do. As a result,
all interpretations that are uniform over [0,1] ∈ I also satisfy ∀G,H.q. However, there still
exist counter examples that are not uniform, e.g., %A={0}, which satisfies # but not ∀G,H.q
because it evaluates %(0) to true and %(0) to false for all 0∈ [0,1]\{0}.

Tobetter understand theaboveexample, let us lookagain at the counter example formulation
#∧∃H̄.¬q. This formula is satisfiable, i.e. we have a counter example to our conjecture∀H̄.q if
there exists an interpretationA and a grounding d for q (also called an assignment for q) such
thatA satisfies # and¬qd. In the worst case, the assignment dmaps to<= |vars(q)| different
points in one of the intervals � ∈I. Each of those< pointsmay "act" differently in the interpreta-
tionA although it belongs to the same interval. On the one hand, this means that we need in the
worst case <= |vars(q)| different test points for each interval in I. On the other hand, we will
show in theproof ofLemma9 thatwecan always find a counter example,where (i) nomore than
< points per interval act differently and (ii) the actual value of a point does not matter as long
as it belongs to the same interval � ∈I. This is owed mainly to Corollary 6, i.e. that the points
in an interval act at least the same in the theory atoms.We ensure that a test point 0 belongs to a
certain interval � by adding a set of variable bounds to our formula.Wedefine these boundswith
the functions ilbd and iubd that turn intervals into lower and upper bounds: ilbd((−∞,D),G)=∅,
ilbd((−∞,D],G) = ∅, ilbd((;,D),G) = {; < G}, ilbd((;,D],G) = {; < G}, ilbd([;,D),G) = {; ≤ G},
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ilbd([;,D],G)= {; ≤ G} for ;≠−∞; iubd((;,∞),G)=∅, iubd([;,∞),G)=∅, iubd((;,D),G)= {G <
D}, iubd((;,D],G)={G≤D}, iubd([;,D),G)={G<D}, iubd([;,D],G)={G≤D} for D≠∞.

Note that this test point scheme would no longer be possible if we were to allow general
inequalities.Even allowing difference constraints, i.e., inequalities of the form G−H≤2, would
turn the search for a counter example into an undecidable problem [13,21], because variables
can now interact both on the first-order and the theory side.

As a result of these observations, we construct the hammered formula k, also called
the finite abstraction of #∧∃H̄.¬q, as follows. First we fix the following notations for the
remaining subsection: I is the interval partition for # and q; I=={� ∈I | �= [;,;]} is the set
of all intervals from I that are just points; I∞=I\I= is the set of all intervals that are not just
points and therefore contain infinitely many values;<=max(1,|vars(q)|) is the number of test
points needed per interval with infinitelymany values; �={0� ,1 |� ∈I=}∪{0� , 9 |� ∈I∞ and 9 =
1,...,<} is the set of test points for our abstraction such that we have one test point per interval
� ∈I= and < different test points for each interval � ∈I∞; idef(�) =⋃

0� ,8∈� ilbd(�,0� ,8)∪⋃
0� ,8∈�iubd(�,0� ,8) is a set of bounds that defines to which interval each constant belongs;

and k=gnd� (#)∪idef(�)∧(∨d:vars(q)→�¬qd) is the finite abstraction of #∧∃H̄.¬q.
Thehammered formulak containsgnd� (#), i.e. a groundclause (Λ ‖�)f for every clause

(Λ ‖�) ∈# and every assignmentf :vars(Λ ‖�)→�. Thismeans any deduction over the tests
points�wecouldhaveperformedwith the set of clauses# canalsobeperformedwith the set of
clauses gnd� (#) ink. Similarly,

∨
d:vars(q)→�¬qd is a big disjunction over all assignments of

d forq that assign its variables to test points.Hence,k is satisfiable if there exists a counter exam-
ple for #∧∃H̄.¬q that just uses the test points �. Although the finite abstraction is restricted to
the test points �, it is easy to extend any of its interpretations to all ofR and our original formula.
We just have to interpret all values in an interval that are not test points like one of the test points:

Lemma 8. Let A′ be an interpretation satisfying the finite abstraction k of #∧∃H̄.¬q. More-
over, let d :vars(q)→� be a substitution such that A′ satisfies ¬qd. Then the interpretation
A satisfies #∧∃H̄.¬q if it is constructed as follows:
%A = {0̄ ∈ R= | %(0̄) ∈ #} if % ∈ ( and %A = {0̄ ∈ R= | 0̄f ∈ %A′} if % ∉ ( and
f={0 ↦→0A

′

� ,1 | � ∈I and 0∈ �\{0A′
� ,2,...,0

A′
� ,<
}}.

