
From Horn-SRIQ to Datalog:
A Data-Independent Transformation that Preserves Assertion Entailment

David Carral and Larry González
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Abstract

Ontology-based access to large data-sets has recently gained
a lot of attention. To access data efficiently, one approach is to
rewrite the ontology into Datalog, and then use powerful Dat-
alog engines to compute implicit entailments. Existing rewrit-
ing techniques support Description Logics (DLs) from ELH
to Horn-SHIQ. We go one step further and present one such
data-independent rewriting technique for Horn-SRIQu, the
extension of Horn-SHIQ that supports role chain axioms,
an expressive feature prominently used in many real-world
ontologies. We evaluated our rewriting technique on a large
known corpus of ontologies. Our experiments show that the
resulting rewritings are of moderate size, and that our ap-
proach is more efficient than state-of-the-art DL reasoners
when reasoning with data-intensive ontologies.

Introduction
Assertion retrieval (AR)—i.e., the task of inferring im-
plicit assertions from a Description Logics (DL) knowledge
base (KB)—is an important reasoning task with many ap-
plications in knowledge representation and data manage-
ment. For instance, the computation of AR can be used
to solve SPARQL query answering, and to compute statis-
tics on the implicit inferences of data-intensive ontologies
such as in (Callahan, Cruz-Toledo, and Dumontier 2013;
Vrandečić and Krötzsch 2014). For these tasks, both the con-
cepts an object satisfies and the relations between objects are
relevant. Typical DL ontologies focus on providing axioms
about concepts, but expressive ontologies also allow to make
inferences about roles, e.g., through the use of logical con-
structors such as inverse roles and role chains.

Efficient AR on large datasets requires the use of “one-
pass” algorithms that compute the full set of entailed asser-
tions as part of a saturation procedure. Although many cus-
tomised algorithms and implementations of this type have
been developed in the past, to the best of our knowledge,
either these procedures do not support role chains, or they
are not complete for deriving role assertions. Indeed, the re-
trieval of roles in the presence of role chains is a rather chal-
lenging task, as it may require reasoning about paths involv-
ing objects not explicit in the data.
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Example 1. Let Tex be the TBox with the following axioms
modelling conflicts of interests between researchers.

ResearchGroup v ∀hasMember.Researcher

Researcher v ∃hasMember−.ResearchGroup

collaborated ◦ hasMember− ◦ hasMember v hasConflict

hasMember ◦ supervises v hasMember

The third axiom uses a role chain to express that, if a re-
searcher collaborated with someone who is a member of a
research group, then he has a conflict of interest with every-
one from that group. Using Tex, we can infer from the ABox

Aex = {Researcher(alonzo), supervises(alonzo, alan),

collaborated(gottlob, alonzo)}

the two assertions hasConflict(gottlob, alan) and
Researcher(alan). Both entailments depend on the ex-
istence of a research group which has both alan and alonzo
as members, the existence of which is implied but not
explicit. Specifically, gottlob has a conflict of interest with
alan because there is a path via alonzo and this research
group connecting gottlob with alan, which corresponds to
the role chain in the third axiom.

We propose a technique for AR from KBs formulated
in Horn-SRIQu—a DL fragment that supports complex
roles and role conjunctions (Krötzsch, Rudolph, and Hitzler
2013)—based on data-independent rewritings into Datalog
rule sets. Specifically, given a TBox T , we describe how
to construct a Datalog rule set RT s.t., for every ABox A
and assertion α only using symbols occurring in T , we have
〈T ,A〉 |= α iff 〈RT ,A〉 |= α.

To show practical feasibility, we implemented and eval-
uated our transformation, showing that Datalog rewritings
for many real-world Horn-SRIQu TBoxes are of moder-
ate size. Moreover, we computed our Datalog rewritings for
two real-world ontologies, and performed AR over the re-
sulting Datalog KBs. Our results show that our approach
can outperform Konclude (Steigmiller, Liebig, and Glimm
2014)—considered as one of the leading DL reasoners (Par-
sia et al. 2017)—when solving AR over data-intensive on-
tologies. This is rather noteworthy, since (unlike Konclude)
our rewritings are complete for role retrieval.

In summary, our contributions are as follows.



• We present a worst-case optimal transformation of Horn-
SRIQu TBoxes into Datalog rule sets that preserves sat-
isfiability and assertion entailment.

• We show that the resulting rule sets can be transformed
into equivalent DLP ontologies (Grosof et al. 2003)—the
DL fragment underlying the OWL RL standard.

• We empirically show that our rewriting technique pro-
duces Datalog rule sets of moderate size for many real-
world Horn-SRIQu TBoxes.

• We empirically show that the resulting Datalog programs
can be used to solve AR more efficiently than DL reason-
ers when dealing with data-intensive ontologies.

Formal proofs and arguments for the results in this paper,
as well as evaluation details, are in the appendix.

Related Work
Even though there are many algorithms and implementa-
tions for AR on DL KBs, we find that none of them can
satisfactorily handle role retrieval, i.e., the retrieval of role
assertions, in the presence of role chains.

There are many approaches that can efficiently perform
AR for DLs which do not support role chains, and which
are similar in spirit to our approach. Hustadt et al. (2004)
reduce standard reasoning tasks in the DL SHIQ− to rea-
soning over disjunctive query Datalog programs. Eiter et al.
(2012) propose a method that combines materialisation—
a step that can be repurposed to solve role retrieval—and
rewriting to solve conjunctive query answering over Horn-
SHIQ ontologies. A similar method tailored for the DL
Horn-ALCHOIQ is presented by Carral et al. (2018). Re-
cently, Ahmetaj et al. (2016) proposed Datalog rewritings
to perform instance queries over ALCHIO KBs extended
with closed predicates.

State-of-the-art DL reasoners such as Fact++ (Tsarkov
and Horrocks 2006), HermiT (Motik, Shearer, and Horrocks
2009), Pellet (Sirin et al. 2007) and Konclude (Steigmiller,
Liebig, and Glimm 2014) support SROIQ KBs. However,
while the former three do not perform that well on data-
intensive ontologies (Parsia et al. 2017), Konclude does not
support role retrieval as part of its one-pass algorithm. As
our results indicate, Datalog rewritings have the potential to
outperform all these approaches.

Regarding less expressive DLs, despite the fact that there
are theoretical algorithms for EL++ that can deal with role
chains (Krötzsch 2011), leading profile reasoners such as
ELK (Kazakov, Krötzsch, and Simančı́k 2014) do not sup-
port this expressive feature yet.

Preliminaries
We consider logical theories based on finite signatures con-
sisting of mutually disjoint sets Nc of concepts (unary pred-
icates), Nr of roles (binary predicates), Nv of variables, and
Ni of individuals (constants), as well as an unbounded set
N0 of nulls disjoint with all of the above. There is a bijective
and irreflexive function ·− : Nr → Nr with R−− = R for all
R ∈ Nr, and ⊥,> ∈ Nc. For a formula or set thereof ϕ, we
use sig(ϕ) to denote the set of all concepts and roles in ϕ.

∧n

i=1
Ai(x)→B(x)

ln

i=1
Ai vB (u)

A(x) ∧R(x, y)→B(y) Av∀R.B (∀)
A(x)→∃y.R(x, y) ∧B(y) Av∃R.B (∃)
A(x) ∧R(x, y) ∧B(y)
∧R(x, z) ∧B(z)→ y ≈ z Av61R.B (≤)∧n

i=1
Ri(xi−1, xi)→ S(x0, xn) R1 ◦ . . . ◦Rn v S (◦)∧m

i=1
Ri(x, y)→ S(x, y)

lm

i=1
Ri v S (ur)

Figure 1: Horn-SRIQu Axioms, where A(i), B ∈ Nc,
R(i), S ∈ Nr, x(i), y, z ∈ Nv, n ≥ 1, and m > 1

The sets of terms and ground terms are Nt = 2Ni ∪ N0 ∪ Nv

and Ngt = 2Ni ∪ N0, respectively. The use of 2Ni rather than
Ni in the definition of terms is for convenience of the defi-
nition of the chase later in this section. Thus, we henceforth
identify every a ∈ Ni with the singleton set {a}.

Existential Rules
We write tuples of terms t1, . . . , tn as~t, and treat such tuples
as sets when the order is irrelevant. An atom is a formula
of the form C(t) or R(t, u) with C ∈ Nc, R ∈ Nr, and
t, u ∈ Nt. We identify a binary atom R(t, u) with R−(u, t).
A formula or set thereof is ground if it only contains ground
terms. For a formula ϕ, we write ϕ[~x] to indicate that ~x is
the set of all free variables occurring in ϕ.

An (existential) rule is a formula of one of the forms:

∀~x, ~z.
(
B[~x, ~z]→ ∃~y.H[~x, ~y]

)
(→)

∀~x.
(
B[~x]→ x ≈ y

)
(≈)

Where B and H are non-empty, null-free conjunctions of
atoms, and x, y ∈ ~x. A Datalog rule is a rule without ex-
istentially quantified variables. A fact is a ground atom. We
identify facts and sets thereof if they are identical up to bi-
jective renaming of nulls. A knowledge base (KB) is a tuple
〈R,A〉withR a rule set andA an ABox—a set of facts with-
out nulls, i.e., assertions. We treat KBs as first-order theories
and define semantical notions such as entailment and satis-
fiability in the usual way. To axiomatise the semantics of >,
we assume that {A(x) → >(x) | A ∈ Nc} ∪ {R(x, y) →
>(x) ∧ >(y) | R ∈ Nr} ⊆ R for every rule setR.

The DL Horn-SRIQu
Without loss of generality (Krötzsch, Rudolph, and Hitzler
2013), we define Horn-SRIQu using a restricted set of nor-
malised axioms, which we introduce in the right hand side
of Figure 1. We identify each of these axioms with the corre-
sponding rule in the left hand side of Figure 1, and alternate
between these two syntaxes whenever this is convenient.

For an axiom set R, let ≺+
R be the minimal transitive re-

lation over roles s.t. R ≺+
R S iff R− ≺+

R S; for every axiom
in R of Type (ur), Ri ≺+

R S for all i ∈ J1,mK; and, for
every axiom inR of Type (◦),



• if n = 1 and R1 6= S−, then R1 ≺+
R S, and

• if n > 1 and R1 ◦ . . . ◦Rn 6= S ◦ S, then
– if Rn = S, then Ri ≺+

R S for all i ∈ {1, . . . , n− 1},
– if R1 = S, then Ri ≺+

R S for all i ∈ {2, . . . , n}, and
– if R1 6= S 6= Rn, then Ri ≺+

R S for all i ∈ {1, . . . , n}.
A role V is complex wrt. R if there is an axiom in R of
Type (◦) with n > 1 and S ≺∗R V with ≺∗R the reflexive
closure of ≺+

R. Otherwise, V is simple.
Definition 1. An axiom set T is a (Horn-SRIQu) TBox
if ≺+

T is irreflexive, and all roles occurring in an axiom of
Type (≤), or in the left hand side of an axiom of Type (ur)
in T are simple. A KB 〈T ,A〉 is Horn-SRIQu if T is a
Horn-SRIQu TBox.

The Chase
A well-known way of characterising entailments from KBs
is the chase, which we introduce next.

A substitution σ is a partial function over Nt. We use
[t1/u1, . . . , tn/un] to denote the substitution σ s.t. σ(ti) =
ui for all i ∈ J1, nK. For a formula ϕ, we write ϕσ to de-
note the formula obtained by replacing all occurrences of a
term t in ϕ with σ(t) if t is in the domain of σ. For a tuple ~t
of terms, σ~t ⊆ σ is the restriction of σ to the domain ~t.

