
On the number of bipolar Boolean functions

Ringo Baumann and Hannes Strass
Computer Science Institute, Leipzig University, Germany
{baumann,strass}@informatik.uni-leipzig.de

Abstract

A Boolean function is bipolar iff it is monotone or antimonotone in each of its arguments.
We investigate the number b(n) of n-ary bipolar Boolean functions. We present an (almost)
closed-form expression for b(n) that uses the number a(n) of antichain covers of an n-element
set. This is closely related to Dedekind’s problem, which can be rephrased as determining
the number d(n) of Boolean functions that are monotone in all arguments. Indeed, a closed-
form solution of a(n) would directly yield a closed-form solution of d(n), suggesting that
determining a(n) is a non-trivial problem of itself.

1 Introduction

Computer science makes use of mathematical logic in many ways. A particular recent application
of logic in computer science is in the field of abstract argumentation. This field is concerned
with modelling (abstractions of) discussions, debates and other forms of human argumentation
using mathematical tools. While the predominantly used formalism to date has been the abstract
argumentation framework of Dung [4], a number of authors have introduced extensions of that
formalism. One such extension is the abstract dialectical framework by Brewka and Woltran [2].
That formalism crucially relies on Boolean functions to express relationships between different
positions in a debate. As one of their contributions, Brewka and Woltran introduced a sublanguage
of their formalism where only special Boolean functions are allowed, so-called bipolar Boolean
functions. In a bipolar function, each of its arguments is supporting or attacking.1 Intuitively, in
argumentation, a statement P supports another statement Q if it is never the case that accepting
the truth of P leads to rejecting the truth of Q. Symmetrically, statement P attacks statement
Q if accepting the truth of P can never lead to accepting the truth of Q. This definition along
with its argumentation-theoretic intuition goes back to the work of Brewka and Woltran [2], who
presented it in the context of abstract dialectical frameworks.

Mathematically, supporting and attacking arguments of Boolean functions are simply argu-
ments in which the function is monotone or antimonotone, respectively. In this paper we study
the class of Boolean functions that are monotone or antimonotone (or both) in each of their n
arguments. In particular, we analyze the cardinality b(n) of this class, where it turns out that
there is a close relationship to a combinatorial problem posed by Richard Dedekind in 1897 [3].

The resulting integer sequence b(n) is given by

2, 4, 14, 104, 2170, 230540, 499596550, 309075799150640, . . .

and apparently has not received any attention in the literature so far. We newly registered b(n)
as a sequence to the online encyclopedia of integer sequences as A245079. While it is somewhat

1To prevent confusion: Whenever we write “argument” we mean the argument to a function, as in 2 being the
argument to function f in the term f(2). We will not use “argument” in an argumentation sense.

1

http://oeis.org/A245079

obvious that the number b(n) of bipolar Boolean functions grows considerably with n, we can
show that the proportion of bipolar Boolean functions versus all Boolean functions – the quotient
b(n)
22n

– approaches zero as n approaches infinity.
Apart from the purely combinatorial interest in studying the number b(n) of bipolar Boolean

functions, there is also a computational or more specifically a representational significance to
our work. The fact that abstract dialectical frameworks (ADFs; the context that we first
encountered bipolar Boolean functions in) are intended to be applied in computer software entails
that those ADFs have to be stored on computers and therefore represented in some formal
language. As storage is not unlimited, expected representation sizes play an important role in
assessing the practicality of representation formalisms. A first analysis for ADFs in this regard
has been presented by Brewka et al. [1], who used Boolean circuits over the basis {¬,∧,∨} (see,
e.g. [7]) for representing Boolean functions. For general, unrestricted ADFs, classic results from
circuit complexity theory directly yield lower bounds on representation sizes for “almost all”
ADFs: Riordan and Shannon [15] have shown that almost all Boolean functions in n variables
require formulas of leafsize 2n

log2 n ; Shannon [16] later showed a lower bound of 2n

n for circuit

representation.2 Moreover, the results imply that whenever we are not interested in all Boolean
functions in n variables, but only a subclass p of cardinality p(n), then the minimally required
representation-size of almost all functions of class p depends in a similar fashion on p(n). Thus
having a good lower bound on b(n) directly yields an indication on how large formula or circuit
representations of bipolar Boolean functions will be in the worst case.

Moreover, good upper bounds on b(n) can also be meaningfully employed: For the class of
monotone Boolean functions, there is a range of known constructions that allow for improving
the general upper bound when constructing (formula or circuit) realisations, e.g. the “principle of
local coding” introduced by Lupanov [13]. Our results relating the numbers of monotone and
bipolar Boolean functions suggest that similar techniques might be applicable to realisations of
bipolar Boolean functions. In the related setting of showing that bipolar ADFs can succinctly
express a language that normal logic programs cannot, we have even made use of an upper-bound
result in this vein [18, Theorem 17].

The rest of the paper proceeds as follows. We first give some background and notation on
Boolean functions and (anti-)monotonicity properties. In the section thereafter we analyze the
number of bipolar Boolean functions. Section 4 gives a closed upper bound for b(n) and shows
that the number of bipolar Boolean functions is relatively (in comparison to the total number
of Boolean functions) negligible. Then, Section 5 briefly clarifies the relation to Dedekind’s
problem and relates the number of monotone Boolean functions to the number of bipolar Boolean
functions. Section 6 concludes.

2 Background

Let X be a countable set of variables, that is, X = {x1, x2, . . .}. We denote the set of truth
values by B = {0, 1}. An n-ary Boolean function is of the form f : Bn → B, where we assume
for simplicity that the arguments of f are x1, . . . , xn. Clearly each M ⊆ {x1, . . . , xn} induces a
two-valued interpretation vM : {x1, . . . , xn} → B by

vM (s) =

{
1 if s ∈M
0 otherwise

2Here, “almost all” has an arithmetic interpretation: If we say that “almost all” objects from a class c(n) have
property p, then this means that the fraction of c(n)s that are not ps approaches zero as n approaches infinity.

2

This in turn yields an input vector bM = (vM (x1), . . . , vM (xn)) to an n-ary Boolean function.
We use this fact to sometimes abbreviate f(M) = f(bM) = f(vM (x1), . . . , vM (xn)).

