
An Abstract, Logical Approach to Characterizing Strong
Equivalence in Non-monotonic Knowledge Representation

Formalisms

Ringo Baumann

Computer Science Institute, Leipzig University

Augustusplatz 10, 04109 Leipzig, Germany

Hannes Strass

Computational Logic Group
Institute of Artificial Intelligence

Faculty of Computer Science
TU Dresden, Germany

Abstract

Two knowledge bases are strongly equivalent if and only if they are mutually interchangeable
in arbitrary contexts. This notion is of high interest for any logical formalism, since it allows
to locally replace parts of a given theory without changing its meaning. In contrast to classical
logic, where strong equivalence coincides with standard equivalence (having the same models), it
is possible to find ordinary but not strongly equivalent objects for any nonmonotonic formalism
available in the literature. Consequently, much effort has been devoted to characterizing strong
equivalence for knowledge representation formalisms such as logic programs under the stable
model semantics, Reiter’s default logic, or Dung’s argumentation frameworks. For example,
strong equivalence for logic programs under stable models can be characterized by so-called
HT-models. More precisely, two logic programs are strongly equivalent if and only if they are
standard equivalent in the logic of here and there. This means, the logic of here and there can
be seen as a characterizing formalism for logic programs under stable model semantics.

The aim of this article is to study whether the existence of such characterization logics can
be guaranteed for any logic. One main result is that every knowledge representation formalism
that allows for a notion of strong equivalence on its finite knowledge bases also possesses a
canonical characterizing formalism. In particular, we argue that those characterizing formalisms
can be seen as classical, monotonic logics. Moreover, we will not only show the existence of
characterizing formalism, but even that the model theory of any characterizing logic is uniquely
determined (up to isomorphism).

Keywords: strong equivalence, knowledge representation formalisms, logic

1. Introduction

Reusability of human-made artifacts is of paramount importance in computer science. For
example, the scale and depth of contemporary software development would not be possible
without the availability of software libraries, which encapsulate certain functionalities that can
then be used in different parts of a project and also across multiple projects. Crucially, libraries

Preprint submitted to Artificial Intelligence 13th February 2022

make themselves use of libraries for more basic features, all the way down to the core of the
programming language being employed in each specific case. We are convinced that any large-
scale knowledge representation project where knowledge is engineered will likewise have to make
use of a significant amount of modularity – not only to manage complexity, but also to avoid
having to start from scratch in each iteration of the engineering process. To assess the reusability
of (parts of) knowledge bases in logic-based knowledge representation languages, in turn, we have
to know whether pieces of knowledge make certain context-dependent assumptions. In classical
propositional logic, for example, there is no such context-dependence: whenever two (sets of)
formulas are equivalent in the sense of having the same models, then they are mutually replaceable
in arbitrary contexts.

In the field of knowledge representation and reasoning, however, not all commonly used form-
alisms are like classical logic in this regard. For example, the answer-set-programming paradigm
uses (various extensions of) the formalism of normal logic programs to encode combinatorial
problems such that the answer sets (stable models) of the logic programs correspond to and
encode solutions to the encoded problem [1]. Alas, for normal logic programs, having the same
stable models does not amount to mutual replaceability. For this, a stronger property is needed:
it is called strong equivalence, and holds for two logic programs if and only if they keep the same
stable models even if they are both extended with an arbitrary third logic program. Formally
– as a logic program is a set of rules –, extending a logic program can be modeled by ordinary
set union. Consequently, the notion of strong equivalence can be defined in a similar way for
other knowledge representation formalisms for which set union is an adequate formalization of
appending or otherwise combining knowledge bases.

As a grossly simplified motivating example, consider building a knowledge base of travel
destinations across the world, represented as nodes of a graph, and information of possibilities
for one-leg trips between destinations, represented as edges of the graph. In that setting, it
seems fruitful to use a library that provides some functionalities commonly associated with dir-
ected graphs, for example for declaratively defining reachability, querying for shortest paths and
similar scenarios. It is customary (in logic programming) to represent directed graphs as sets
of ground-instantiated first-order atoms – for example, the graph G = ({a, b, c} , {(a, b), (c, b)})
could be represented by the logic program {n(a), n(b), n(c), e(a, b), e(c, b)} making use of pre-
dicates for nodes (n) and edges (e). A graph library could then build upon the vocabulary
{n/1, e/2} (denoting the predicate names along with their arity) and offer additional predicates,
e.g. p/2 whenever there is a (directed) path between two nodes in the graph. A straightforward
“implementation” of reachability in (first-order) answer set programming is given by the rules
p(X,Y)← e(X,Y) and p(X,Z)← p(X,Y), p(Y,Z), where upper-case letters are first-order vari-
ables and rules containing variables are understood as collections of their ground instantiations.
Denoting this “library” by Tgraph , it might at some point become necessary/worthwhile to replace
Tgraph by a, say, more optimized version providing the same functionality over that vocabulary,
denoted Tgropt . Then it is vital to answer the question whether we can safely replace Tgraph by
Tgropt in our overall knowledge base. Providing solutions to such scenarios falls squarely into the
realm of strong equivalence.

In a series of interesting developments, researchers have succeeded in precisely characterizing
strong equivalence for several common knowledge representation formalisms, among them nor-
mal logic programs under the stable model semantics [2, 3].1 What is more, it turned out that

1Due to their widespread use, for logic programs there also exist further, intermediate equivalence notions:
uniform equivalence [4], where extension is restricted to a set of facts; modular equivalence [5], which considers
decomposing a logic program (into modules) along the strongly connected components of the logic programs’s
positive dependency graph; and even further, parameterized versions [6].

2

sometimes, to characterize strong equivalence in formalism F , we can use ordinary equivalence
in a formalism F ′: for example, strong equivalence in normal logic programs under stable models
can be characterized by the standard semantics of the logic of here-and-there [2]. Such results
have rightly been recognized as important for the study of these concrete knowledge represent-
ation formalisms, as having a characterization of strong equivalence gives us a deeper level of
understanding of the meaning of pieces of knowledge in that formalism.

However, such results about the existence of characterizing formalisms also raise a funda-
mental question: Does every formalism have one? In this paper, we answer this question with a
qualified “yes”. More precisely, while not every formalism has one, we show that the important
case of considering only finite knowledge bases (but still possibly infinite languages) guarantees
the existence of a characterizing formalism, and that in a very general setting. Existing results
on characterizing formalisms make use of specifics of each formalism [2, 3, 7, 8, 9]. In this paper,
we completely abstract away from formalism specifics and address the core of the problem, the
nature of strong equivalence itself. In fact, we will not only show the existence of just any charac-
terizing formalism, but of characterizing formalisms whose model theory is uniquely determined
(up to isomorphism), and structurally resembles that of classical logics. At this point, we appeal
to the reader’s intuition on what makes logics classical; we will later define what we mean by
“classical logic” in a precise mathematical way (and along the lines of previous work towards this
end [10, 11]). Still, we consider this main result of our paper a surprising and important insight,
as it tells us that for the overwhelming majority of knowledge representation formalisms, strong
equivalence can be approached using established techniques from classical logic.

While our work is in its essence derived from first principles, building mostly upon clas-
sical logic and lattice theory, there have been important inspirations. Foremost, Truszczyński
presented a general, algebraic account of strong equivalence [12] within approximation fixpoint
theory [13]. His setting is indeed quite general, but most of this generality derives from algeb-
raic commonalities in the semantics of logic programs and default logic. It is not immediately
clear, for example, if and how it captures Dung’s abstract argumentation frameworks (AFs)
[14], another important AI formalism whose strong equivalence has been studied in the recent
past [15, 16]. More precisely, while AFs with all their semantics can be captured by approx-
imation fixpoint theory [17], Truszczyński’s notion of expanding an operator does not coincide
with the corresponding notion of expanding AFs and his results are not directly applicable.2 In
other words, while the operator associated to the union of two logic programs corresponds to
the union of their respective associated operators, the same does not hold for the union of two
AFs and their operators. Thus although AFs are essentially a restricted subclass of normal logic
programs with respect to the ordinary equivalence of having the same models, this does not carry
over to strong equivalence because the respective notions of knowledge base union are different
in AFs and normal logic programs. For example, the AF where b attacks a corresponds to the
logic program P1 = {a← ∼b}; likewise, P2 = {a← ∼c} corresponds to the AF where c attacks
a [18, 19, 17]. However, the AF where both b and c attack a (the union of the two AFs above)
corresponds to the logic program P3 = {a← ∼b, ∼c}, where obviously the three programs are
not subset-related: P1 6⊆ P3 and P2 6⊆ P3.

In contrast, we show how the approach we develop in this paper can be directly applied
to argumentation frameworks. Thus as a consequence of our main theorem, we get the first
semantical characterization of strong equivalence in AFs. This is significant because the only
currently known characterizations are syntactical [15].

2As an AF is a pair (A,R) with A a set of arguments and R ⊆ A×A an attack relation, the union of AFs is
defined component-wise: (A1, R1) ∪̇ (A2, R2) = (A1 ∪A2, R1 ∪R2).

3

Due to its general, abstract setting, our approach is able to deal with cases such as infinite
knowledge bases off the shelf. While it may seem counter-intuitive to consider infinite syntactical
objects in knowledge representation at all, infinite sets of logic programming rules arise naturally
due to ground instantiation, a typical method for obtaining the semantics of rules with variables
in a first-order setting. In answer set programming, in order to obtain a formal semantics
for solvers that are already being used in practice, Harrison et al. [20, 21] have even extended
propositional logic by infinite conjunctions and disjunctions. This shows that considering infinite
syntactical objects is not only beneficial, but sometimes even necessary when analyzing aspects of
knowledge representation languages. A dedicated analysis of strong equivalence in this infinitary-
logic setting was later given by Harrison et al. [22], while clearly our understanding of “logic” and
thus the results of this paper also apply to the case of possibly infinite sets with possibly infinitary
formulas. Although the bearing of our theory on questions regarding specific formalisms will be
not as strong as that of more specialized theories, our main results still tell researchers looking
for a “nice” characterization of strong equivalence in their formalism that the search – given the
right conditions are met – will not be in vain.

The paper proceeds as follows. In the next section, we introduce the general setting in which
we derive our results and present our conception of the term “classical logic”. Afterwards, in the
main part of the paper, we define characterization logics and show two classes of formalisms that
always possess them. We next apply our results, chiefly to abstract argumentation frameworks
but briefly also to normal logic programs. The paper concludes with a discussion of related and
future work.

2. An Abstract View on Model Theory

What is a classical logic?
We will spend this section introducing an abstract notion of logics with model-theoretic

semantics and explaining when we call some of them classical. Formally, we consider logical
languages L, that is, non-empty sets of language elements. We make no assumption on the
internal structure of pieces of knowledge F ∈ L. These pieces of knowledge could be formulas of
classical propositional logic, normal logic program rules, attacks between arguments, or Reiter-
style defaults. A model-theoretic semantics for a language L uses a set I of interpretations and
a model function σ : 2L → 2I with the intuition that σ assigns each language subset T ⊆ L, a
theory, the set σ(T) ⊆ I of its models. We make no assumptions on the internal structure of
interpretations – there need not be an underlying vocabulary of atoms or the like (although in the
concrete cases we consider there often will be) that are the same among syntax and semantics.
This is the main abstraction in our setting. It goes beyond what is known from classical logic
in that meaning is not assigned to language elements (formulas), but only to theories, that is,
sets of language elements. This is a necessary requirement for being able to model a number
of established knowledge representation formalisms: for example, in normal logic programs,
meaning is not assigned to single rules, but only to sets thereof. Likewise, in default logic,
meaning is not assigned to single defaults, but only to sets thereof.3 We illustrate our definitions
so far by showing more precisely how existing formalisms can be embedded into our setting.

Example 1. Consider a set A = {a1, a2, a3, . . .} representing the most basic building blocks
of the following formalisms. For instance, in case of propositional logic A stands for atomic
formulas while in the context of abstract argumentation A represents the set of all arguments.

3In this reading, we interpret the elements of the world knowledge as justification-free defaults with tautological
prerequisite.

4

Classical propositional logic: The underlying language LPL is the set of all classical propositional
formulas over A and can be defined as usual by induction. The set of interpretations is
then given by the set IPL = {v : A → {t, f}} of all two-valued interpretations of A. Lastly,
σmod(T) is the set of all models of the theory T ⊆ LPL, that is, the set of all interpretations
satisfying all formulas in T .

Normal logic programs: The underlying language LLP is the set of all normal logic program
rules a0 ← a1, . . . , am,∼am+1, . . . ,∼an with 0 ≤ m ≤ n and a0, a1, . . . , an ∈ A. The set
ILP of interpretations is then the set ILP = 2A of all possible stable model candidates.
Accordingly, σstb(T) returns the set of stable models of the theory (normal logic program)
T ⊆ LLP [23]; we could also define σsup(T) returning the set of supported models of T [24],
or σmod(T) the set of classical models of T , interpreting ← as material implication and ∼
as classical negation [25].

Propositional default logic [26]: The underlying language LDL is the set of all defaults over for-
mulas overA, LDL = {(ϕ,Ψ, ξ) | ϕ, ξ ∈ LPL,Ψ ⊆ LPL} where the triple (ϕ, {ψ1, . . . , ψn} , ξ)
represents the default ϕ : ψ1, . . . , ψn/ξ. The possible interpretations are given by IDL = 2LPL ,
as each default theory is assigned a set of logical theories called extensions: σDL(T) =
{E ⊆ LPL | E is an extension of T}.

Abstract argumentation frameworks [14]: The underlying language LAF contains the fundamental
building blocks of AFs, that is, arguments and attacks:

LAF = {({a} , ∅), ({a, b} , {(a, b)}) | a, b ∈ A}

Extension-based semantics can be incorporated by setting IF = 2A and, depending on the
argumentation semantics ρ we use, we set σρ(T) = ρ(FT), where the tuple FT = (

⋃
(A,R)∈T A,

⋃
(A,R)∈T R)

is the AF associated to T ⊆ LAF (cf. Section 4.1 for more detailed information and discus-
sion). ♦

Before we delve into the main aim of this paper, characterizing strong equivalence, we briefly
analyze some foundational properties of our way of abstractly modeling knowledge representation
languages. We begin with the relationship between the model function and the consequence
function of a logical language.

2.1. Models and Consequences

A consequence function for a language L is a function Cn : 2L → 2L that assigns a given set T
of language elements another set Cn(T) of language elements. Intuitively, Cn(T) is understood
to be the set of logical consequences of the theory T . Given a language, we can define the
consequence function in terms of the semantics. In words, the set of consequences of a given
theory T is the union of all theories S such that any model of T is a model of S.

Definition 1. Let L be a language and σ : 2L → 2I be a model function. The canonical con-
sequence function of σ is defined as follows:

Cnσ : 2L → 2L, T 7→
⋃
S⊆L,

σ(T)⊆σ(S)

S ♦

In classical definitions of logical consequence, one typically says that a single formula is a
consequence of a theory if all models of the theory are models of the formula. In our case, the

5

focus is primarily on theories both for presumptions and consequences, so we stick to the above
definition. For classical logic LPL, this definition coincides with the standard notion of logical
consequence.