Similarly, we can extend any interpretationA satisfying #∧∃H̄.¬q into an interpretation
satisfying k. We just have to pick one assignment d′ :vars(q)→R such thatA satisfies ¬qd′
and pick one test point � for each point in codom(d′) and interpret it as its corresponding
point in codom(d′).

Lemma 9. Let A be an interpretation satisfying the formula # ∧∃H̄.¬q. Then we can
construct an interpretation A′ that satisfies its finite abstraction k.

If we combine both results, we get that #∧∃H̄.¬q is equisatisfiable to k:

Lemma 10. #∧∃H̄.¬q has a satisfying interpretation if and only if its finite abstraction k
has a satisfying interpretation.

The finite abstraction for the case with a universal conjecture can also be used to construct
a finite abstraction for the case without a conjecture and the case with an existential conjecture.
Let # be aBS(SLR)PP clause set and let ( be the set of all positively grounded predicates in #.

9



# is satisfiable if and only if # 6|=⊥. Hence, we get a finite abstraction for # if we build one for
# |=⊥, which can be treated as a universal conjecture because all variables in⊥ are universally
quantified. The existential case works similarly: # |=∃H̄.q if and only if #∪# ′ |=⊥, where # ′
is the universal BS(SLR) clause set we get from applying a CNF transformation [31] to∀H̄.¬q.

A Datalog Hammer for HBS(SLR)PP: The set gnd� (#) grows exponentially with regard
to themaximumnumber of variables=� in any clause (Λ ‖�) ∈#, i.e.$(|gnd� (#)|)=$(|# | ·
|�|=� ). Since � is large for realistic examples (e.g., in our examples the size of � ranges from15
to 1609 constants), the finite abstraction is often too large to be solvable in reasonable time. As
an alternative approach, we propose a Datalog hammer for the Horn fragment of BS(SLR)PP
clause sets, called HBS(SLR)PP. This hammer exploits the ideas behind the finite abstraction
andwill allow us tomake the same ground deductions, but instead of grounding everything, we
onlyneed to (i) ground thenegated conjecture over our test points and (ii) provide a set of ground
facts thatdefinewhich theoryatomsare satisfiedbyour testpoints.Asa result, thehammered for-
mula ismuchmore concise andwe need no actual theory reasoning to solve the formula. In fact,
we can solve the hammered formula by greedily resolvingwith all facts (from our set of clauses
and returnedasa result of thisprocess)until this produces theemptyclause—whichwouldmean
the conjecture is implied—or nomore new facts—which wouldmean we have found a counter
example. (In practice, greedily applying resolution is not the best strategy and we recommend
to usemore advanced techniques for instance those used by a state-of-the-art Datalog reasoner.)

TheDatalog hammer takes as input (i) aHBS(SLR)PP clause set# (where ( is the set of all
positively grounded predicates in #) and (ii) optionally a universal conjecture ∀H̄.%(H̄) where
%∉(. Restricting the conjecture to a single positive literal may seem like a drastic restriction,
butwewill later show thatwe can transformany universal conjecture into this form if it contains
only positive atoms. Given this input, the Datalog hammer first computes the same interval
partition I and test point/constant set � needed for the finite abstraction. Then it computes an
assignment V for the constants in � that corresponds to the interval partition, i.e. 0� ,8V∈ � and
0� ,8V≠0� , 9V if 8≠ 9. Next, it computes three clause sets that will make up the Datalog formula.
The first set tren# (#) is computed out of # by replacing each theory atom � in# with a literal
%�(Ḡ), where vars(�)=vars(Ḡ) and %� is a fresh predicate. This is necessary to eliminate all
non-constant function symbols (e.g.,+,−) in positively grounded theory atoms becauseDatalog
does not support non-constant function symbols. (It is possible to reduce the number of fresh
predicatesneeded, e.g., by reusing the samepredicate for two theoryatoms that are equivalent up
to variable renaming.) The second set is empty if we have no universal conjecture or it contains
the ground and negated version q of our universal conjecture ∀H̄.%(H̄). Since we restricted the
conjecture to a single positive literal, q has the form �q→⊥, where �q contains all literals
%(H̄)d for all groundings d :vars(H̄)→�.Wecannot skip this groundingbut theworst-case size
of�q is$(gnd� (#))=$(|�|=q), where =q= |H̄|, which is in our applications typically much
smaller than the maximum number of variables =� contained in any clause in #. The last set is
denoted by tfacts(#,�) and contains a fact tren# (�) for every ground theory atom � contained
in the theorypartΛof a clause (Λ ‖�) ∈gnd� (#) such that �V simplifies to true. (Alternatively,
it is also possible to use a set of axioms and a smaller set of facts and let the Datalog reasoner
compute all relevant theory facts for itself.) The set tfacts(#,�) can be computed without
computing gnd� (#) if we simply iterate over all theory atoms � in all constraints Λ of all
clauses (Λ ‖�) ∈# and compute all groundings g : vars(�)→� such that �gV simplifies
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to true. This can be done in time $(`(=E) ·=! · |�|=E ) and the resulting set tfacts(#,�) has
worst-case size $(=� · |�|=E ), where =! is the number of literals in #, =E is the maximum
number of variables |vars(�)| in any theory atom � in #, =� is the number of different theory
atoms in #, and `(G) is the time needed to simplify a theory atom over G variables to a variable
bound. Please note that already satifiability testing for BS clause is NEXPTIME-complete
in general, and DEXPTIME-complete for the Horn case [24,32]. So when abstracting to a
polynomially decidable clause set (ground HBS) an exponential factor is unavoidable.