To handle rules of Type (≈), we represent individuals as
sets, which is why we used 2Ni in the definition of terms.
For a given substitution σ and two variables x, y, we de-
fine σrn

x,y by σrn
x,y(x) = σrn

x,y(y) = σ(x) if σ(x), σ(y) ∈ N0,
and σrn

x,y(x) = σrn
x,y(y) = (σ(x)∪ σ(y))∩Ni otherwise. In-

tuitively, σrn
x,y is the substitution identifying σ(x) and σ(y).

A tuple 〈ρ, σ〉 with ρ = B[~x, ~z] → ∃~y.H[~x, ~y] a rule and
σ a substitution is applicable to a set of facts F if Bσ ⊆ F ,
and Hσ′ 6⊆ F for all σ′ ⊇ σ~x. The application of 〈ρ, σ〉 on
F , written F〈ρ, σ〉, is the set of facts F ∪Hσ′ with σ′ ⊇ σ~x
a substitution mapping every variable in ~y to a fresh null. If
ρ is of the form B[~x] → x ≈ y, then 〈ρ, σ〉 is applicable to
F if Bσ ⊆ F and σ(x) 6= σ(y). In this case, the application
of 〈ρ, σ〉 on F , also denoted by F〈ρ, σ〉, is the set Fσrn

x,y .
We introduce this non-standard approach of rule applica-

tions with equality to ensure that the forest-model property
of Horn-SRIQu ontologies is reflected in the structure of
the chase, which will later be useful to show completeness
of our Datalog rewritings
Definition 2. A chase sequence for a KB K = 〈R,A〉 is a
sequence F0 = A,F1, . . . of sets of facts s.t.
• for all i ≥ 1, F i = F i−1〈ρ, σ〉 for a rule ρ ∈ R and

some substitution σ s.t. 〈ρ, σ〉 is applicable, and
• for all 〈ρ, σ〉 with ρ ∈ R, there is some k ≥ 0 s.t. 〈ρ, σ〉

is not applicable to F i for all i ≥ k (fairness).
The chase ofK, denoted byK∞, is the is the union of all sets
in some (arbitrarily chosen) chase sequence of K.

For the rest of the paper, we fix a Horn-SRIQu KB
O = 〈T ,A〉 and some (possibly infinite) chase sequence
O0,O1, . . . forO. For all i ≥ 1, let ρi ∈ T be an axiom and
σi a substitution s.t. Oi = Oi−1〈ρi, σi〉. By abuse of no-
tation, we write P (a1, . . . , an) ∈ F , with F a set of facts,

g ao : R

n : RG

aa : R
C

HC HM
HM

S

HC

Figure 2: Chase of Ox = 〈Tex,Aex〉 from Example 1

P ∈ Nc ∪ Nr, and a1, . . . , an ∈ Ni, if P (b1, . . . , bn) ∈ F
for some b1, . . . , bn ∈ 2Ni with ai ∈ bi for all i ∈ J1, nK.

Theorem 1. A KB K is satisfiable iff ⊥(t) /∈ K∞ for all
t ∈ Ngt. If K is satisfiable, K |= α iff α ∈ K∞ for every
assertion α.

We later show that the every chase step in a chase se-
quence of a Horn-SRIQu ontology reflects the “forest-
shaped” when we restrict to facts containing at least one null,
which corresponds to the well-known forest-model prop-
erty of Horn-SRIQu. In the presence of complex roles, the
forest-model property is not entirely apparent in the chase
steps of an ontology. To characterise this property, we dis-
tinguish binary facts in the chase that are not produced via
the application of axioms of the Type (◦) with n ≥ 2, or the
propagation of such facts.

All binary facts in O0 are direct. For all i ≥ 1, a binary
fact φ ∈ Oi \ Oi−1 is direct iff ρi is of Type (∃) or (ur); ρi
is of Type (◦) with n = 1 and R1(σi(x0), σi(x1)) ∈ Oi−1

is direct; or ρi is of Type (≤), and there is a direct fact φ′ ∈
Oi−1 s.t. φ′(σi)

rn
x,y = φ. For i ≥ 0, we write D(Oi) to

denote the set of all direct facts in Oi.
Example 2. Consider the TBox Tex and ABox Aex from
Example 1. The chase of Ox = 〈Tex,Aex〉 is depicted in
Figure 2, where direct and not direct facts are represented
using full and dashed arrows, respectively. Note that n is a
null introduced by the chase.

If we consider only the direct facts that occur in the chase
sequence of an ontology, we can establish the “forest model
property” reflected in every chase step of this sequence. For
all i ≥ 0, let F(Oi) be the graph s.t. every a ∈ 2Ni in Oi
is a node in F(Oi), and tn−1 → tn ∈ F(Oi) if there is
a sequence of facts R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi)
with t0 ∈ 2Ni and ti 6= tj for all 0 ≤ i < j ≤ n.

Lemma 1. For all i ≥ 0,

• all nulls in Oi occur as nodes in F(Oi), and
• F(Oi) is a rooted forest where every individual node is a

root, and every null node is not.

Non-Deterministic Automata
In our approach, we need to trace the paths of complex
roles in the chase of a Horn-SRIQu KB that traverse only
direct facts. To do so, we make use of well-known au-
tomata techniques from (Horrocks, Kutz, and Sattler 2006;
Kazakov 2010). Here, we use non-deterministic finite au-
tomata (NFAs) in a rather informal way, and use the nota-
tion p →R q ∈ N to denote that, in the NFA N , there is a



iHC

q1

q2
q3

fHC
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C
HM− HM

ε

S− S
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Figure 3: The NFA NTex(HC) and NTex(HM)

transition from a state p to a state q with the letter R, instead
of introducing transition relations formally.

Definition 3. For a TBox T , let T− ⊇ T be the TBox with
R−n ◦ . . .◦R−1 v S− ∈ T− for every axiom of Type (◦) in T .

For every V ∈ Nr, the NFA NT (V ) is the smallest NFA
s.t. iV →V fV ∈ NT (V ) with iV and fV the only initial
and final states; and for every transition q →S q̂ ∈ NT (V )
and every axiom in T− of the form (◦), we have

• if n = 1 and R1 = S−, then q →S− q̂ ∈ NT (V ),
• if n = 2, R1 = S, and R2 = S, then q̂ →ε q ∈ NT (V ),
• Otherwise,

– if R1 6= S = Rn, then q →ε q0 →R1
q1 →R2

q2 →R3

. . .→Rn−1
qn−1 →ε q ∈ NT (V ),

– if R1 = S 6= Rn, then q̂ →ε q1 →R2
q2 →R3

q3 →R4

. . .→Rn
qn →ε q̂ ∈ NT (V ), and

– if R1 6= S 6= Rn, then q →ε q0 →R1
q1 →R2

q2 →R3

. . .→Rn
qn →ε q̂ ∈ NT (V ).

In the above, states qi are assumed to be fresh and distinct.

Our definition of NFA coincides with that from (Hor-
rocks, Kutz, and Sattler 2006) in the sense that the result-
ing NFA NT (R) for any R ∈ Nr does recognise the same
language. With analogous arguments to those presented by
Horrocks et al., we can show the following claim.

Lemma 2. For all i ≥ 0, if Oi is closed under the applica-
tion of axioms of Type (ur), there is a binary fact R(t, u) ∈
Oi iff there are some S1(t, t1), . . . , Sn(tn−1, u) ∈ D(Oi)
with S1 · . . . · Sn ∈ NT (R).

Given a P = R1 · . . . ·Rn withR1, . . . , Rn ∈ Nr, we write
q →∗P q̂ ∈ NT (R) (resp. P ∈ NT (R)) to indicate that there
is a path P from q to q̂ (resp. iR to fR) in NT (R).

Example 3. Consider Ox = 〈Tex,Aex〉 with TBox Tex
and ABox Aex from Example 1. The NFA NTex(HC)
and NTex(HM) are depicted in Figure 3 (for the sake
of clarity, we have removed some ε-transitions). As im-
plied by Lemma 2 and since HC(g, aa), we have C(g, ao),
HM−(ao, n), HM(n, ao),S(ao, aa) ∈ D(O∞x ) such that
C · HM− · HM · S ∈ NTex(HC) (see Figure 2).

Datalog Rewritings in Horn-SRIQu
In this section, we define the Datalog AR-rewriting RT for
the TBox T and discuss complexity results.

Definition 4. A rule set R is an AR-rewriting for T iff,
for every ABox A and assertion α over sig(T ), 〈T ,A〉 and
〈R,A〉 are equi-satisfiable and 〈T ,A〉 |= α iff 〈R,A〉 |= α.

LetO = 〈T ,A〉 andKO = 〈RT ,A〉. By Theorem 1,RT
is an AR-rewriting only if the chase of KO coincides with
the chase of O on all assertions over sig(T ). The challenge
in constructing Datalog AR-rewritings is that assertions in
the O∞ might be introduced by rule applications on facts
with nulls, whilst no Datalog rule can introduce such terms.
Example 4. Let Ox be the ontology from Example 1.
Then, the assertion HC(g, aa) is in O∞x because HC(g, ao),
HM(n, ao),HM(n, aa) ∈ Ox (see Figure 2). Analogously,
R(aa) ∈ O∞x because RG(n),HM(n, aa) ∈ O∞x . Note that
the facts HM(n, ao),HM(n, aa), and RG(n) cannot occur
in the case of a Datalog AR-rewriting, since n ∈ N0.

To replicate assertion entailments in K∞O such as the ones
highlighted in the previous example, we encode information
in K∞O about the null successors of an individual in O∞
using fresh concepts and roles. For all R ∈ Nr and states
q, q̂ ∈ NT (R), we introduce the fresh conceptsAq andRq,q̂ ,
and the fresh role Rq . Intuitively, these are used to encode
the following information about O∞ in K∞O .
1. If Aq(a) ∈ K∞O , then there are some A(t0) ∈ O∞,

and some R1(t0, t1), . . . , Rn(tn−1, a) ∈ D(O∞) with
q →∗R1·...·Rn

q̂ ∈ NT (R).

2. If Rq,q̂(a) ∈ K∞O , then there are some R1(a, t1), . . .,
Rn(tn−1, a) ∈ D(O∞) with t1, . . . , tn−1 ∈ N0 and
q →∗R1·...·Rn

q̂ ∈ NT (R).

3. If Rq(a, b) ∈ K∞O , then S1(a, t1), . . ., Sn(tn−1, b) ∈
D(O∞) with iR →∗S1·...·Sn

q ∈ NT (R).
Note that all terms ti may possibly be nulls that do not ap-
pear in the chase of KO.

To ascertain when information about one of these pred-
icates needs to be used in KO, we make use of a sound
saturation calculus from (Eiter et al. 2012), shown in Fig-
ure 4, which we also use to infer further axioms rele-
vant to our Datalog program. Since this calculus was orig-
inally designed for Horn-SHIQ, we first need to extend
our input TBox T to a TBox T+ in which the behaviour
of axioms of Type (◦) is sufficiently simulated. For in-
stance, if the calculus derives from T+ an axiom of the
form A v Aq , then we can conclude that, for every term t
s.t. B(t) ∈ O∞ for every B ∈ A, there is a set of di-
rect facts A(t0), R1(t0, t1), . . . , Rn(tn−1, a) ∈ O∞ with
a corresponding path in the automata, irrespectively of the
ABox A. We further augment T+ to a TBox T× that allows
us to trace paths in possible chases for T . Using the infer-
ences from this calculus, we then describe the rewritingRT .
Definition 5. Let B(T ) be the set of axioms that, for every
axiom ρ ∈ T of Type (∀), contains A v AiR , AfR v B,
and Aq v ∀S.Aq̂ ∈ B(T ) for every q →∗S q̂ ∈ NT (R) with
S ∈ Nr. Let T+ = T− ∪ B(T ), and T× = T− ∪ B(T ∪⋃
R∈Nr
{X v ∀R.Y }), with X and Y fresh concepts.