It will be of great interest in this paper that certain algebraic properties of the semantics in-
duce certain useful properties of the consequence relation. We now introduce the most important
properties.4

Definition 2. Let L be a language.

• A model function σ : 2L → 2I is antimonotone iff

for all T1, T2 ∈ 2L: T1 ⊆ T2 =⇒ σ(T2) ⊆ σ(T1).

• A consequence operator Cn : 2L → 2L is monotone iff

for all T1, T2 ∈ 2L: T1 ⊆ T2 =⇒ Cn(T1) ⊆ Cn(T2).

• A consequence operator Cn : 2L → 2L is increasing iff

for all T ∈ 2L, we find T ⊆ Cn(T).

• A consequence operator Cn : 2L → 2L is idempotent iff

for all T ∈ 2L, we find Cn(Cn(T)) ⊆ Cn(T).

• A consequence operator Cn : 2L → 2L is a closure operator iff

Cn is monotone, increasing, and idempotent. ♦

To save some space in what follows, we define a logic as a tuple (L, I, σ) consisting of a
language L, an interpretation set I, and a model function σ : 2L → 2I . We will sometimes
associate the canonical consequence function of σ to the whole logic for convenience.

To start out in analyzing how semantics and consequence relate in our setting, we show some
straightforward properties of the canonical consequence function defined above. More precisely,
any induced consequence operator is increasing and moreover, it is monotone if the considered
model function is antimonotone.

Proposition 1. Let (L, I, σ) be a logic and Cnσ its canonical consequence function.

1. Cnσ is increasing.

2. If σ is antimonotone, then Cnσ is monotone.

Proof.

1. Clearly for any T ⊆ L we find σ(T) ⊆ σ(T). Consequently, we deduce T ⊆
⋃
S⊆L,

σ(T)⊆σ(S)

S = Cnσ(T).

2. Let σ be antimonotone and T1 ⊆ T2. Then clearly σ(T2) ⊆ σ(T1) by antimonotonicity.
Thus for any S ⊆ L with σ(T1) ⊆ σ(S) we also find σ(T2) ⊆ σ(S). It follows that

⋃
S⊆L,σ(T1)⊆σ(S)

S ⊆
⋃
S⊆L,σ(T2)⊆σ(S)

S,

that is, Cnσ(T1) ⊆ Cnσ(T2). Since T1 and T2 were arbitrary, Cnσ is monotone.

4We could introduce these properties in an even more abstract setting of operators on partially ordered sets,
but refrain from doing so lest we introduce even more notation.

6

The reverse of Item 2 does not hold, that is, monotone consequence functions do not neces-
sitate antimonotone model functions.

Example 2. Consider L = {a} and I = {1} with σ(∅) = ∅ and σ({a}) = {1}. We get the fol-
lowing canonical consequence function:

Cnσ(∅) =
⋃
S⊆L,

σ(∅)⊆σ(S)

S =
⋃
S⊆L,
∅⊆σ(S)

S =
⋃
S⊆L

S = L = {a}

Cnσ({a}) =
⋃
S⊆L,

σ({a})⊆σ(S)

S =
⋃
S⊆L,
{1}⊆σ(S)

S = {a}

Thus Cnσ(∅) = {a} = Cnσ({a}) and Cnσ is monotone and increasing albeit σ is not antimono-
tone. ♦

Also, not every antimonotone model function induces a closure operator, that is, an operator
that is monotone, increasing and idempotent.

Example 3. Consider the logic (L, I, σ) with language L = {a, b, c}, interpretation set I = {1}
and model function σ : 2L → 2I given by

σ(T) =

®
{1} if T ∈ {∅, {a} , {b}}
∅ otherwise

In addition to σ being antimonotone we have Cnσ(∅) = {a, b} and Cnσ({a, b}) =
{a, b, c}. This implies

{a, b, c} = Cnσ({a, b}) = Cnσ(Cnσ(∅)) 6⊆ Cnσ(∅) = {a, b}

which shows that Cnσ is not idempotent. ♦

We can show that our restriction to semantics via model functions is not overly limiting. We
could have chosen to start out from consequence functions as well, as long as these consequence
functions are increasing (what is contained in a theory follows from it) and idempotent (all
consequences are obtained in one step). More precisely, when given a consequence operator
satisfying these two requirements, we can also define a canonical model function whose associated
canonical consequence function is exactly the given consequence function we started with.

Proposition 2. Let L be a language and C : 2L → 2L be a consequence function that is in-
creasing and idempotent.

The model function σC : 2L → 2L with T 7→ L \ C(T) is such that CnσC = C.5

5Note that we use I = L, that is, the assigned interpretation set of σC is just the language L. This is purely
for technical convenience.

7

Proof. Let T ⊆ L. We find that

CnσC (T) =
⋃
S⊆L,

σC(T)⊆σC(S)

S (Def. Cnσ)

=
⋃
S⊆L,

L\C(T)⊆L\C(S)

S (Def. σC)

=
⋃
S⊆L,

C(S)⊆C(T)

S (set algebra)

=
⋃
S⊆L,

S⊆C(S)⊆C(T)

S (C is increasing)

Firstly, this shows that CnσC (T) ⊆ C(T). Moreover, in the last equation we can substitute
S = C(T) to obtain that C(T) ⊆ CnσC (T). �

It is clear from Proposition 1 (Item 1) that no non-increasing consequence function C can
be mimicked by Cnσ for any σ. However, we consider the restrictions of possible consequence
functions C having to be increasing and idempotent not to be too severe.

2.2. Standard and strong equivalence

This paper is chiefly about characterizing strong equivalence in one logic via standard equi-
valence in another logic. We will now formally introduce these concepts.

Definition 3. Let (L, I, σ) be a logic and T1, T2 ⊆ L theories. We say that T1 and T2 are

• ordinarily equivalent if and only if σ(T1) = σ(T2);

• strongly equivalent if and only if ∀U ⊆ L : σ(T1 ∪ U) = σ(T2 ∪ U). ♦

The notion of strong equivalence is intimately connected with the possibility to simplify parts
of a given theory without affecting its semantics. Consider the following example.

Example 4. Consider some logic (L, I, σ), a theory S ⊆ L and a subtheory T1 ⊆ S. Assume
we have found T2, a “nicer” (shorter, more readable or beneficial in some other way) way of
expressing T1. Whenever we know that T1 and T2 are not only ordinarily, but strongly equivalent,
we may replace T1 with T2 in S (and denote the result as S[T1/T2]) and can be sure that the
replacement does not affect the meaning of S, that is, S and S[T1/T2] are ordinarily equivalent.

More precisely, σ(S) = σ(S[T1/T2]) with S[T1/T2] = T2 ∪ (S \ T1). This can be seen as fol-
lows: Since T1 ⊆ S we have T1 ∪ (S \ T1) = S. Moreover, due to the strong equivalence of T1
and T2 we obtain σ(T1 ∪ (S \ T1)) = σ(T2 ∪ (S \ T1)). Hence, σ(S) = σ(S[T1/T2]) as claimed.

Clearly, strongly equivalent theories are ordinarily equivalent by definition. What about the
converse direction? It is a matter of fact that in case of well-known nonmonotonic formalisms,
such as logic programs [2], default logic [27], causal theories [28] and abstract argumentation
[15, 16] strong equivalence and ordinary equivalence are indeed different concepts. However,
there are logics like propositional logic or first order logic where both concepts coincide. In
the following we will say that the model function σ has the replacement property if ordinary
equivalence implies strong equivalence. The following natural question arises: What properties

8

must a logic possess in order for ordinary and strong equivalence to coincide? Propositional
as well as first order logic possess a monotone consequence function. Does monotony of the
consequence operator ensure the coincidence of both concepts? The following example provides
us with a negative answer.

Example 5. Consider the language L = {a, b} with interpretation set I = {1, 2} and model
function σ given by

σ(∅) = {1, 2}
σ({a}) = {1, 2}
σ({b}) = {2}

σ({a, b}) = ∅

It is easy to verify that the semantics σ is antimonotone. Therefore, by Proposition 1, its
consequence function Cnσ is monotone. However, while ∅ and {a} are obviously ordinarily
equivalent, they are not strongly equivalent, which can be seen by extending both with the
theory {b}:

σ(∅ ∪ {b}) = σ({b}) = {2} 6= ∅ = σ({a, b}) = σ({a} ∪ {b})

We also inspect the induced consequence operator:

Cnσ(∅) =
⋃
{S ⊆ L | {1, 2} ⊆ σ(S)} = {a}

Cnσ({a}) =
⋃
{S ⊆ L | {1, 2} ⊆ σ(S)} = {a}

Cnσ({b}) =
⋃
{S ⊆ L | {2} ⊆ σ(S)} = {a, b}

Cnσ({a, b}) =
⋃
{S ⊆ L | ∅ ⊆ σ(S)} = {a, b}

Since the codomain of Cnσ consists entirely of fixpoints, Cnσ is idempotent. Therefore the
induced consequence operator Cnσ is increasing, monotone, and idempotent, thus a closure
operator. Yet, the inducing semantics does not have the replacement property. ♦

So having a monotone consequence function is, by itself, insufficient to guarantee the re-
placement property. We can however identify a property that is strong enough to guarantee
replacement on its own. We call it the intersection property, because it basically says that the
semantics of a theory can be obtained by only considering the semantics of the singleton sets
constituting the theory.

Definition 4. Let (L, I, σ) be a logic. Its model function σ : 2L → 2I has the intersection
property iff for all T ⊆ L:

σ(T) =
⋂
F∈T

σ({F}) ♦

It follows from the definition that in particular for any two theories T1, T2 ⊆ L, we have that
σ(T1 ∪ T2) = σ(T1) ∩ σ(T2). The intersection property is a certain locality, independence, or
compositionality criterion.6 Towards an explanation of Example 5 we can now remark that its

6We will later consider a reformulation of this property that is easier to generalize to even more abstract
settings, but for the moment this is the definition we work with.

9

model function σ does not have the intersection property:

σ({a, b}) = ∅ 6= {2} = {1, 2} ∩ {2} = σ({a}) ∩ σ({b})

Indeed, this is necessarily so: as we will show next (and as is easy to show), satisfying the
intersection property is sufficient for satisfying the replacement property.

Proposition 3. Let (L, I, σ) be a logic. If σ satisfies the intersection property, then standard
equivalence coincides with strong equivalence.

Proof. Let σ satisfy the intersection property. It is clear that strong equivalence implies or-
dinary equivalence (set U = ∅), so it remains to show the converse. Let T1, T2 ⊆ L such that
σ(T1) = σ(T2) and consider any U ⊆ L. We have

σ(T1 ∪ U) = σ(T1) ∩ σ(U) (intersection)

= σ(T2) ∩ σ(U) (presumption)

= σ(T2 ∪ U) (intersection) �

Notably, monotonicity properties were not even needed in the above result. So why is it that
all formalisms we know of that have the replacement property also happen to have monotone
consequence functions? It holds because σ having the intersection property implies that σ is
antimonotone (which in turn implies that Cnσ is monotone).

Proposition 4. Let (L, I, σ) be a logic where σ has the intersection property. Then σ is anti-
monotone.

Proof. Let T1 ⊆ T2 ⊆ L. Then T1 ∪ T2 = T2, and we conclude the desired subset-inclusion via
σ(T2) = σ(T1 ∪ T2) = σ(T1) ∩ σ(T2) ⊆ σ(T1). �

In the other direction, we can observe that the replacement property on its own does not
guarantee antimonotonicity.

Example 6. Consider the language L = {a} and interpretation set I = {1}. For semantics σ
with σ(∅) = ∅ and σ({a}) = {1}, we can see that the replacement property holds trivially since
there are no semantically equivalent theories that are syntactically different. However, σ is not
antimonotone (as σ({a}) = {1} 6⊆ ∅ = σ(∅)) and does not have the intersection property:

σ(∅ ∪ {a}) = σ({a}) = {1} 6= ∅ = ∅ ∩ {1} = σ(∅) ∩ σ({a}) ♦

It is easy to see that classical propositional logic LPL has the intersection property simply by
definition: the standard model semantics is typically firstly defined for single formulas ϕ ∈ LPL

and then generalized to theories T by setting σmod(T) =
⋂
ϕ∈T σmod({ϕ}).

As it turns out, for all logics, the intersection property also guarantees that each theory T
has the same models as the set of all canonical consequences of T .

Proposition 5. Let (L, I, σ) be a logic that has the intersection property. Then for each T ⊆ L
we find that σ(T) = σ(Cnσ(T)).

10

Proof.

σ(Cnσ(T)) = σ

Ü ⋃
S⊆L,

σ(T)⊆σ(S)

S

ê
(Definition 1)

=
⋂
S⊆L,

σ(T)⊆σ(S)

σ(S) (intersection property)

= σ(T)

In the last equality, the ⊇-direction is clear as we intersect only supersets of σ(T), and the
⊆-direction is clear as we can substitute T for S in the line above. �

Finally, this means that the intersection property only holds for semantics whose canonical
consequence functions are closure operators.

Proposition 6. Let (L, I, σ) be a logic that has the intersection property. Then Cnσ is a closure
operator.

Proof. We have to show that Cnσ is increasing, monotone and idempotent. First, Cnσ is in-
creasing in any case (Proposition 1). Moreover, since σ has the intersection property, it is also
antimonotone (Proposition 4) and thus, Cnσ is monotone (Proposition 1). Finally, it follows
from Proposition 5 that Cnσ is also idempotent. More precisely, if ϕ ∈ Cnσ(Cnσ(T)) then there
is an S ⊆ L with ϕ ∈ S and σ(Cnσ(T)) ⊆ σ(S), and by σ(T) = σ(Cnσ(T)) it is clear that in this
case σ(T) ⊆ σ(S) and ϕ ∈ S ⊆ Cnσ(T). Hence, Cnσ is a closure operator. �

We have shown in Proposition 2 that we also could have started with a consequence function.
Clearly the replacement property could be easily defined for consequence functions C : 2L → 2L

in the sense that C has the replacement property if and only if for all theories T1, T2 ⊆ L, “clas-
sical consequence-equivalence” C(T1) = C(T2) coincides with “strong consequence-equivalence”
∀U ⊆ L : C(T1 ∪ U) = C(T2 ∪ U). It is also clear that any semantics having the replacement
property induces a canonical consequence function having the consequence-function version of
the replacement property. However, we must remark that we have not found a consequence-
function equivalent of the intersection property. Even setting C(T) =

⋃
F∈T C({F}) would be

too weak to capture interactions between different subtheories of T . On the other hand, and on
the positive side, we will see that the intersection property for model functions as we defined it
in Definition 4 will give us a good handle on characterizing strong equivalence.

2.3. Galois correspondences

Up to here, we have considered various properties of logics in our abstract setting. Mostly,
those were algebraic properties of the model-theoretic semantics. In this subsection, we conclude
our argument for defining as “classical” those logics whose semantics satisfy the intersection
property.

For this, it is firstly necessary to slightly extend (and, for the time being, also slightly con-
strain) our abstract notion of “logic”. Up to now, we only assumed the existence of a model
function σ : 2L → 2I that assigns a set of interpretations to a theory (intuitively, its models). In
the converse direction, we now also assume a theory function τ : 2I → 2L, that takes as input a
set K ⊆ I of interpretations and intuitively returns the set τ(K) of all language elements that

11

are true under all interpretations in K. A logic will now be a tuple (L, I, σ, τ) with L, I, σ as
before and τ : 2I → 2L a theory function.

