EnTS - a new Sebastian Bader

Entropy-based Tree-indexing System

supervisor: Dr. Frederic Maire March 2002

“They are very treelike - s.bader@qut.edu.au

If you do not look carefully, you would think
that they are trees.” (Gandalf about ents, in [Tol66])

This paper describes a new indexing-system, which can be used
to enhance the speed of almost every algorithm working on code-
books. The only requirement to use EnTS is the existence of
a metric vector-space containing the data-items. But as most
algorithm work on n-dimensional euclidean vectors, this is not
a big demand.

During the development, the work was focused on vector-
quantisation. But the system is capable to speed-up other
groups of algorithms as well.

EnTS helps to increase the speed of other algorithms without
loosing lot of the quality. The System outperforms a number of
similar approaches.

supervisor: f.maire@Qqut.edu.au March 2002

Contents

1 Motivation

2 Introduction & Background

2.1 Indexing Systems
2.2 Tree-indexingo
2.3 Vector-quantization e
231 LBG,GLA & k-means
232 LBG-U e
233 GNG.
234 GNG-U e
2.4 Localmaps e
3 EnTS
3.1 Generation of the Indexing-System
3.2 Operations of the Indexing-System
3.3 The partition and the No-Man’s-Land
3.4 Balanceof EnTS oo
4 Results
4.1 Time-Complexity
4.2 Quality of results and the No-Man’s-Land
4.3 Running-time and the No-Mans-Land
4.4 Discussion of the other parameters
4.5 Comparison with other algorithms

5 Conclusion & future work

List of Algorithms

Al
A2
A3
A4
A5

LBG . .

11
12
13
17
19

22
22
23
23
24
24

26

1 Motivation

With the development of new techniques for data collection the amount of data
to be processed increased rapidly. But processing of these data is necessary,
e.g. for knowledge-discovery, pattern recognition, function approximation or
vector quantization. Unfortunately, most algorithms developed to process the
data do not scale very well into larger problems and therefore they are not
applicable. They work very well for small data-sets, but the databases of the
Human Genome Project or the S.E.T.I-project contain terra-bytes of data, i.e.
billions of high-dimensional vectors.

A lot of the algorithms which work on large datasets need to create a code-
book, which contains a set of vectors (prototypes or reference-vectors). These
codebooks are generated and modified to extract the knowledge from the input-
data and to abstract from the data itself. A well known problem is to find
the closest codebook-vector (winner) for a given input. For instance, this is
necessary for most vector-quantization algorithms (LBG, LBG-U, GNG, ...). A
quantizer is an algorithm /machine which computes a set of reference-vectors to
minimize a given error-function. The error-function is defined as a function of
the distances between each input-vector and its closest reference-vector.

But as most implementations store the codebooks in arrays a tabular search
is necessary to find the winner. Therefore the time-complexity is linear in the
size of the codebook.

For ordered sets (e.g. mnatural numbers, ...) it is possible to create an
indexing-structure that provides logarithmic access into the data. Unfortu-
nately, there does not exist a total order, which is compatible with the algebraic
vector operations, for the data-spaces used in the applications mentioned above.
Therefore standard search trees are not applicable and more sophisticated meth-
ods become necessary. Furthermore, most quantizer algorithms require an up-
date of the codebooks. I.e. even though existing static indexing-systems are
useful to provide fast access into the processed (static) data, these structures
are not suitable for adaptive codebooks.

This paper proposes a new indexing-system that is suitable for any quan-
tizer working on a metric vector-space. It provides logarithmic access into sets
without a natural order and can be used to improve existing algorithms without
changing the algorithms themselves.

This paper is organized the following way: The next section will give an
introduction into indexing-systems, vector-quantization and some of the algo-
rithms used to develop and test EnTS. Section 3 will describe the developed
system. Afterwards the results are presented and the system is compared to
existing aproaches. The paper finishes with the conclusion and a discussion of
the future work.

2 2 INTRODUCTION & BACKGROUND

2 Introduction & Background

2.1 Indexing Systems

As mentioned above, the problem is to provide fast access to the reference-
vectors (also called codebook-vectors) stored within the codebook. A fast
indexing-system would improve the speed of many machine learning algorithms.
But an indexing-system should not only provide fast access to the vectors
stored. It should be independent from the algorithm it is used in, i.e. it should
work like a plug-in for every algorithm working with codebooks. Furthermore,
it should not influence the results of the client algorithm - only make it faster.
An indexing-system can be seen as a stand-alone tool. It must be able to
retrieve the closest (and second-closest) item stored and to modify the codebook.
There are three mutators for the modification: insert, delete and update. The
first one modifies the codebook by inserting a new reference-vector into it, while
the delete-operation removes a given reference-vector. The update operation
changes a reference-vector by assigning a new position to it. And most important
there must be a gquery-operation. This one returns for a given input-vector
the closest and second-closest reference-vector stored in the codebook. These
definitions enable us to define the abstract data-type shown in Figure 1.