Then, RT is the Datalog rule set that contains every ax-
iom in T+ that is not of Type (∃), and every axiom that can
be inferred using the implications described in Table 1.
Theorem 2. The rule setRT is an AR-rewriting of T .

This result is a corollary of Lemmas 3, 16, and 11. Lem-
mas 16, and 11 are proven in the appendix.



∧
D∈DD(x)→A(x) ⇐= D v A ∈ Γ(T×) (u)∧
D∈DD(x)→Rq,q̂(x) ⇐= R ∈ Nr , q, q̂ ∈ NR(T ), and D uXq v Xq̂ ∈ Γ(T×) (	)

A(x) ∧
∧

D∈D∪AD(x) ∧ R(x, y) ∧ B(y)→ C(y) ⇐= A v 61R.B,D v ∃(R u R).(A u B u C) ∈ Γ(T×) (^ 1)

A(x) ∧
∧

D∈DD(x) ∧ R(x, y) ∧ B(y)→ S(x, y) ⇐= A v 61R.B,D v ∃(R u R u S).(A u B) ∈ Γ(T×) (^ 2)

S(x, y)→Rq(x, y) ⇐= R,S ∈ Nr and iR →∗S q ∈ NT (R) (R 1)

RiR,q(x)→Rq(x, x) ⇐= R ∈ Nr andRiR,q ∈ RT (R 2)

Rq(x, y) ∧ S(y, z)→Rq̂(x, z) ⇐= R,S ∈ Nr and q →∗S q̂ ∈ NT (R) (R 3)

Rq(x, y) ∧ Rq,q̂(y)→Rq̂(x, y) ⇐= R ∈ Nr andRq,q̂ ∈ RT (R 4)

RfR
(x, y)→R(x, y) ⇐= R ∈ Nr (R 5)

Table 1: Rules to construct RT , where Γ(T×) is the saturation of T× by the rules in Figure 4 and all concepts A and B and
those in the conjunctions D and A occur T+.

A v ∃R.(B u C) C v A
A v ∃R.(B u C uA)

(1)

A v ∃(R u S).B S v R
A v ∃(R u S uR).B

(2)

A v ∃R.(B u ⊥)

A v ⊥
(3)

A v ∃(R uR).B A v ∀R.B
A uA v ∃(R uR).(B uB)

(4)

A v ∃(R uR−).(B uA) A v ∀R.B
A v B

(5)

A v ∃(R uR).(B uB) A v 61R.B
C v ∃(S uR).(D uB)

A u C uA v ∃(R u S uR).(B u D uB)
(6)

A v ∃(R uR−).(B u C uA) A v 61R.B
C v ∃(S uR).(D uB u C)

A uB v C
A uB v ∃(R uR− u S−).(B u C uA)

(7)

Figure 4: Derivation Rules where A,B ∈ Nc, R ∈ Nr, and
A,B,C,D and R,S are conjunctions of elements in Nc and
Nr, respectively

g ao : R, HCq1,q3 ,RfHM
aa : R, RfHM

C

HCq1 , HCq3 , HCfHC
, HC

S

HCq3 , HCfHC
, HC

Figure 5: Representation of K∞O with O from Example 1

Example 5. Let Ox be the ontology from Example 1. Then,
the Datalog rule set RTex contains (amongst others) all the
rules in Tex that are not of Type (∃), as well as the following.

R(x)→ RfHM(x) RfHM(x)→ R(x)

RfHM(x) ∧ S(x, y)→ RfHM(y)

C(x, y)→ HCq1(x, y) R(x)→ HCq1,q3(x)

HCq1(x, y) ∧ HCq1,q3(x)→ HCq3(x, y)

HCq3(x, y)→ HCfHC(x, y) HCfHC(x, y)→ HC(x, y)

HCfHC(x, y) ∧ S(y, z)→ HCfHC(x, z)

The chase of KOx
is depicted in Figure 5. Note that K∞Ox

contains every assertion in O∞.
While we provide for full proofs of Theorem 2 in the ap-

pendix, we give an overview of some of the main techni-
cal ideas in this section. While showing soundness of our
approach is not as challenging, we focus on the argument
showing completeness of the AR-rewritingRT . Before dis-
cussing this proof, we give an intermediate result.
Lemma 3. For a TBox T , an ABox A and a fact set F de-
fined over sig(T ), 〈T ,A〉 is satisfiable iff 〈T+,A〉 is, and
〈T ,A〉 |= F iff 〈T+,A〉 |= F .

Since T+ ⊇ T , the “if” direction of this lemma follows
trivially from monotonicity of logical entailment. The “only
if” direction is proven in the appendix (cf. Lemma 13).

By Lemma 3, it suffices to show that our Datalog rewrit-
ings entail the same assertions as T+ in order to show com-
pleteness of our rewriting, which by Theorem 1 is conse-
quence of the following lemma.
Lemma 4. For a TBox T , an ABox A and an assertion α
over sig(T ),
• if ⊥(t) ∈ 〈T+,A〉∞ with t ∈ Ngt, then ⊥(u) ∈
〈RT ,A〉∞ for some u ∈ 2Ni , and

• if α ∈ 〈T+,A〉∞, then α ∈ 〈R,A〉∞.
Let O0

+,O1
+, . . . be a chase sequence for the ontology

O+ = 〈T+,A〉 where axioms of Type (ur) are applied with
the highest priority. For every i ∈ J1, nK, we select an axiom
ρi ∈ T+ and a substitution σi s.t. Oi+ = Oi−1

+ 〈ρi, σi〉.
To prove Lemma 4, we show via induction that for every

i ≥ 1 and every assertion α ∈ Oi+, we have α ∈ K∞O .



The base case of this induction is trivial, since O0
+ = A

and A ⊆ K∞O by Definition 2. For the induction step, we
provide a thorough case analysis based on the type of the
axiom ρi, and the type of the elements occurring in the range
of σi. Since α ∈ K∞O for every assertion α ∈ Oi−1 by the
induction hypothesis, many cases follow trivially. The more
challenging cases are the following.

1. ρi is of Type (◦), σi(x0), σi(xn) ∈ 2Ni and σi(xj) ∈ N0

for j ∈ {1, . . . , n− 1}.
2. ρi is of Type (∀), σi(x) ∈ N0 and σi(y) ∈ Ni.
3. ρi is of Type (≤), and a) σi(y) ∈ 2Ni and σi(x), σi(z) ∈

N0, or b) σi(x), σi(y) ∈ 2Ni and σi(z) ∈ N0.
Cases in which ρi is of Type (≤), and either σi(z) ∈ 2Ni and
σi(x), σi(y) ∈ N0, or σi(x), σi(z) ∈ 2Ni and σi(y) ∈ N0,
are also non-trivial, but analogous to Cases 3a) and 3b).

In all of the challenging cases, the occurrence of facts
containing nulls in Oi−1

+ results in the introduction of new
assertions in Oi+—a situation previously illustrated in Ex-
ample 4. To illustrate our completeness argument, we give a
brief proof sketch that shows that induction step for Case (1).
First, we introduce a preliminary lemma, which ensures that
an axiom as used for Rule (	) is derived by the calculus if
there is a corresponding cyclic path along nulls in O∞.

Lemma 5. Let i ≥ 1, R1(t0, t1), . . . , Rn(tn−1, tn) ∈
D(Oi+), and q, q̂ ∈ NT (R) with q 6= q̂. If

• q →∗P q̂ ∈ NT (R) with P = R1 · . . . ·Rn, and
• t0 ∈ 2Ni , and t1, . . . , tn−1 ∈ N0;

then there exists A ⊆ {A | A(t0) ∈ Oi+} s.t. A u Xq v
Xq̂ ∈ Γ(T×).

This result can be shown via induction on the depth of the
sequence R1(t0, t1), . . . , Rn(tn−1, tn)—the maximum mi-
nus the mimimum depth of a term in t0, . . . , tn in the rooted
forest F(Oi+). We proceed with the proof for case (1).

Proof (Sketch). Let ρi be an axiom of the form R1 ◦
. . . ◦ Rn v S ∈ T+. Then, R1(σi(x0), σi(x1)), . . .,
Rn(σi(xn−1), σi(xn)) ∈ Oi−1

+ .
By Lemma 2 and the fact that Oi+ is closed under

application of rules of Type (ur), there is a sequence
V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1

+ ) with σi(xj−1) =
t0, σi(xj) = tm, and V1 · . . . · Vm ∈ NT (Rj) for ev-
ery j ∈ {1, . . . , n} (note that possibly m = 1). By con-
catenating these sequences, we can construct a sequence
V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1

+ ) s.t. σi(x0) = t0,
σi(xn) = tm, and V1 · . . . · Vm ∈ NT (S). Hence, there
are states q0, . . . , qm s.t. q0 = iV , qm = fV , and q0 →W1

q1 →W2 q2 . . . →Wm qm ∈ NT (V ). Let k0, . . . , ko be
the longest sorted sequence of natural numbers with tkj ∈
2Ni for all j ∈ {0, . . . , o}. We show via induction that
Sqkj

(t0, tkj ) ∈ K∞O for all j ∈ {1, . . . , o}. In turn, this im-
plies S(σi(x), σi(y)) ∈ K∞O since SqfS (x, y) → S(x, y) ∈
RT as k0 = t0 = σi(x), tko = tm = σi(y), and qkm = fS .

To show the base case, we check that Sqk1
(t0, tk1) ∈ K∞O .

We consider two possible cases a) and b) depending on
whether k1 = 1. a) Let k1 = 1. Then, W1(t0, t1) ∈ K∞O

by the inductive hypothesis. Since W1(x, y)→ Sq1(x, y) ∈
RT , Sq1(t0, t1) ∈ K∞O . b) Let k1 > 1. By Lemma 1,
tk1 = t0. By Lemma 9, A u XiS v Xqk1

∈ Γ(T×)

with A ⊆ Ni−1
c (t0) and hence, A(x) → SiS ,qk1

(x) ∈
RT . By the inductive hypothesis, A(t0) ∈ K∞O and hence,
SiS ,qk1

(t0) ∈ K∞O . Since SiS ,qk1
(x) → Sqk1

(x, x) ∈ R∞T ,
Sqk1

(t0, tk1) ∈ K∞O .
To show the induction step, we verify that, for all

j ∈ {2, . . . , o}, Sqkj
(t0, tkj ) ∈ K∞O provided that

Sqkj−1
(t0, tkj−1

) ∈ K∞O . We consider two possible cases
a) and b) depending on whether k1 = 1. Let kj = kj−1 + 1.
Then, Wkj (tkj−1

, tkj ) ∈ K∞O by the inductive hypothe-
sis. Since Sqkj−1

(x, y) ∧ Wkj (y, z) → Sqkj
(x, z) ∈ RT ,

Sqkj
(t0, tkj ) ∈ K∞O . Let kj > kj−1 + 1. Then, tkj = tkj−1

by Lemma 1. This case is analogous to the second case con-
sidered in the proof of the base case.

In addition to showing correctness, we can show that our
approach is worst-case optimal for Horn-SRIQu and even
for less expressive DLs such as ELH and Horn-SHIQ.
Definition 6. An axiom set is a Horn-SHIQ TBox if, for
every axiom ρ ∈ T of Type (◦), we have that a) n = 1 or b)
n = 2, and R1 = R2 = S.

A ELH TBox T is a set containing axioms of Type (u),
(∃), (◦), and of the form ∃R.A v B with A,B ∈ Nc and
R ∈ Nr s.t. a) n = 1 for every axiom of the form (◦) and b)
for every R ∈ Nr, T uses R or R−, but not both.

Axioms of the form ∃R.A v B are equivalent to A v
∀R−.B, which is why ELH is included in Horn-SRIQu.
Theorem 3. Let O = 〈T ,A〉 be an ontology. If T is Horn-
SRIQu/Horn-SHIQ/ELH, then we can computeRT and
〈RT ,A〉∞ in 2EXPTIME/ EXPTIME/ PTIME, respectively.