Lemma 11. # ∧∃H̄.¬%(H̄) is equisatisfiable to its hammered version #� = tren# (#) ∪
tfacts(#,�)∪{q}. # is equisatisfiable to its hammered version tren# (#)∪tfacts(#,�).

Note that tren# (#)∪tfacts(#,�)∪{q} is actually a HBS clause set over a finite set of
constants � and not yet a Datalog input file. It is well known that such a formula can be
transformed easily into a Datalog problem by adding a nullary predicate Goal and adding it
as a positive literal to any clause without a positive literal. Querying for the Goal atom returns
true if the HBS clause set was unsatisfiable and false otherwise.

Positive Conjectures: One of the seemingly biggest restrictions of our Datalog hammer is
that it only accepts universal conjectures over a single positive literal ∀H̄.%(H̄). We made this
restriction because it is the easiest way to guarantee that our negated and finitely abstracted
goal takes the form of a Horn clause. However, there is a way to express any positive universal
conjecture — i.e. any universal conjecture where all atoms have positive polarity — as a
universal conjecture over a single positive literal. (Note that any negative theory literal can be
turned into a positive theory literal by changing the predicate symbol, e.g., ¬(G≤5)≡ (G>5).)
Similarly as in a typical first-order CNF transformation [31], we can simply rename all
subformulas, i.e. recursively replace all subformulas with some some fresh predicate symbols
and add suitable Horn clause definitions for these new predicates to our clause set #. A
detailed algorithm for this flattening process and a proof of equisatisfiability can be found in
the extended version of this paper. Using the same technique, we can also express any positive
existential conjecture — i.e. any existential conjecture where all atoms have positive polarity
— as additional clauses in our set of input clauses #.

4 Two Supervisor Case Studies

Weconsider two supervisor case studies: a lane change assistant and the ECUof a supercharged
combustion engine; both using the architecture in Fig. 1.
Lane Assistant: This use case focuses on the lane changing maneuver in autonomous driving
scenario i.e., the safe lane selection and the speed. We run two variants of software processing
units (updated and certified) in parallel with a supervisor. The variants are connected to
different sensors that capture the state of the freeway such as video or LIDAR signal sensors.
The variants process the sensors’ data and suggest the safe lanes to change to in addition to
the evidence that justify the given selection. The supervisor is responsible for the selection of
which variant output to forward to other system components i.e., the execution units (actuators)
that perform the maneuver. Variants categorize the set of available actions for each time frame
into safe/unsafe actions and provide explications. The supervisor collects the variants output
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and processes them to reason about (a) if enough evidence is provided by the variants to
consider actions safe (b) find the actions that are considered safe by all variants.

Variants formulate their explications as facts using first-order predicates. The supervisor
uses a set of logical rules formulated in BS(SLR)PP to reason about the suggestions and the
explications (see List. 1.1). In general, the rules do not belong to the BS(SLR)PP fragment,
e.g., the atom = (Gℎ1,−(G4B,1)) includes even an arithmetic calculation. However, after
grounding with the facts of the formalization, only simple bounds remain.