This immediately yields another way of defining a consequence operator: given σ and τ , we
can define Cnσ,τ (T) = τ(σ(T)). Symmetrically, we can define an operator on interpretation sets
by K 7→ σ(τ(K)).

We next consider a class of logics where the interplay of model function and theory func-
tion satisfies certain conditions. Below, we denote the composition of functions f : A→ B and
g : B → C by g ◦ f , that is, g ◦ f : A→ C with x 7→ g(f(x)).

Definition 5. Let (L, I, σ, τ) be a logic. The functions σ and τ are in Galois correspondence if
and only if:

1. both σ and τ are antimonotone;

2. both σ ◦ τ and τ ◦ σ are increasing.

If σ and τ are in Galois correspondence, we also say that (L, I, σ, τ) is a Galois logic.
Galois correspondences have mainly been studied in lattice theory [29, 30, 31, 32]. Further

work on them was done in model theory by Goguen and Burstall [10], who also aim at formalizing
the intuitive notion of a “logical system”, which they do by introducing an abstract notion called
institution making use of category theory. Their notion of “logic” has a more distinct first-order
flavor, as they include the syntactical notion of signatures in the definition, but they observe that
their definition of theories of an institution (Def. 19) induces a Galois connection and moreover
leads to a semantics satisfying the intersection property (Prop. 21, Item 8).

As our first technical remark, we observe that the antimonotonicity of σ and τ imply that the
resulting consequence function is monotone; by the last property, it is also increasing. It follows
that Galois correspondences induce closure operators, that is, operators that are monotone,
increasing, and idempotent.

Proposition 7. Let (L, I, σ, τ) be a Galois logic. Then the operators

• σ ◦ τ : 2I → 2I , K 7→ σ(τ(K))

• τ ◦ σ : 2L → 2L, T 7→ τ(σ(T))

are closure operators.

Proof. We have to show that σ ◦ τ and τ ◦ σ are (1) increasing, (2) monotone and (3) idempotent.
We only consider σ ◦ τ as the proof for τ ◦ σ is absolutely symmetric.

1. The second item of Definition 5 states verbatim that σ ◦ τ is increasing.

2. It is easy to show that σ ◦ τ is monotone since both σ and τ are antimonotone: if K1 ⊆ K2,
then τ(K2) ⊆ τ(K1). Consequently, σ(τ(K1)) ⊆ σ(τ(K2)) is implied, which means (σ ◦ τ)(K1) ⊆ (σ ◦ τ)(K2).

3. ConsiderK ⊆ I. We have to show that (σ ◦ τ)((σ ◦ τ)(K)) ⊆ (σ ◦ τ)(K), that is, σ(τ(σ(τ(K)))) ⊆ σ(τ(K)).
Since τ ◦ σ is increasing by definition, we have that τ(K) ⊆ τ(σ(τ(K))). Since σ is anti-
monotone, σ(τ(σ(τ(K)))) ⊆ σ(τ(K)).

Towards showing that having the intersection property and being in a Galois correspondence
are one and the same, we firstly derive a slightly modified characterization of the intersection
property. Instead of decomposing theories into its singletons, this version considers families of
theories.

12

Proposition 8. Let (L, I, σ) be a logic. Its model function σ : 2L → 2I satisfies the intersection
property if and only if for all T ⊆ 2L:

σ

(⋃
T∈T

T

)
=
⋂
T∈T

σ(T)

Proof. if: Let T ⊆ L and define T = {{F} | F ∈ T}. Clearly

T =
⋃
F∈T
{F} (1)

and we derive:

σ(T) = σ

(⋃
F∈T
{F}

)
(Equation (1))

= σ

Ñ ⋃
{F}∈T

{F}

é
(definition of T)

=
⋂
{F}∈T

σ({F}) (presumption)

=
⋂
F∈T

σ({F}) (definition of T)

only if: Let T ⊆ 2L and define T =
⋃
U∈T U . Clearly

∀F ∈ L :

(
F ∈

⋃
U∈T

U ⇐⇒ ∃U ∈ T : F ∈ U

)
(2)

Now we have that

σ

(⋃
U∈T

U

)
= σ(T) (definition of T)

=
⋂
F∈T

σ({F}) (presumption)

=
⋂

F∈
⋃
U∈T U

σ({F}) (definition of T)

=
⋂
U∈T ,
F∈U

σ({F}) (Equation (2))

=
⋂
U∈T

(⋂
F∈U

σ({F})

)
(associativity of ∩)

=
⋂
U∈T

σ(U) (presumption) �

13

In what follows, we will make implicit use of this result and consider the two formulations of
the intersection property to be interchangeable.

We will also use an alternative, but equivalent formulation of Galois correspondences [32].

Proposition 9. Let (L, I, σ, τ) be a logic. It holds that σ and τ are in Galois correspondence
iff for all T ⊆ L and K ⊆ I:

K ⊆ σ(T) ⇐⇒ T ⊆ τ(K)

Proof. if: Assume that for all T ⊆ L and K ⊆ I we have, K ⊆ σ(T) iff T ⊆ τ(K).

1. We start with showing that τ ◦ σ is increasing.
Let T ⊆ L. Obviously, σ(T) ⊆ σ(T). Hence, if substituting K = σ(T) we obtain by
presumption T ⊆ τ(σ(T)).
In the same spirit one may easily show that σ ◦ τ is increasing.

2. We show now that σ is antimonotone.
Let T1 ⊆ T2. Then T1 ⊆ T2 ⊆ τ(σ(T2)) by the above. By presumption (withK = σ(T2)),
it follows that σ(T2) ⊆ σ(T1).
Analogously one may show that τ is antimonotone.

only if: Let T ⊆ L and K ⊆ I. If K ⊆ σ(T), then τ(σ(T)) ⊆ τ(K). Hence, we conclude that
T ⊆ τ(σ(T)) ⊆ τ(K). The reverse implication follows symmetrically. �

We now conclude this section with its main result. It states that for any logic (L, I, σ), the
conditions “σ has the intersection property” and “σ is in a Galois correspondence with some τ”
are equivalent. The proof can be adapted from the literature [32, Propositions 7.31 and 7.33] to
our slightly different setting with acceptable effort.

Theorem 10. Let (L, I, σ) be a logic.

1. If there is a τ : 2I → 2L such that σ and τ are in Galois correspondence, then σ has the
intersection property.

2. If σ has the intersection property, then we can define a theory function τ : 2I → 2L with

K 7→
⋃
T⊆L,
K⊆σ(T)

T

such that σ and τ are in Galois correspondence.

Proof. 1. Assume the presumption. We have to show that for any T ⊆ 2L, we find that

σ

(⋃
T∈T

T

)
=
⋂
T∈T

σ(T)

Now denote Z =
⋃
T∈T T . We first show that σ(Z) is a lower bound for the set σ(T) = {σ(T) | T ∈ T }.

Clearly, for each T ∈ T we have T ⊆ Z. Applying antimonotonicity of σ we obtain σ(Z) ⊆ σ(T)
for each T ∈ T . Now let Q ⊆ I be any lower bound for σ(T). Then Q ⊆ σ(T) for all
T ∈ T . By Proposition 9, we get T ⊆ τ(Q) for all T ∈ T . By definition, this entails that⋃
T∈T T = Z ⊆ τ(Q). Now using Proposition 9 again yields Q ⊆ σ(Z) which implies that

σ(Z) is the greatest lower bound of σ(T).

14

2. Let σ have the intersection property. By Proposition 4, it follows that σ is antimonotone.
For antimonotonicity of τ , consider K1 ⊆ K2. Then

τ(K2) =
⋃
T⊆L,

K2⊆σ(T)

T ⊆
⋃
T⊆L,

K1⊆σ(T)

T = τ(K1)

Now for showing that σ ◦ τ and τ ◦ σ are increasing.
Let K ⊆ I. We find

K ⊆
⋂
T⊆L,
K⊆σ(T)

σ(T) = σ

Ü ⋃
T⊆L,
K⊆σ(T)

T

ê
= σ(τ(K))

Now let T ⊆ L. By using σ(T) ⊆ σ(T) it is easy to verify that

T ⊆
⋃
S⊆L,

σ(T)⊆σ(S)

S = τ(σ(T)) �

This is the main motivation for our definition saying that classical logics are exactly those
that have the intersection property, or, equivalently, that have model and theory functions that
are in Galois correspondence.7 Furthermore, as partly mentioned before, many well-studied
logics (that we would call classical due to their ubiquity alone) have the intersection property
simply by definition, as their fundamental building blocks are formulas instead of theories.

3. Characterization Logics

From now on we omit I from the presentation of logics and thus write (L, σ), since concrete
interpretations are immaterial for strong equivalence. Furthermore, we will distinguish between
two important cases regarding the domain of σ. The first one is dom(σ) = 2L (called full lo-
gics) and the second one is dom(σ) =

(
2L
)
fin

= {T ∈ 2L | T is finite} (finite-theory logics), the
restriction of L to finite knowledge bases.

Definition 6. Let (L, σ) be a logic. We define the binary relation strong equivalence ≡σs ⊆ dom(σ)× dom(σ)
by

T1 ≡σs T2 :⇐⇒ ∀U ∈ dom(σ) : σ(T1 ∪ U) = σ(T2 ∪ U). ♦

It is straightforward to show that ≡σs is an equivalence relation; we denote the equivalence
class of a theory T ∈ dom(σ) ⊆ 2L by [T]σs . We recall and will pervasively use that for all theories
T1, T2 ⊆ L, we have T1 ∈ [T2]σs if and only if [T1]σs = [T2]σs .

Given an arbitrary logic (L, σ), we want to find a characterizing classical logic, that is, a
semantics σ′ that has the intersection property and whose ordinary equivalence coincides with
strong σ-equivalence. Such logics get a name.

7Along with the aforementioned parallels to Goguen and Burstall’s [10] treatment of abstract logical systems,
likewise leading to Galois correspondences.

15

Definition 7. Let (L, σ) be a (full) logic. The logic (L, σ′) is a (full) characterization logic for
(L, σ) if and only if:

∀T1, T2 ⊆ L : σ′(T1) = σ′(T2) ⇐⇒ [T1]σs = [T2]σs (characterization)

∀T ⊆ 2L : σ′

(⋃
T∈T

T

)
=
⋂
T∈T

σ′(T) (intersection)

♦

Since characterization logics are the centerpiece of our study we would like to take a look
at this central definition from another angle, namely in terms of consequence functions. The
analysis of consequence relations has been prominent in the formative years of nonmonotonic
reasoning; we refer the interested reader to works by Gabbay [33], Kraus, Lehmann and Magidor
[34] as well as Makison [35].8 Let us consider the canonical consequence functions of σ and σ′

according to Definition 1. Doing so reveals that the characterizing and characterized consequence
relations fit together nicely although we do not require anything from σ. It is part of future work
to study further properties in terms of consequence relations.

Proposition 11. Let (L, σ) be a logic with characterization logic (L, σ′) with Cnσ and Cnσ
′

the canonical consequence functions of the corresponding logics. For any T ⊆ L, we have:

1. Cnσ
′(
T
)
⊆ Cnσ

(
T
)

(sublogic)

2. Cnσ
(
T
)

= Cnσ
(
Cnσ

′(
T
))

(right absorption)

3. Cnσ
(
T
)
⊆ Cnσ

′(
Cnσ

(
T
))

, and

Cnσ
(
T
)

= Cnσ
′(

Cnσ
(
T
))

if Cnσ satisfies idempotence. (left absorption)

Proof. Remember that the induced canonical consequence Cnσ
′

is a closure operator as (L, σ′)
is a logic possessing the intersection property (Definition 7, Proposition 6). In contrast, Cnσ is
not necessarily idempotent (Example 3) but always increasing (Proposition 1).

1. In order to show Cnσ
′(
T
)
⊆ Cnσ

(
T
)

we first prove the subsequent property (*). For any

U ⊆ L: If U ⊆ Cnσ
′(
T
)
, then Cnσ

′(
T
)

= Cnσ
′
(T ∪ U). Since T ⊆ T ∪ U we derive

Cnσ
′(
T
)
⊆ Cnσ

′
(T ∪ U) (monotonicity). Moreover, we have T ⊆ Cnσ

′(
T
)

(increasing)

and U ⊆ Cnσ
′(
T
)

(assumption) justifying T ∪ U ⊆ Cnσ
′(
T
)
. Hence, Cnσ

′
(T ∪ U) ⊆

Cnσ
′(

Cnσ
′(
T
))

(monotonicity) and finally, Cnσ
′
(T ∪ U) ⊆ Cnσ

′(
T
)

(idempotence) con-
cluding the proof for property (*).

Now, let U ⊆ Cnσ
′(
T
)
. We have to show U ⊆ Cnσ

(
T
)
. Due to Proposition 5 and

property (*) we obtain σ′(T) = σ′
(
Cnσ

′(
T
))

= σ′
(
Cnσ

′(
T ∪ U

))
= σ′(T ∪ U). Since

(L, σ′) is assumed to be a characterization logic we derive [T]σs = [T ∪ U]σs . Consequently,
σ(T) = σ(T ∪ U) implying Cnσ(T) = Cnσ(T ∪ U) in consideration of Definition 1. Us-
ing the previous equality and that canonical consequence is increasing (Proposition 1) we
finally obtain U ⊆ T ∪ U ⊆ Cnσ(T ∪ U) = Cnσ(T).

8Similarly, Straßburger [11] “defines” a logic as a pair (L, |=) of a language with a consequence pre-
order |= ⊆ L× L, that is, a relation on single formulas. It is clear that a consequence function C in
our sense can be reconstructed whenever the language L allows for (possibly generalized) conjunction, i.e.
C(T) = {F ∈ L |

∧
T |= F}. Straßburger’s main focus was not non-monotonicity, but the presence of conjunction

in L would also allow to define strong equivalence via mapping theories to formulas and theory union to formula
conjunction.

16

2. Due to Proposition 5 we have σ′(T) = σ′
(
Cnσ

′(
T
))

. Since (L, σ′) is a characterization logic

we further conclude [T]σs =
[
Cnσ

′(
T
)]σ
s
. Hence, σ(T) = σ

(
Cnσ

′(
T
))

which guarantees

Cnσ
(
T
)

= Cnσ
(
Cnσ

′(
T
))

by Definition 1.

3. We have Cnσ
(
T
)
⊆ Cnσ

′(
Cnσ

(
T
))

since Cnσ
′

is increasing.
Assuming idempotence of Cnσ yields the converse direction and thus, equality. First,

Cnσ
′(

Cnσ
(
T
))
⊆ Cnσ

(
Cnσ

(
T
))

due to item 1 (sublogic) and secondly, Cnσ
′(

Cnσ
(
T
))
⊆

Cnσ
(
T
)

due to idempotence. Hence, Cnσ
(
T
)

= Cnσ
′(

Cnσ
(
T
))

as claimed. �

We now start our analysis of characterization logics in terms of model functions. We first
show that characterization logics are unique up to isomorphism. More precisely, for any model
function σ, the algebras corresponding to the model theories of any two characterizing model
functions σ′ and σ′′ are isomorphic. To do that, we first show that the model theory of any
characterization logic9 is a complete lattice, that is, a partially ordered set where each subset of
the carrier set has both a greatest lower bound (glb) and a least upper bound (lub).