Finally, we show that our rewritings can be transformed
into DLP TBoxes. This feature may prove useful for users
that want to produce KBs that are expressible using the
OWL standard.
Definition 7. A DLP TBox is an axiom set that a) does not
contain axioms of Type (∃) and b) may contain axioms of the
form

dn
i=1Ai v ∃R.Self with A ∈ Nc and R ∈ Nr.

Definition 8. Given a TBox T , the DLP-rewriting Tdlp of T
is the TBox containing every DLP axiom inRT which addi-
tionally satisfies all of the following.

1. If
∧
A∈AA(x) ∧ R(x, y) ∧ B(y) → C(y) ∈ RT , then

A v XA, XA v ∀R.XR−,A, XR−,A uB v C ∈ Tdlp.
2. If

∧
A∈AA(x) ∧ R(x, y) ∧ B(y) → S(x, y) ∈ RT , then

A v ∃WA.Self,B v ∃WB .Self,WA◦R◦WB v S ∈ Tdlp.
3. If Rq(x, y) ∧ Rq,q̂(y) → Rq̂(x, y) ∈ RT , then Rq,q̂ v
∃Wq,q̂.Self, Rq ◦Wq,q̂ v Rq̂ ∈ Tdlp.

In the above, allXA andR.XR−,A are fresh concepts unique
for every A ⊆ Nc and R ∈ Nr, and all WA and Wq,q̂ are
fresh roles unique for every W ∈ Nr and the states q and q̂.

The rules introduced in (1)–(3) in Definition 8 correspond
to consequence-preserving transformations from rules to ax-
ioms described in (Krötzsch, Rudolph, and Hitzler 2008).
From this, it follows that Tdlp is an AR-rewriting of T .
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Figure 6: Times in seconds for RDFox (dark) and Konclude
(bright), each over four ABoxes with increasing numbers of
assertions.

Evaluation
We implement our rewriting technique in Java using the
OWL-API (Horridge and Bechhofer 2011) to handle OWL
ontology files, and Clipper (Eiter et al. 2012) to apply the
calculus from Figure 4. We performed two different exper-
iments to validate the practical usefulness of our approach.
All files used in the evaluation (the implemented system, the
ontologies, and the tools compared to) are available online.1

AR on Data-Intensive Ontologies We compared the per-
formance of performing AR using our Datalog rewritings
versus using the DL reasoner Konclude. We considered
two real-world, data-intensive ontologies from the biolog-
ical domain, Reactome and Uniprot, which were used in
the evaluation of PAGOdA (Zhou et al. 2015). We have
normalised these ontologies and removed axioms not ex-
pressible in Horn-SRIQu. Also, we enriched Reactome
and Uniprot with three and five axioms of Type (◦), respec-
tively, as neither ontology contained axioms of this form.
These axioms are listed in the last section of the appendix.
The resulting ontologies contained 485 (Reactome), and 304
(Uniprot) terminological axioms, respectively. For each on-
tology, we considered ABoxes of various sizes, generated by
sampling the real-world ABoxes using the method by Zhou
et al. (2015).

The rewritten Datalog programs for the Reactome and
Uniprot TBoxes contained 539 and 367 rules, and were com-
puted in 221 and 182 seconds, respectively. We used RDFox
(SVN version 2776) as Datalog engine for computing the
chase of our rewritings (Motik et al. 2014), and compared its
performance with that of Konclude v0.6.2. We performed all
experiments and computed both rewritings on a MacBook
Pro with a 2,4 GHz Intel Core i5 and 8GB of RAM. Fig-
ure 6 shows the wall-clock times measured in this experi-
ment, ignoring the time used for parsing and loading, in log-
arithmic scale. While Konclude reports detailed times, for
RDFox we have measured the time from within our proto-
type. For more information, see the logs with the resulting

1https://lat.inf.tu-dresden.de/
horn-sriq-rewriting/aaai-evaluation-files.
tar.gz
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Figure 7: Sizes of TBoxes and their rewritings.

evaluation can be found online. Konclude timed-out (with a
one hour time limit) for the two largest of the Uniprot sam-
ples. Hence no times are reported there. Note that our im-
plementation is performing full AR, whilst Konclude only
performed class retrieval.

Size of Rewritings Computed To get an idea on how
our approach would perform on other data-intensive real-
world ontologies, we computed rewritings for a selected
set of TBoxes from MOWLCorp (Matentzoglu et al. 2014).
From each ontology in this corpus of DL ontologies, we re-
moved axioms that, after normalisation, were not in Horn-
SRIQu, and selected from the resulting ontology set those
which contained role chain axioms, and removed TBoxes
with more than 1,000 axioms, since TBoxes with smaller
sizes are more likely to be used on large data sets. Further-
more, we removed all those ontologies which belong to any
of the profiles OWL EL, OWL RL, and OWL QL, since they
admit polynomial reasoning even without a Datalog rewrit-
ing. This resulted in a set of 187 ontologies on which we
applied our implemented rewriting procedure.

For 121 ontologies, rewritings could be computed without
memory errors. Often, memory errors were caused by com-
plex role chains in the TBox which lead to an explosion of
the resulting automata. For instance, we found one degener-
ate ontology in the corpus with only 10 axioms, 4 of which
were role chain axioms with 8 roles each. For this TBox, T×
contained 86,264 axioms, which Clipper could not handle.
We believe that ontologies of this form are unlikely to be
used in practice to reason about large ABoxes.

The sizes of the successful rewritings are shown in Fig-
ure 7, where the red bars correspond to the number of ax-
ioms in the input ontologues, and the blue bars to the num-
ber of rules in the resulting Datalog rewritings. For some
ontologies, the rewritings got substantially larger. This was
expected, and in theory unavoidable, due to the double ex-
ponential time complexity of assertion entailment in Horn-
SRIQu: for Datalog, this complexity is only polynomial,
which is why our rewritings are in the worst case double ex-
ponential in the size of the input. Our evaluation confirms
that these blow-ups are not only of theoretical nature, but do
happen for the considered ontologies. On the other hand, in
a lot of cases, the size of the computed rule sets was still of
similar dimensions: in 59% of cases, the the increase was at
most by 100%, and in 74% of cases, it was at most by 200%.



Conclusions and Future Work
To the best of our knowledge, we present the first data-
independent Datalog transformation for Horn-SRIQu, an
expressive DL that allows for the use of the role chain
constructor. Furthermore, we show that our transformation
is worst-case optimal for ELH, Horn-SHIQ, and Horn-
SRIQu, and that the resulting Datalog programs can be
translated into DLP ontologies. We empirically show that a)
the use of Datalog rewritings can outperform state-of-the-art
reasoners and that b) we can construct rewritings of moder-
ate sizes for many real-world ontologies.

As for future work, we aim to develop a rewriting tech-
nique for expressive DLs language that allows for the use of
non-deterministic role constructors and role chains based on
the calculi from (Cucala, Cuenca Grau, and Horrocks 2018;
Bate et al. 2016). Also, we intend to further optimise our
prototype implementation, in order to produce even smaller
rewritings and show that these can be efficiently computed.
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Forest-Model Property
In this section we show a preliminary result and Lemma 1.

Lemma 6. Let O0,O1, . . . be a chase sequence for some ontology O = 〈T ,A〉 and let
S be some simple role with respect to T . For all i ≥ 1 and all binary facts of the form
S(t, u) ∈ Oi, we have that S(t, u) ∈ D(Oi).

Proof. We show the lemma via induction on the chase sequence O0,O1, . . . The base
case trivially holds, since every binary fact in O0 is also contained in D(O0). To prove
the inductive step (IS), we show that the lemma holds for Oi with i ≥ 1 provided that
(IH) it holds for Oi−1. Let ρ ∈ T and σ be some axiom and substitution such that Oi =
Oi−1〈ρ, σ〉. If the axiom ρ is of Type (u), (∀), (∃), or (ur), then all binary facts in Oi are
in D(Oi) and the IS holds. We proceed to show that the IS also holds when the axiom ρ is
of Type (≤) or (◦).

Case (≤) Suppose for a contradiction that there is some S(t, u) ∈ Oi \ Oi−1 such that
S(t, u) /∈ D(Oi) and S is a simple role. Then, there must be some fact S(t′, u′) ∈ Oi−1

such that S(t′, u′)σrnx,y = S(t, u). Since S(t, u) /∈ D(Oi), S(t′, u′) /∈ D(Oi−1). This
implies a contradiction, as we have that S(t′, u′) ∈ D(Oi−1) by IH.

Case (◦) Then, R1(σ(x0), σ(x1)), . . . , Rn(σ(xn−1), σ(xn)) ∈ Oi−1. Let us suppose for
a contradiction that S(σ(x0), σ(xn)) ∈ Oi, S is a simple role, and S(t, u) /∈ D(Oi). Then,
n = 1, R1 is simple, and R1(σ(x0), σ(x1)) /∈ D(Oi−1). This implies a contradiction,
since R1(σ(x0), σ(x1)) ∈ D(Oi−1) by IH.

Lemma 1. For all i ≥ 0,
• all nulls in Oi occur as nodes in F(Oi), and
• F(Oi) is a rooted forest where every individual node is a root, and every null node is

not.

Proof. The lemma can be shown via induction on the sequence O0,O1, . . . It is clear that
the base case holds, as F(O0) does not contain any edges, and O0 does not contain any
nulls. To show the inductive step, we show that the lemma holds for F(Oi) with i ≥ 1
provided that (IH) it holds for F(Oi−1). If the axiom ρi is of Type (u), (∀), (◦), or (ur),
then the set of nulls in Oi coincides with the set of nulls in Oi−1 and F(Oi) = F(Oi−1).
Therefore, the lemma holds by IH for all of these cases. We proceed to show that the
lemma also holds when ρi is of Type (∃) or (≤).

Case (∃) Then, A(σi(x)) ∈ Oi−1 andOi = Oi−1 ∪{R(σi(x), n), B(n)} for some fresh
null n. We consider two possible cases.
• Let σi(x) ∈ 2Ni . By IH, σi(x) is a root in F(Oi−1).
• Let σi(x) ∈ 2N0 . By IH, there is some sequence of nodes t0, . . . , tn ∈ F(Oi−1) such

that t0 ∈ 2Ni is a root, all t1, . . . , tn ∈ N0 are not, and tn = σi(x).
In either case, n only occurs in the edge σi(x) → n ∈ F(Oi) since n only occurs in facts
R(σi(x), n), B(n) ∈ Oi.

Case (≤) In this case, no fresh nulls are introduced in Oi and hence, the first part of the
lemma holds. Note that, R is simple by Definition 1. We consider four possible cases.
• σi(y), σi(z) ∈ 2Ni . Then, F(Oi) results from replacing the roots σi(y) ∈ 2Ni and
σi(z) ∈ 2Ni in F(Oi−1) with the fresh root σi(y) ∪ σi(z) ∈ 2Ni .
• σi(y) ∈ N0 and σi(z) ∈ 2Ni . By Lemma 6, R(σi(x), σi(y)) ∈ D(Oi−1) and hence,
σi(x) is the predecessor of σi(y) in F(Oi−1). We study two possible cases.



– σi(x) ∈ 2Ni is a root. Then, F(Oi) results from replacing all occurrences of σi(y) in
F(Oi−1) with the root σi(z), and then erasing all edges from the root σi(x) to the root
σi(z).

– σi(x) ∈ N0 is not a root. Then, F(Oi) results from replacing all occurrences of the
non-root σi(y) in F(Oi−1) with the predecessor of its predecessor, i.e., σi(z).

• σi(y) ∈ 2Ni and σi(z) ∈ N0. Analogous to the previous case.
• σi(y), σi(z) ∈ N0. By Lemma 6, R(σi(x), σi(y)), R(σi(x), σi(z)) ∈ D(Oi−1). Since
σi(y) 6= σi(z), three possible cases arise.