1 ## Exclude actions per variant if safety disproved or declared unsafe.
2 SuggestionDisproven(xv, xa), VariantName(xv) -> ExcludedAction(xv, xa).
3 VariantName(xv), LaneNotSafe(xv, xl, xa) -> ExcludedAction(xv, xa).
4 ## Exclude actions for all variants if declared unsafe by the certified
5 CertifiedVariant(xv1), UpdatedVariant(xv2), LaneNotSafe(xv1, xl, xa)
6 -> ExcludedAction(xv2,xa).
7

8 ## A safe action is disproven
9 SafeBehindDisproven(xv, xenl, xecl, xecs, xes, xa), LaneSafe(xv, xl, xa),
10 SuggestedAction(xv, xa) -> SuggestionDisproven(xv, xa).
11 SafeFrontDisproven(xv, xenl, xecl, xecs, xes, xa), LaneSafe(xv, xl, xa),
12 SuggestedAction(xv, xa) -> SuggestionDisproven(xv, xa).
13

14 ## Unsafe left lane: speed decelerated and unsafe distance front
15 >(xh1, xfd), !=(xecl, xenl), =(xh1,-(xes,1)) ||
16 LaneSafe(xv, xenl, adecelerateleft), EgoCar(xv, xecl, xecs, xes),
17 DistanceFront(xv, xenl, xofp, xfd, adecelerateleft),
18 SpeedFront(xv, xenl, xofp, xofs, adecelerateleft)
19 -> SafeFrontDisproven(xv, xenl, xecl, xecs, xes, adecelerateleft).

List. 1.1. The rules snippets for the lane changing use case in BS(SLR)PP.

Variants explications: The SuggestedAction predicate encodes the actions suggested
by the variants. LaneSafe and LaneNotSafe specify the lanes that are safe/unsafe to
be used with the different actions. DistanceFront and DistanceBehind provide the
explications related to the obstacle position, while their speeds are SpeedFront and Speed-
Behind. EgoCar predicate reports the speed and the position of the ego vehicle.

Supervisor reasoning: To select a safe action, the supervisor must exclude all unsafe
actions. The supervisor considers actions to be excluded per variant (ExcludedAction) if
(a) SuggestionDisproven; the variant fails to prove that the suggested action is safe (line 2),
or (b) the action is declared unsafe (line 3). The supervisor declares an action to be excluded
cross all variants if the certified variant declares it unsafe (lines 5-6). To consider an action as
SuggestionDisproven, the supervisor must check for each LaneSafe the existence of
unsafe distances between the ego vehicle in the given lane and the other vehicles approaching
either from behind (SafeBehindDisproven) or in front (SafeFrontDisproven). The
rule SafeFrontDisproven (lines 15-19) checks in the left lane, if using the ego vehicle
decelerated speed (=(xh1,-(xes,1))) the distance between the vehicles is not enough
(>(xh1, xfd)). The supervisor checks ExcludeAction for all variants. If all actions are
excluded, the supervisor uses an emergency action as no safe action exists. Otherwise, selects
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a safe action from the not-excluded actions suggested by the updated variant, if not found, by
the certified.
ECU: The GM LSJ Ecotec engine (https://en.wikipedia.org/wiki/GM_Ecotec_engine) is a
supercharged combustion engine that was almost exclusively deployed in the US, still some
of those run also in Europe. The main sensor inputs of the LSJ ECU consist of an inlet air
pressure and temperature sensor (in KPa and in degree Celsius), a speed sensor (in Rpm),
a throttle pedal sensor, a throttle sensor, a coolant temperature sensor, oxygen sensors, a knock
sensor, and its main actuators controlling the engine are ignition and injection timing, and
throttle position. For the experiments conducted in this paper we have taken the routines of
the LSJ ECU that compute ignition and injection timings out of inlet air pressure, inlet air
temperature, and engine speed. For this part of the ECU this is a two stage process where firstly,
basic ignition and injection timings are computed out of engine speed and inlet air pressure and
secondly, those are adjusted with respect to inlet air temperature. The properties we prove are
safety properties, e.g., certain injection timings are never generated and also invariants, e.g., the
ECU computes actuator values for all possible input sensor data and they are unique. Clause 2,
page 5, is an actual clause from the ECU case study computing the base ignition timing.