Indexing-system: an abstract data-type

Constructors:
e Empty: — codebook
e New: set-of-vectors — codebook

Accessors:
e Query: codebook x input-vector — {first-closest, second-closest}

Mutators:

e Insert: codebook x new reference-vector — codebook

e Delete: codebook X reference-vector — codebook

e Update: codebook X reference-vector X new position — codebook

Figure 1: Indexing-system: an abstract data-type

2.2 Tree-indexing

Tree-structures are a common tool to implement indexing-systems (e.g. R-Trees
[Gut84], RT-Trees [SRF88|, K-Trees |Gev], HiGS [VB96]). They can provide
access with a running-time which is logarithmic in the size of the codebook, by
splitting the complete search-space into smaller, (nested) cells. I.e. the tree-
structure guides the search at each level into the half-space (or cell) containing
the input-vector.

To provide a minimal expected access-time the tree should be as balanced
as possible. Le. the subtrees of any node should have about the same height.

2.3 Vector-quantization 3

2.3 Vector-quantization

Given a probability distribution P on a vector-space and an integer k, vector-
quantization tries to find k& codebook-vectors such that the quantization-error
(distortion):

B= / e — e(@)|Pp(z)de

is minimal. The vector ¢(z) is the closest codebook-vector for x and p(z) the
probability of z. I.e. by modifying the positions of the codebook-vectors the
algorithm tries to minimize the sum of the distances of every input-vector to its
closest codebook-vector.

Figure 2: A codebook (large dots) for the given input-distribution (displayed as
a sample - small spots)

Unfortunately, there is no way known to compute these codebooks directly
from the input-distribution. But a lot of algorithms were developed to find good
solutions. A few of these algorithms will be described in the following sections.

The search for the optimal solution can be seen as a search for the global
minimum of the distortion-function. To find this minimum most of the algo-
rithms use local optimizations. I.e. they use information derived from their
current state to find the minimum. Unfortunately, they usually run into local
minima before finding the global one.

The quantization-error can be used to compare different algorithms or dif-
ferent runs of the same algorithm. To evaluate an algorithm, the average
quantization-error and its variance are compared with results of other algo-
rithms.

2.3.1 LBG, GLA & k-means

LBG stands for Linde, Buzo and Gray - the authors of the algorithm, GLA for
Generalized Lloyd Algorithm and k-means points out the idea of determining &
means for a given set of vectors. All these names refer to one algorithm. It is
one of the classical approaches for vector-quantization and has influenced a lot
of other solutions.

This algorithm works on finite sets of input-vectors and updates the po-
sition of every codebook vector depending on its local environment, i.e. the

4 2 INTRODUCTION & BACKGROUND

input-vectors of its neighborhood. A finite set is necessary to enumerate the
neighborhood.

The algorithm starts with distributing k& codebook-vectors according to the
input-distribution. These codebook-vectors are repeatedly moved into the cen-
ters of their Voronoi-regions until they do not change their positions any more.
The Voronoi-region for a given vector ¢; from a set of vectors C = {c1,...cn}
is defined as the set of vectors (from the input-space) for which ¢; is the closest
one with respect to C. L.e. every codebook-vector is moved to the center of the
input-vectors it is responsible for. Each of these steps is called Lloyd-Iteration
(see Figure Al).

Lloyd-Iteration (Input-Set I,Codebook C')

returns Codebook

1. Create z = |C| empty sets (Voronoi-sets V.) - one assigned to each
codebook-vector (¢ . ..c;).

2. Determine for every input-vector z from I the closest vector ¢(x) from
C and add z to the Voronoi-set V,(,).

3. Compute the centroid for every Voronoi-set and assign it to the cor-
responding codebook-vector ¢; =) {z|z € V., } * IVITI

4. Return the updated codebook as solution. '

Figure A1l: Lloyd-Iteration

When the positions of the codebook-vectors change, their Voronoi-regions
(and therefore their Voronoi-sets) change as well. Therefore it is necessary to
repeat the process until the positions of the codebook-vectors are stable (see
Figure A2).

LBG (Input-Set I, Size of the Codebook k)
returns Codebook

1. Create a codebook C' containing k vectors and initialize them to ran-
dom positions according to 1.

2. Repeat until C' does not change:
C = Lloyd-Iteration(I,C)

3. Return the codebook.

Figure A2: LBG

Starting from a fixed set of input-vectors, there will always be a state in
which the algorithm stops, because each step decreases the quantization-error
and its value is bound by 0.

The number of iterations necessary depends a lot on the number of input-
signals and the size of the codebook. Unfortunately, the results differ a lot,
depending on the initialization of the codebook-vectors. I.e. multiple executions
of the algorithm may lead to very different results.

2.3 Vector-quantization 5

2.3.2 LBG-U

As mentioned above, the results of LBG differ a lot depending on the initializa-
tion. This is due to the fact that the algorithm runs into local minima because
the reference-vectors are adapted according to their local environments only. To
overcome this drawback, Fritzke introduced the idea of utility in combination
with non-local jumps. If a certain reference-vector is currently not very useful, it
is moved to a position where it might help more. These non-local jumps enlarge
the search-space of the algorithm.

The problem is to find a measure of utility. If two reference-vectors have
nearly the same position, this arrangement is not very useful because it is pos-
sible to remove one of them without a large increasing of the error. There-
fore, one of them might be more useful at another position. The same holds
for reference-vectors which are the winner for only a few input-vectors. These
reference-vectors neither cause a large local error and can be used more effi-
ciently as well.