Theorem 12. Let (L, σ) be a full logic with characterization logic (L, σ′). The pair
(
σ′
(
2L
)
,⊆
)

is a complete lattice where glb
∧

and lub
∨

are given such that for all K ⊆ σ′
(
2L
)
,∧

K∈K
K =

⋂
K∈K

K and
∨
K∈K

K =
∧

L∈Ku
L

where Ku =
{
L ∈ σ′

(
2L
) ∣∣ ∀K ∈ K : K ⊆ L

}
is the set of upper bounds of K.

Proof. Let K ⊆ σ′
(
2L
)
; we first show

⋂
K∈KK ∈ σ′

(
2L
)
. Clearly for each

K ∈ K ⊆ σ′
(
2L
)

there exists a T ⊆ L with σ′(T) = K. Thus by the axiom of choice there is a
T ⊆ 2L that contains a T ∈ T with σ′(T) = K for eachK ∈ K. Since

⋃
T∈T T ∈ 2L and σ′ has the

intersection property,
⋂
K∈KK =⋂

T∈T σ
′(T) = σ′

(⋃
T∈T T

)
∈ σ′

(
2L
)
.

Now consider
∨
K∈KK. We show that

∧
L∈Ku L is the least element of Ku, the set of all upper

bounds of K. Clearly, L ∈ Ku implies that ∀K ∈ K : K ⊆ L. Thus, ∀K ∈ K : K ⊆
⋂
L∈Ku L

whence
⋂
L∈Ku L ∈ Ku. In particular, if M ∈ Ku then

⋂
L∈Ku L ⊆M and

⋂
L∈Ku L is the least

upper bound of K. �

It is vital that the least upper bound is defined in terms of the greatest lower bound, as
ordinary set union will not work.

Example 7. Consider L = {a, b, c} and semantics σ with

[∅]σs = {∅} ,
[{a}]σs = {{a}} ,
[{b}]σs = {{b}} ,
[{c}]σs = {{c}} ,

[{a, b}]σs = [{a, c}]σs = [{b, c}]σs = [{a, b, c}]σs = {{a, b} , {a, c} , {b, c} , {a, b, c}}

9The proof of Theorem 12 reveals that (L, σ′) does not necessarily have to be a characterization logic of (L, σ).
Indeed, the stated properties regarding the model theory hold for any logic possessing the intersection property.

17

Assume that (L, σ′) is a characterization logic for (L, σ). We claim

σ′({b}) ∪ σ′({c}) /∈ σ′
(
2L
)

implying that σ′
(
2L
)

is not closed under set union and thus cannot be the carrier set of any sub-

lattice of (2I
′
,⊆). Assume to the contrary that there is a T ⊆ L with σ′(T) = σ′({b}) ∪ σ′({c}).

Then

σ′({a} ∪ T) = σ′({a}) ∩ σ′(T)

= σ′({a}) ∩ (σ′({b}) ∪ σ′({c}))
= (σ′({a}) ∩ σ′({b})) ∪ (σ′({a}) ∩ σ′({c}))
= σ′({a, b}) ∪ σ′({a, c})
= σ′({a, b}) = σ′({a, c}) = σ′({b, c}) = σ′({a, b, c})

Thus T = {b} or T = {c} or T ∈ [{a, b, c}]σs . Since σ′ has the intersection property, it is in
particular antimonotone (Proposition 4). Hence for T ∈ [{a, b, c}]σs , we get σ′(T) ⊆ σ′({b}) and
since [{b}]σs 6= [{a, b, c}]σs even σ′(T) (σ′({b}). Substituting c for b in the argument above, we get
σ′(T) (σ′({c}) in the same fashion. In combination σ′(T) (σ′({b}) ∪ σ′({c}), contradiction.
Thus T = {b} or T = {c}. Clearly [{b}]σs 6= [{b, c}]σs and [{c}]σs 6= [{b, c}]σs imply that

σ′({b}) ∩ σ′({c}) = σ′({b, c}) (σ′({b})
σ′({b}) ∩ σ′({c}) = σ′({b, c}) (σ′({c})

Thus σ′({b}) \ σ′({c}) 6= ∅ and σ′({c}) \ σ′({b}) 6= ∅. Therefore

σ′({b}) (σ′({b}) ∪ σ′({c}) = σ′(T)

as well as
σ′({c}) (σ′({b}) ∪ σ′({c}) = σ′(T).

Contradiction. Thus T does not exist and σ′({b}) ∪ σ′({c}) /∈ σ′
(
2L
)
. ♦

This example shows in particular that the resulting complete lattice induced by the characteriza-
tion logic is not necessarily distributive, not even in the case of finite logics. After these necessary
preliminaries, we now present the result on uniqueness of characterization logics.

Theorem 13. Let (L, σ) be a full logic with characterization logics (L, σ′) and (L, σ′′). Then
the complete lattices

(
σ′
(
2L
)
,⊆
)

and
(
σ′′
(
2L
)
,⊆
)

are isomorphic.

Proof. We provide a bijection φ : σ′
(
2L
)
→ σ′′

(
2L
)

with

φ

(∧
K∈K

K

)
=
∧
K∈K

φ(K) and φ

(∨
K∈K

K

)
=
∨
K∈K

φ(K)

Given any K ∈ σ′
(
2L
)
, there clearly exists a T ⊆ L with σ′(T) = K; now define φ(K) such that

φ(K) = σ′′(T). This means, φ(σ′(T)) = φ(σ′′(T)).

• φ is injective: Let K1,K2 ∈ σ′
(
2L
)

with φ(K1) = φ(K2). Clearly there exist
T1, T2 ⊆ L such that σ′(T1) = K1 and σ′(T2) = K2. Thus φ(K1) = φ(K2) implies
that σ′′(T1) = φ(K1) = φ(K2) = σ′′(T2). Since σ′′ has the characterization prop-
erty, we get [T1]σs = [T2]σs . Since σ′ has the characterization property, we get
K1 = σ′(T1) = σ′(T2) = K2.

18

• φ is surjective: Let M ∈ σ′′
(
2L
)
. Then there exists a T ⊆ L with σ′′(T) = M . It follows

by definition that φ(σ′(T)) = σ′′(T) = M .

• φ is structure-preserving: Let K ⊆ σ′
(
2L
)

and define T ⊆ 2L such that for each K ∈ K,
the family T contains an element of the preimage of K with respect to σ′. (T need not be
unique, but exists by the axiom of choice.)

φ

(∧
K∈K

K

)
= φ

(⋂
K∈K

K

)
= φ

(⋂
T∈T

σ′(T)

)
= φ

(
σ′

(⋃
T∈T

T

))

= σ′′

(⋃
T∈T

T

)
=
⋂
T∈T

σ′′(T) =
⋂
K∈K

φ(K) =
∧
K∈K

φ(K)

Since
∨

is defined in terms of
∧

, it follows that

φ

(∨
K∈K

K

)
= φ

(∧
K∈Ku

K

)
=

∧
K∈Ku

φ(K) =
∨
K∈K

φ(K)

Thus
(
σ′
(
2L
)
,⊆
)

and
(
σ′′
(
2L
)
,⊆
)

are isomorphic. �

Thus if a classical characterization logic exists, it is (up to isomorphism on its model theory)
uniquely determined. However, as we show next, in some cases there simply is no characterization
logic.

Example 8. Let L = N be the natural numbers and I 6= ∅ arbitrary. We define the semantics
σ : 2L → 2I such that

σ(T) =

®
∅ if T is finite,

I otherwise.

There are two strong equivalence classes: [∅]σs , the set of all finite subsets of N, and [N]σs , the
set of all infinite subsets of N. Assume that (L, σ′) is a characterization logic for (L, σ). By the
model intersection property, we get

σ′(N) = σ′

(⋃
n∈N
{n}

)
=
⋂
n∈N

σ′({n}) = σ′(∅)

in contradiction to the characterization property. ♦

The example above motivates the study of special features of logics warranting the existence
of characterization logics. We now proceed with some useful properties that will be needed in
this endeavour later on. Most importantly, we show that strong equivalence classes have an
expansion property: It is not completely obvious, but follows easily from the definition of strong
equivalence that two strongly equivalent theories can both be expanded (via set union) with
the same theory and are again strongly equivalent; the converse holds as well. Furthermore, the
union of two strongly equivalent theories is again strongly equivalent to the two theories. Finally,
for any two strongly equivalent theories that are in subset relation, every theory in between them
is also strongly equivalent to them.

Lemma 14. Let (L, σ) be a full logic and T, T1, T2, T3 ⊆ L.

19

1. Strong equivalence is invariant to expansion:

[T1]σs = [T2]σs ⇐⇒
(
∀U ⊆ L : [T1 ∪ U]σs = [T2 ∪ U]σs

)
2. Each strong equivalence class is a join-semilattice:

T1, T2 ∈ [T]σs =⇒ T1 ∪ T2 ∈ [T]σs

3. Each strong equivalence class is convex:

T1 ∈ [T]σs ∧ T3 ∈ [T]σs ∧ T1 ⊆ T2 ⊆ T3 =⇒ T2 ∈ [T]σs

Proof. 1.

[T1]σs = [T2]σs

⇐⇒ ∀U ⊆ L : σ(T1 ∪ U) = σ(T2 ∪ U) (Def. ≡σs)

⇐⇒ ∀U ′ ⊆ L : ∀U ′′ ⊆ L : σ(T1 ∪ (U ′ ∪ U ′′)) = σ(T2 ∪ (U ′ ∪ U ′′)) (write U = U ′ ∪ U ′′)
⇐⇒ ∀U ′ ⊆ L : ∀U ′′ ⊆ L : σ((T1 ∪ U ′) ∪ U ′′) = σ((T2 ∪ U ′) ∪ U ′′) (associativity ∪)

⇐⇒ ∀U ′ ⊆ L : [T1 ∪ U ′]σs = [T2 ∪ U ′]σs (Def. ≡σs)

⇐⇒ ∀U ⊆ L : [T1 ∪ U]σs = [T2 ∪ U]σs (rename U ′ = U)

2.

T1, T2 ∈ [T]σs

⇐⇒ [T1]σs = [T2]σs = [T]σs

=⇒ [T1 ∪ T2]σs = [T2 ∪ T2]σs = [T2]σs = [T]σs

=⇒ T1 ∪ T2 ∈ [T]σs

3. Let T1, T3 ∈ [T]σs and T1 ⊆ T2 ⊆ T3.

[T1]σs = [T3]σs

=⇒ [T1 ∪ T2]σs = [T3 ∪ T2]σs (Item 1)

=⇒ [T2]σs = [T3]σs (T1 ⊆ T2 ⊆ T3)

=⇒ T2 ∈ [T3]σs = [T]σs �

We also take a closer look on the structure of strong equivalence classes and their relationships
with each other. We first define a binary relation v on strong equivalence classes where two
classes are in v-relation if and only if there are ⊆-comparable representatives of the classes.

Definition 8. Let (L, σ) be a logic. Define the following relation on strong equivalence classes:

[S]σs v [T]σs :⇐⇒ ∃S′ ∈ [S]σs : ∃T ′ ∈ [T]σs : S′ ⊆ T ′ ♦

It is easy to show (and later useful) that v is a partial order.

Lemma 15. The relation v is a partial order, that is, reflexive, antisymmetric and transitive.

Proof. Reflexivity is clear.

20

Antisymmetric: Let [S]σs v [T]σs and [T]σs v [S]σs . Then there are S1, S2 ∈ [S]σs as well as T1, T2 ∈ [T]σs
with S1 ⊆ T1 and T2 ⊆ S2. Clearly

[T1]σs = [T2]σs

=⇒ [T1 ∪ S2]σs = [T2 ∪ S2]σs (Item 1)

=⇒ [T1 ∪ S2]σs = [S2]σs (T2 ⊆ S2)

=⇒ [T1 ∪ S2]σs = [S]σs (S2 ∈ [S]σs)

Likewise

[S1]σs = [S2]σs

=⇒ [S1 ∪ T2]σs = [S2 ∪ T2]σs (Item 1)

=⇒ [S1 ∪ T2]σs = [S2]σs (T2 ⊆ S2)

=⇒ [S1 ∪ T2 ∪ T1]σs = [S2 ∪ T1]σs (Item 1)

=⇒ [T2 ∪ T1]σs = [T1 ∪ S2]σs (S1 ⊆ T1)

=⇒ [T]σs = [T1 ∪ S2]σs (T1, T2 ∈ [T]σs , Lemma 14, Item 2)

In combination, [S]σs = [T1 ∪ S2]σs = [T]σs as desired.

Transitive: Let [T1]σs v [T2]σs and [T2]σs v [T3]σs . Then there exist T ′1 ∈ [T1]σs , T ′2, T
′′
2 ∈ [T2]σs

and T ′′3 ∈ [T3]σs with T ′1 ⊆ T ′2 and T ′′2 ⊆ T ′′3 . Since [T ′2]σs = [T ′′2]σs , we can conclude that
[T ′2 ∪ T ′′3] = [T ′′2 ∪ T ′′3] = [T ′′3]σs . Now it is clear that T ′1 ⊆ T ′2 ⊆ T ′2 ∪ T ′′3 with T ′1 ∈ [T1]σs and
T ′2 ∪ T ′′3 ∈ [T3]σs imply that [T1]σs v [T3]σs . �

It follows from Lemma 14 in particular that in the case of logics (L, σ) with L finite, each
strong equivalence class [T]σs has a ⊆-greatest element that equals the union of all elements.
However, for logics with infinite L, this need not be the case: in the logic of Example 8, the class
[∅]σs has no maximal elements, in particular no greatest element; the class [N]σs has no minimal
elements, in particular no least element. We will see that having a ⊆-greatest element in each
equivalence class is sufficient for the existence of a characterization logic. We therefore decided
to name this class of logics and study it in some greater detail.

3.1. Covered Logics

Definition 9. Let (L, σ) be a logic with strong equivalence relation ≡σs . For an equivalence
class [T]σs ∈

(
2L
)
/≡σs

= {[T]σs | T ⊆ L}, we define its cover to be the set‘[T]σs =
⋃

S∈[T]σs

S

and say that a logic (L, σ) is covered if and only if ∀T ⊆ L : ‘[T]σs ∈ [T]σs . ♦

Roughly, the existence of greatest elements in equivalence classes guarantees that these classes
are closed under arbitrary set union.10 Clearly any finite logic is covered. Furthermore, two
familiar representatives of covered logics are classical logic and abstract argumentation theory.
In the former case, it is clear that arbitrary unions of families of equivalent theories are again

10Strong equivalence classes are always closed under set unions with non-empty, finite index sets (Lemma 14).

21

theories that are equivalent to each of its members. In the latter case it is not immediately clear
but can be shown with reasonable effort.

Towards the main result of this section, we show that covered logics behave “nicely” in an
algebraic sense, which will pave the way for obtaining characterization logics for them. Most
importantly, while we know from Theorem 12 that the strong equivalence classes of any logic
form a complete lattice, for covered logics we can even specify the join and meet operations
directly via set operations on covers and subsequent class formation.