5 Implementation and Experiments

We have implemented the Datalog hammer into our BS(LRA) system SPASS-SPL and com-
bined it with theDatalog reasoner Rulewerk. The resulting toolchain is the first implementation
of a decision procedure for HBS(SLR) with positive conjectures.
SPASS-SPL is a new system for BS(LRA) based on some core libraries of the first-order
theorem prover SPASS [41] and including the CDCL(LA) solver SPASS-SATT [10] for
mixed linear arithmetic. Eventually, SPASS-SPL will include a family of reasoning techniques
for BS(LRA) including SCL(T) [9], hierarchic superposition [2,5] and hammers to various
logics. Currently, it comprises the Datalog hammer described in this paper and hierarchic
UR-resolution [26] (Unit Resulting resolution) which is complete for pure HBS(LRA). The
Datalog hammer canproduce the clause format used in theDatalog systemRulewerk (described
below), but also the SPASS first-order logic clause format that can then be translated into the
first-order TPTP library [38] clause format. Moreover, it can be used as a translator from our
own input language into the SMT-LIB 2.6 language [4] and the CHC competition format [36].

Note that our implementation of the Datalog hammer is of prototypical nature. It cannot
handle positively grounded theory atoms beyond simple bounds, unless they are variable
comparisons (i.e., G⊳H with ⊳ ∈ {≤,<,≠,=,>,≥}). Moreover, positive universal conjectures
have to be flattened until they have the form Λ ‖%(Ḡ). On the other hand, we already added
some improvements, e.g., we break/eliminate symmetries in the hammered conjecture and
we exploit the theory atoms Λ in a universal conjecture Λ ‖%(Ḡ) so the hammered conjecture
contains only groundings for %(Ḡ) that satisfy Λ.
Rulewerk (formerly VLog4j) is a rule reasoning toolkit that consists of a Java API and
an interactive shell [11]. Its current main reasoning back-end is the rule engine VLog [39],
which supports Datalog and its extensions with stratified negation and existential quantifiers,
respectively. VLog is an in-memory reasoner that is optimized for efficient use of resources,
and has been shown to deliver highly competitive performance in benchmarks [40].
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Problem Q Status - . � Size t-time h-time p-time r-time vampire spacer z3 cvc4
lc_e1 ∃ true 9 3 19 12/30 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
lc_e2 ∃ false 9 3 17 13/27 0.2 0.0 0.1 0.1 0.0 0.1 timeout timeout
lc_e3 ∃ false 9 3 15 12/22 0.2 0.0 0.1 0.1 0.0 0.0 timeout timeout
lc_e4 ∃ true 9 3 21 12/35 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.1
lc_u1 ∀ false 9 2 29 12/25 0.2 0.0 0.1 0.1 0.0 N/A timeout timeout
lc_u2 ∀ false 9 2 26 12/25 0.2 0.0 0.1 0.1 0.0 N/A timeout timeout
lc_u3 ∀ true 9 2 23 12/22 0.2 0.0 0.1 0.1 0.0 N/A 0.0 0.1
lc_u4 ∀ false 9 2 32 12/33 0.2 0.0 0.1 0.1 0.0 N/A timeout timeout
ecu_e1 ∃ false 10 6 311 27/649 1.1 0.1 0.3 0.7 0.5 0.1 timeout timeout
ecu_e2 ∃ true 10 6 311 27/649 1.1 0.1 0.3 0.7 0.5 0.1 2.4 0.4
ecu_u1 ∀ true 11 1 310 27/651 1.1 0.1 0.3 0.7 94.6 N/A 145.2 0.3
ecu_u2 ∀ false 11 1 310 27/651 1.1 0.1 0.3 0.7 80.7 N/A timeout timeout
ecu_u3 ∀ true 9 2 433 27/1291 1.0 0.1 0.5 0.4 12.0 N/A 209.7 0.1
ecu_u4 ∀ true 9 2 1609 26/20459 12.4 2.9 3.2 6.3 526.5 N/A 167.7 0.1
ecu_u5 ∀ true 10 3 629 28/17789 22.6 0.7 2.1 19.8 timeout N/A timeout timeout
ecu_u6 ∀ false 10 3 618 27/15667 11.6 0.7 1.7 9.1 timeout N/A timeout timeout