A Boolean function f : Bn → B is monotone in argument xi iff for all (b1, . . . , bi−1, bi+1, . . . , bn) ∈
Bn−1 and b, b′ ∈ B, we have

b ≤ b′ implies f(b1, . . . , bi−1, b, bi+1, . . . , bn) ≤ f(b1, . . . , bi−1, b
′, bi+1, . . . , bn)

Symmetrically, a Boolean function f : Bn → B is antimonotone in argument xi iff for all
(b1, . . . , bi−1, bi+1, . . . , bn) ∈ Bn−1 and b, b′ ∈ B, we have

b ≤ b′ implies f(b1, . . . , bi−1, b
′, bi+1, . . . , bn) ≤ f(b1, . . . , bi−1, b, bi+1, . . . , bn)

A Boolean function f : Bn → B is:

• monotone iff for all 1 ≤ i ≤ n, f is monotone in xi;

• antimonotone iff for all 1 ≤ i ≤ n, f is antimonotone in xi;

• bipolar iff for all 1 ≤ i ≤ n, f is monotone in xi or f is antimonotone in xi.

If a Boolean function f is

• monotone in xi, we call xi supporting in f ;

• antimonotone in xi, we call xi attacking in f ;

• both monotone and antimonotone in xi, we call xi redundant in f ;

• neither monotone nor antimonotone in xi, we call xi dependent in f .

The Boolean functions f1(x1) = x1, f2(x1) = 1−x1, f3(x1) = 1 and f4(x1, x2) = x2 are examples
for functions where the argument x1 is supporting in f1, attacking in f2, redundant in f3 and
dependent in f4, respectively. If a Boolean function does not possess any dependent arguments
we call it bipolar which is the object of study of this article.

Whereas the terms monotone as well as antimonotone function are standard notions in order
theory, the notion of supporting and attacking arguments are somewhat new in this context. These
terms have an argumentation background. Roughly speaking, in abstract dialectical frameworks,
Boolean functions represent acceptance conditions of statements, that is, they express under what
conditions a statement can be accepted, given the acceptance status of the statements with a
declared influence on the statement. Such an influence (called a link), has exactly one of four
possible types: A link from r to s can be . . .

1. . . . supporting. Then accepting r can never lead to rejecting s, all other things being equal.

2. . . . attacking. Then accepting r can never lead to accepting s, all other things being equal.

3. . . . redundant. Then accepting or rejecting r has no actual influence on whether or not s
can be accepted or rejected.

4. . . . dependent. Then whether s can be accepted depends not just on r but also on other
statements with a declared influence on s.

Note that it is always a link that has these properties; it is perfectly possible for a single statement
to be attacking in one of its influences and supporting in another. The existence of a “redundant”
type also means that influences might be declared, but not actually existing. We further illustrate
some of the mentioned notions with a brief detour to abstract dialectical frameworks.

3

Example 1. An abstract dialectical framework (ADF) D = (S,L,C) consists of a (typically

finite) set S of statements, a set L ⊆ S × S of links, and a family
{
Cs : 2L

−1(s) → B
}
s∈S

of

Boolean functions, exactly one for each s ∈ S.3 The statements embody propositions that can be
accepted by a party in a debate (or not). Links embody directed declared influences between
statements; if there is a link from statement r to statement s in an ADF then this means that
whether s can be accepted possibly depends on the acceptance of r. Finally, for each s ∈ S, the
Boolean function Cs explicitly specifies under what acceptance combinations of L-predecessors of
s the statement s can be accepted.

We now present a concrete ADF that we adapted from [2, Example 6]. Consider a scenario
where we want to decide whether we go for a swim. We do so if there is no rain, or it is
hot. It is warm, but not hot, and there are clouds indicating that it might rain. However the
reliable weather forecast predicts wind that will blow away the clouds. Using the vocabulary
S = {clouds,wind , rain, hot , swim}, we devise the ADF Dswim = (S,L,C) shown below to model
this deliberation process. Here, statements are depicted as nodes, edges represent links and
acceptance conditions are written as propositional formulas next to the statements.

cloudsϕclouds = > wind ϕwind = >

rainϕrain = clouds ∧ ¬wind hot ϕhot = ⊥

swimϕswim = ¬rain ∨ hot

+ −

− +

Supporting and attacking links are designated using the labels + and −; this is however only for
illustration as the polarity of the links can be read off the acceptance formulas. More precisely,
the link (r, s) is supporting iff r is supporting in the Boolean function Cs, the acceptance function
of statement s; likewise for the other polarities. The statement rain, for example, is supported by
the statement clouds and attacked by the statement wind . According to ϕrain , the attack from
wind is stronger than the support from clouds . That is, as soon as we accept wind , we must reject
rain. On the other hand, swim is attacked by rain and supported by hot. Here, by ϕswim , the
support from hot is stronger than the attack from rain; or put another way, the missing attack
from rain is stronger than the missing support from hot . This effectively means that rejecting
rain leads to accepting swim.

Note that monotone Boolean functions in n arguments can be equivalently characterized thus:
for any b,b′ ∈ Bn, if b ≤ b′, then f(b) ≤ f(b′) where b = (b1, . . . , bn), b′ = (b′1, . . . , b

′
n) and

b ≤ b′ iff bi ≤ b′i for all 1 ≤ i ≤ n. The property of being supporting/attacking etc. will be called
the polarity of an argument. Since supporting/attacking arguments might be redundant, we use
the prefix strictly to exclude this; that is, an argument is strictly supporting iff it is supporting
and not attacking, symmetrically an argument is strictly attacking iff it is attacking and not
supporting.

We denote the set of all Boolean functions in n arguments by Bn = {f : Bn → B}. Furthermore,
for s, a, r, d ∈ N, we denote by Bn(s, a, r, d) the set of Boolean functions in n arguments where

3By L−1(s) = {r ∈ S | (r, s) ∈ L} we denote the set of L-predecessors of s.

4

exactly s arguments are supporting, a arguments are attacking, r arguments are redundant and d
arguments are dependent. Note that in this case n = s+ a− r+ d since redundant arguments are
supporting and attacking. So for example, Bn(k, 0, 0, n− k) denotes the set of Boolean functions
that are supporting in exactly k arguments where none of the arguments is attacking (thus, not
redundant). Bn(n, k, k, 0) is the set of monotone Boolean functions: all arguments are supporting,
but some k ≤ n of them might also be attacking and thus redundant.