Lemma 16. Let (L, σ) be a covered logic with strong equivalence relation ≡σs . The pairÄ(
2L
)
/≡σs

,v
ä

is a complete lattice with operations

⊔
C∈C

C =

[⋃
C∈C

“C]σ
s

and
l

C∈C
C =

[⋂
C∈C

“C]σ
s

Proof. Let C ⊆ {[T]σs | T ⊆ L}.

• D =
⊔
C∈C C is the least upper bound of C:

For any C ∈ C, we get “C ⊆ ⋃B∈C “B immediately and “C ∈ C since (L, σ) is covered. The fact

that
⋃
B∈C

“B ∈ î⋃B∈C “Bóσs = D is also immediate. Consequently, C v D and by arbitrary

choice of C we get that D is an upper bound of C.
Now let E be any upper bound of C and consider an arbitrary C ∈ C. Since
C v E, there are TC ∈ C and T ′C ∈ E such that TC ⊆ T ′C . Since (L, σ) is

covered, [TC]σs = C =
î“Cóσ

s
. Hence, by strong equivalence [TC ∪ T ′C]σs =

î“C ∪ T ′Cóσs .

That is, “C ∪ T ′C ∈ [TC ∪ T ′C]σs = [T ′C]σs = E. Since C was arbitrary, we have that

∀C ∈ C : ∃T ′C ∈ E : “C ∪ T ′C ∈ E. In particular, ∀C ∈ C : ∃T ′C ∈ E : “C ∪ T ′C ⊆ “E whence⋃
C∈C

Ä“C ∪ T ′Cä ⊆ “E. Now fix a specific B ∈ C; then we have in particular that there

exists a T ′B ∈ E such that “B ∪ T ′B ∈ E. Furthermore, “B ∪ T ′B ⊆ ⋃C∈C Ä“C ∪ T ′Cä ⊆ “E with“E ∈ E since (L, σ) is covered. By Lemma 14 (Item 3) saying that strong equivalence

classes are convex, we get
⋃
C∈C

Ä“C ∪ T ′Cä ∈ E. Together with
⋃
C∈C

“C ⊆ ⋃C∈C Ä“C ∪ T ′Cä
and

⋃
C∈C

“C ∈ D we get D v E and D is the least upper bound of C.

• D =
d
C∈C C is the greatest lower bound of C:

As above, C ∈ C implies
⋂
B∈C

“B ⊆ “C. Consequently, by “C ∈ C and
⋂
B∈C

“B ∈ D we get
D v C. Since C ∈ C was arbitrarily chosen, D is a lower bound of C.
Now let E be any lower bound of C. Thus by definition, for each C ∈ C there exist TC ∈ C
and T ′C ∈ E such that T ′C ⊆ TC . Now fix one C ∈ C and consider an arbitrary B ∈ C.
Clearly [T ′C]σs = [T ′B]σs = E justifying [T ′C ∪ TB]σs = [T ′B ∪ TB]σs = [TB]σs by strong equival-

ence and since T ′B ⊆ TB . Therefore, T ′C ∪ TB ∈ B, that is, T ′C ⊆ T ′C ∪ TB ⊆ “B with “B ∈ B
since (L, σ) is covered. Since B was chosen arbitrarily, we get the following: for every

B ∈ C, we have that T ′C ⊆ “B. Consequently T ′C ⊆
⋂
B∈C

“B with T ′C ∈ E and
⋂
B∈C

“B ∈ D.
Thus E v D and D is the greatest lower bound of C. �

22

In particular, the least and greatest elements of that lattice are given by

⊔
C∈∅

C =

[⋃
C∈∅

“C]σ
s

= [∅]σs and
l

C∈∅

C =

[⋂
C∈∅

“C]σ
s

= [L]
σ
s .

As we show next, it follows that the mapping [·]σs : 2L →
(
2L
)
/≡σs

assigning a theory T its

equivalence class [T]σs is join-preserving for arbitrary joins. This is akin to the intersection
property for the characterizing semantics, only that the semantics is not yet a model theory
in the form of a complete lattice of sets but, more generally, a complete lattice (that is not
necessarily a lattice of sets).

Lemma 17. Let (L, σ) be a covered logic with strong equivalence relation ≡σs . For all T ⊆ 2L,
we have: [⋃

T∈T
T

]σ
s

=
⊔
T∈T

[T]σs

Proof. Let T ⊆ 2L and denote C = {[T]σs | T ∈ T }. Clearly
⊔
T∈T [T]σs =

⊔
C. Consequently, it

suffices to show that [⋃
T∈T

T

]σ
s

=
⊔
C.

This will be done by showing that D =
[⋃

T∈T T
]σ
s

is the least upper bound of C in
Ä(

2L
)
/≡σs

,v
ä
.

Let C ∈ C. Then there is a T ∈ T with C = [T]σs . Clearly T ∈ C and

T ⊆
⋃
S∈T

S ⊆
Ÿ�[⋃
S∈T

S

]σ
s

= “D
with “D ∈ D since (L, σ) is covered. Thus C v D. Since C ∈ C was arbitrarily chosen, D is an
upper bound of C.

Now let E be any upper bound of C. Consider an arbitrary C ∈ C. There clearly is a T ∈ T
with C = [T]σs and since E is an upper bound for C there also are TC ∈ C and T ′C ∈ E with
TC ⊆ T ′C .

We have [T ∪ T ′C]σs = [TC ∪ T ′C]σs = [T ′C]σs = [E]σs which implies T ∪ T ′C ∈ E. Now since every
C ∈ C originates in some T ∈ T we get that for every T ∈ T there exists a T ′C ∈ E with T ∪ T ′C ∈ E,

that is, T ∪ T ′C ⊆ “E. Then clearly⋃
T∈T T ⊆

⋃
T∈T (T ∪ T ′C) ⊆ “E, and by

⋃
T∈T T ∈ D and “E ∈ E (the logic (L, σ) is covered)

we get D v E. Since E was an arbitrarily chosen upper bound of C, D is the least upper bound
of C. �

While it preserves arbitrary joins, the mapping from theories to their strong equivalence
classes does not necessarily preserve meets. It is easy to see that for the meet operation in the
complete lattice of strong equivalence classes we have

[⋂
T∈T T

]σ
s
v

d
T∈T [T]σs , as

⋂
T∈T

T ⊆
⋂
T∈T

‘[T]σs ∈

[⋂
T∈T

‘[T]σs

]σ
s

=
l

T∈T
[T]σs

23

The reverse relation does not hold, as is witnessed by the following small, finite logic.

Example 9. Let L = {a, b} and ≡σs such that ∅ 6≡σs {a} ≡σs {b} ≡σs {a, b}. Then we get:

[{a} ∩ {b}]σs = [∅]σs = {∅}
[{a}]σs u [{b}]σs = [{a, b}]σs u [{a, b}]σs = [{a, b}]σs = {{a} , {b} , {a, b}} 6= {∅} ♦

However, this is not a hindrance since the intersection property only needs to hold for arbitrary
unions of theories and does not say anything about theory intersection.

We conclude this section with its main theorem showing that any full logic being covered
possesses a characterization logic. The relevant characterization logic can even be defined (more
or less) explicitly via a Herbrand-style canonical construction: roughly, the semantics of the char-
acterization logic maps a theory T of the original language to the union of all strong equivalence
classes [S]σs that are in w-relation to the class [T]σs of the input theory.

Theorem 18. Let (L, σ) be a logic. If (L, σ) is covered then a characterization logic for (L, σ)
is given by (L, σ′) with

σ′ : 2L → 22
L
, T 7→

⋃
S∈2L,

[T]σsv[S]σs

[S]σs

Proof. characterization: We have to show ∀T1, T2 ⊆ L : σ′(T1) = σ′(T2) ⇐⇒ [T1]σs = [T2]σs .

Let T1, T2 ⊆ L.

=⇒ : Let σ′(T1) = σ′(T2). Then by definition of σ′ we get⋃
S∈2L,

[T1]σsv[S]σs

[S]σs =
⋃

S∈2L,
[T2]σsv[S]σs

[S]σs

that is, for any S ∈ 2L we find that [T1]σs v [S]σs iff [T2]σs v [S]σs . (Clearly, the set{
[S]σs

∣∣ S ∈ 2L
}

corresponds to a partition of 2L; thus for any element T ∈
⋃
S∈2L,[T1]σsv[S]σs

[S]σs

we have [T1]σs v [T]σs , and if also T ∈
⋃
S∈2L,[T2]σsv[S]σs

[S]σs , then [T2]σs v [T]σs as well.

Symmetry applies to obtain the above conclusion.)

In particular, T1, T2 ∈ 2L whence [T1]σs v [T1]σs iff [T2]σs v [T1]σs , and [T1]σs v [T2]σs iff
[T2]σs v [T2]σs . This shows [T1]σs v [T2]σs and [T2]σs v [T1]σs , that is, [T1]σs = [T2]σs .

⇐= : Let [T1]σs = [T2]σs . Then immediately

σ′(T1) =
⋃

S∈2L,
[T1]σsv[S]σs

[S]σs =
⋃

S∈2L,
[T2]σsv[S]σs

[S]σs = σ′(T2)

intersection: We have to show ∀T ⊆ 2L : σ′
(⋃

T∈T T
)

=
⋂
T∈T σ

′(T).

Let T ⊆ 2L. From Lemma 17, we know that
[⋃

T∈T T
]σ
s

=
⊔
T∈T [T]σs is the least upper

bound of {[T]σs | T ∈ T }, whence for all S ∈ 2L, we have that
⊔
T∈T [T]σs v [S]σs if and only

24

if [S]σs is an upper bound of {[T]σs | T ∈ T }, that is,[⋃
T∈T

T

]σ
s

v [S]σs ⇐⇒ ∀T ∈ T : [T]σs v [S]σs

Using this relationship, we get that

σ′

(⋃
T∈T

T

)
=

⋃
S∈2L,

[
⋃
T∈T T]

σ

s
v[S]σs

[S]σs

=
⋃

S∈2L,
∀T∈T :[T]σsv[S]σs

[S]σs

=
⋂
T∈T

á
⋃

S∈2L,
[T]σsv[S]σs

[S]σs

ë
=
⋂
T∈T

σ′(T) �

The construction from the statement of the theorem looks quite abstract, so we illustrate
with a small concrete logic.

Example 10. We reconsider the logic from Example 7. There, L = {a, b, c} and

[∅]σs = {∅},
[{a}]σs = {{a}},
[{b}]σs = {{b}},
[{c}]σs = {{c}},

[{a, b}]σs = [{a, c}]σs = [{b, c}]σs = [{a, b, c}]σs = {{a, b} , {a, c} , {b, c} , {a, b, c}}.

The resulting lattice of strong equivalence classes is depicted below:

[∅]σs

[{a}]σs [{b}]σs [{c}]σs

[{a, b, c}]σs

25

According to Theorem 18, the characterization logic σ′ : 2L → 22
L

assigns as follows:

σ′(∅) =
⋃

S∈2L,
[∅]σsv[S]σs

[S]σs =
⋃
S∈2L

[S]σs = 2L

σ′({a}) =
⋃

S∈2L,
[{a}]σsv[S]σs

[S]σs = [{a}]σs ∪ [{a, b, c}]σs = {{a} , {a, b} , {a, c} , {b, c} , {a, b, c}}

σ′({b}) =
⋃

S∈2L,
[{b}]σsv[S]σs

[S]σs = [{b}]σs ∪ [{a, b, c}]σs = {{b} , {a, b} , {a, c} , {b, c} , {a, b, c}}

σ′({c}) =
⋃

S∈2L,
[{c}]σsv[S]σs

[S]σs = [{c}]σs ∪ [{a, b, c}]σs = {{c} , {a, b} , {a, c} , {b, c} , {a, b, c}}

σ′({a, b, c}) =
⋃

S∈2L,
[{a,b,c}]σsv[S]σs

[S]σs = [{a, b, c}]σs = {{a, b} , {a, c} , {b, c} , {a, b, c}}

Now it holds for example that

σ′({a}) ∩ σ′({b})
= {{a} , {a, b} , {a, c} , {b, c} , {a, b, c}} ∩ {{b} , {a, b} , {a, c} , {b, c} , {a, b, c}}
= {{a, b} , {a, c} , {b, c} , {a, b, c}}
= σ′({a, b})
= σ′({a} ∪ {b}) ♦

3.2. Finite-Theory Characterization Logics

In the field of knowledge representation it is a common assumption that knowledge bases
are finite. This is indeed not overly limiting, as finite knowledge bases will be most relevant
for practical purposes. The following definition translates this assumption into our setting: the
finite-theory version of a given logic (or simply, a finite-theory logic) considers only the finite
knowledge bases of a language.

Definition 10. Given a full logic (L, σ), the finite-theory version (L, σfin) of (L, σ) is defined by
the semantics

σfin :
(
2L
)
fin
→ σ

(
2L
)

with σfin(T) = σ(T)

where
(
2L
)
fin

= {T ∈ 2L | T is finite}. ♦

For finite-theory restrictions of logics, we adequately relax our requirements on characteriz-
ation logics.

Definition 11. Let (L, σ) be a full logic and (L, σfin) its finite-theory version. We say that
(L, σ′fin) is a finite-theory characterization logic for (L, σ) if and only if:

1. ∀T1, T2 ∈
(
2L
)
fin

: σ′fin(T1) = σ′fin(T2) iff [T1]σfins = [T2]σfins ; (finite-theory characterization)

2. ∀T1, T2 ∈
(
2L
)
fin

: σ′fin(T1 ∪ T2) = σ′fin(T1) ∩ σ′fin(T2). (finite-theory intersection)

26

The second item requires binary intersection only; this is due to the fact that arbitrary unions
of (finite) theories are not necessarily finite, and thus their semantics might not be well-defined.

As we did in the general case before, we first analyze the algebraic structure of the resulting
model theories. We show that the model theory of any finite-theory characterization logic forms
a lattice, that is, a partially ordered set where each non-empty finite subset has both a greatest
lower bound and a least upper bound. (This is in contrast to complete lattices in the general
case.) The proof is, although similar in procedure, slightly more involved than in the general
case.

Proposition 19. Let (L, σfin) be a finite-theory logic with characterization logic (L, σ′fin). Denot-
ing K =

{
σ′fin(T)

∣∣ T ∈ (2L)
fin

}
, the pair (K,⊆) is a lattice where glb and lub are given such that

for all K1,K2 ∈ K:

K1 ∧K2 = K1 ∩K2 and K1 ∨K2 =
∧
{K1,K2}u

where {K1,K2}u = {K ∈ K | K1 ⊆ K,K2 ⊆ K}.