Fig. 2. Benchmark results and statistics

We have not specifically optimized VLog or Rulewerk for this work, but we have tried to
select Datalog encodings that exploit the capabilities of these tools. The most notable impact
was observed for the encoding of universal conjectures. A direct encoding of (grounded)
universal claims inDatalog leads to ruleswithmany (hundreds of thousands in our experiments)
ground atoms as their precondition. Datalog reasoners (not just VLog) are not optimized
for such large rules, but for large numbers of facts. An alternative encoding in plain Datalog
would therefore specify the expected atoms as facts and use somemechanism to iterate over all
of them to check for goal. To accomplish this iteration, the facts that require checking can be
endowed with an additional identifier (given as a parameter), and an auxiliary binary successor
relation can be used to specify the iteration order over the facts. This approach requires only
few rules, but the number of rule applications is proportional to the number of expected facts.

In Rulewerk/VLog, we can encode this in a simpler way using negation. Universal
conjectures require us to evaluate ground queries of the form entailed(2̄1)∧...∧entailed(2̄ℓ),
where each entailed(2̄8) represents one grounding of our conjecture over our set of test points.
If we add facts expected(2̄8) for the constant vectors 2̄1,...,2̄ℓ , we can equivalently use a
smaller (first-order) query ∀Ḡ.(expected(Ḡ)→entailed(Ḡ)), which in turn can be written as
¬
(
∃Ḡ.(expected(Ḡ)∧¬entailed(Ḡ))

)
. This can be expressed in Datalog with negation and the

rules expected(Ḡ)∧¬entailed(Ḡ)→missing and ¬missing→Goal, where Goal encodes that
the query matches. This use of negation is stratified, i.e., not entwined with recursion [1]. Note
that stratified negation is a formof non-monotonic negation, sowe can no longer read such rules
as first-order formulae over which we compute entailments. Nevertheless, implementation is
simple and stratifiednegation is awidely supported feature inDatalog engines, includingRulew-
erk. The encoding is particularly efficient since the rules using negation are evaluated only once.
Benchmark Experiments To test the efficiency of our toolchain, we ran benchmark ex-
periments on the two real world HBS(SLR)PP supervisor verification conditions. The two
supervisor use cases are described in Section 4. The names of the problems are formatted so
the lane change assistant examples start with lc and the ECU examples start with ecu. The lc
problems with existential conjectures test whether an action suggested by an updated variant
is contradicted by a certified variant. The lc problems with universal conjectures test whether
an emergency action has to be taken because we have to exclude all actions for all variants.
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The ecu problems with existential conjectures test safety properties, e.g., whether a computed
actuator value is never outside of the allowed safety bounds. The ecu problems with universal
conjectures test whether the ecu computes an actuator value for all possible input sensor data.
Our benchmarks are prototypical for the complexity of HBS(SLR) reasoning in that they
cover all abstract relationships between conjectures and HBS(SLR) clause sets. With respect
to our two case studies we have many more examples showing respective characteristics. We
would have liked to run benchmarks from other sources too, but we could not find any suitable
HBS(SLR) problems in the SMT-LIB or CHC-COMP benchmarks.

For comparison, we also tested several state-of-the-art theorem provers for related logics
(with the best settings we found): the satisfiability modulo theories (SMT) solver cvc4-1.8 [3]
with settings --multi-trigger-cache --full-saturate-quant; the SMT solver z3-
4.8.10 [27] with its default settings; the constrained horn clause (CHC) solver spacer [22]
with its default settings; and the first-order theorem prover vampire-4.5.1 [35] with settings --
memory_limit 8000 -p off, i.e., with memory extended to 8GB and without proof output.

For the experiments, we used a Debian Linux server with 32 Intel Xeon Gold 6144 (3.5
GHz) processors and 754 GB RAM. Our toolchain employs no parallel computing, except for
the java garbage collection. The other tested theorem provers employ no parallel computing
at all. Each tool got a time limit of 40 minutes for each problem.

The table in Fig. 2 lists for each benchmark problem: the name of the problem (Problem);
the type of conjecture (Q), i.e., whether the conjecture is existential ∃ or universal ∀; the status
of the conjecture (Status), i.e., true if the conjecture is a consequence and false otherwise; the
maximum number of variables in any clause (-); the number of variables in the conjecture (.);
the number of test points/constants introduced by the Hammer (�); the size of the formula in
kilobyte before and after the hammering (Size); the total time (in s) needed by our toolchain to
solve the problem (t-time); the time (in s) spent on hammering the input formula (h-time); the
time (in s) spent on parsing the hammered formula by Rulewerk (p-time); the time (in s) Rulew-
erk actually spent on reasoning (r-time). The remaining four columns list the time in s needed
by the other tools to solve the benchmark problems. An entry "N/A"means that the benchmark
example cannot be expressed in the tools input format, e.g., it is not possible to encode a uni-
versal conjecture (or, to be more precise, its negation) in the CHC format. An entry "timeout"
means that the tool could not solve the problem in the given time limit of 40minutes. Rulewerk
is connected to SPASS-SPL via a file interface. Therefore, we show parsing time separately.