3 The number of bipolar Boolean functions

How many of the 22n Boolean functions f : Bn → B are bipolar? To tackle this problem we
present three technical lemmata paving the way for the main theorem. The first lemma shows
the relation between monotone and antimonotone arguments in a Boolean function f and its
so-called i-negation.

Definition 1. For a Boolean function f : Bn → B and an 1 ≤ i ≤ n we define its i-negation as
the function f−i : Bn → B given by

f−i(b1, . . . , bi−1, bi, bi+1, . . . , bn) = f(b1, . . . , bi−1, 1− bi, bi+1, . . . , bn).

Intuitively, f−i is obtained from f by negating the i-th input argument. For example, if
f : B ×B → B is the material implication function given by f(x1, x2) = min {(1− x1) + x2, 1}
then the function f−1 : B × B → B is the logical disjunction f(x1, x2) = min {x1 + x2, 1}. In
general, the i-negation has no effect on the polarity of all arguments xj with j 6= i, and the effect
of negating the polarity of xi.

Lemma 1. Let f : Bn → B and 1 ≤ i, j ≤ n with i 6= j.

1. f is monotone in xj if and only if f−i is monotone in xj .

2. f is antimonotone in xj if and only if f−i is antimonotone in xj .

3. f is monotone in xi if and only if f−i is antimonotone in xi.

4. f is antimonotone in xi if and only if f−i is monotone in xi.

Proof. 1. (⇒) Let f be monotone in xj , assume w.l.o.g. that i ≤ j and assume to the contrary
of what we have to show that there are b1, . . . , bj−1, bj+1, . . . , bn, b, b

′ ∈ B with b ≤ b′
and

f−i(b1, . . . , bi−1, bi, bi+1, . . . , bj−1, b, bj+1, . . . , bn)

> f−i(b1, . . . , bi−1, bi, bi+1, . . . , bj−1, b
′, bj+1, . . . , bn)

But then, for b′i = 1− bi, we find that

f(b1, . . . , bi−1, b
′
i, bi+1, . . . , bj−1, b, bj+1, . . . , bn)

= f−i(b1, . . . , bi−1, 1− b′i, bi+1, . . . , bj−1, b, bj+1, . . . , bn) (Def. 1)

= f−i(b1, . . . , bi−1, bi, bi+1, . . . , bj−1, b, bj+1, . . . , bn) (b′i = 1− bi)
> f−i(b1, . . . , bi−1, bi, bi+1, . . . , bj−1, b

′, bj+1, . . . , bn) (f−i is not monotone in xj)

= f−i(b1, . . . , bi−1, 1− b′i, bi+1, . . . , bj−1, b
′, bj+1, . . . , bn) (b′i = 1− bi)

= f(b1, . . . , bi−1, b
′
i, bi+1, . . . , bj−1, b

′, bj+1, . . . , bn) (Def. 1)

Thus f is not monotone in xj . Contradiction.

5

(⇐) Since f−i is monotone in xj we derive (f−i)−i is monotone in xj . The equation
(f−i)−i = f proves the assertion.

2. Analogous.

3. and 4. In order to prove both statements it suffices to show first the only-if-directions of both
statements and second to apply the equality (f−i)−i = f .

(⇒) Both only-if-directions can be proven in a similar way. We show the case of state-
ment 3 only. Let f be monotone in xi. Consider b1, . . . , bi−1, bi+1, . . . , bn ∈ B and
b, b′ ∈ B with b ≤ b′. We have to show that f−i(b1, . . . , bi−1, b

′, bi+1, . . . , bn) ≤
f−i(b1, . . . , bi−1, b, bi+1, . . . , bn). If b = b′ then f−i(b1, . . . , bi−1, b

′, bi+1, . . . , bn) =
f−i(b1, . . . , bi−1, b, bi+1, . . . , bn), so let b < b′. Clearly b = 0, b′ = 1 and we obtain

f−i(b1, . . . , bi−1, b
′, bi+1, . . . , bn)

= f(b1, . . . , bi−1, 1− b′, bi+1, . . . , bn) (Def. 1)

= f(b1, . . . , bi−1, 0, bi+1, . . . , bn) (b′ = 1)

≤ f(b1, . . . , bi−1, 1, bi+1, . . . , bn) (f is monotone in xi)

= f(b1, . . . , bi−1, 1− b, bi+1, . . . , bn) (b = 0)

= f−i(b1, . . . , bi−1, b, bi+1, . . . , bn) (Def. 1)

(⇐) Now, for statement 3. Let f−i be antimonotone in xi. Applying the only-if-direction
of statement 4 yields that (f−i)−i is monotone in xi. Using (f−i)−i = f concludes
statement 3. The if-direction of statement 4 can be shown analogously. 2

In the following we use the abbreviation m = {n1, n2, . . . , nm} for an m-element set of natural
numbers. Building upon this, for a Boolean function f : Bn → B we denote by

f−m = (. . . ((f−n1)−n2) . . .)−nm

the repeated i-negation for all i ∈ m. The following result shows that this notation is justified
because the order in which these i-negations are applied does not matter. Furthermore, applying
i-negation twice is the identity operation since 1− (1− b) = b for all b ∈ B. Finally, when taking
two Boolean functions where all arguments are strictly supporting (that is, a non-degenerate
monotone Boolean function) and repeatedly applying i-negations to them, this process leads to
distinct Boolean functions if and only if we started out with different functions, or manipulated
them differently.

Proposition 2. Let f : Bn → B be a Boolean function.

1. For any m ⊆ {1, . . . , n} and any permutation π : {1, . . . ,m} → {1, . . . ,m},

(. . . ((f−n1
)−n2

) . . .)−nm = (. . . ((f−nπ(1)
)−nπ(2)

) . . .)−nπ(m)
(commutativity)

2. For any m ⊆ {1, . . . , n}, (f−m)−m = f . (neutrality)

3. Let f, g ∈ Bn(n, 0, 0, 0), m, k ⊆ {1, . . . , n}. If f 6= g or m 6= k, then f−m 6= g−k. (injectivity)

Proof. 1. Obvious (cf. Def. 1).

6

2. Obvious (cf. Def. 1).

3. Let f, g ∈ Bn(n, 0, 0, 0) and m, k ⊆ {1, . . . , n} such that f 6= g or m 6= k. We do a case
distinction whether m = k.