Proof. LetK1,K2 ∈ K. Clearly there exist finite T1, T2 ⊆ L with σ′fin(T1) = K1 as well as σ′fin(T2) = K2.

glb: Obviously T1 ∪ T2 ∈
(
2L
)

fin
. Therefore, it follows that

K1 ∧K2 = σ′fin(T1) ∧ σ′fin(T2) = σ′fin(T1) ∩ σ′fin(T2) = σ′fin(T1 ∪ T2) ∈ K

27

lub: It follows from the finite intersection property that σ′fin is antimonotone. Now ∅ ⊆ T1
implies that K1 = σ′fin(T1) ⊆ σ′fin(∅) and likewise for T2. Thus σ′fin(∅) is an upper bound
of K1 and K2 guaranteeing the non-emptiness of {K1,K2}u. We will now show that
{K1,K2}u is finite. Clearly both T1 and T2 have only finitely many subsets T ′1 and
T ′2. For each of these subsets, σ′fin being antimonotone means that ∅ ⊆ T ′1 ⊆ T1 implies
σ′fin(T1) ⊆ σ′fin(T

′
1) ⊆ σ′fin(∅). Thus both K1 and K2 have only finitely many supersets in

K, that is, the sets K↑1 and K↑2 are finite. Hence, {K1,K2}u ⊆ K↑1 ∪K
↑
2 is finite. Con-

sequently, {K1,K2}u is a finite, non-empty subset of K. It therefore possesses a greatest
lower bound Kl =

∧
{K1,K2}u ∈ K. Since {K1,K2}u is closed under intersection we have

that Kl =
∧
{K1,K2}u =

⋂
{K1,K2}u ∈ {K1,K2}u is the least element of {K1,K2}u and

therefore the least upper bound of K1 and K2 concluding the proof. �

As before, we can show (with reasonable effort) that finite-theory characterization logics are
unique up to isomorphism.

Theorem 20. Let (L, σfin) be a finite-theory logic having two finite-theory characterization lo-
gics (L, σ′fin) and (L, σ′′fin). Denoting the two carrier sets by K′ =

{
σ′fin(T)

∣∣ T ∈ (2L)
fin

}
and

K′′ =
{
σ′′fin(T)

∣∣ T ∈ (2L)
fin

}
, the lattices (K′,⊆) and (K′′,⊆) are isomorphic.

Proof. We provide a bijection φ : K′ → K′′ such that for allK1,K2 ∈ K′, we find that φ(K1 ∧K2) = φ(K1) ∧ φ(K2)
and φ(K1 ∨K2) = φ(K1) ∨ φ(K2). Let K ∈ K′. By definition, there exists a finite T ⊆ L with
σ′fin(T) = K. Define φ(K) = σ′′fin(T).

φ is bijective: The proof is as in the general case.

φ is structure-preserving: Let K1,K2 ∈ K′. Clearly there exist T1, T2 ⊆ L s.t. σ′fin(T1) = K1 and
σ′fin(T2) = K2. We have

φ(K1 ∧K2) = φ(K1 ∩K2) (Def. ∧)

= φ(σ′fin(T1) ∩ σ′fin(T2)) (σ′fin is onto K′)
= φ(σ′fin(T1 ∪ T2)) (intersection σ′fin)

= σ′′fin(T1 ∪ T2) (Def. φ)

= σ′′fin(T1) ∩ σ′′fin(T2) (intersection σ′′fin)

= φ(σ′fin(T1)) ∩ φ(σ′fin(T2)) (Def. φ)

= φ(K1) ∩ φ(K2) (assumption)

= φ(K1) ∧ φ(K2) (Def. ∧)

28

With reasonable effort, we can also show that

φ(K1 ∨K2)

= φ
Ä∧
{K1,K2}u

ä
(Def. ∨)

=
∧
φ({K1,K2}u)

(φ preserves ∧)

=
∧
φ({K ∈ K′ | K1 ⊆ K,K2 ⊆ K})

(Def. ·u)

=
∧
{φ(K) | K ∈ K′,K1 ⊆ K,K2 ⊆ K}

(notation)

=
∧{

φ(σ′fin(T))
∣∣ T ∈ (2L)

fin
, σ′fin(T1) ⊆ σ′fin(T), σ′fin(T2) ⊆ σ′fin(T)

}
(σ′fin is onto K′)

=
∧{

φ(σ′fin(T))
∣∣ T ∈ (2L)

fin
, σ′fin(T1) ∩ σ′fin(T) = σ′fin(T1), σ′fin(T2) ∩ σ′fin(T) = σ′fin(T2)

}
(elementary)

=
∧{

φ(σ′fin(T))
∣∣ T ∈ (2L)

fin
, σ′fin(T1 ∪ T) = σ′fin(T1), σ′fin(T2 ∪ T) = σ′fin(T2)

}
(intersection σ′fin)

=
∧{

φ(σ′fin(T))
∣∣ T ∈ (2L)

fin
, [T1 ∪ T]σs = [T1]σs , [T2 ∪ T]σs = [T2]σs

}
(characterization σ′fin)

=
∧{

φ(σ′fin(T))
∣∣ T ∈ (2L)

fin
, σ′′fin(T1 ∪ T) = σ′′fin(T1), σ′′fin(T2 ∪ T) = σ′′fin(T2)

}
(characterization σ′′fin)

=
∧{

σ′′fin(T)
∣∣ T ∈ (2L)

fin
, σ′′fin(T1) ∩ σ′′fin(T) = σ′′fin(T1), σ′′fin(T2) ∩ σ′′fin(T) = σ′′fin(T2)

}
(intersection σ′′fin)

=
∧{

σ′′fin(T)
∣∣ T ∈ (2L)

fin
, σ′′fin(T1) ⊆ σ′′fin(T), σ′′fin(T2) ⊆ σ′′fin(T)

}
(elementary)

=
∧
{K | K ∈ K′′, σ′′fin(T1) ⊆ K,σ′′fin(T2) ⊆ K}

(σ′′fin is onto K′′)

=
∧
{σ′′fin(T1), σ′′fin(T2)}u

(Def. ·u)

= σ′′fin(T1) ∨ σ′′fin(T2)

(Def. ∨)

= φ(σ′fin(T1)) ∨ φ(σ′fin(T2))

(Def. φ)

= φ(K1) ∨ φ(K2)

(assumption)

29

Thus φ is a structure-preserving bijection from K′ to K′′, and the two lattices are iso-
morphic. �

As a final ingredient of our main result, we show one more property of the partial ordering v:
Also in the finite case, the mapping from theories to their strong equivalence classes preserves
lattice joins.

Lemma 21. Let (L, σfin) be a finite-theory logic. For T1, T2 ⊆
(
2L
)

fin
, we find that [T1]σfin

s t [T2]σfin
s = [T1 ∪ T2]σfin

s ,
that is, the class [T1 ∪ T2]σfin

s is the v-least upper bound of {[T1]σfin
s , [T2]σfin

s }.

Proof. It is immediate that T1 ∪ T2 ∈
(
2L
)

fin
, hence σfin(T1 ∪ T2) and thus [T1 ∪ T2]σfin

s are well-
defined. Furthermore, [T1 ∪ T2]σfin

s is clearly an upper bound of {[T1]σfin
s , [T2]σfin

s } due to the obvious
witnesses. It remains to show that it is the least upper bound. Let T ∈

(
2L
)

fin
be such that

[T]σfin
s is an upper bound of {[T1]σfin

s , [T2]σfin
s }. Thus there exist T ′, T ′′ ∈ [T]σfin

s , T ′1 ∈ [T1]σfin
s , and

T ′′2 ∈ [T2]σfin
s such that T ′1 ⊆ T ′ and T ′′2 ⊆ T ′′. Now we use [T1]σfin

s = [T ′1]σfin
s to deduce

[T1]σfin
s = [T ′1]σfin

s

=⇒ [T1 ∪ T ′]σfin
s = [T ′1 ∪ T ′]σfin

s (Lemma 14, Item 1)

=⇒ [T1 ∪ T ′]σfin
s = [T ′]σfin

s (T ′1 ⊆ T ′)
=⇒ [T1 ∪ T ′ ∪ T ′′]σfin

s = [T ′ ∪ T ′′]σfin
s (Lemma 14, Item 1)

=⇒ [T1 ∪ (T ′ ∪ T ′′)]σfin
s = [T]σfin

s (Lemma 14, Item 2)

Analogously, we use [T2]σfin
s = [T ′2]σfin

s to infer

[T2]σfin
s = [T ′2]σfin

s

=⇒ [T2 ∪ T ′′]σfin
s = [T ′2 ∪ T ′′]σfin

s (Lemma 14, Item 1)

=⇒ [T2 ∪ T ′′]σfin
s = [T ′′]σfin

s (T ′2 ⊆ T ′′)
=⇒ [T2 ∪ T ′′ ∪ T ′]σfin

s = [T ′′ ∪ T ′]σfin
s (Lemma 14, Item 1)

=⇒ [T2 ∪ (T ′ ∪ T ′′)]σfin
s = [T]σfin

s (Lemma 14, Item 2)

In combination, [T1 ∪ (T ′ ∪ T ′′)]σfin
s = [T]σfin

s = [T2 ∪ (T ′ ∪ T ′′)]σfin
s . Finally,

[T1 ∪ (T ′ ∪ T ′′)]σfin
s = [T2 ∪ (T ′ ∪ T ′′)]σfin

s

=⇒ [T1 ∪ (T ′ ∪ T ′′) ∪ T2]σfin
s = [T2 ∪ (T ′ ∪ T ′′)]σfin

s (Lemma 14, Item 1)

=⇒ [T1 ∪ T2 ∪ (T ′ ∪ T ′′)]σfin
s = [T]σfin

s (above)

In particular, T1 ∪ T2 ∪ (T ′ ∪ T ′′) ∈ [T]σfin
s , which shows that [T1 ∪ T2]σfin

s v [T]σfin
s and concludes

the proof. �

The following theorem shows that any logic possesses a finite-theory characterization logic.
This means that the most important case for knowledge representation behaves well in the sense
that characterization logics always exist. The characterization logic defined below makes use of
the lattice-theoretic concept of a principal filter given by the up-set (·)↑ of a specific element, the
set of all elements that are at or “above” the element in the lattice [32]. More specifically, in
this case, for a theory T ∈

(
2L
)
fin

, the principal filter of its strong equivalence class [T]σfins with
respect to the ordering v is the set

([T]σfins)
↑

=
{

[S]σfins

∣∣ S ∈ (2L)
fin
, [T]σfins v [S]σfins

}
30

The characterization semantics then simply assigns a theory T to the set of theories contained
in some class of that filter.

Theorem 22. Let (L, σ) be a full logic. Then a finite-theory characterization logic for (L, σ) is
given by (L, σ′fin) with

σ′fin :
(
2L
)

fin
→ 22

L
, T 7→

⋃
([T]σfin

s)
↑

Proof. We first observe the following equivalent formulations for S, T ∈
(
2L
)

fin
:

S ∈ σ′fin(T) ⇐⇒ S ∈
⋃

([T]σfin
s)
↑ ⇐⇒ [S]σfin

s ∈ ([T]σfin
s)
↑ ⇐⇒ [T]σfin

s v [S]σfin
s (3)

As a special case, this entails T ∈ σ′fin(T) for every T ∈
(
2L
)

fin
. Now for the main proof, where

we show finite-theory characterization and finite-theory intersection in accordance with Defini-
tion 11.

1. Let T1, T2 ∈
(
2L
)

fin
. We have to show σ′fin(T1) = σ′fin(T2) iff [T1]σfin

s = [T2]σfin
s .

if: Let [T1]σfin
s = [T2]σfin

s . Then clearly ([T1]σfin
s)
↑

= ([T2]σfin
s)
↑

whence immediately σ′fin(T1) =
σ′fin(T2) by definition.

only if: Let σ′fin(T1) = σ′fin(T2). Then by T1 ∈ σ′fin(T1), we have T1 ∈ σ′fin(T2). By Equa-
tion (3), this yields [T2]σfin

s v [T1]σfin
s . Symmetrically, we can show [T1]σfin

s v [T2]σfin
s . In

combination, [T1]σfin
s = [T2]σfin

s as desired.

2. Let T1, T2 ∈
(
2L
)

fin
. We have to show σ′fin(T1 ∪ T2) = σ′fin(T1) ∩ σ′fin(T2).

⊆: Let T ∈ σ′fin(T1 ∪ T2). By Equation (3), we get [T1 ∪ T2]σfin
s v [T]σfin

s . Now clearly [T1]σfin
s v [T1 ∪ T2]σfin

s

and by transitivity also [T1]σfin
s v [T]σfin

s . By Equation (3) we get T ∈ σ′fin(T1). Sym-
metrically, we can show T ∈ σ′fin(T2), and T ∈ σ′fin(T1) ∩ σ′fin(T2) follows.

⊇: Let T ∈ σ′fin(T1) ∩ σ′fin(T2). Thus in particular T ∈ σ′fin(T1). By applying Equation (3) it
follows that [T1]σfin

s v [T]σfin
s ; symmetrically, we obtain [T2]σfin

s v [T]σfin
s . Thus [T]σfin

s is
an upper bound of {[T1]σfin

s , [T2]σfin
s }. By Lemma 21, [T1 ∪ T2]σfin

s is the v-least upper
bound of {[T1]σfin

s , [T2]σfin
s }, therefore [T1 ∪ T2]σfin

s v [T]σfin
s . Again using Equation (3),

we get T ∈ σ′fin(T1 ∪ T2). �

Intuitively, this canonical construction of a characterization semantics σ′fin is similar to Herbrand
interpretations in first-order logic, in that we re-use (sets of) syntactical elements when defining
a semantics with the ultimate aim of showing a fundamental property of the logic.

4. Applying Canonical Constructions to Nonmonotonic Formalisms

In the previous section we have seen that (under certain conditions) the existence of char-
acterization logics for knowledge representation formalisms are guaranteed. These results are
achieved by defining in a sense Herbrand-style canonical construction. More precisely, the char-
acterization semantics of the new logic is defined in terms of certain unions of strong equivalence
classes of the original language. Such a characterization semantics is usually far from being
intuitive or self-explanatory. The intended role of this semantics was to serve as a witness for
the existence of characterization logics. Nevertheless, we will discuss the application of our gen-
eral, abstract results to some of the formalisms presented in Example 1. We start with abstract
argumentation theory, which is a vibrant as well as immensely growing research area in AI [14].
Surprisingly, we get a meaningful result very similar to the recently introduced Dung logics [36].

31

4.1. Abstract Argumentation Theory

We start with a brief introduction to Dung’s argumentation theory (cf. [37] for a recent and
comprehensive overview).

An argumentation framework (AF) is a pair F = (A,R) such that R ⊆ A×A. Although
there exists some work on unrestricted AFs [38, 39] it is common to assume that A, the set of
arguments, is a finite subset of a fixed infinite background set U . Let us denote the class of all

finite AFs by AF fin. An (extension-based) argumentation semantics is a function ρ : AF fin → 22
U

where elements of ρ(F) are called ρ-extensions of F . The most prominent one is stable semantics
(abbreviated by stb) which was already defined by Dung in 1995. A set E is a stb-extension of
F if 1. there are no a, b ∈ A, such that (a, b) ∈ R (conflict-freeness) and 2. for any c ∈ A \ E,
there is an a ∈ A with (a, c) ∈ R (full range).

We proceed with some notational conventions and the precise definition of strong equivalence
in case of AFs. The union F ∪̇ G as well as subset-relation F ⊆̇ G of two AFs is understood to be
pointwise, that is, (A1, R1) ∪̇ (A2, R2) = (A1 ∪A2, R1 ∪R2), and, similarly, (A1, R1) ⊆̇ (A2, R2)
if and only if A1 ⊆ A2 and R1 ⊆ R2.