The experiments show that only our toolchain solves all the problems in reasonable time. It
is also the only solver that can decide in reasonable time whether a universal conjecture is not a
consequence. This is not surprising because to our knowledge our toolchain is the only theorem
prover that implements a decision procedure for HBS(SLR). On the other types of problems,
our toolchain solves all of the problems in the range of seconds and with comparable times to
the best tool for the problem. For problems with existential conjectures, the CHC solver spacer
is the best, but as a trade-off it is unable to handle universal conjectures. The instantiation
techniques employed by cvc4 are good for proving some universal conjectures, but both SMT
solvers seem to be unable to disprove conjectures. Vampire performed best on the hammered
problems among all first-order theorem provers we tested, including iProver [23], E [37],
and SPASS [41]. We tested all provers in default theorem proving mode, but adjusted the
memory limit of Vampire, because it ran out of memory on ecu_u4 with the default setting.
The experiments with the first-order provers showed that our hammer also works reasonably
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well for them, e.g., they can all solve all lane change problems in less than a second, but they
are simply not specialized for the HBS fragment.

6 Conclusion

We have presented several new techniques that allow us to translate BS(SLR)PP clause sets
with both universally and existentially quantified conjectures into logics for which efficient
decision procedures exist. The first set of translations returns a finite abstraction for our clause
set and conjecture, i.e., an equisatisfiable ground BS(LRA) clause set over a finite set of test
points/constants that can be solved in theory by any SMT solver for linear arithmetic. The
abstraction grows exponentially in the maximum number of variables in any input clause.
Realistic supervisor examples have clauses with 10 or more variables and the basis of the
growth exponent is also typically large, e.g., in our examples it ranges from 15 to 1500, so
this leads immediately to very large clause sets. An exponential growth in grounding is also
unavoidable, because the abstraction reduces a NEXPTIME-hard problem to an NP-complete
problem (ground BS, i.e., SAT). As an alternative, we also present a Datalog hammer, i.e.,
a translation to an equisatisfiable HBS clause set without any theory constraints. The hammer
is restricted to the Horn case, i.e., HBS(SLR)PP clauses, and the conjectures to positive
universal/existential conjectures. Its advantage is that the formula grows only exponentially
in the number of variables in the universal conjecture. This is typically much smaller than the
maximum number of variables in any input clause, e.g., in our examples it never exceeds three.

We have implemented the Datalog hammer into our BS(LRA) system SPASS-SPL and
combined it with the Datalog reasoner Rulewerk. The resulting toolchain is an effective
way of deciding verification conditions for supervisors if the supervisors can be modeled as
HBS(SLR) clause sets and the conditions as positive BS(SLR) conjectures. To confirm this,
we have presented two use cases for real-world supervisors: (i) the verification of supervisor
code for the electrical control unit of a super-charged combustion engine and (ii) the continuous
certification of lane assistants. Our experiments show that for these use cases our toolchain is
overall superior to existing solvers. Over existential conjectures, it is comparable with existing
solvers (e.g., CHC solvers). Moreover, our toolchain is the only solver we are aware of that
can proof and disproof universal conjectures for our use cases.

For future work, we want to further develop our toolchain in several directions. First, we
want SPASS-SPL to produce explications that prove that its translations are correct. Second,
we plan to exploit specialized Datalog expressions and techniques (e.g., aggregation and
stratified negation) to increase the efficiency of our toolchain and to lift some restrictions
from our input formulas. Third, we want to optimize the selection of test points. For instance,
we could partition all predicate argument positions into independent sets, i.e., two argument
positions are dependent if they are assigned the same variable in the same rule. For each of
these partitions, we should be able to create an independent and much smaller set of test points
because we only have to consider theory constraints connected to the argument positions in
the respective partition. In many cases, this would lead to much smaller sets of test points
and therefore also to much smaller hammered and finitely abstracted formulas.
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