– σi(y) is the predecessor of σi(x) and σi(x) is the predecessor of σi(z). Then, F(Oi)
results from replacing all occurrences of the non-root σi(z) in F(Oi−1) with the pre-
decessor of its predecessor, i.e., σi(y); and then erasing all edges from σi(x) to σi(z).

– σi(z) is the predecessor of σi(x) which is the predecessor of σi(y). Analogous to the
previous case.

– σi(x) is the predecessor of σi(y) and σi(z). Then, F(Oi) results from replacing all
occurrences of the non-root σi(z) by its sibling σi(y).

In either case, we can verify that F(Oi) is a rooted forest where every individual node is a
root, and every null node is not.

Completeness
In this section, we show Lemma 11, from which Lemma 4 directly follows. Prior to stating
and proving this lemma, we introduce some preliminary notions and intermediate results.

Consider some ontology O = 〈T ,A〉. Furthermore, consider a chase sequence
O0

+,O1
+, . . . forO+ = 〈T+,A〉, a sequence of axioms ρ1, ρ2, . . . ∈ T+, and a sequence of

substitutions such that all of the following conditions hold for all i ≥ 1.
1. The set Oi

+ is the application of 〈ρi, σi〉 on Oi−1
+ .

2. If there is some axiom of Type (u) or (ur) in T+ that is applicable to Oi−1
+ , then ρi is of

Type (u) or (ur).
3. If there are not any axioms of Type (u) or (ur) in T+ applicable to Oi−1

+ , and there is
an axiom ρ ∈ T+ of the form A v ∀R.B and a substitution σ such that A(σ(x)) ∈
Oi−1

+ and R(σ(x), σ(y)) ∈ D(Oi−1
+ ); then the axiom ρi is of the form C v ∀S.D and

S(σi(x), σi(y)) ∈ D(Oi−1
+ ).

Because of conditions (1), (2), and (2), we can show the following.

Lemma 7. For all i ≥ 1, if ρi is of Type (∀), then R(σi(x), σi(y)) ∈ D(Oi−1
+ ).

Proof. Suppose for a contradiction that ρi is of the formA v ∀R.B andR(σi(x), σi(y)) /∈
D(Oi−1

+ ). By (1) above,A(σi(x)), R(σi(x), σi(y)) ∈ Oi−1
+ and hence, by Lemma 2, there

are some R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi−1
+ ) such that t0 = σi(x), tn = σi(y),

and R1 · . . . · Rn ∈ NT+(R). Note that, Lemma 2 is applicable because there are no
axioms of Typeur applicable toOi−1

+ by 2. Therefore, there must be some states q0, . . . , qn
such that q0 = iR, qn = fR, and qj−1 →∗Rj

qj ∈ NT+(R) for all j ∈ J1, nK. Hence,
A v Aq0 , Aq0 v ∀R1.Aq1 , . . . , Aqn−1 v ∀Rn.Aqn , Aqn v B ∈ T+. By conditions (2)
and (3) above, Aq0(t0), . . . , Aqn(tn), B(σi(y)) ∈ Oi−1

+ (note that tn = σi(y)). Therefore,
Oi

+ = Oi−1
+ and 〈ρi, σi〉 is not applicable to Oi−1

+ . This contradicts Definition 2.

We introduce some notation used in across this section.
• For all i ≥ 0 and t, u ∈ Ngt, let Ni

c(t) = {A | A(t) ∈ Oi
+} and Ni

r(t, u) = {R |
R(t, u) ∈ D(Oi

+)}.
• Let A = A1 u . . . u An be a conjunction of concepts, x ∈ Nv, and t ∈ Ngt. Then,

we write A(x) as a shortcut for A1(x) ∧ . . . ∧ An(x) and A(t) ∈ F as a shortcut for
A1(t), . . . , An(t) ∈ F .



Lemma 8. Let i ≥ 0 and let t, u ∈ Ngt be some terms in Oi
+. If t is the predecessor of u

in F(Oi
+), then A v ∃Ni

r(t, u).Ni
c(u) ∈ Γ(T×) for some A ⊆ Ni

c(t).

Proof. We verify this result via induction on the chase sequenceO0
+,O1

+, . . . Since F(O0
+)

is empty, the base case trivially holds. To show the induction step, we check that the lemma
holds for any i ≥ 1 irrespectively of the type of axiom ρi. In the following enumeration,
we consider all cases that do not automatically follow IH.

(u) Then, A1(σi(x)), . . . , An(σi(x)) ∈ Oi−1
+ . Let us assume that σi(x) is the successor

of some term t occurring in Oi−1
+ , as otherwise the case holds by IH. By IH, A′ v

∃R.B ∈ Γ(T×) with A′ ⊆ Ni−1
c (t), R = Ni−1

r (t, σi(x)), and B = Ni−1
c (σi(x)). Sincedn

j=1Aj v B ∈ Γ(T×) and A1, . . . , An ∈ B, A′ v ∃R.(B uB) ∈ Γ(T×).

(∀) Then, A(σi(x))), R(σi(x), σi(y)) ∈ Oi−1
+ . By Lemma 7, R(σi(x), σi(y)) ∈ D(Oi−1

+ ).
We assume that σi(x) is the predecessor of σi(y), as otherwise this case holds by IH.
By IH, A′ v ∃R.B ∈ Γ(T×) with A′ ⊆ Ni−1

c (σi(x)), R = Ni−1
r (σi(x), σi(y)), and

B = Ni−1
c (σi(y)). Since A v ∀R.B ∈ T× and R ∈ R, A′ uA v ∃R.(BuB) ∈ Γ(T×).

(∃) Then, A(σi(x)) ∈ Oi−1
+ . Since A v ∃R.B ∈ T×, A v ∃R.B ∈ Γ(T×).

(≤) Then, A(σi(x)), R(σi(x), σi(y)), B(σi(y)), R(σi(x), σi(z)), B(σi(z)) ∈ Oi−1
+ . By

Definition 1, the role R is simple and hence, R(σi(x), σi(y)), R(σi(x), σi(z)) ∈
D(Oi−1

+ ) by Lemma 6. We consider three possible cases.
• σi(x) is the predecessor of both σi(y) and σi(z). By Lemma 1, σi(y), σi(z) ∈ N0

and hence, by IH, A′ v ∃R.B,A′′ v ∃S.C ∈ Γ(T×) with A′,A′′ ⊆ Ni−1
c (σi(x)), R =

Ni−1
r (σi(x), σi(y)), B = Ni−1

c (σi(y)), S = Ni−1
r (σi(x), σi(z)), and C = Ni−1

c (σi(z)).
SinceA v 61R.B ∈ T×,R ∈ R∩S, andB ∈ B∩C, A′uA′′uA v ∃(RuS).(BuC) ∈
Γ(T×).
• σi(z) is the predecessor of σi(x) and σi(x) is the predecessor of σi(y). By Lemma 1,
σi(x), σi(y) ∈ N0 and hence, by IH, A′ v ∃R.B,B′ v ∃S.C ∈ Γ(T×) with
A′ ⊆ Ni−1

c (σi(z)), R = Ni−1
r (σi(z), σi(x)), B′ ⊆ Ni−1

c (σi(x)) = B, S =
Ni−1
r (σi(x), σi(y)), and C = Ni−1

c (σi(y)). Since A v 61R.B ∈ T×, R− ∈ R,
A ∈ B ∪ C, and R ∈ S, A′ uB v ∃(R u S−).B ∈ Γ(T×).
• σi(y) is the predecessor of σi(x) ∈ N0 and σi(x) is the predecessor of σi(z) ∈ N0.

Analogous to the previous case.
(◦) Then, R1(σi(x0), σi(x1)), . . . , Rn−1(σi(xn−1), σi(xn)) ∈ Oi−1

+ . We assume that n =

1 and R1(σi(x0), σi(x1)) ∈ D(Oi−1
+ ), as otherwise S(σi(x0), σi(xn)) /∈ D(Oi−1

+ ). We
consider two possible cases.
• σi(x0) is the predecessor of σi(x1). By IH, A′ v ∃R.B ∈ Γ(T×) with A′ ⊆

Ni−1
c (σi(x0)), R = Ni−1

r (σi(x0), σi(x1)), and B = Ni−1
c (σi(x1)). Since R1 v S ∈

T× and R1 ∈ R, A′ v ∃(R u S).B ∈ Γ(T×).
• σi(x1) is the predecessor of σi(x0). By IH, A′ v ∃R.B ∈ Γ(T×) with A′ ⊆

Ni−1
c (σi(x1)), R = Ni−1

r (σi(x1), σi(x0)), and B = Ni−1
c (σi(x0)). Since R−1 v S− ∈

T× and R−1 ∈ R, A′ v ∃(R u S−).B ∈ Γ(T×).
(ur) Analogous to the previous case.

To structure some of the induction arguments below, we introduce the notion of depth
of a term and a sequence of direct fact. Note that, we consider the roots in a rooted graph
to have depth 0.

Definition 9. For i ≥ 0 and t ∈ Ngt a term occurring in Oi
+, let depi(t) be the depth of t

in the rooted forest F(Oi
+). For a sequence F = R1(t0, t1), . . . , Rn(tn−1, tn), depi(F) =

max(depi(t1), . . . , depi(tn))− min(depi(t1), . . . , depi(tn)).

Lemma 9. Consider i ≥ 1, R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi
+), and states q and q̂

in the NFA NT (R) with q 6= q̂. If q →∗P q̂ ∈ NT (R) with P = R1 · . . . · Rn and all



t1, . . . , tn−1 are descendants of t0 in F(Oi
+), then A′ u Xq v Xq̂ ∈ Γ(T×) for some

A′ ⊆ Ni
c(t0).

Proof. We prove the lemma via induction on the depth of the sequence F = R1(t0, t1),
. . ., Rn(tn−1, tn). Before proceeding with this inductive argument, we derive some con-
clusions from the premise of the lemma. Since q →∗P q̂ ∈ NT (R), there are some states
q0, . . . , qn such that q0 = q, qn = q̂, and qj−1 →∗Rj

qj ∈ NT (R) for all j ∈ J1, nK. Hence,
Xqj−1 v ∀Rj .Xqj ∈ T× for all j ∈ J1, nK.

To show the base case, we check that the lemma holds if depi(F) = 1. In this case,
n = 2 by Lemma 1 and the fact that tj 6= t0 for all j ∈ {1, . . . , n − 1}. By Lemma 8,
A′ v ∃R.B ∈ Γ(T×) with A′ ⊆ Ni

c(t0), R = Ni
r(t0, t1), and B = Ni

c(t1). Since R1, R
−
2 ∈

R, A′ uXq v ∃R.(B uXq1),A′ uXq v Xq̂ ∈ Γ(T×) (note that q = q0 and q̂ = q2).
To show the inductive step, we verify that the lemma holds if depi(F) ≥ 2 assuming

that (IH) it holds for every sequence of facts Rk(tk−1, tk), . . . , R`(t`−1, `) with k > 1
and ` < n. Note that, since every t1, . . . , tn−1 is a descendant of t0, every such sequence
has lesser depth than F . Let k0, . . . , km ∈ N be the longest sorted sequence of numbers
such that tkj = t1 for all j ∈ J0, nK. By repeated application of the IH, we conclude
that, for all j ∈ J1, nK there is some B′j ⊆ Ni

c(t1) with B′j u Aqkj−1
v Aqkj

∈ Γ(T×).
By Lemma 8, A′ v ∃R.B with A′ ⊆ Ni

c(t0), R = Ni
r(t0, t1), and B = Ni

c(t1). Hence,
A′ u Aq0 v ∃R.(B u Aq1) ∈ Γ(T×) since R1 ∈ R and Xq0 v ∀R1.Xq1 ∈ T×. Therefore,
A′ u AiR v ∃R.(B u Aqk1

u Aq2 u . . . u Aqkm−1
u Aqn−1),∈ Γ(T×) (note that iR = q0,

qk1 = q1, and qkm = qn−1). Since R−n ∈ R and Aqn−1 v ∀R.AfR , A′ u AqiR
v AfR ∈

Γ(T×) (note that fR = qn).