• m 6= k. W.l.o.g. let i ∈ m \ k. Since f ∈ Bn(n, 0, 0, 0), xi is strictly supporting in f ,
i.e. f is monotone and is not antimonotone in xi. Applying Lemma 1 implies that xi is
antimonotone (statement 3) and monotone (statement 4) in f−m. Compositely, xi is
strictly attacking in f−m. Similarly, since i /∈ k we may apply the first two statements of
Lemma 1 showing that xi is still strictly supporting in g−k. Consequently, f−m 6= g−k.

• m = k. Then f 6= g. Assume to the contrary that f−m = g−k. But then

f =
(
f−m

)
−m =

(
g−k

)
−m =

(
g−k

)
−k = g

Contradiction. Thus f−m 6= g−k. 2

The properties shown by this proposition are instrumental in proving the following useful
lemma. It asserts that, intuitively, there are two orthogonal dimensions along which (strict)
bipolar Boolean functions can be constructed: first, the polarity of their arguments, that is,
the choice whether a particular argument will be (strictly) supporting or attacking; second, the
underlying logical relationships between the arguments, that make up the essence of the function
in the end.

Lemma 3. Let s, a, n ∈ N such that s+ a = n.

|Bn(s, a, 0, 0)| =
(
n

a

)
· |Bn(n, 0, 0, 0)|

Proof. We define the mapping

ϕ : Bn(n, 0, 0, 0)×
(
{1, . . . , n}

a

)
→ Bn(s, a, 0, 0) with (f, a) 7→ f−a

and show that it is a bijection. Clearly the mapping is well-defined, since for f ∈ Bn(n, 0, 0, 0)

and a ∈
({1,...,n}

a

)
, we have f−a ∈ Bn(s, a, 0, 0) by Lemma 1.

ϕ is injective: For f, g ∈ Bn(n, 0, 0, 0) and m, k ⊆ {1, . . . , n} with f 6= g or m 6= k, it follows
directly from Proposition 2 that f−m 6= g−k.

ϕ is surjective: Let f ∈ Bn(s, a, 0, 0) and denote by a the set of indices whose arguments are
attacking in f . Then clearly f−a ∈ Bn(n, 0, 0, 0), and furthermore

ϕ(f−a, a) =
(
f−a

)
−a = f

In combination, we get

|Bn(s, a, 0, 0)| =
∣∣∣∣Bn(n, 0, 0, 0)×

(
{1, . . . , n}

a

)∣∣∣∣
= |Bn(n, 0, 0, 0)| ·

∣∣∣∣({1, . . . , n}a

)∣∣∣∣
=

(
n

a

)
· |Bn(n, 0, 0, 0)|

2

7

The next and final lemma asserts that any bipolar Boolean function can be stripped of its
redundant arguments essentially without having an impact on the number of distinct functions
considering only the non-redundant arguments. Let us consider an illustration.

Example 2. Let f ∈ B2(2, 1, 1, 0) be given by f(x1, x2) = x1 where one argument (x1) is
strictly supporting, and the other one is redundant. Clearly there is an “equivalent” function
g ∈ B1(1, 0, 0, 0) in only one argument, given by g(x1) = x1.

Lemma 4. Let s, a, r, n ∈ N with s+ a− r = n.

|Bn(s, a, r, 0)| =
(
n

r

)
· |Bn−r(s− r, a− r, 0, 0)|

Proof. Let n = {1, . . . , n} and k ⊆ n. For (b1, . . . , bn−k) ∈ Bn−k denote by (b1, . . . , bn−k)⊗ 0k =
(c1, . . . , cn) where for 1 ≤ i ≤ n we set

ci =

{
0 if i ∈ k
bi−|{j∈k | j<i}| otherwise

For a Boolean function f ∈ Bn we now define

fn\k : Bn−k → B with (b1, . . . , bn−k) 7→ f((b1, . . . , bn−k)⊗ 0k)

Now let s, a, r, n ∈ N with s+ a− r = n. We define the mapping

ψ : Bn(s, a, r, 0)→
(
Bn−r(s− r, a− r, 0, 0)×

(
{1, . . . , n}

r

))
with f 7→

(
fn\rf , rf

)
where rf denotes the set of indices whose arguments are redundant in f . We proceed to show
that ψ is bijective.

ψ is injective: Let f, g ∈ Bn(s, a, r, 0) with f 6= g. Then there are b1, . . . , bn ∈ B such that
f(b1, . . . , bn) 6= g(b1, . . . , bn). By definition of rf and rg, we also have that

f((b1, . . . , bn)[bi/0 : i ∈ rf]) = f(b1, . . . , bn) 6= g(b1, . . . , bn) = g((b1, . . . , bn)[bi/0 : i ∈ rg])

Assume to the contrary of what we have to show that (fn\rf , rf) = (gn\rg , rg). Then in

particular fn\rf = gn\rg . It follows that for all (c1, . . . , cn−r) ∈ Bn−r, we get

f((c1, . . . , cn−r)⊗ 0rf)

= fn\rf (c1, . . . , cn−r)

= gn\rg (c1, . . . , cn−r)

= g((c1, . . . , cn−r)⊗ 0rg)

In particular,

f((b1, . . . , bn)[bi/0 : i ∈ rf]) = g((b1, . . . , bn)[bi/0 : i ∈ rg])

Contradiction. Thus (fn\rf , rf) 6= (gn\rg , rg).

8

ψ is surjective: Let f ∈ Bn−r(s− r, a− r, 0, 0) and r ⊆ {1, . . . , n}. Define

g : Bn → B with (b1, . . . , bn) 7→ f(bi1 , . . . , bin−r)

where i1, . . . , in−r ∈ {1, . . . , n} \ r such that i1 < i2 < . . . < in−r. Then clearly r = rg and
thus ψ(g) = (gn\rg , rg) = (gn\r, r) = (f, r). 2

Now we are prepared to turn to the main theorem.