On the other hand, a vector with a large Voronoi-region or with a lot of
input-vectors creates a big error and needs help. These vectors are candidates
for jump-targets. I.e. vectors with a very close neighbor or very small Voronoi-
regions are moved close to vectors which are responsible for a big region or a
lot of vectors.

To formalize these two concepts ('not useful’ and 'need help’) two values are
attached to every codebook-vector. The first contains the local quantization-
error, i.e. the sum of the squared distances to all the vectors it was winner

for:
E; = Z lles — 12

ijVci

The other value is used for the utility. It accumulates the difference of the
quantization error when the reference-vector would be removed. If a reference-
vector is removed the second-closest becomes the winner for the input-vector,
i.e. the error-value caused by this input-vector would be a bigger one. This
increase of error can be interpreted as utility of the reference-vector.

U= Y llea(ws) —;l1° = llei —

z;€Ve;

co(z) denotes the second-closest reference-vector for the input-vector z.

Both values are accumulated over one epoch (processing of every input-
signal) and set to 0 before. LBG-U performs a complete LBG and afterwards
the reference-vector with the smallest utility is moved close to the vector with
the highest error. This process (LBG + jump) is repeated until the error of
the LBG-process will not improve any more. Sometimes a jump might increase
the error. In these cases a copy of the codebook that was stored before the last
jump is returned as the result (see Figure A3).

As mentioned above, the non-local jumps enlarge the search-space of the
algorithm and allow to escape from local minima where LBG gets stuck. There-
fore, they lead to better results with a smaller variance.

As each LBG-U performs at least one LBG, the results can’t be worse and
every following iteration creates a better result. The price for better results is
a longer computation process, because multiple LBG’s might be performed.

2 INTRODUCTION & BACKGROUND

LBG-U (Input-Set I, Size of the Codebook k)

returns Codebook

1. Create a codebook C containing k vectors and initialize them to ran-
dom positions according to I, initialize the quantization error £ = co.
2. Create a copy of the current codebook K = C' and the current quan-
tization error F' = E.
3. Repeat until C does not change:
C = Lloyd-Iteration(I,C), i.e. perform an LBG-step
and accumulate the local error- and utility-values (E;, U;, E = Y E;).
4. If E > F return the stored copy K.
5. Copy the current codebook K = C and the quantization error F' = E.
6. Determine the least useful reference-vector (v = arg min.cc U,.) and
the one with the highest error-value (e = arg max.cc E.) and move
u close to e.
7. Continue with 3

Figure A3: LBG-U

2.3 Vector-quantization 7

2.3.3 GNG

For most of the quantization-problems the best fitting codebook-size is not
known in advance. To solve this problems with LBG(-U) it would be neces-
sary to guess a certain size, execute the whole algorithm and try it again until
the results are good enough. To overcome this drawback, some algorithms were
developed that work on a codebook with changing size.

Growing Neural Gas (GNG) is one of them. It is an extension of the Neu-
ral Gas by Martinetz and Schulten.[MS91] The extension was done by Fritzke
[Fri91]. Furthermore, it does neither require a finite set of input-signals (like
LBG, LBG-U).

Starting with a set of two reference-vectors, the algorithm works similar
to Kohonens Self-Organizing-Map [Koh90]. For each input-vector the closest
codebook-vector is determined and moved a little towards the input (according
to a given adaptation-rate €;). Furthermore, the second-closest is adapted as
well, but with a smaller rate ¢,. Between these two codebook-vectors a con-
nection (edge) is created. These edges are used to control the insertion of new
reference-vectors and can be interpreted to get a better understanding of the
underlying input-distribution. They also create a topological structure on the
codebook, that can help to identify clusters within the input. This idea was
introduced as Competitive Hebbian Learning in [MS91]. An example can be
seen in Figure 3.

Figure 3: A codebook with edges for the given input-distribution (displayed as
a sample - small spots)

Furthermore, each edge has an assigned age. This value is increased by one
for every edge starting from the closest reference-vector. And if the age of one of
the edges exceeds a certain value, the edge is removed. If the removing leads to
reference-vectors without any connection to others, these vectors are removed
as well. The whole algorithm is shown in Figure A4.

2 INTRODUCTION & BACKGROUND

GNG (Input-Distribution I, Mazimum size of the Codebook k, Adapta-
tion rates €y and €,, Mazimum age apmq,, Frequency of updates A,
Error-adaptation rates o and 3, Stop-criterion)

returns Codebook

Initialize the codebook C' with two reference-vectors.

Generate an input-vector ¢ according to I.

Determine the closest (¢1) and second-closest (c2) reference-vector.
Create a connection between ¢; and c¢o. If there already exist a con-
nection, set its age to 0.

5. Add the squared distance between £ and ¢; to the local quantization-
error of c;.

=W

Ecl = ECI + ||§ - 01”2

6. Adapt ¢1 and ¢ according to €, and e,.

a=c+e&l—ca)
cy =2+ €,(€ — ¢a)

7. Increase the age of all edges starting in ¢; by one.

8. Remove every edge with an age greater then a,,,. If it leads to
codebook-vectors without any connections, remove them as well.