Definition 12. Given an argumentation semantics ρ, two AFs F and G are strongly ρ-equivalent
iff for any H ∈ AF fin, ρ(F ∪̇ H) = ρ(G ∪̇ H). In this case, we write F ≡ρs G . ♦

The first work regarding characterizing strong equivalence for AFs was presented by Oikarinen
and Woltran [15]. It turned out that deciding this notion is deeply linked to the syntax of
AFs. In general, any argument being part of an AF may contribute towards future extensions.
However, for each semantics, there are patterns of redundant attacks captured by so-called
kernels. Formally, a kernel is a function k : AF fin → AF fin where k(F) = F k is obtained
from F by deleting certain redundant attacks. We briefly recall the following definition and
characterization theorem. An exhaustive overview on well-known semantics, further equivalence
notions and their characterization can be found in the Handbook of Formal Argumentation [40].

Definition 13. Given an AF F = (A,R), the stb-kernel F k(stb) =
(
A,Rk(stb)

)
is defined by

Rk(stb) = R \ {(a, b) | a 6= b ∧ (a, a) ∈ R}. ♦

Theorem 23 ([15]). For two AFs F ,G we have:

F ≡stb
s G ⇔ F k(stb) = Gk(stb)

Let us illustrate the introduced concepts with an example.

Example 11. Consider the following AFs F and G . Both possess the same stable extensions,
namely stb(F) = stb(G) = {{b, d}}. The AFs F k(stb) and Gk(stb) depicted in the second line are
the associated stable kernels of the initial frameworks (cf. Definition 13). Obviously, F k(stb) 6=
Gk(stb) which proves that F and G are not not strongly stb-equivalent (Theorem 23).

32

dcbaF : G : b c d

dcbaF k(stb) : Gk(stb) : b c d

dcb

e

aF ∪̇ H : G ∪̇ H : b

e

c d

The last line illustrates a witnessing expansion, namely adding H = ({e, b}, {(e, b)}) to both
frameworks simultaneously. In fact, stb(F ∪̇ H) = {{a, d, e}} 6= ∅ = stb(G ∪̇ H).

Let us consider now argumentation theory in the general setup. In Example 1 we have seen
that the embedding of abstract argumentation in our setting is a bit more involved than in case
of propositional logic, logic programs or default logic. The main reason for this is that in contrast
to the other considered formalisms we have that abstract argumentation frameworks possess two
sorts of building blocks, namely arguments and attacks. Moreover, the latter are dependent since
adding attacks requires the presence of the corresponding arguments. In order to cast AFs into
our general setup we have to have theories which correspond to AFs, s.t. the standard set union
∪ of such theories correspond to ∪̇ on the AF-level. Moreover, the semantics of theories has to
correspond to the argumentation semantics of the associated AFs.

We start with the introduction of a ρ-logic which formally captures a specific argumentation
semantics ρ on the level of theories.

Definition 14. Let U be a background set of arguments and ρ be an AF semantics. A ρ-
logic is a triple (LAF , I, σρ) where LAF = {({a}, ∅), ({a, b}, {(a, b)}) | a, b ∈ U}, I = 2U and

σρ : 2LAF → 2I with σρ(T) = ρ
Ä⋃̇

t∈T t
ä
. ♦

The representational issue implies that two different theories may represent the same frame-
work which causes some additional effort. More precisely, in what follows it will be a typical task
to show that the presented results are independent of the concrete representation of a certain
framework. Let us start with an illustrating example.

Example 12. Let T = {({b, c}, {(b, c)}), ({c, b}, {(c, b)}), ({c, d}, {(c, d)}), ({c}, {(c, c)})} and S =

T ∪ {({b}, ∅), ({c}, ∅), ({d}, ∅)}. Observe that
⋃̇
t∈T t =

⋃̇
s∈S s = G as depicted in Example 11.

Moreover by definition we have σstb(T) = σstb(S) = stb(G) = {{b, d}}. ♦

The following functions (restricted to the finite case) will be frequently used. First, we

define the associated AF of a given theory via AF :
(
2LAF

)
fin
→ AF fin where T 7→

⋃̇
t∈T t. As

already discussed the function AF (·) is not injective as demonstrated in Example 12. Secondly,
the canonical representation of a given AF is defined by C : AF fin →

(
2LAF

)
fin

where (A,R) is
represented by the LAF -theory {({a}, ∅) | a ∈ A} ∪ {({a, b}, {(a, b)}) | (a, b) ∈ R}. Observe that
for any AF H , we find AF (C (H)) = H . Moreover, regarding Examples 11 and 12 we have
C (G) = S 6= T .

Note that the assumption of finiteness of AFs can be reflected by considering the finite-theory
versions of ρ-logics. Before applying our canonical construction presented in Theorem 22 we have

33

to ensure that a constructed ρ-logic correctly reflects AFs under semantics ρ. We start with two
simple properties showing that the concrete representation (of an AF via a theory) is not “seen”
by set union as well as semantics σρ.

Proposition 24. Let (LAF , I, σρ) be a ρ-logic and consider any theories S, T ⊆ LAF .

1. AF (S ∪ T) = AF (S) ∪̇ AF (T) and

2. σρ(S ∪ T) = ρ(AF (S) ∪̇ AF (T)).

Proof. 1. Both statements can be easily seen. Consider the following equations.

AF (S ∪ T)

=
⋃̇

u∈S∪T
u (Definition AF)

=
⋃̇
s∈S

s ∪̇
⋃̇
t∈T

t (associativity
⋃̇

)

= AF (S) ∪̇ AF (T) (Definition AF)

2.

σρ(S ∪ T)

= ρ

(⋃̇
u∈S∪T

u

)
(Definition σρ)

= ρ(AF (S ∪ T)) (Definition AF)

= ρ(AF (S) ∪̇ AF (T)) (Item 1) �

The following theorem shows that two LAF -theories S and T are strongly equivalent under σρ
if and only if the AFs AF (S) and AF (T) are strongly equivalent under ρ (denoted by AF (S) ≡ρs
AF (T)). We mention that the theorem does not require finiteness and is thus valid for arbitrary
cardinalities of theories as well as AFs.

Theorem 25. Let (LAF , I, σρ) be a ρ-logic. For S, T ⊆ LAF we have

AF (S) ≡ρs AF (T) iff [S]σρs = [T]σρs .

Proof. “ =⇒ ”: Let AF (S) ≡ρs AF (T) and V ∈ 2LAF . We have to show that both theories are
strongly equivalent, i.e. σρ(S ∪ V) = σρ(T ∪ V).

σρ(S ∪ V)

= ρ(AF (S) ∪̇ AF (V)) (Proposition 24)

= ρ(AF (T) ∪̇ AF (V)) (assumption AF (S) ≡ρs AF (T))

= σρ(T ∪ V) (Proposition 24)

34

“⇐= ”: Let [S]
σρ
s = [T]

σρ
s and H be an AF. We have to show that the corresponding AFs are

strongly equivalent, i.e. ρ(AF (S) ∪̇ H) = ρ(AF (T) ∪̇ H).

ρ(AF (S) ∪̇ H)

= ρ(AF (S) ∪̇ AF (C (H))) (AF (C (H)) = H)

= σρ(S ∪ C (H)) (Proposition 24)

= σρ(T ∪ C (H)) (assumption [S]σρs = [T]σρs)

= ρ(AF (T) ∪̇ AF (C (H))) (Proposition 24)

= ρ(AF (T) ∪̇ H) (AF (C (H)) = H) �

Due to Theorem 22 we are able to present finite-theory characterization logics for any ρ-logic.

Corollary 26. Let (LAF , I, σρ) be a ρ-logic. The following logic (LAF , κ) is a finite-theory
characterization logic of (LAF , I, σρ):

κ :
(
2LAF

)
fin
→ 22

LAF
, T 7→

⋃(
[T]

(σρ)fin
s

)↑
So far, so good, but how can we interpret these finite-theory characterization logics in terms

of argumentation theory? In other words, what is the corresponding characterization semantics
on the level of pure AFs (instead of theories associated with AFs)? We extend the function

AF to sets of theories as usual, namely AF : 22
LAF → 2AF fin where T 7→ {AF (T) | T ∈ T }.11

Consider the following definition. We will see that all crucial properties of κ transfer to ρ′, that
is, ρ′ satisfies finite intersection and furthermore, it characterizes strong equivalence under ρ.

Definition 15. Given an argumentation semantics ρ : AF fin → 22
U

. We define the function
ρ′ : AF fin → 2AF fin with F 7→ AF (κ(C (F))). ♦

Proposition 27. For any argumentation semantics ρ and semantics ρ′ as defined above we have:

1. ∀F ,G ∈ AF fin : ρ′(F) = ρ′(G) ⇐⇒ F ≡ρs G ;
(finite-theory characterization)

2. ∀F ,G ∈ AF fin : ρ′(F ∪̇ G) = ρ′(F) ∩ ρ′(G). (finite-theory intersection)

Proof. finite-theory characterization: “⇐=”: Let F ≡ρs G . Hence, AF (C (F)) ≡ρs AF (C (G)).
Consequently, [C (F)]

σρ
s = [C (G)]

σρ
s (Theorem 25). Since (LAF , κ) is a finite-theory

characterization logic of (LAF , I, σρ) (Corollary 26) we deduce that
κ(C (F)) = κ(C (G)). Obviously, AF (κ(C (F))) = AF (κ(C (G))) which means ρ′(F) = ρ′(G)
(Definition 15).

“=⇒”: We prove the contrapositive. Hence, let F 6≡ρs G . This means, AF (C (F)) 6≡ρs
AF (C (G)) and we obtain [C (F)]

σρ
s 6= [C (G)]

σρ
s (Theorem 25). Consequently, κ(C (F)) 6= κ(C (G))

since κ characterizes strong equivalence under σρ (Corollary 26). Since equivalence
classes are disjoint we deduce the existence of a theory U , such that (without loss of
generality) [U]

σρ
s ⊆ κ(C (F)) \ κ(C (G)). Consequently, AF (U) ∈ AF (κ(C (F))) \AF (κ(C (G)))

since for all other representations of U ′, s.t. AF (U) = AF (U ′), we have U ′ ∈ [U]
σρ
s

(Theorem 25). Hence, AF (κ(C (F))) 6= AF (κ(C (G))) which means
ρ′(F) 6= ρ′(G) (Definition 15).

11We do not introduce a new symbol for the new function. Which function is meant will be clear from the
context.

35

finite-theory intersection:

ρ′(F ∪̇ G)

= AF (κ(C (F ∪̇ G))) (Definition 15)

= AF (κ(C (F) ∪ C (G))) (C (F ∪̇ G) = C (F) ∪ C (G))

= AF (κ(C (F)) ∩ κ(C (G))) (intersection κ)

= AF (κ(C (F))) ∩AF (κ(C (G))) (can be seen)

= ρ′(F) ∩ ρ′(G) (Definition 15) �

Finally, we present an equivalent definition of ρ′ that does not rely on ρ-logics. This means
the evaluation of ρ′ can be done purely on the level of AFs.

Proposition 28. Let ρ : AF fin → 2AF fin be a semantics and ρ′ as in Definition 15. For any
F ∈ AF fin we have:

ρ′(F) =
⋃

G∈AF fin,

F⊆̇G

{H | H ≡ρs G}

36

Proof.

ρ′(F) = AF (κ(C (F))) (Definition 15)

= AF

Å⋃(
[C (F)]

(σρ)fin
s

)↑ã
(Corollary 26)

= AF

à
⋃

S∈(2LAF)
fin
,

C (F)⊆S

[S]
(σρ)fin
s

í
(Definition of principal filter)

= AF

à
⋃

S∈(2LAF)
fin
,

C (F)⊆C (AF(S))

[S]
(σρ)fin
s

í
(S ⊆ C (AF (S)), [S]

(σρ)fin
s = [C (AF (S))]

(σρ)fin
s)

=
⋃

S∈(2LAF)
fin
,

C (F)⊆C (AF(S))

AF
(

[S]
(σρ)fin
s

)
(Definition AF (·))

=
⋃

S∈(2LAF)
fin
,

F⊆̇AF(S)

AF
(

[S]
(σρ)fin
s

)
(C (F) ⊆ C (AF (S)) ⇐⇒ F ⊆̇ AF (S))

=
⋃

S∈(2LAF)
fin
,

F⊆̇AF(S)

{
AF (T) | T ∈ [S]

(σρ)fin
s

}
(Definition AF (·))

=
⋃

S∈(2LAF)
fin
,

F⊆̇AF(S)

{
AF (T) | [T]

(σρ)fin
s = [S]

(σρ)fin
s

}
(equivalence relation)

=
⋃

G∈AF fin,

F⊆̇G

{H | H ≡ρs G} (AF (S) = G ,AF (T) = H ,Theorem 25)

�

Recently, Baumann and Brewka introduced so-called Dung-logics to be able to perform AGM-
style revision for Dung’s abstract argumentation frameworks [36]. These Dung-logics are very
similar yet different from the characterization logics presented in Proposition 28. The main
difference is that theories in Dung-logics are sets of AFs in contrast to the newly presented
characterization logic where theories correspond to single AFs. We mention that Dung-logics
possess the intersection property (Definition 16) and furthermore, two AFs F and G are strongly
equivalent with respect to an argumentation semantics ρ if and only if the singletons of F and
G are ordinarily equivalent with respect to the semantics introduced by Baumann and Brewka
[36, Definition 3].

We start with the formal definition of a Dung-logic in case of the most prominent argument-

37

ation semantics, namely stable semantics.12

Definition 16. The Dung-logic in case of stable semantics is a pair (AF fin, δ) with

δ : 2AF fin → 2AF fin U 7→
⋂
F∈U

Modk(stb)(F)

whereas Modk(stb)(F) = {G ∈ AF fin | F k(stb) ⊆̇ Gk(stb)} ♦

In order to see the similarity we consider the above definition for singletons of AFs.

Observation 29. Let stb : AF fin → 2AF fin be stable semantics and δ as in Definition 16. For any
F ∈ AF fin we have:

δ({F}) =
⋃

G∈AF fin,

F k(stb)⊆̇Gk(stb)

{H | H ≡stb
s G}

The only difference in comparison to ρ′ is that for δ, we include all equivalence classes of AFs
G whose kernels are in superset relation with the kernel of F , instead of having the superset
relation on the AFs themselves. A further analysis will be part of future work.

4.2. Normal Logic Programs

For normal logic programs under the stable model semantics as presented in Example 1,
applying Theorem 22 yields:

Corollary 30. For the finite-theory version of the logic (LLP , σstb) of normal logic programs
under stable model semantics, a finite-theory characterization logic is given by

σ′stb :
(
2LLP

)
fin
→ 2(2LLP)

fin , T 7→
⋃

([T]σstb
s)
↑

An existing, well-known characterizing semantics is given by SE-models.