Theorem 5. The number of bipolar Boolean functions in n arguments is

b(n) =

n∑
i=0

2i ·
(
n

i

)
· |Bi(i, 0, 0, 0)|

Proof. Consider the following equalities. Afterwards we will clarify every single step. As a
notational shorthand we use Bn(∗, ∗, n− i, 0) for

⋃
s+a−(n−i)=n Bn(s, a, n− i, 0), i.e., all possible

(s, a)-combinations of supporting and attacking arguments for bipolar Boolean functions in n
arguments with i non-redundant arguments.

b(n) =

n∑
i=0

|Bn(∗, ∗, n− i, 0)| (1)

=

n∑
i=0

 ∑
s+a−(n−i)=n

|Bn(s, a, n− i, 0)|

 (2)

=

n∑
i=0

 ∑
s+a−(n−i)=n

(
n

n− i

)
·
∣∣Bn−(n−i)(s− (n− i), a− (n− i), 0, 0)

∣∣ (3)

=

n∑
i=0

(n

n− i

) ∑
s+a−(n−i)=n

· |Bi(s− (n− i), a− (n− i), 0, 0)|

 (4)

=

n∑
i=0

(
n

i

)
· |Bi(∗, ∗, 0, 0)| (5)

=

n∑
i=0

(
n

i

)
·

(
i∑

a=0

|Bi(i− a, a, 0, 0)|

)
(6)

=

n∑
i=0

(
n

i

)
·

(
i∑

a=0

(
i

a

)
· |Bi(i, 0, 0, 0)|

)
(7)

=

n∑
i=0

2i ·
(
n

i

)
· |Bi(i, 0, 0, 0)| (8)

(1) Bipolar functions can be distinguished by their number of redundant arguments.
(2) Apply the definition of Bn(∗, ∗, n− i, 0).
(3) Apply Lemma 4.
(4) Law of distribution and simplification.

(5) Use

(
n

n− i

)
=

(
n

i

)
and since s + a − (n − i) = n iff s − (n − i) + a − (n − i) = i we may

9

stick to notational shorthand.
(6) Strictly bipolar Boolean functions can be distinguished by their numbers of strictly supporting
and strictly attacking arguments.
(7) Apply Lemma 3.

(8) Use

i∑
a=0

(
i

a

)
· |Bi(i, 0, 0, 0)| = 2i ·

i∑
a=0

|Bi(i, 0, 0, 0)|.

2

The initial numbers for b(n) are:

n b(n)
0 2
1 4
2 14
3 104
4 2170
5 230540
6 499596550
7 309075799150640

Observe that Theorem 5 implies that the problem of determining the number of bipolar Boolean
functions in n arguments can be reduced to the problem determining the number of Boolean
functions in n arguments where all arguments are strictly supporting, so-called nondegenerate
monotone Boolean functions. According to the online encyclopedia of integer sequences at
http://oeis.org/A006126, Rodrigo Obando observed that this number in turn coincides with
the number a(n) of antichain covers of an n-element set.4 In our terminology, this is formulated
as follows:

Proposition 6. For any n ∈ N,

|Bn(n, 0, 0, 0)| = a(n)

Proof. It is well-known that antichains correspond to monotone Boolean functions. Consider
therefore Φ : aCn → Bn(n, ∗, ∗, 0) where aCn abbreviates the set of all ⊆-antichains in the n-
element set V = {x1, . . . , xn}. For any A = (Ai)i∈I ∈ aC we define the monotone Boolean
function Φ(A) = fA via

fA(b) = fA(b1, . . . , bn) = 1 iff ∃i ∈ I, s.t. Ai ⊆ Xb=1 where Xb=1 = {xj | bj = 1}

Obviously, Φ is injective. To see that Φ is even surjective consider any f ∈ Bn(n, ∗, ∗, 0). Define

Af = {A | A is ⊆ -minimal in X} where X = {Xb=1 | f(b) = 1}

We have Φ(Af) = f and thus, Φ is shown to be a bijection. We will show now that the restriction of
Φ to antichain covers matches the set of nondegenerate monotone Boolean functions Bn(n, 0, 0, 0).

Let f ∈ Bn(n, 0, 0, 0). We will show that Af is an antichain cover. Since f is nondegenerate
we derive: for any argument xi exists a witnessing vector bw = (b1, . . . , bi−1, bi+1, . . . , bn) ∈ Bn−1

such that

0 = f(b0w) = f(b1, . . . , bi−1, 0, bi+1, . . . , bn) < f(b1, . . . , bi−1, 1, bi+1, . . . , bn) = f(b1w) = 1

4The antichain cover interpretation of A006126 was obtained by Kilibarda and Jovović [8].

10

http://oeis.org/A006126
http://oeis.org/A006126

W.l.o.g. we may further assume that the witnessing vector is componentwise-minimal since there
are only finitely many which have to be considered. We deduce that for b1w , Xb1w=1 ∈ X and

in particular, xi ∈ Xb1w=1. We show that Xb1w=1 is ⊆-minimal in X and thus xi ∈
⋃

A∈Af A is

guaranteed. Assume, to derive a contradiction, that there is some X ′ ∈ X with X ′ (Xb1w=1.
Thus, there is a b′ = (b′1, . . . , b

′
i−1, b

′
i, b
′
i+1, . . . , b

′
n) ∈ Bn with b′ < b1w and f(b′) = 1. We proceed

with a case distinction.

1. Let b′i = 0. Then b′ ≤ b0w but f(b′) = 1 � 0 = f(b0w) in contrast to the monotonicity of f .

2. Let b′i = 1 and assume f(b′1, . . . , b
′
i−1, 0, b

′
i+1, . . . , b

′
n) = 0. Since b′ < b1w is already deduced

we infer that bw
′ = (b′1, . . . , b

′
i−1, b

′
i+1, . . . , b

′
n) < bw. Note that b′w is a witnessing vector for

non-degeneracy in contrast to the assumed componentwise minimality of the witnessing
vector bw.

3. Let b′i = 1 and assume f(b′1, . . . , b
′
i−1, 0, b

′
i+1, . . . , b

′
n) = f(b′w

0
) = 1. Since we have b′ < b1w

we derive b′w
0 ≤ b0w. On the other hand, f(b′w

0
) = 1 � 0 = f(b0w) in contrast to the

monotonicity of f .

Altogether, for any nondegenerate monotone function f in n arguments, xi ∈
⋃

A∈Af A for any
1 ≤ i ≤ n. This means Af is an antichain cover.