9. If the number of processed input-vectors is a multiple of A, insert a
new codebook-vector:

(a) Determine the codebook-vector with the greatest error-value
q := argmax.cc E,. and among its topological neighbors the one
with the greatest error f := argmaxcecNeighbors Fe-

(b) Add a new reference-vector r into the codebook. Its position is
the middle of the segment (g, f).

(¢) Remove the connection between ¢ and f and add new ones for
the pairs (g,r) and (r, f).

(d) Update the local quantization errors

E,=E,—axE,
Ef:Ef—Oz*Ef
Er:(Eq+Ef)/2

(e) Reduce the quantization error of every codebook-vector to
E.=E.—f3xE,

10. If the stop-criterion (size of codebook, quantization-error, ...) is ful-
filled return the current codebook, else continue with step 2.

Figure A4: GNG

2.3 Vector-quantization 9

2.3.4 GNG-U

This section will introduce an extension of GNG. Applying the concept of utility,
GNG-U can be derived from GNG.

To each of the reference-vectors a utility-value is assigned. This value is
computed/accumulated as described in section 2.3.2 as the difference between
the squared distance to the winner and to the second-closest codebook-vector.
Ie. for each input-vector the closest and second-closest codebook-vector are
determined. For each of them the distance to the input-vector is computed.
The utility of the winner is increased by the difference of these distances.

If the fraction of Error and Utility of a certain codebook-vector is smaller
than a user-defined constant r, the codebook-vector is removed. If this leads to
codebook-vectors without any connections, these are removed as well.

The modifications are applied to the GNG algorithm as described in Algo-
rithm A4 as follows:

e Step 5 is extended to accumulate the utility as well.
e A “delete’-step is inserted after step 9.

The modified algorithm is shown as Ab.

GNG-U (Input-Distribution I, Mazimum size of the Codebook k, Adap-
tation rates €, and €,, Mazimum age Qpqz, Frequency of up-
dates X\, Error-adaptation rates a and 3, Stop-criterion, Rela-
tion of Error/Utility v)

returns Codebook

: (1.4 like in GNG)
5 Add the squared distance between £ and z; to a local quantization-
error of 1. And update the utility.

Ez1 = Ez1 + ||§ - ',L.IH2
Usy = Us, + (1€ = 22| = 1€ — 21]1%)

: (6..9 like in GNG)

10 If the quotient of Error and Utility of a certain reference-vector is
smaller than r (E./U. < r), this node (c) is removed. Reference-
vectors without any connection are removed as well.

11 If the stop-criterion (size of codebook, quantization-error, ...) is ful-
filled, return the current codebook, else continue with step 2.

Figure A5: GNG-U

10 2 INTRODUCTION & BACKGROUND

2.4 Local maps

Given a set of pairs {(z;,¥;) € (X,Y)}, containing an input-vector and an
output-value, local maps try to approximate the underlying function with a set
of local functions {f; : X — Y}. Le. to each of these functions a position-vector
p; is assigned, which represents the location of the function. The result of the
algorithm is the set of local functions, which can be used for approximations
A(z), computed by combining the weighted local functions A(z) = Y w; * fi(x).
The weights depend on the distance of the input-signal and the functions’ posi-
tions and can be seen as fuzzy membership functions. I.e. the closer a functions
position vector is to the input, the more important is its result. Sometimes it
is sufficient to take only the output of the closest function into account or an
interpolation of the n closest. Figure 4 shows an example of such an approxi-
mation.

The class of function is predefined (e.g. linear functions), but all free pa-
rameters incl. the position of these functions are determined by the system.

N N I/\ NN
| N \/| N N/

(a) target-function

. 1\ I/\ | %
N — ~< 1/

(b) local-map

AN e NN EN
~_" N |/

(c) approximation

Figure 4: Local-Map: the target-function was used to create the input-pairs,
b) shows the computed local functions and c) shows an approximation of the
target-function computed by interpolating between the values of the two closest
functions

Most algorithms update one or two functions only in each step. I.e. first the
algorithm determines the functions which are responsible for a certain input-
signal and afterwards these functions are updated. The vectors representing the
positions can be seen as a codebook and therefore accessed via EnTS to speed
up the process.

11

3 EnTS

This section describes the structure used to construct the indexing-system. It
shows how the construction and modification of the internal structure works
and how the system is meant to be used. Furthermore, it describes problems of
the system and the corresponding solutions.

The systems interface As mentioned in section 2.1, an indexing-system can
be described as an abstract data-type. This datatype defines the interface to
the system (Query, Insert, Delete and Update). Therefore, it can be seen as
a black box containing a set of vectors (the codebook) and providing access to
them.

System implementation To implement a fast indexing-mechanism, a binary
tree-structure is used. This decision-tree splits the input-space recursively into
half-spaces. Therefore, each path from the root of the tree to a leaf-node contains
the description of a polyhedron. The combination of all these polyhedras creates
a partition on the input-space as shown in Figure 5.

Figure 5: The tree-structure used in EnTS including the partition created

The leaf-nodes of the tree contain the stored vectors. Each of these nodes
hold a certain amount of vectors, which is spezified by a user-parameter. It is
possible to set this parameter to 1, i.e. each leaf-node can contain maximally
one reference-vector. But it is more useful to set it to a higher value like 10,
because for small sets of vectors a tabular search is faster, than a search directed
by a tree-structure. Furthermore, it is easier to balance the tree if there is some
tolerance in the number of vectors stored in the leaf-nodes. (For a further
discussion see section 3.3.)