Lemma 10. Consider i ≥ 1, R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi) with n ≥ 2, A v
61R.B ∈ T×, S ∈ Nr, and states q and q̂ in the NFA NT (S). If
• R−(t0, t), A(t), R(t, tn), B(tn) ∈ Oi with t the predecessor of tn and successor of t0,
• q →∗P q̂ ∈ NT (S) with P = R1 · . . . ·Rn, and
• t0 ∈ 2Ni and t1, . . . , tn ∈ N0,
then, A′ uB uXq v Xq̂ ∈ Γ(T+) for some A′ ⊆ Ni

c(t0)

Proof. By the premise of the lemma, there are some states q0, . . . , qn such that q0 = q,
qn = q̂, and qj−1 →∗Rj

qj ∈ NT (S) for all j ∈ J1, nK. By the definition of T+ and T×,
Xqj−1 v ∀Rj .Xqj ∈ T× for all j ∈ J1, nK.

By Lemma 8, A′ v ∃R.B,B′ v ∃S.C ∈ Γ(T×) with A′ ⊆ Ni
c(t0), R = Ni

r(t0, t1), B′ ⊆
Ni
c(t1) = B, S = Ni

r(t1, tn), and C = Ni
c(tn). Hence, A′ uXq v ∃R.(B uXq1) ∈ Γ(T×)

since R1 ∈ R and t1 = t by Lemma 1 (note that q0 = q).
Let k0, . . . , km ∈ N be the longest sorted sequence such that tkj = t1 for all j ∈ J0, nK.

By Lemma 9, there is some B′j ⊆ B such that B′j u Xqkj−1
v Xqkj

∈ Γ(×) for all
j ∈ J1, nK. Hence, A′uXq v ∃R.(BuXqk0

u . . .uXqkm
) ∈ Γ(×) (note that k0 = 1). By

Lemma 1, tkm+1 = tn (note that possibly km + 1 6= n). Since Rkm+1 ∈ S, B′ uXqkm
v

∃S.(C uXqkm+1
) ∈ Γ(×).

Let `0, . . . , `o ∈ N be the longest sorted sequence where `0 = km+1 and t`j = tn for
all j ∈ J1, oK. By Lemma 9, there is some C′j ⊆ C such that C′j uXq`j−1

v Xq`j
∈ Γ(×)

for all j ∈ J1, oK. Hence, B′ u Xqkm
v ∃S.(C u Xq`0

u . . . u Xq`o−1
u Xq̂) ∈ Γ(×)

(note that qkm+1 = q`1 and q`o = q̂). Since R− ∈ S, A,B ∈ B, R ∈ R, A′ u Xq v
∃R.(BuAuXqk0

u . . .uXqkm
), B′ uXqkm

v ∃S.(CuB uXq`0
u . . .uXq`o−1

uXq̂),
we have that A′ uB uXq v Xq̂ ∈ Γ(×).

Lemma 11. IfO+ = 〈T+,A〉 entails some fact over ⊥, then so does KO = 〈RT ,A〉. For
every assertion α defined over sig(T ), O+ |= α implies KO |= α.



Proof. We show the lemma via induction on the chase sequence O0
+,O1

+, . . .

• Base Case: We show that α ∈ K∞O for every assertion α ∈ O0.
• Induction step (IS): For every i ≥ 1, we show that the following claims hold provided

that the induction hypothesis also holds.
– If α ∈ K∞O for every assertion α ∈ Oi.
– If ⊥(t) ∈ Oi with t ∈ Ngt, then ⊥(u) ∈ K∞O for some u ∈ 2Ni .
• Induction hypothesis (IH): α ∈ K∞O for every assertion α ∈ Oi−1.

The base case holds since O0
+ = A and A ⊆ K∞O by Definition 2. We show that the IS

does hold for any i ≥ 1 irrespectively of the type of the axiom ρi and the type of the terms
that occur in the range of σi. Some cases will not be explicitly included in this analysis,
because of the following reasons.

1. We altogether ignore cases in which the set Oi \ Oi−1 does not contain any assertions
nor facts over ⊥, as these trivially hold.

2. All cases where ρi = B → H is a Datalog rule with H an equality-free atom, and the
range of σi is a subset of 2Ni can be shown with the following argument.
• By IH, Bσi ⊆ K∞O .
• Since ρi ∈ RT , Hσi ⊆ K∞O .
Therefore, we do not include these cases in the case by case analysis below.

3. To further reduce the number of cases that need to be considered, we assume without
loss of generality that ⊥ may only occur in the right-hand side of axioms of Type (u).

Case (u) Let ρi be an axiom of the form
dn

j=1Aj v B. Then,
A1(σi(x)), . . . , An(σi(x)) ∈ Oi−1

+ . By (1)-(3), we only need to consider the case
where B = ⊥ and σi(x) ∈ N0. By Lemma 1, there is a sequence t0, . . . , tm of terms
in Oi−1

+ such that t0 = a ∈ 2Ni , t1, . . . , tm ∈ N0, tm = σi(x), and tj−1 is the
predecessor of tj for all j ∈ J1,mK. For all j ∈ J1,mK, A′j−1 v ∃Rj .Aj ∈ Γ(T×)

with A′j−1 ⊆ Ni−1
c (tj−1), Rj = Ni−1

r (tj−1, tj), and Aj = Ni−1
c (tj) by Lemma 8. Sincedn

j=1Aj v ⊥ ∈ T , A′m−1 v ∃Rm.(Am u ⊥) ∈ Γ(T×) and therefore, A′j v ⊥ ∈ Γ(T×)

for all j ∈ J0,m − 1K. Since A′0(x) → ⊥(x) ∈ RT and A′0(σi(x)) ∈ K∞O by IH,
⊥(σi(x)) ∈ K∞O .

Case (∀) Let ρi be an axiom of the form A v ∀R.B ∈ T . Then,
A(σi(x)), R(σi(x), σi(y)) ∈ Oi−1

+ . By (1)-(3), we only need to consider cases where
σi(x) ∈ N0 and σi(y) ∈ 2Ni . By Lemma (7), R−(σi(y), σi(x)) ∈ D(Oi−1

+ ) and hence,
σi(y) is the predecessor of σi(x) by Lemma 1. By Lemma 8, A′ v ∃R.B ∈ Γ(T×) with
A′ ⊆ Ni−1

c (σi(y)), R = Ni−1
r (σi(y), σi(x)), and B = Ni−1

c (σi(x)). Since R− ∈ R and
A v ∀R.B ∈ T×, A′(x)→ B(x) ∈ RT . Since A′(σi(y)) ∈ K∞O by IH, B(σi(y)) ∈ K∞O .

Case (◦) Let ρi be an axiom of the form R1 ◦ . . . ◦ Rn v S ∈ T+. Then,
R1(σi(x0), σi(x1)), . . ., Rn(σi(xn−1), σi(xn)) ∈ Oi−1

+ . Because of (1)-(3), we only need
to consider the case where σi(x0), σi(xn) ∈ 2Ni .

By Lemma 2, there is a sequence V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1
+ ) with

σi(xj−1) = t0, σi(xj) = tm, and V1 · . . . · Vm ∈ NT (Rj) for every j ∈ J1, nK (note that
possibly m = 1). Note that, this lemma is applicable becauseOi−1

+ is closed under the ap-
plication of axioms of the Type ur by the definition of O0

+,O1
+, . . . By concatenating the

sequences above, we construct a sequence V1(t0, t1), . . . , Vm(tm−1, tm) ∈ D(Oi−1
+ ) such

that σi(x0) = t0, σi(xn) = tm, and V1 · . . . · Vm ∈ NT (S). Hence, there are some states
q0, . . . , qm such that q0 = iS , qm = fS , and q0 →V1 q1 →V2 q2 . . . →Vm qm ∈ NT (S).



Let k0, . . . , ko be the longest sorted sequence of natural numbers with tkj ∈ 2Ni for all
j ∈ {0, . . . , o}. We show via induction that Sqkj (t0, tkj ) ∈ K∞O for all j ∈ J1, oK. In
turn, this implies S(σi(x), σi(y)) ∈ K∞O since SqfS (x, y) → S(x, y) ∈ RT (note that
t0 = σi(x), tko = tm = σi(y), and qkm = fS).

To show the base case, we prove that Sqk1 (t0, tk1) ∈ K∞O . We consider two possible
cases.
• Let k1 = 1. Then, V1(t0, t1) ∈ K∞O by IH. Since V1(x, y) → Sq1(x, y) ∈ RT ,
Sq1(t0, t1) ∈ K∞O .
• Let k1 > 1. Then, tk1 = t0 by Lemma 1. By Lemma 9, A uXiS v Xqk1

∈ Γ(T×) for
some A ⊆ Ni−1

c (t0) and hence, A(x) → SiS ,qk1 (x) ∈ RT . By IH, A(t0) ∈ K∞O and
hence, SiS ,qk1 (t0) ∈ K∞O . Since SiS ,qk1 (x)→ Sqk1 (x, x) ∈ R∞T , Sqk1 (t0, tk1) ∈ K∞O .
To show the induction step, we verify that, for all j ∈ {2, . . . , o}, Sqkj (t0, tkj ) ∈ K∞O

provided that Sqkj−1
(t0, tkj−1

) ∈ K∞O . We consider two possible cases.

• Let kj = kj−1+1. Then, Vkj (tkj−1
, tkj ) ∈ K∞O by IH. Since Sqkj−1

(x, y)∧Vkj (y, z)→
Sqkj (x, z) ∈ RT , Sqkj (t0, tkj ) ∈ K∞O .

• Let kj > kj−1 +1. Then, tkj = tkj−1
by Lemma 1. By Lemma 9, AuXqkj−1

v Xqkj
∈

Γ(T×) for some A ⊆ Ni−1
c (tkj ) and hence, A(x) → Sqkj−1

,qkj
(x) ∈ RT . By IH,

A(tkj ) ∈ K∞O and hence, Sqkj−1
,qkj

(tkj ) ∈ K∞O . Since Sqkj−1
(x, y) ∧ Sqkj−1

,qkj
(y) →

Sqkj (x, y) ∈ RT , Sqkj (t0, tkj ) ∈ K∞O .

Case (≤) Let ρi be an axiom of the form A v 61R.B. Then,
A(σi(x)), R(σi(x), σi(y)), B(σi(y)), R(σi(x), σi(z)), B(σi(z)) ∈ Oi−1

+ . By Defi-
nition 1, the role R is simple and hence, R(σi(x), σi(y)), R(σi(x), σi(z)) ∈ D(Oi−1)
by Lemma 6. Depending upon the type of the terms in the range of σi, we consider six
possible cases cases.

1. Let σi(x), σi(y), σi(z) ∈ 2Ni . By IH, every assertion in Oi−1
+ containing σi(y) or σi(z)

is also in K∞O . Hence, every assertion in Oi
+ is also in K∞O .

2. Let σi(x) ∈ N0 and σi(y), σi(z) ∈ 2Ni . By Lemma 1, both σi(y) and σi(z) are the
predecessors of σi(x) and hence, σi(y) = σi(z). This is a contradiction by Definition 2
and hence, this case may not occur.