It remains to show that the non-degeneracy of Φ(A) = fA is guaranteed whenever A is an
antichain cover. Assume to the contrary that fA is degenerate. This means that there is an xi
such that fA is supporting and attacking in xi, i.e. for all b = (b1, . . . , bi−1, bi+1, . . . , bn) ∈ Bn−1

we have:

fA(b0) = fA(b1, . . . , bi−1, 0, bi+1, . . . , bn) = fA(b1, . . . , bi−1, 1, bi+1, . . . , bn) = fA(b1)

Since A is an antichain cover we derive the existence of an A ∈ A such that xi ∈ A. Consequently,
fA(vA(x1), . . . , vA(xi+1), 1, vA(xi+1), . . . , vA(xn)) = 1. In consideration of the equation above,

fA(vA(x1), . . . , vA(xi+1), 0, vA(xi+1), . . . , vA(xn)) = 1

This in turn enforces the existence of an A′ ∈ A, s.t. A′ (A in contrast to the antichain property
of A. 2

The first 8 values of this sequence (A006126) are given here:

n a(n)
1 1
2 2
3 9
4 114
5 6894
6 7785062
7 2414627396434
8 56130437209370320359966

We additionally set a(0) = 2, since there are two null-ary Boolean functions where all of the
arguments are non-redundant, namely the constant functions 0 and 1.

As a direct consequence, we get a closed expression for b(n) that depends only on a(i) for
0 ≤ i ≤ n.

11

http://oeis.org/A006126

Corollary 7.

b(n) =

n∑
i=0

2i ·
(
n

i

)
· a(i)

4 A closed expression for the upper bound

While it seems difficult to provide a closed-form expression for b(n), we can present an upper
bound.

Proposition 8. For any n ∈ N we have

b(n) ≤ 2 · 32
n−1

− 22
n−1

Proof. Let f be a bipolar Boolean function in n arguments. Consequently, for any 1 ≤ i ≤ n
we have, xi is supporting or attacking. In particular, x1 is supporting or attacking. For
any M ⊆ {x2, . . . , xn} we may consider the following two values f(1, vM (x2), . . . , vM (xn)) and
f(0, vM (x2), . . . , vM (xn)) abbreviated by f1M or f0M . Let us further define fM = (f1M , f

0
M),

0̄ = (0, 0), 1̄ = (1, 1), Csup = (0, 1) and Catt = (1, 0). Observe that if for a certain M , fM = Csup

or fM = Catt, then f cannot be monotone or antimonotone, respectively since x1 serves as a
counterexample. Consequently, for any bipolar Boolean function f in n arguments we have that
for all M ⊆ {x2, . . . , xn} either fM ∈ {0̄, 1̄, Csup} or fM ∈ {0̄, 1̄, Catt}. Obviously, there are 2n−1

subsets M . Furthermore, in both cases we may choose between 3 elements. Thus, there are
2 ·32n−1

possibilities. Note that functions f , s.t. for any M , fM returns 0̄ or 1̄ are included in both
cases. Thus, we have to subtract this number, namely 22

n−1

, and we are done. This means that
we may estimate the number of bipolar Boolean functions in n arguments by 2 · 32n−1 − 22

n−1

.2

We want to mention that the given upper bound coincides with b(n) if n ∈ {1, 2}:

2 · 32
0

− 22
0

= 6− 2 = 4 = b(1) and 2 · 32
1

− 22
1

= 2 · 9− 4 = 14 = b(2)

We also observe that b(1) = 4 = 22
1

(all unary Boolean functions are bipolar) and b(2) = 14 =

22
2 − 2 (only two binary Boolean functions are not bipolar).5 In consideration of this observation

the reader might get the impression that the number of bipolar functions account for a major
proportion of the number of Boolean functions in general. The following proposition shows that
this is not the case. To the contrary, the possibility that a randomly chosen Boolean function is
bipolar approaches zero. This also shows that the bound given in Proposition 8 is non-trivial.

Proposition 9.

lim
n→∞

b(n)

22n
= 0

5The two non-bipolar functions in two arguments are equivalence (“↔”) as well as antivalence (“=”).

12

Proof. By Proposition 8 and standard fractional arithmetic we have

b(n)

22n
≤ 2 · 32n−1 − 22

n−1

22n
(9)

=
2 · 32n−1

22n−1 · 22n−1 −
22
n−1

22n−1 · 22n−1 (10)

=
2 · 32n−1

42n−1 − 1

22n−1 (11)

= 2 ·
(

3

4

)2n−1

−
(

1

2

)2n−1

(12)

Consequently, limn→∞
b(n)
22n

= 0 concluding the proof. 2

As already mentioned the presented upper bound coincides with b(n) if n ∈ {1, 2}. This is not
surprising for n = 1 since we counted the number of functions being attacking or supporting in
x1, thus being bipolar. In case of n = 2 one may easily show that being attacking or supporting
in x1 enforces non-dependency in x2. The following example shows that this property does not
carry over to n ≥ 3.

Example 3. Consider f : B3 → B where

f(x) =

{
1 if x ∈ {(1, 1, 1), (1, 0, 0)}
0 otherwise

The argument x1 is supporting since whenever a ≤ a′, then f(a, b, c) ≤ f(a′, b, c). This means, the

function f is one of the 2 · 323−1 − 22
3−1

functions representing the upper bound in Proposition 8.
Nevertheless, observe that f /∈ b3 since x2 is dependent. Counterexamples for being attacking
and supporting are given by 1 = f(1, 1, 1) � f(1, 0, 1) = 0 or 1 = f(1, 0, 0) � f(1, 1, 0) = 0,
respectively.

5 Relation to Dedekind numbers

Dedekind [3] presented the problem of determining the number d(n) of monotone Boolean
functions in n arguments. This problem is a special case of the bipolar counting problem and has
attracted the attention of combinatorial analysts for almost 120 years. Numerous authors have
tackled the problem, giving asymptotic estimations, exact values for small n, recursive equations
or algorithms (see [9] for an overview). In the following we briefly summarize some milestones
concerning asymptonic estimates of d(n).

1. In 1954 by Gilbert [5], (
n

n/2

)
≤ log2 d(n) ≤ log2 n

(
n

n/2

)
2. Korobkov [11] improved this upper upper bound to

log2 d(n) ≤ 3 log2 3

(32/3 − 1)3/2

(
n

n/2

)
3. In 1966, Hansel [6] presented

d(n) ≤ 3(n
n/2)

13

4. Kleitman and Markowsky [10] have proven

(1 +O(2−
√
n))

(
n

n/2

)
≤ log2 d(n) ≤ (1 +O(loge n/n))

(
n

n/2

)
5. The most accurate but not easily comprehensible asymptonic estimate was presented by

Korshunov [12] (cf. [20] for a simplified exposition of Korshunov’s result). We mention that
his estimation cannot be improved in a technical sense since the lower and upper estimates
are asymptotically equal.