Each internal node holds a decision-rule which decides in which subtree to
step while searching for a certain vector. These decisions are constructed of

12 3 ENTS

Hyperplane : h = {z|z *n = d}

left—side: | = {zlz *xn > d}

right — side : r = {z|z *n < d}

\

Figure 6: Picture of a hyperplane and the decision

hyperplanes (linear discriminant functions) splitting the space into half-spaces.
Each hyperplane is described by its normal-vector and the distance to the origin
of the space (Figure 6). To each subtree one side of the hyperplane is assigned.
If the input-vector is on the side containing the origin, the search will continue
in the right subtree, in the left one otherwise.

3.1 Generation of the Indexing-System

Starting from a set of vectors to be indexed, the algorithm performs a recursive
split. These splits are done by a hyperplane as described above. To find a good-
splitting hyperplane the principal component of the set of vectors is used to
determine the direction. Once this direction is found, it is easy to find the best-
splitting distance to the origin. The calculation of the main component could be
done by a PCA. But in EnTS a 2-means is performed and the vector connecting
the two means is used as the main-component, because it is computational more
efficient than a PCA.

Once the direction of the hyperplanes normal vector is found, the distance
d to the origin needs to be calculated. Therefore, all vectors are projected
onto the normal-vector using the inner-product. These products are sorted
and the median (or the mean of the two medians) is used for the offset of the
hyperplane. The median is used to create a 50/50-partition. This leads to a tree
as flat as possible, which guarantees an optimal average access time. Both sub-
sets created by this partition are processed recursively until each set contains a
maximum of a user-defined number of vectors.

Another way to construct the indexing-system is to build it incrementally.
By starting with one empty leaf-node the reference-vectors are inserted into the
system as described in section 3.2 in the Insert-part.

3.2 Operations of the Indexing-System 13

el ®
n ®
d n .
® ® h
(a) the two means (the (b) projection of all vectors (c) the computed hyper-
x) and calculation of the onto the normal-vector and plane (h = {z|lz * n =
normal-vectors direction n calculation of the distance d}) incl. the normalized
d to the origin normal-vector (|n| = 1)

Figure 7: Construction of a hyperplane

3.2 Operations of the Indexing-System

This section will describe in detail how the operations defined in section 2.1 are
implemented within the EnTS. The operations required for an indexing-system
are: Query, Insert, Delete and Update.

Query (codebook x input-vector — {first-closest, second-closest}):
The Query-operation is used to find the nearest neighbor for a certain input-
vector (and the second-closest). This search is executed in two steps. As the
tree creates a polyhedral partition, the first step is to identify the polyhedron
which contains the input-vector. Each leaf-node can be viewed as a polyhedra,
that is defined by the hyperplanes contained in the nodes from the root to the
leaf-node. Once the correct leaf-node polyhedron is identified a tabular search
is performed to find the closest (and second closest) reference-vector.

But sometimes the search fails to return the closest codebook-vector, as
the search is restricted to the cell containing the reference-vector. As shown in
Figure 8, the closest reference-vector might be contained in a different leaf-node.
To solve this misclassification-problem, the algorithm steps into two subtrees in
doubt and performs a parallel search. But this process is described in more
detail in section 3.3.

Insert (codebook x new reference-vector — codebook): To insert a
new reference-vector into the current codebook, EnTS first finds the correct
leaf-node and inserts the vector into it. The search for the correct leaf-node is
described above, while talking about the Query-Operation. As each leaf-node
holds a set of vectors the new reference-vector is simply inserted into it.

But as mentioned before, each of these nodes must not hold more than a
certain amount of vectors. I.e. the insertion may lead to an overflow of the
leaf-node. To solve this problem, the EnT-System splits that node as described
in section 3.1. Le. a 2-means is performed giving the direction of a new splitting

14 3 ENTS

Figure 8: Misleading of the tree-structure. The closest reference-vector is
marked by a thick circle and the wrong solution by the cross.

hyperplane and afterwards the whole set is split.

The old leaf-node is replaced with a new decision-node and the two corre-
sponding leaf-nodes (see Figure 9). Unfortunately, this process may lead to an
unbalanced tree, but the problem of rebalancing will be discussed in detail in
section 3.4.

Figure 9: A split of a leaf-node caused by an overflow.

3.2 Operations of the Indexing-System 15

Delete (codebook x reference-vector — codebook): As for insertion the
first step of a deletion is to find the correct leaf-node, i.e. the one that contains
the vector to delete. Once that node is found, the vector is simply removed
from it.

If this vector was the last in its leaf-node, that node will be removed com-
pletely. Furthermore, its parent might get removed as well, as its decision is not
useful anymore. I.e. the parent-node is replaced with the leaf-nodes sister, as
shown in Figure 10.

enpty

Figure 10: Deletion of an empty node and the replacement of its parent with
the sibling.

To keep the tree as shallow as possible, it is useful to merge subtrees if they
contain too few reference-vectors. If the deletion in a certain subtree leads to a
total number of vectors that is smaller than the number a single leaf-node can
hold, this subtree is replaced with the single node, as demonstrated in Figure
11.