Definition 17. Let P be a normal logic program over A and X ⊆ Y ⊆ A. Define semantics
σSE :

(
2LLP

)
fin
→ 2A×A by

T 7→
{

(X,Y)
∣∣ X ⊆ Y and X,Y ∈ σmod

(
TY
)}

where

TY = {a0 ← a1, . . . , am | a0 ← a1, . . . , am,∼am+1, . . . ,∼an ∈ T, am+1, . . . , an /∈ Y }
σmod(T) = {M ⊆ A | ∀a0 ← a1, . . . , am,∼am+1, . . . ,∼an ∈ T :

(a1, . . . , am ∈M ∧ am+1, . . . , an /∈M) =⇒ a0 ∈M} ♦

SE-models characterize strong equivalence of stable models [3, Theorem 1]; SE-model se-
mantics also has the intersection property [12, Lemma 3].

Proposition 31. (LLP , σSE) is a characterization logic for (LLP , σstb).

12For more details consider the original paper.

38

Since finite-theory characterization logics are unique up to isomorphism (Theorem 20), there
is a one-to-one-correspondence between the model sets given by Corollary 30 (as well as any
other model set of a certain characterization logic) and sets of SE-models. More precisely, for any
two logic programs T1, T2 ∈ LLP , we find σ′stb(T1) ⊆ σ′stb(T2) if and only if σSE (T1) ⊆ σSE (T2).
However, we note that the set of SE-models of a finite logic program is finite, while σ′stb maps logic
programs to infinite model sets in general. So in the concrete case of logic programs, SE-models
are much easier to work with.

5. Conclusions and Future Work

We presented a general framework for analyzing strong equivalence of knowledge repres-
entation formalisms. The framework abstracts away from all language specifics other than that
knowledge bases be expressible as sets of atomic language elements. For two classes of formalisms,
covered and finite-theory logics, we showed that they always possess a classical characterization
logic. We called characterization logics classical because they have the intersection property
(that is, the semantics of theories can always be obtained by considering the semantics of its
members independently). We called characterization logics characterizing because their standard
equivalence coincides with strong equivalence in the characterized formalism. As an application
of our results, we obtained a first characterization logic for abstract argumentation where single
AFs are interpreted as theories. This new logic complements the already existing Dung-logics
which consider single AFs as building blocks and hence, theories as sets of AFs [36].

Most previous work on characterizing strong equivalence in KR that we know of focused on
specific formalisms or on a handful of related formalisms, such as work on strong equivalence in
logic programs under stable models [2, 3] and supported models [8], that also give rise to similar
developments in default logic [3, 7] and autoepistemic logic [8]. By considering and exploiting
formalism specifics, more fine-grained views on classical, strong and intermediate equivalence
notions are possible [4, 7, 6]. Such notions are at present not “visible” in our setting, but could
be incorporated by restricting the set of theories that are allowed for expansion.

We have chosen to consider as “classical” all logics whose model function possesses the inter-
section property. Other characterizations might be possible when choosing consequence functions
instead of model functions as starting point. For those, we considered closure operators as a spe-
cial class (implying, for example, cumulativity). Other properties for future consideration come
to mind – for example compactness, which is independent of the closure property and relevant
to proof theory.

Our approach could be further generalized by abstracting away even from knowledge bases as
sets and knowledge base expansion as set union. We could assume a language as equipped with an
expansion operator ⊕ under which the language is closed and then derive our results completely
algebraically. This would enable us to treat, for example, abstract dialectical frameworks [41,
42, 43], a quite recent non-classical KR formalism encompassing both argumentation frameworks
and logic programs [17], for which strong equivalence has not been studied yet.

References

[1] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer set solving in practice, Synthesis
Lectures on Artificial Intelligence and Machine Learning 6 (3) (2012) 1–238. doi:10.2200/
S00457ED1V01Y201211AIM019.

[2] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Transactions
on Computational Logic 2 (4) (2001) 526–541. doi:10.1145/502166.502170.

39

https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.1145/502166.502170

[3] H. Turner, Strong equivalence for logic programs and default theories (made easy), in:
LPNMR, 2001, pp. 81–92.

[4] T. Eiter, M. Fink, Uniform equivalence of logic programs under the stable model semantics,
in: C. Palamidessi (Ed.), Logic Programming, 19th International Conference, ICLP 2003,
Mumbai, India, December 9-13, 2003, Proceedings, Vol. 2916 of Lecture Notes in Computer
Science, Springer, 2003, pp. 224–238. doi:10.1007/978-3-540-24599-5_16.

[5] E. Oikarinen, T. Janhunen, Achieving compositionality of the stable model semantics for
smodels programs, Theory Pract. Log. Program. 8 (5-6) (2008) 717–761. doi:10.1017/

S147106840800358X.

[6] S. Woltran, A common view on strong, uniform, and other notions of equivalence in answer-
set programming, TPLP 8 (2) (2008) 217–234. doi:10.1017/S1471068407003250.

[7] M. Truszczyński, The modal logic S4F, the default logic, and the logic here-and-there, in:
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July 22–26,
2007, Vancouver, British Columbia, Canada, AAAI Press, 2007, pp. 508–514.
URL http://www.aaai.org/Library/AAAI/2007/aaai07-080.php

[8] M. Truszczyński, S. Woltran, Hyperequivalence of logic programs with respect to supported
models, in: D. Fox, C. P. Gomes (Eds.), Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13–17, 2008, AAAI Press,
2008, pp. 560–565.
URL http://www.aaai.org/Library/AAAI/2008/aaai08-089.php

[9] P. Cabalar, M. Diéguez, Strong equivalence of non-monotonic temporal theories, in:
C. Baral, G. D. Giacomo, T. Eiter (Eds.), Principles of Knowledge Representation and Reas-
oning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20-24, 2014, AAAI Press, 2014, pp. 598–601.
URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7954

[10] J. A. Goguen, R. M. Burstall, Introducing institutions, in: Logics of Programs, Springer,
1984, pp. 221–256.

[11] L. Straßburger, What is a logic, and what is a proof?, in: J.-Y. Beziau (Ed.), Logica Univer-
salis, Birkhäuser, 2005, pp. 135–145, updated version at http://www.lix.polytechnique.
fr/~lutz/papers/WhatLogicProof.pdf.

[12] M. Truszczyński, Strong and uniform equivalence of nonmonotonic theories – an algebraic
approach, Annals of Mathematics and Artificial Intelligence 48 (3–4) (2006) 245–265. doi:
10.1007/s10472-007-9049-2.

[13] M. Denecker, V. Marek, M. Truszczyński, Approximations, Stable Operators, Well-Founded
Fixpoints and Applications in Nonmonotonic Reasoning, in: Logic-Based Artificial Intelli-
gence, Kluwer Academic Publishers, 2000, pp. 127–144.

[14] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Artificial Intelligence 77 (2) (1995) 321–
357.

[15] E. Oikarinen, S. Woltran, Characterizing strong equivalence for argumentation frameworks,
Artificial Intelligence 175 (14–15) (2011) 1985–2009. doi:10.1016/j.artint.2011.06.003.

40

https://doi.org/10.1007/978-3-540-24599-5_16
https://doi.org/10.1017/S147106840800358X
https://doi.org/10.1017/S147106840800358X
https://doi.org/10.1017/S1471068407003250
http://www.aaai.org/Library/AAAI/2007/aaai07-080.php
http://www.aaai.org/Library/AAAI/2007/aaai07-080.php
http://www.aaai.org/Library/AAAI/2008/aaai08-089.php
http://www.aaai.org/Library/AAAI/2008/aaai08-089.php
http://www.aaai.org/Library/AAAI/2008/aaai08-089.php
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7954
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7954
http://www.lix.polytechnique.fr/~lutz/papers/WhatLogicProof.pdf
http://www.lix.polytechnique.fr/~lutz/papers/WhatLogicProof.pdf
https://doi.org/10.1007/s10472-007-9049-2
https://doi.org/10.1007/s10472-007-9049-2
https://doi.org/10.1016/j.artint.2011.06.003

[16] R. Baumann, Characterizing equivalence notions for labelling-based semantics, in: Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Fifteenth Interna-
tional Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016., 2016, pp. 22–32.
URL http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12836

[17] H. Strass, Approximating operators and semantics for abstract dialectical frameworks, Ar-
tificial Intelligence 205 (2013) 39–70.

[18] M. Osorio, C. Zepeda, J. C. Nieves, U. Cortés, Inferring acceptable arguments with an-
swer set programming, in: Proceedings of the Sixth Mexican International Conference on
Computer Science (ENC), 2005, pp. 198–205.

[19] Y. Wu, M. Caminada, D. M. Gabbay, Complete Extensions in Argumentation Coincide with
3-Valued Stable Models in Logic Programming, Studia Logica 93 (2–3) (2009) 383–403.

[20] A. J. Harrison, V. Lifschitz, F. Yang, The semantics of gringo and infinitary propositional
formulas, in: C. Baral, G. D. Giacomo, T. Eiter (Eds.), Principles of Knowledge Repres-
entation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014,
Vienna, Austria, July 20-24, 2014, AAAI Press, 2014, pp. 32–41.
URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7966

[21] A. Harrison, V. Lifschitz, M. Truszczynski, On equivalence of infinitary formulas under the
stable model semantics, Theory Pract. Log. Program. 15 (1) (2015) 18–34. doi:10.1017/

S1471068414000088.

[22] A. Harrison, V. Lifschitz, D. Pearce, A. Valverde, Infinitary equilibrium logic and strongly
equivalent logic programs, Artif. Intell. 246 (2017) 22–33. doi:10.1016/j.artint.2017.

02.002.

[23] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: ICLP,
1988, pp. 1070–1080.

[24] K. L. Clark, Negation as failure, in: H. Gallaire, J. Minker (Eds.), Logic and Data Bases,
Plenum Press, 1978, pp. 293–322.

[25] M. H. van Emden, R. A. Kowalski, The Semantics of Predicate Logic as a Programming
Language, Journal of the ACM 23 (4) (1976) 733–742.

[26] R. Reiter, A Logic for Default Reasoning, Artificial Intelligence 13 (1980) 81–132.

[27] H. Turner, Strong equivalence for logic programs and default theories (made easy), in:
T. Eiter, W. Faber, M. Truszczyński (Eds.), Logic Programming and Nonmonotonic Reas-
oning, 6th International Conference, LPNMR 2001, Vienna, Austria, September 17-19, 2001,
Proceedings, Vol. 2173 of Lecture Notes in Computer Science, Springer, 2001, pp. 81–92.
doi:10.1007/3-540-45402-0_6.

[28] H. Turner, Strong equivalence for causal theories, in: Logic Programming and Nonmonotonic
Reasoning, 7th International Conference, LPNMR 2004, Fort Lauderdale, FL, USA, January
6-8, 2004, Proceedings, 2004, pp. 289–301. doi:10.1007/978-3-540-24609-1_25.

[29] O. Ore, Galois connexions, Transactions of the American Mathematical Society 55 (3) (1944)
493–513.
URL http://www.jstor.org/stable/1990305

41

http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12836
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12836
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7966
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7966
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7966
https://doi.org/10.1017/S1471068414000088
https://doi.org/10.1017/S1471068414000088
https://doi.org/10.1016/j.artint.2017.02.002
https://doi.org/10.1016/j.artint.2017.02.002
https://doi.org/10.1007/3-540-45402-0_6
https://doi.org/10.1007/978-3-540-24609-1_25
http://www.jstor.org/stable/1990305
http://www.jstor.org/stable/1990305

[30] G. Birkhoff, Lattice Theory, 3rd Edition, Vol. 25 of American Mathematical Society Col-
loquium Publications, American Mathematical Society, Providence, Rhode Island, 1973.

[31] P. M. Cohn, Universal algebra, Mathematics and Its Applications, Springer, Dordrecht,
1981.

[32] B. Davey, H. Priestley, Introduction to Lattices and Order, 2nd Edition, Cambridge Uni-
versity Press, 2002.

[33] D. M. Gabbay, Theoretical foundations for non-monotonic reasoning in expert systems, in:
K. R. Apt (Ed.), Logics and Models of Concurrent Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1985, pp. 439–457.

[34] S. Kraus, D. Lehmann, M. Magidor, Nonmonotonic reasoning, preferential models and cu-
mulative logics, Artificial Intelligence 44 (1) (1990) 167 – 207. doi:https://doi.org/10.

1016/0004-3702(90)90101-5.

[35] D. Makinson, General patterns in nonmonotonic reasoning, in: D. M. Gabbay, C. J. Hogger,
J. A. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming
(Vol. 3), Oxford University Press, Inc., New York, NY, USA, 1994, pp. 35–110.
URL http://dl.acm.org/citation.cfm?id=186124.186126

[36] R. Baumann, G. Brewka, AGM meets abstract argumentation: Expansion and revision
for Dung frameworks, in: Q. Yang, M. Wooldridge (Eds.), Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, AAAI Press, 2015, pp. 2734–2740.
URL http://ijcai.org/papers15/Abstracts/IJCAI15-387.html

[37] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and their se-
mantics, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook of
Formal Argumentation, College Publications, 2018, Ch. 4, pp. 159–236.

[38] R. Baumann, C. Spanring, Infinite argumentation frameworks – on the existence and unique-
ness of extensions, in: T. Eiter, H. Strass, M. Truszczynski, S. Woltran (Eds.), Advances in
Knowledge Representation, Logic Programming, and Abstract Argumentation – Essays Ded-
icated to Gerhard Brewka on the Occasion of His 60th Birthday, Vol. 9060 of Lecture Notes
in Computer Science, Springer, 2015, pp. 281–295. doi:10.1007/978-3-319-14726-0_19.

[39] R. Baumann, C. Spanring, A study of unrestricted abstract argumentation frameworks, in:
IJCAI, Proceedings of the 26th International Joint Conference on Artificial Intelligence,
2017, pp. 807–813.

[40] R. Baumann, On the nature of argumentation semantics: Existence and uniqueness, express-
ibility, and replaceability, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.),
Handbook of Formal Argumentation, College Publications, 2018, Ch. 18, pp. 839–936.

[41] G. Brewka, S. Woltran, Abstract dialectical frameworks, in: Proceedings of the Twelfth
International Conference on the Principles of Knowledge Representation and Reasoning
(KR), 2010, pp. 102–111.
URL http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294

[42] G. Brewka, S. Ellmauthaler, H. Strass, J. P. Wallner, S. Woltran, Abstract dialectical frame-
works revisited, in: Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence (IJCAI), IJCAI/AAAI, 2013, pp. 803–809.

42

https://doi.org/https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/https://doi.org/10.1016/0004-3702(90)90101-5
http://dl.acm.org/citation.cfm?id=186124.186126
http://dl.acm.org/citation.cfm?id=186124.186126
http://ijcai.org/papers15/Abstracts/IJCAI15-387.html
http://ijcai.org/papers15/Abstracts/IJCAI15-387.html
http://ijcai.org/papers15/Abstracts/IJCAI15-387.html
https://doi.org/10.1007/978-3-319-14726-0_19
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294

[43] G. Brewka, S. Ellmauthaler, H. Strass, J. P. Wallner, S. Woltran, Abstract dialectical frame-
works, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook of Formal
Argumentation, College Publications, 2018, Ch. 5, pp. 237–286.

43

	Introduction
	An Abstract View on Model Theory
	Models and Consequences
	Standard and strong equivalence
	Galois correspondences

	Characterization Logics
	Covered Logics
	Finite-Theory Characterization Logics

	Applying Canonical Constructions to Nonmonotonic Formalisms
	Abstract Argumentation Theory
	Normal Logic Programs

	Conclusions and Future Work