For reference we also reproduce the closed form expression given by Kisielewicz [9]:

d(n) =

22
n∑

k=1

2n−1∏
j=1

j−1∏
i=0

1− bki bkj
log2 i∏
m=0

(
1− bjm + bimb

j
m

) with bki =

⌊
k

2i

⌋
− 2

⌊
k

2i+1

⌋

As already observed by Stephen and Yusun [17], performing the logical summation of d(n) using
the closed form above has the same complexity as brute force enumeration of d(n).

The resulting sequence d(n) is also listed in the online encyclopedia of integer sequences at
http://oeis.org/A000372.

Proposition 10. The number of monotone Boolean functions in n arguments is given by

d(n) =

n∑
i=0

(
n

i

)
· |Bi(i, 0, 0, 0)|

Proof. Similar to the proof of Theorem 5 we deduce as follows.

d(n) =

n∑
i=0

|Bn(n, n− i, n− i, 0)| (13)

=

n∑
i=0

(
n

n− i

)
·
∣∣Bn−(n−i)(n− (n− i), (n− i)− (n− i), 0, 0)

∣∣ (14)

=

n∑
i=0

(
n

i

)
· |Bi(i, 0, 0, 0)| (15)

(13) Monotone functions can be distinguished by their number of redundant arguments.
(14) Apply Lemma 4.

(15) Use

(
n

n− i

)
=

(
n

i

)
and simplify terms. 2

Thus solving a(n) implies solving d(n).

Corollary 11.

d(n) =

n∑
i=0

(
n

i

)
· a(i)

14

http://oeis.org/A000372

That is, a good approximation (or even precise expression) for a(n) can be directly used to give
an equally good approximation for d(n).

Observe that Corollary 11 and Corollary 7 reveal that the number of bipolar Boolean functions
b(n) differs from the number of monotone Boolean functions d(n) only by counting every monotone
Boolean function with n arguments and i non-redundant arguments 2i times as opposed to once.
This can be explained as follows: bipolar Boolean functions have two choices for each non-
redundant argument, namely it can be either monotone or antimonotone. Consequently, in case
of i non-redundant arguments we have to consider the additional factor 2i.

In the antichain interpretation, the main difference between a(n) and d(n) is that d(n) is the
number of all (⊆-)antichains of subsets of an n-element set, while a(n) is the number of antichain
covers of an n-element set, that is, those antichains where each element of the set is contained in
at least one element of the antichain. Interestingly, there is a simple expression for the number of
covers of an n-element set [14] (A000371), so the difficulty of determining a(n) and d(n) indeed
stems from the antichain property.

Finally, we remark that due to their interrelationship, the values of functions a, d and b are
always ordered in the same way:

Corollary 12. For all n ∈ N with n ≥ 1, we have a(n) ≤ d(n) ≤ b(n).

Proof. Clearly a(n) ≤ d(n) holds due to Corollary 11 and d(n) ≤ b(n) since any monotone
Boolean function is also bipolar. 2

Concerning lower bounds of b(n), it is clear that any of the mentioned lower bounds on
d(n) directly applies to b(n). Whether those bounds can be improved for b(n) remains to be
investigated. Our final result for this section suggests that improvements might be possible, as
almost all bipolar Boolean functions are not monotone.

Proposition 13.

lim
n→∞

d(n)

b(n)
= 0

Proof. We show that for all j ∈ N there exists an n0 ∈ N such that for all n ≥ n0 we have
b(n) ≥ 2jd(n), that is,

∀j ∈ N : ∃n0 ∈ N : ∀n ≥ n0 :

n∑
i=0

2i
(
n

i

)
a(i) ≥ 2j

n∑
i=0

(
n

i

)
a(i).

Let j ∈ N. Set n0 = 2j. Let n ∈ N with n ≥ n0.
We first remark that for all i < j, we find that 2n−i−j−1 ≥ 1 whence also 2i−j + 2n−i−j−1 ≥ 1.
Next, we observe that for any i < j, by 2j < n it is clear that i < n− i; monotonicity of a : N→ N
then yields a(i) ≤ a(n− i). These two remarks can be employed to establish the following:

2ia(i) + 2n−ia(n− i) = 2j
(
2i−ja(i) + 2n−i−ja(n− i)

)
= 2j

(
2i−ja(i) + 2 · 2n−i−j−1a(n− i)

)
= 2j

(
2i−ja(i) + 2n−i−j−1a(n− i) + 2n−i−j−1a(n− i)

)
≥ 2j

(
2i−ja(i) + 2n−i−j−1a(i) + 2n−i−j−1a(n− i)

)
= 2j((2i−j + 2n−i−j−1)︸ ︷︷ ︸

≥1

a(i) + 2n−i−j−1︸ ︷︷ ︸
≥1

a(n− i))

≥ 2j(a(i) + a(n− i))

15

http://oeis.org/A000371

Now we use this inequality to obtain the main inequality:

b(n) =

n∑
i=0

2i
(
n

i

)
a(i)

=

j−1∑
i=0

2i
(
n

i

)
a(i) +

n−j∑
i=j

2i
(
n

i

)
a(i) +

n∑
i=n−j+1

2i
(
n

i

)
a(i) (split sum)

≥
j−1∑
i=0

2i
(
n

i

)
a(i) +

n−j∑
i=j

2j
(
n

i

)
a(i) +

n∑
i=n−j+1

2i
(
n

i

)
a(i) (since i ≥ j)

=

j−1∑
i=0

2i
(
n

i

)
a(i) + 2j

n−j∑
i=j

(
n

i

)
a(i) +

n∑
i=n−j+1

2i
(
n

i

)
a(i) (distributivity)

=

j−1∑
i=0

(
2i
(
n

i

)
a(i) + 2n−i

(
n

n− i

)
a(n− i)

)
+ 2j

n−j∑
i=j

(
n

i

)
a(i) (shift summands)

=

j−1∑
i=0

(
2i
(
n

i

)
a(i) + 2n−i

(
n

i

)
a(n− i)

)
+ 2j

n−j∑
i=j

(
n

i

)
a(i) (use

(
n

n− i

)
=

(
n

i

)
)

=

j−1∑
i=0

(
n

i

)(
2ia(i) + 2n−ia(n− i)