Unfortunately, the delete-process may lead to an unbalanced tree. As men-
tioned above, the problem of (re-)establishing the balance will be discussed in
detail in section 3.4.

Update (codebook x reference-vector X new position — codebook):
While updating the position of a reference-vector, the tree must be updated
sometimes as well. First the system finds the leaf-node containing the old vector
and the target-leaf-node. If these two nodes are identical, only the position of
the vector is changed.

Otherwise the system performs a deletion followed by an insertion. I.e. in
that case the reference-vector is removed from the system, its position modified
and afterwards reinserted.

3 ENTS

16

Figure 11: Deletion of a reference-vector and the merging of a subtree, which

contains to few elements.

3.3 The partition and the No-Man’s-Land 17

3.3 The partition and the No-Man’s-Land

Given a set of reference-vectors V- = {v1,...,v,} distributed in a space S it is
possible to label each point in S with the number of its closest reference-vector.
This process is called Voronoi-Tessellation.

The partition created by that tessellation would be the optimal solution for
our problem, i.e. having a description of the borders of it, it would be easy
to construct an indexing-system that works optimally. But the tessellation is
neither computable in an acceptable time nor representable in a nice form (at
least not for high-dimensional spaces). Unfortunately, the partition created by
EnTS is not equal to the Voronoi-partition, as shown in Figure 12. Some of
the Voronoi-regions are split by the EnTS-decision-borders. For input-vectors
contained in the 'cut of’ areas of a Voronoi-region (marked in Figure 12) EnTS
returns the wrong reference-vector.

Figure 12: A set of reference-vectors (circles), their Voronoi-Tessellation (thin
lines) and an EnTS-Partition (thick lines). The areas for which EnTS would
return a wrong ’closest’ reference-vector are marked dark-gray (’cut-off’-areas)
and the 'No-Mans-Land’ light-gray.

To solve this problem, we introduced the concept of the 'No-Man’s-Land’.
This can be understood as a fuzzification of the decisions. If a certain input-
vector lays too close’ to a border, the search is continued on both sides. To
have a measurement of closeness, the system keeps track of the current mean for
each subtree. These means and their distance to the decision-hyper-plane are
used to decide whether to step into both subtrees or not. A certain fraction of
that distance is considered to be the mentioned 'No-Mans-Land’ (see Figure 12).
This is a user-defined parameter and it controls the trade-off between accuracy
and speed of the system. If the ’No-Man’s-Land’ has a width of 0, the system
would be very very fast, but would not find the correct nearest neighbor for
some input-vectors. While using a 'No-Man’s-Land’-fraction of co, the system

18 3 ENTS

would act like an array-implementation and always return the (correct) closest
reference-vector. But, unfortunately, it would not be faster anymore, because
every leaf-node is searched. Figure 13 shows different results of GNG.

(a) Vectors generated by the un- (b) The ’optimal’ solution,

derlying input-distribution. computed with an array-
implementation of the codebook
(t=90sec).

PR AB ¥

bﬂ
(¢) EnTS-solution with a (d) EnTS-solution with a
No-Mans-Land-fraction of 0.3 No-Mans-Land-fraction of 0.0

(t=80sec). (t=30sec).

Figure 13: Results of GNG with different parameters.

But section 4 will give a more detailed discussion of the parameters. As
described there, the concept of the 'No-Mans-Land’ is a good and effective way
to solve the misleading-problem created by the non-Voronoi-partition of EnTS.

3.4 Balance of EnTS 19

3.4 Balance of EnTS

As mentioned above, it is important to keep the tree as small and balanced as
possible to provide the optimal average access-time. This section first gives a
definition of (un-)balance and afterwards describes how the balance is preserved
in the EnTS-tree.

A leaf-node is called inwvalid if its number of entries exceeds a certain value
(overflow) or if it is empty (underflow). A decision-node is called invalid if the
number of reference-vectors stored in both subtrees together could be stored in
one single leaf-node (underflow). These three cases are described in section 3.2
in detail and are mentioned here only for completeness (for a short overview see
Figure 14).

(a) Solving an overflow (b) Solving an underflow (c) Solving an underflow
of a leaf-node. of a leaf-node. of a decision-node.

Figure 14: Overview of invalid nodes and the corresponding actions.

A decision-node is called unbalanced if the difference in height of its subtrees
exceeds a certain value. To solve the unbalance-problem EnTS tries three dif-
ferent strategies (delegation, migration and recreation), which are discussed in
the following paragraphs.

20 3 ENTS

Delegation Re-balancing can be seen as the problem of decreasing the height
of the deeper subtree. If it is possible to decrease its height, the unbalance is
solved as well. Therefore, the systems first attempt is to delegate the problem
into the deeper subtree (see Figure 15). If both subtrees have the same height,
EnTS tries to decrease the height of both.

unbal anced

wdel egation

Figure 15: Delegation of the unbalance. The topmost node is unbalanced, but
the solving is delegated into its right subtree, because 227! x 10 0.8 > 14. It is
not delegated further, because 2! ! x 10 x 0.8 ¥ 10. Le. EnTS tries to decrease
the height / (re-)balance the second node.