3. Let σi(x), σi(y) ∈ N0 and σi(z) ∈ 2Ni . By Lemma 1 and the fact that σi(z) 6= σi(y),
σi(z) is the predecessor of σi(x) which, in turn, is the predecessor of σi(y).
We first show that C(σi(z)) ∈ K∞O if C(σi(y)) ∈ Oi−1

+ for someC ∈ Nc. By Lemma 8,
A′ v ∃R.B,B′ v S.C ∈ Γ(T×) with A′ ⊆ Ni−1

c (σi(z)), R = Ni−1
r (σi(z), σi(x)),

B′ ⊆ Ni−1
c (σi(x)) = B, S = Ni−1

r (σi(x), σi(y)), and C = Ni−1
c (σi(y)). SinceR− ∈ R,

A ∈ B, R ∈ S, B ∈ C, A′uB v C ∈ Γ(T×) and hence, A′(x)∧B(x)→ C(x) ∈ RT .
Since A′(σi(z)) ∈ K∞O by IH, C(σi(z)) ∈ K∞O .
Furthermore, we show that S(a, σi(z)) ∈ K∞O if S(a, σi(y)) ∈ Oi−1

+ for some S ∈ Nr

and a ∈ 2Ni . By Lemma 2, there are some R1(t0, t1), . . . , Rn(tn−1, tn) ∈ D(Oi−1
+ ) and

states q0, . . . , qn such that a = t0, σi(y) = tn, and q0 →R1 q1 . . . →Rn qn ∈ NT+(R).
We consider two possible cases.
• t1, . . . , tn ∈ N0. By Lemma 1, t0 = a. By Lemma 10, A′ u XqiS

v XfS ∈ Γ(T×)

for some A′ ⊆ Ni−1
c (t0) and therefore, A′(x) → SiS ,fS (x) ∈ RT . By IH, A′(t0) ∈

K∞O and hence, SiS ,fS (t0) ∈ K∞O . Since SiS ,fS (σi(z)) → SfS (x, x), SfS (x, y) →
S(x, y) ∈ RT , S(t0, t0) ∈ K∞O .
• tj ∈ 2Ni for some j ∈ {1, . . . , n − 1}. With an analogous inductive argument

to that from case (◦), we can show that Sqk(a, σi(z)) ∈ K∞O . By Lemma 10,



A′ u Xqk v Xfn ∈ Γ(T×) for some A′ ⊆ A and hence, A′(x) → Sqk,fS (x) ∈ RT .
Since A′(σi(z)) ∈ K∞O by IH, Sqk,fS (σi(z)) ∈ K∞O . Since Sqk(x, y) ∧ Sqk,fS (y) →
SfS (x, y), SfS (x, y)→ S(x, y) ∈ RT , S(a, σi(z)) ∈ K∞O .

4. Let σi(x), σi(z) ∈ N0 and σi(y) ∈ 2Ni . Analogous to the previous case.
5. Let σi(x), σi(z) ∈ 2Ni and σi(y) ∈ N0. By Lemma 1, σi(x) is the predecessor of σi(y).

We first show that C(σi(z)) ∈ K∞O if C(σi(y)) ∈ Oi−1
+ for some C ∈ Nc. By

Lemma 8, A′ v ∃R.B ∈ Γ(T+) with A′ ⊆ Ni−1
c (σi(x)), R = Ni−1

r (σi(x), σi(y)),
B = Ni−1

c (σi(y)). Since R ∈ R, A(x)∧A′(x)∧R(x, y)∧B(y)→ C(y) ∈ RT . Since
A(σi(x)),A(σi(z)), R(σi(x), σi(z)), B(σi(z)) ∈ K∞O by IH, C(σi(z)) ∈ K∞O .
We show that S(a, σi(z)) ∈ K∞O if S(a, σi(y)) ∈ Oi−1

+ for some S ∈ Nr and a ∈ 2Ni .
We consider two possible cases.
• Let S(a, σi(z)) ∈ D(Oi−1

+ ). By Lemma 1, a = σi(x). Since S ∈ R, A(x) ∧ A′(x) ∧
R(x, y) ∧B(y)→ S(x, y) ∈ RT and S(σi(x), σi(z)) ∈ K∞O .
• Let S(a, σi(z)) /∈ D(Oi−1

+ ). By Lemma 2, there are some R1(t0, t1), . . .,
Rn(tn−1, tn) ∈ D(Oi−1

+ ) with a = t0, σi(y) = tn, and R1 · . . . · Rn ∈ NR(S). Let k
be the largest number with tk = σi(x) and tk, . . . , tn ∈ N0 for some k ∈ J0, n − 1K
(note that such a number must exist by Lemma 1). Also by Lemma 1, tk+1 = σi(y)
and hence, Rk+1 ∈ R, A(x) ∧ A′(x) ∧ R(x, y) ∧ B(y) → Rk+1(x, y) ∈ RT , and
Rk+1(σi(x), σi(z)) ∈ K∞O . We consider two possible cases.

– Let k > 0. With an analogous argument to that from case (◦), we can show that
Sqk(a, σi(x)) ∈ K∞O . Also, Sqk(x, y) ∧Rk+1(y, z)→ Sqk+1

(x, z) ∈ RT .
– Let k = 0. Then, Rk+1(x, y)→ Sqk+1

(x, y) ∈ RT (note that qk+1 = iS in this case).
In either of these cases, Sqk+1

(a, σi(z)) ∈ K∞O . Let `0, . . . , `m be the longest sorted
sequence with `0 = k + 1 and σi(y) = t`j for all j ∈ J0, nK. By Lemma 9, for all j ∈
J1, nK there is some B′j ⊆ Ni−1

c (σi(y)) such that B′j uXq`j−1
v X`j ∈ Γ(T×). Hence,

B′j(x)→ Sq`j−1
,q`j

(x) ∈ RT for all j ∈ J1, nK. SinceA(x)∧A′(x)∧R(x, y)∧B(y)→
B(y) ∈ RT , B(σi(z)), Sq`j−1

,q`j
(σi(z)) ∈ K∞O for all j ∈ J1, nK. For all j ∈ J1, nK,

Sq`j−1
(x, y) ∧ Sq`j−1

,q`j
(y) → Sq`j (x, y) ∈ RT . Hence, SfS (a, σi(z)) ∈ K∞O (note

that fS = q`m). Since SfS (x, y)→ S(x, y) ∈ RT , S(a, σi(z)) ∈ K∞O .
6. Let σi(x), σi(y) ∈ 2Ni , and σi(z) ∈ N0. Analogous to the above case.

Soundness
To show that our Datalog AR-rewriting is sound, we have to show that for every ABox A
s.t. sig(A) ⊆ sig(A) and assertion α s.t. sig(α) ⊆ sig(T ), we have 〈RT ,A〉 |= α only
if 〈T ,A〉 |= α. Note that the case where 〈T ,A〉 is unsatisfiable is trivial, since in that
case 〈T ,A〉 |= α holds for every assertion α. We therefore silently assume that 〈T ,A〉 is
satisfiable in every of the following lemmata.

We note that we can generalise soundness and completeness results of the chase to
arbitrary sets of ground facts: For a given set A of ground facts (which may include facts
over nulls) and a TBox T , we call 〈T ,A〉 a generalised KB, and define chase in the same
way as for classical KBs. It is easy to see that Theorem 1 also applies to generalised KBs,
as we can simply replace every null by a fresh individual name to reduce to entailment of
normal KBs. We first show that our introduced names indeed fulfil their specified role.

Lemma 12. Let T be any Horn-SRIQu-TBox, ρ = A v ∀R.B ∈ T , and T ′ = B(T , ρ).
Further, let A be any set of ground facts s.t. sig(A) ⊆ sig(T ), q, q̂ two states in NT (R)
and t, u two ground terms. Let A′ = A ∪ {Aq(u)}. Then, 〈T ′,A′〉 |= Aq̂(t) implies that
there is a path P in the chase of 〈T ,A〉 connecting u to t s.t. q →∗P q̂ ∈ NT (R).

Proof. Let T , ρ, T ’, q,A,A’ and u be as in the lemma. LetA = F0,F1, . . . be the chase
of 〈T ′,A′〉. By Theorem 1, if 〈T ′,A〉 |= Aq̂(t), there exists some i ≥ 0 s.t. Aq̂(t) ∈ F i.



It therefore suffices to show that for every i ≥ 0, every state q̂ inNT (R) and every ground
term t , if Aq̂(t) ∈ F i, then there is a path P in the chase of 〈T ,A〉 connecting u to t s.t.
q →∗P q̂ ∈ NT (R). We do the proof by induction on i. Consider i = 0. Since sig(A) ⊆ T
and Aq is fresh, we cannot have Aq(t) ∈ A. Consequently, Aq̂(t) ∈ A′ = F0 only if
q̂ = q and t = u, in which case the inductive hypothesis trivally holds.

Let i > 0, and assume the inductive hypothesis holds for i − 1. The only interesting
case is where Aq̂(t) is introduced in F i. Let ρi be the axiom applied for computing F i.
The only axioms in T ′ in which Aq occurs positively are of the form Aq′ v ∀S.Aq̂, where
q′ →∗S q̂ ∈ NT (R), which means that ρi must be of this form. This means that there exists
some ground term v s.t. Aq′(v), R(v, t) ∈ F i−1. By the inductive hypothesis, there is a
path P connecting u to v in the chase of 〈T ,A〉 s.t. q →∗P q′ ∈ NT (R). This implies that
there is the path P · S connecting u to t, and that iR →∗P·S q ∈ NT (R).

Lemma 13. Let T be a Horn-SRIQu-TBox, A an ABox s.t. sig(A) ⊆ sig(T ) and α an
assertion s.t. sig(ρ) ⊆ sig(T ). Then, 〈T+,A〉 |= α only if 〈T ,A〉 |= α.

Proof. Let F0 = A,F1, . . . be the chase of 〈T+,A〉. We have to show that for all i ≥ 0
and every α ∈ F i s.t. sig(ρ) ⊆ sig(T ), 〈T ,A〉 |= α. We do so by induction over i. The
case where i = 0 is trivial. For i > 0, the only interesting case is where α is introduced
in i by application of an axiom ρ ∈ T+ \ T . If this is the case, by the definition of T+
there is an axiom A v ∀R.B ∈ T s.t. ρ ∈ B(A v ∀R.B, T ). Note that for every distinct
axioms ρ1, ρ2 ∈ T , the sets of fresh predicates in B(ρ1, T ) and B(ρ2, T ) are disjoint.
The only axioms in B(A v ∀R.B, T ) that share a predicate name with T are A v AiR
and AfR v B. We obtain that ρ = AfR v B, α = B(b) for some b ∈ Ni, and that
AfR(b) ∈ F−1. We thus have to show that 〈T ,A〉 |= B(b). By induction over the axioms
in B(A v ∀R.B) applied to derive B(b), we further obtain that A(a), AiR(a) ∈ F i−1 for
some individual a. Because i) AiR(a), AfR(b) ∈ F−1, ii) the fresh predicates in B(A v
∀R.B) do not occur in T+ \ B(A v ∀R.B), iii) the inductive hypothesis, and iv) by
Lemma 12, we obtain that there is a path P in the chase of 〈T ,A〉 connecting a and b
s.t. iR →∗P fR ∈ NT (R). By Lemma 2, this implies that 〈T ,A〉 |= R(a, b), and since
A v ∀R.B ∈ T , 〈T ,A〉 |= B(b).

Lemma 3 is a direct consequence of Lemma 13.

Lemma 3. For a TBox T , an ABox A and a fact set F defined over sig(T ), 〈T ,A〉 is
satisfiable iff 〈T+,A〉 is, and 〈T ,A〉 |= F iff 〈T+,A〉 |= F .

Lemma 14. Let T be a Horn-SRIQu-TBox, A be a set of ground facts s.t. sig(A) ⊆
sig(T ), R a complex role, q,q′ two states in NT (R) and u, t two ground terms. Let T ′ be
the set of axioms in T plus all axioms generated by the Rule (	).

Assume further that there is a path P connecting u and t in the chase of 〈T ,A〉 s.t.
iR →∗P q ∈ NT (R). Then, 〈T ′,A〉 |= Rq,q̂(t) implies the following.
• There is a path P′ from t to t in the chase of 〈T ,A〉, and
• q →∗P′ q̂ ∈ NT (R).