)
+ 2j

n−j∑
i=j

(
n

i

)
a(i) (refactoring)

≥
j−1∑
i=0

(
n

i

)
2j(a(i) + a(n− i)) + 2j

n−j∑
i=j

(
n

i

)
a(i) (see above)

=

j−1∑
i=0

2j
(
n

i

)
a(i) + 2j

n−j∑
i=j

(
n

i

)
a(i) +

j−1∑
i=0

2j
(
n

i

)
a(n− i) (split left sum)

=

j−1∑
i=0

2j
(
n

i

)
a(i) + 2j

n−j∑
i=j

(
n

i

)
a(i) +

n∑
i=n−j+1

2j
(

n

n− i

)
a(i) (rename i 7→ n− i)

=

j−1∑
i=0

2j
(
n

i

)
a(i) + 2j

n−j∑
i=j

(
n

i

)
a(i) +

n∑
i=n−j+1

2j
(
n

i

)
a(i) (use

(
n

n− i

)
=

(
n

i

)
)

= 2j
j−1∑
i=0

(
n

i

)
a(i) + 2j

n−j∑
i=j

(
n

i

)
a(i) + 2j

n∑
i=n−j+1

(
n

i

)
a(i) (distributivity)

= 2j
n∑

i=0

(
n

i

)
a(i)

= 2jd(n)

This shows that ∀j ∈ N : ∃n0 ∈ N : ∀n ≥ n0 : b(n) ≥ 2jd(n), whence

∀j ∈ N : ∃n0 ∈ N : ∀n ≥ n0 :
d(n)

b(n)
≤ 1

2j

and since for any ε ∈ R with ε > 0 there is a j ∈ N such that 2−j < ε, the claim is proven. 2

16

6 Conclusion

We have analysed the class of bipolar Boolean functions, a class introduced in the area of abstract
argumentation. Bipolar Boolean functions are an interesting generalization of monotone Boolean
functions, where the polarity of the arguments is irrelevant as long as the arguments are in a
certain sense independent of each other.

It follows from the complexity-theoretic considerations by Strass and Wallner [19] that the
satisfiability problem for propositional formulas that correspond to bipolar Boolean functions
– given a propositional formula ϕ and a polarity for each atom occurring in it, is the formula
satisfiable? – can be decided in polynomial time, where knowledge of the polarities really is the
decisive factor. That observation has a profound impact on the computational complexity of
decision problems associated to abstract dialectical frameworks, as they are (under standard
complexity-theoretic assumptions) “easier” to solve in the bipolar case than in the general,
unrestricted case. Thus bipolar Boolean functions constitute an interesting language also from
the point of view of computation and computational complexity. On the other hand, this also
entails that it is not “easy” to find out if a given ADF is indeed bipolar, as even trying to
detect redundant links amounts to checking whether a certain Boolean function has a constant
return value; thus at least for most practical purposes, the potential existence of redundant links
seems to be a necessary evil. Fortunately, some of those issues are partly alleviated by a recent
representation result for bipolar Boolean functions: syntactically, these can be represented by
propositional formulas in negation normal form where each atom occurs in at most one polarity
(that is, either only with an even or only with an odd number of negations before the atom) [18,
Theorem 1].

Acknowledgements The authors are grateful to one anonymous reviewer for a significant
number of helpful suggestions for improving the manuscript, and to another one for suggesting a
slight improvement in the presentation of the results.

References

[1] Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics of abstract
dialectical frameworks and standard AFs. In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI), pages 780–785. IJCAI/AAAI, 2011.

[2] Gerhard Brewka and Stefan Woltran. Abstract Dialectical Frameworks. In Proceedings of
the Twelfth International Conference on the Principles of Knowledge Representation and
Reasoning (KR), pages 102–111, 2010.

[3] Richard Dedekind. Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Theiler.
In Fest-Schrift der Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pages 1–40.
Vieweg+Teubner Verlag, 1897.

[4] Phan Minh Dung. On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence,
77:321–358, 1995.

[5] E. N. Gilbert. Lattice theoretic properties of frontal switching functions. Journal of Math-
ematics and Physics, 33:57–67, 1954.

[6] G. Hansel. Sur le nombre des fonctions Booléenes monotones de n variables. Comptes Rendus
Hebdomadaires des Seances de L’Academie des Sciences, A 262:1088–1090, 1966.

17

[7] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer-Verlag Berlin Heidelberg, 2012.

[8] Goran Kilibarda and Vladeta Jovović. Antichains of multisets. Journal of Integer Sequences,
7, 2004. Article 04.1.5.

[9] Andrzej Kisielewicz. A solution of Dedekind’s problem on the number of isotone Boolean
functions. Journal für die reine und angewandte Mathematik (Crelles Journal), 386:139–144,
1988.

[10] D. Kleitman and G. Markowsky. On dedekind’s problem: the number of isotone Boolean
functions. Transactions of the AMS, 213:373–390, 1975.

[11] V. K. Korobkov. Monotone functions of the algebra of logic. Problemy Kibernetiki, 13:5–28,
1965.

[12] A. D. Korshunov. The number of monotone Boolean functions. Problemy Kibernetiki,
38:5–108, 1981.

[13] Oleg B. Lupanov. An approach to systems synthesis – a local coding principle. Problems of
Cybernetics, 14:31–110, 1965.

[14] Anthony J. Macula. Covers of a finite set. Mathematics Magazine, 67(2):141–144, 1994.

[15] J. Riordan and C. E. Shannon. The number of two terminal series-parallel networks. J. Math.
Phys., 21:83–93, 1942.

[16] C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical
Journal, 28:59–98, 1949.

[17] Tamon Stephen and Timothy Yusun. Counting inequivalent monotone Boolean functions.
Discrete Applied Mathematics, 167:15–24, April 2014.

[18] Hannes Strass. Expressiveness of two-valued semantics for abstract dialectical frameworks.
Journal of Artificial Intelligence Research, 54:193–231, 2015.

[19] Hannes Strass and Johannes P. Wallner. Analyzing the computational complexity of abstract
dialectical frameworks via approximation fixpoint theory. Artificial Intelligence, 226:34–74,
2015.

[20] Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons, Inc., New York,
NY, USA, 1987.

18

	Introduction
	Background
	The number of bipolar Boolean functions
	A closed expression for the upper bound
	Relation to Dedekind numbers
	Conclusion