But first the system checks whether it is worth trying to decrease the height
of a subtree or not. There is a chance if:

201w O« F > |V| d - depth of the subtree (a leaf’s depth = 0)
C - capacity of a leaf-node
F - a factor to prevent floundering
V - set of vectors held in the subtree

The factor F prevents the delegation into a subtree that is only just able to
decrease its depth. In this situation it is very likely that the next insertion will
lead to an expansion again, i.e. the factor creates a buffer for the next insertion.
Delegating the problem as far as possible leads to local (and cheap) repairs.

3.4 Balance of EnTS 21

Migration To decrease the height of a certain subtree (or rebalance it), EnTS
tries a migration of all reference-vectors from one side to the other. If all the
vectors of one subtree fit into its sibling-tree, the parent-decision is not impor-
tant any more, because one of its subtrees is empty. This process is shown in
Figure 16. It leads to one empty subtree, which can be handled as described
in section 3.2 (see Figure 10). I.e. by migrating all the reference-vectors into
one subtree and by removing the parent-node, the height of the whole subtree
is decreased. To check whether the process has a chance to succeed, the system
compares the number of reference-vectors to migrate and the available capacity
of the other subtree. If the capacity is bigger, it tries the migration. Unfortu-
nately, it is still not guaranteed that the process does not lead to a split in the
other subtree. This could lead to an infinite loop of migrations.

2
N Lo
ST

"

Figure 16: The migration of the reference-vectors from the 2nd level node leads
to an empty leaf and therefore a redundant decision-node, which can be removed.

Recreation If neither delegation nor migration are applicable, the system re-
creates a whole subtree from the scratch. This is done as described in the section
3.1 (“Generation of the Indexing-System”).

29 4 RESULTS

4 Results

As described in section 1 and 2, the idea was to increase the speed of a cer-
tain group of algorithms. But as shown in section 3.3 (No-Man’s-Land), this
approach might influence the result of the client-algorithms. This section will
present some experimental results to show the power of EnTS.

The experiments were done using an EnTS-implementation of the author in
Java. All were done multiple times and the average results were used.

4.1 Time-Complexity

To describe the running-time of the EnTS, it is necessary to distinguish two
different cases. On the one hand it is possible to describe the speed of the access
into the codebook itself. And on the other hand the running time of a client
algorithm using an array-implementation and using EnTS can be compared.

Speed of the codebook-access To test the speed of queries into the code-
book, codebooks of different sizes were queried several times.

A logarithmic time-complexity is expected for EnTS, due to the internal
tree-structure. And a linear one for the array-implementation. The results of
the experiment are shown in figure 17.

QueryTime = f(codebook-size)
14000 T | | | I

I I
EnTS ——
12000 array - - - .-

10000

8000
QueryTime B
6000 - .

4000 - I -

2000

[

0 ! ! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500

Size of the codebook

Figure 17: Speed of the access into the codebook.

Speed of client-algorithms To test the influence of EnTS on the speed of
the client-algorithm the running-time is compared directly. LBG was used as
client-algorithm. Figure 18 shows the results of this experiment.

4.2 Quality of results and the No-Man’s-Land 23

Running-time = f(codebook-size)
250000 I I I I I I

I T I .
EnTS ——
array - .- ..

200000

150000 - - .
Running-time '
100000

50000 |- o -

0 T | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

Size of the codebook

Figure 18: Running-time of a client-algorithm with different codebook-sizes.

4.2 Quality of results and the No-Man’s-Land

As described in section 3.3 the quality of the client-algorithm might be influ-
enced by EnTS. The influence is controlled via the No-Man’s-Land-parameter
described there.

The quality of the client-algorithm is influenced because EnTS might return
codebook-vectors which are not the closest for a given input. The theoreti-
cally best result can be achieved while working with an array-implementation,
because it will always return the very closest codebook-vector.

To measure the quality of the client-algorithm, the distortion of a vector-
quantization-algorithm is used. Starting from a fixed size of the codebook and
a given number of input-vectors, the experiment was done several times with
increasing No-Man’s-Land-fractions, ranging from 0.0 to 1.0. The results can
be seen in Figure 19.

The experiment showed that the quality is influenced a lot while working
with a No-Man’s-Land-fraction of 0.0, but differs almost none if this parameter
is set to a value greater than 0.4.

4.3 Running-time and the No-Mans-Land

As shown in the last subsection, the quality is influenced, but using a No-Man’s-
Land-fraction of greater than 0.4, this influence is almost invisible.

Another important influence of the 'No-Man’s-Land’-parameter is its impact
on the running-time of the client-algorithm. Using a value of 0.0 will increase
the speed a lot, whereas a value of 1.0 slows-down the algorithm. To prove
this hypothesis the following experiment was done. Using a fixed number of
codebook-vectors and a fixed set of input-vectors, an increasing No-Man’s-Land-

24 4 RESULTS

Distortion = f(No-Man’s-Land)
300 | T |

250 —\\

ol T T

I
EnTS ——
array - - - -

Distortidi

100 - .

50 - n

0 ! ! ! !
0 0.2 0.4 0.6 0.8 1

No-Man’s-Land

Figure 19: The quality of the client-algorithm dependent on the No-Man’s-
Land-fraction (smaller distorsion = better quality).

fraction was used ranging from 0.0 to 1.0 As described above (section 4.1), the
number of steps performed by the client-algorithm was fixed and the running-
times of both implementations were compared.