Proof. The only axioms in T ′ in which Rq,q̂ occurs positively are the ones added due to
Rule (	) in Table 1. Therefore, there must exist a set D of concept names s.t. 〈T ′,A〉 |=
D(t), and that T× |= D uXq v Xq̂.

Define a new set of ground facts A′ by adding the ground fact X(u) to A. By induction
on the axioms in B(T , X v ∀R.X) ⊆ T× and the path connecting u to t, it is easy to show
that 〈T×,A′〉 |= Xq(t). Since furthermore 〈T ,A′〉 |= D(t) and T× |= D uXq v Xq̂, we
obtain that 〈T ,A′〉 |= Xq̂(t). Inspection of the rules in T× further shows that the chase
of 〈T ,A′〉 does not contain additional edges compared to 〈T ,A〉, since we only added
the ground fact X(u). Consequently, by Lemma 12, there is a path in the chase of 〈T ,A〉
connecting t to itself s.t. q →∗P′ q̂ ∈ NT (R).



Lemma 15. Let T be a Horn-SRIQu-TBox, A be an ABox s.t. sig(A) ⊆ sig(T ), R a
complex role, q a state in NT (R) and a, b ∈ Ni. Let T ′ ⊆ RT be the set of Datalog rules
that either occur in T, or that are generated by Rules (u), (	) and (R1)–(R4).

Then, 〈T ′,A〉 |= Rq(a, b) only if in the chase of 〈T ,A〉, there exists a path P from a
to b s.t. iR →∗P q ∈ NT (R).

Proof. Let T , A, R and a be as in the lemma. Let A = F0,F1, . . . be the chase of
〈T ′,A〉. We show that for every i ≥ 0, state q in NT (R) and b ∈ Ni, Rq(a, b) ∈ F i

only if in the chase of 〈T ,A〉, there exists a path P from a to b s.t. iR →∗P q ∈ NT (R).
Since sig(A) ⊆ sig(T ) and Rq is fresh, the base case holds trivially. For i > 0, the only
interesting case is where Rq(a, b) is introduced in F i. Let ρi be the axiom applied on
F i−1 to generate F i. The only axioms in which Rq occurs positively are those introduced
by (R1)–(R4). We distinguish the cases.

1. ρi was introduced by (R1). Then a and b are connected by S already in the chase of
〈T ′′,A〉, where T ′′ contains all the Datalog rules in T+, since no other rule in T ′ con-
tains S positively. By soundness of T+ (Lemma 13), this implies that a and b are con-
nected by S in the chase of 〈T ,A〉, and we have iR →∗S q by the side condition of (R1).

2. ρi was introduced by (R2). Then, b = a, and the inductive hypothesis follows from
Lemma 14.

3. ρi was introduced by (R3). Then, there is a state q̂ in NT (R) and an individual c s.t.
Rq̂(a, c), S(c, b) ∈ F−1 and q̂ →∗S q ∈ NT (R). By inductive hypothesis, there is then
a path P from a to c in the chase of 〈T ,A〉 s.t. iR →∗P q̂ ∈ NT (R). We obtain that there
is the path P · S connecting a to b s.t. iR →∗P·S q̂ ∈ NT (R).

4. ρi was introduced by (R4). Then, there is a state q̂ in NT (R) s.t. Rq̂(a, b), (b,)∈ F−1.
By inductive hypothesis, there is then a path P from a to b in the chase of 〈T ,A〉 s.t.
iR →∗P q̂ ∈ NT (R). By Lemma 14, there is a path P′ in the chase of 〈T ,A〉 from b to b
s.t. q̂ →∗P′ q ∈ NT (R). We obtain that the path P · P′ connects a and b in the chase of
〈T ,A〉, and that iR →∗P·P′ q ∈ NT (R).

Lemma 16 (Soundness). Let T be a Horn-SRIQu-TBox and A be an ABox s.t.
sig(A) ⊆ sig(T ). Then, for every assertion α s.t. sig(α) ⊆ sig(T ), 〈RT ,A〉 |= α only if
〈T ,A〉 |= α.

Proof. Let F0 = A,F1, . . . be the chase of 〈RT ,A〉. We show that for every i ≥ 0
and every assertion α ∈ F i s.t. sig(α) ⊆ sig(T ), 〈T ,A〉 |= α. Note that, since RT is a
Datalog rule set, no axiom inRT introduces nulls, so that for all i ≥ 0, F i is an ABox.

We do the proof by induction on i. The base case is trivial. Assume the inductive hy-
pothesis holds for i − 1. The only interesting case is where α is introduced in F i by an
axiom ρi. We distinguish the cases based on the origin of ρi.

1. If ρi ∈ T+, then 〈T ,A〉 |= α directly follows from the inductive hypothesis and from
Lemma 13.

2. If ρi is introduced by (u), by soundness of the Datalog calculus, T+ |= ρi. Therefore,
〈T ,A〉 |= α follows from the inductive hypothesis and from Lemma 13.

3. ρi cannot have been introduced by any of the Rules (	) or (R1)–(R4) since sig(α) ⊆
sig(T ).

4. If ρi is introduced by Rule (R5), then RfR(a, b) ∈ F i−1 for some a, b ∈ Ni, and α =
R(a, b). It then follows from Lemma 15 that there is a path P in the chase of 〈T ,A〉
connecting a to b s.t. iR →∗P fR ∈ NT (R). Consequently, by Lemma 2, we have
〈T ,A〉 |= R(a, b).

5. If ρi is introduced by Rule (^1), we have α = C(b) for some b ∈ Ni,
A(a),D(a), R(a, b), B(b) ∈ F i−1 for some a ∈ Ni, and

T× |= A v 61R.B,D v ∃(R uR).(A uB u C).



Note that, since sig(A) ⊆ sig(T ), A cannot have any occurrences of the fresh con-
cept name X . Inspection of the axioms in T× \ T+ reveals that therefore that the
above entailment in fact holds already for T+. Furthermore, the latter entailment can
be weakened to T+ |= D v ∃R.(B u C). Since D(a) ∈ F i−1, 〈T+,F i−1〉 |=
∃y.(R(a, y) ∧ B(y) ∧ C(y)), that is, there is some R-successor t of a in the chase
of 〈T+,F i−1〉 that satisfiesB and C. Since T+ |= A v ≤1R.B, a can only have one R-
successor satisfying B, so that in fact t = a, and 〈T+,F i−1〉 |= C(b). By the inductive
hypothesis and Lemma 13, we obtain that 〈T ,A〉 |= C(b).

6. If ρi is introduced by Rule (^2), we have α = S(a, b) for some a, b ∈ Ni,
A(a),D(a), R(a, b), B(b) ∈ F i−1 for some a ∈ Ni, and

T× |= A v 61R.B,D v ∃(R uR u S).(A uB).

Similar as in the last case, we obtain that T+ |= D v ∃(R u S).B. Consequently, a has
an R-successor in the chase of 〈T+,F i−1〉 that satisfies B and is also an S-successor
of a. Since A(a), R(a, b), B(b) ∈ F i−1 and T+ |= A v ≤1R.B, this successor has to
be b. We obtain that 〈T+,F−1〉 |= S(a, b). By the inductive hypothesis and Lemma 13,
we obtain that 〈T ,A〉 |= S(a, b).

Complexity Results
Theorem 3. Let O = 〈T ,A〉 be an ontology. If T is Horn-SRIQu/Horn-SHIQ/ELH,
then we can computeRT and 〈RT ,A〉∞ in 2EXPTIME/ EXPTIME/ PTIME, respectively.

Proof. We note that the number of states in each automaton NT (R) is exponentially
bounded in the size of T , so that the sizes of T+ and T× are also at most exponential
in the input if T is in Horn-SRIQu, and at polynomial if T is in Horn-SHIQ or ELH.
The calculus in Figure 4 adds one axiom to Γ(T×) in each step, the number of which is
exponentially bounded in the size of T×. This is so because every derived axiom contains
at most one role conjunction and at most two concept conjunctions (one on the left-hand
side, one on the right-hand side), and the number of concept and role names used for this is
bounded by the size of T×. It is also easy to see that each role application can be performed
in polynomial time.

For ELH, we note that from the calculus in Figure 4, only the Rules (1), (2), (4) and (5)
apply. We recall that for every R ∈ Nr, T contains one of R and R− but not both. Since
axioms of the form ∃R.A v B correspond to axioms A v ∀R−.B, we obtain that in
fact Rule (4) also is never applied, so that we are left with (1), (2) and (5). We obtain that
no rule derives an axiom whose left-hand-side does not occur already as left-hand-side in
the input axiom set. Rule (5) does not derive axioms that are larger than its premises, and
is the only rule that infers axioms without role restrictions, and the number of axioms it
derives is polynomially bounded in the input. Rules (1) and (2) only infer axioms that are
logically stronger than its premise, so that the premise can be removed from the axiom set
after applying this rule. We therefore obtain that we can compute an axiom set equivalent
to Γ(T×), contains all relevant axioms, and whose size is polynomially bounded in the size
of T×, and therefore in the size of T , if and can be computed in polynomial time

Finally,RT can be generated by traversing Γ(T×) and each automata at most once, and
its size is bounded by the size of RT× and the number of states occurring in all automata.
We obtain that
• for Horn-SRIQu, RT can be computed in 2EXPTIME and is of at most double expo-

nential size,
• for Horn-SHIQ,RT can be computed in EXPTIME and is of at most exponential size,

and
• for ELH,RT can be computed in PTIME and is of at most polynomial size.

Now let m be the size of RT . The complexity results now follow from the fact that the
chase of 〈RT ,A〉 can always be computed in time polynomial in m.



We first note that the number of elements inR∞T is polynomially bounded: since Datalog
rules do not introduce nulls and the arity of each predicate is at most 2, the number of
assertions in R∞T is bounded by the number of individual names and predicate names in
T and A. Since every step in the chase either introduces a new assertion or merges a pair
of individuals, we obtain that the chase sequence is polynomially bounded as well. We
therefore only have to show that each rule application can be performed in polynomial
time. Inspection of the axioms allowed in Horn-SRIQu and the Datalog rules included
based on Table (1), we obtain that except for axioms of Type (◦), every rule has at most
three variables on the left-hand-side. Applicability of these rules can therefore be decided
in polynomial time by simply iterating over all pairs of individuals. For rules of Type (◦),
we iterate over all pairs of individuals a, b and determine whether S(a, b) can be inferred
using graph-reachability. For this, we construct a directional graph G incrementally as
follows: the initial graph contains a as a node, and for every i in J1, nK starting from
i = 1, we add an edge labelled Ri connecting two nodes c and d if c is a node in the
current graph and R(c, d) occurs in the current fact base. Whether there is a path along
R1, . . . , Rn connecting a and b can then be decided by determining whether b is reachable
from a in G, in which case the rule is applicable. Since this can be done in polynomial
time, we obtain that each rule application can be performed in polynomial time, and as
there are at most polynomially many necessary to compute 〈RT ,A〉∞, we obtain that
〈RT ,A〉∞ can be computed in time polynomial in m.

Added Role Chains in the Evaluation
In this section, we list the axioms of Type (◦) that were added to the ontologies Reac-
tome (8-12) and to Uniprot (13-15) for the experiments presented on the first part in the
evaluation section.

controlled ◦ controlled− v coControlled (8)
interactionScore ◦ scoreSource v interactionScoreProvenance (9)

organism ◦ CellVocabulary− v organismCellVocabulary (10)
participant ◦ dataSource v participantDataSource (11)

controlled ◦ controller v controlledBy (12)

cellularComponent− ◦ orientation v cellularOrientation (13)

database− ◦ transcribedFrom v transcriptionStoredIn (14)

database− ◦ translatedTo v translationStoredIn (15)