Figure 20 shows the results of this experiment. The running-time of the
array-implementation was constant, but increasing for the EnTS-implementation.
The EnT-System is slower if the No-Man’s-Land-fraction is greater than a cer-
tain value. For this value, the gain in speed is equal to the loss caused by the
overhead of the tree-structure.

4.4 Discussion of the other parameters

The experiments described above were done with fixed values for the parameters
used for rebalancing. I.e. the parameters which were used to prevent floundering
during deletion, merging and rebalancing were kept constant. They were all set
to a value of 0.8.

During some experiments it was found that these parameters do not have a
significant influence. Only if set to extreme values like 0 or 1, the results were
influenced. But to find the best values, further experiments with larger datasets
are necessary. The author’s recommendation is a value of 0.8.

4.5 Comparison with other algorithms

To compare EnTS with other aproaches in the field of vector-quantisation, some
experiments were done which allow the direct comparison with TSVQ, K-tree
and k-means as described in [Gev].

4.5 Comparison with other algorithms 25

Running-time = f(No-Man’s-Land)

16000 |- | | " EnTS —— -
14000 o Ay
12000 |- -
10000 |- _ -
Running—t’g@&] e
6000 F __— -
4000 | -
2000 -

0 ! ! ! !
0 0.2 0.4 0.6 0.8 1

No-Man’s-Land

Figure 20: The speed of the client-algorithm dependent on the No-Man’s-Land-
fraction.

To compare the quality of the algorithms 3924 20-dimensional vectors were
quantized and the distortions messured. These vectors come from a speech
spectrum and are widely used for similar experiments [0T|. Figure 21 shows the
results of the experiment. EnTS outperforms all the algorithms except k-means.

Distortion = f(codebook-size)

350 T T T | T T
k-means

300_ . tqu......_
. ktree

250 -

200
Distortion
150 -

100 - .

50 - N

0 ! ! ! ! ! !
0 100 200 300 400 500 600 700

Size of the codebook

Figure 21: Comparison of codebook distortion

26 5 CONCLUSION & FUTURE WORK

5 Conclusion & future work

As shown in section 4, EnTS provides access into a set of vectors with a time-
complexity which is logarithmic in the size of the set. No further requirements
are necessary, but the items must belong to a metric vector-space. Furthermore
the system is independent of the algorithm it is used in and can be seen as a
plug-in for every algorithm working on codebooks.

One drawback of the system is the number of user-parameters. These five
parameters might be guessed or determined by experiments, but maybe it is
possible to find either good heuristics or replace them with constant values. It
should be possible to replace the capacity of the leaf-node-cells and the factors
used while modifying the tree (merging, delegation and migration) by constant
values. Furthermore, it would be interesting to find the connections between
dimension, 'No-Mans-Land’, accuracy and speed. A better understanding of
these dependencies could lead to a function determining the ’No-Mans-Land’-
factor from given constraints. But this requires further experiments with larger
data-sets of different dimensions.

The development of more advanced rebalancing-algorithms is another im-
portant point for future work. It should be possible to find a way of modifying
the hyperplanes to rebalance the tree.

REFERENCES 27

References

[Fri91] Bernd Fritzke. Let it grow—self-organizing feature maps with problem
dependent cell structure. In T. Kohonen, K. Mikisara, O. Simula, and
J. Kangas, editors, Artificial Neural Networks, volume I, pages 403—
408, Amsterdam, Netherlands, 1991. North-Holland.

[Fri98] B. Fritzke. Vektorbasierte Neuronale Netze. PhD thesis, 1998.
http://pikas.inf.tu-dresden.de/ fritzke/papers/habil.ps.gz.

[Ger94] K. Rose; D. Miller; A. Gersho. Entropy-constrained tree-structured
vector quantizer design by the minimum cross entropy principle. In
Martin Cohn James A. Storer, editor, Proceedings Data Compression
Conference, pages 12-21. IEEE, IEEE Computer Society Press, 1994.

[Gev] Shlomo Geva. K-tree: A height balanced tree structured vector quan-
tizer.

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching,
1984.

[Koh90] Teuvo Kohonen. The Self-Organizing Map. In New Concepts in
Computer Science: Proc. Symp. in Honour of Jean-Claude Simon,
pages 181-190, Paris, France, 1990. AFCET.

[MS91] T.Martinetz and K. Schulten. A 'neural gas’ network learns topologies,
1991.

[0T] Helsinki University of Technology. Lvq_ pak.
http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml.

[SRF88| T. Sellis, N. Roussopoulos, and C. Faloutsos. Tree: A dynamic index
for multidimensional objects, 1988.

[Tol66] J.R.R Tolkien. Lord of the rings, 1966.

[VB96] C. Mohan V. Burzevski. Hierarchical growing cell struc-
tures. Technical report, Syracuse University, 1996.
ftp://www.cis.syr.edu/users/mohan/papers/higs-tr.ps.

[VJH96] J. Austin V. J. Hodge. Hierarchical growing cell structures: Treegcs.
Technical report, Dept of Computer Science, University of York, Hes-
lington, York, UK, YO10 5DD, 1996.

“A thing is about to happen which has not happened since
the Elder Days: the Ents are going to wake up and find that
they are strong.” (Gandalf about ents, in [Tol66])

