
EMCL Master Thesis

Reasoning with Text Annotations

by

Sudeep Ghimire

Supervisor : Prof. Enrico Franconi

Co-Supervisors: Dr. Yue Ma
Prof. François Lévy
Prof. Steffen Hölldobler

April, 2011

Acknowledgments

First, I would like to thank my supervisor Prof. Enrico Franconi at the KRDB Research Center for
his kind supervision of this thesis. Without his support and advices, this research would have never been
possible. My sincerer gratitude to my co-supervisors Yue Ma and Francois Levy, LIPN, Universite Paris XIII
for great supervision, guidance, valuable advices and an opportunity to work at a well equipped research
center.

I would make a special mention of the EMCL consortium for the two year Erasmus Mundus scholarship
not only for an opportunity to study under an advance education system but also for many good things that
I learnt about European research methodologies, cultures and lifestyles.

I want to thank all of my friends in Lisbon and Bolzano, who have made my these two years as one of the
most beautiful periods in my life from all perspectives of academics, diverse culture exchanges and warm
social integration. I wish to send my special thanks as well to my close friends round the world for being
there whenever I was in need.

Last but not least, my deepest gratitude goes to my beloved family, my mother, father and brother for
always encouraging me, taking care of me and understanding me.

1

Dedicated to my Parents

2

Contents

1 Introduction 2
1.1 Background . 3
1.2 Related Works . 3
1.3 Motivation . 4
1.4 Contribution of the Thesis . 5
1.5 Organization of the Thesis . 5

2 Preliminaries 7
2.1 Logics in Action . 7

2.1.1 Description Logics (DL) . 7
2.1.2 Higher Order Description logic . 9
2.1.3 Quasi-Classical Logics (QCL) . 10
2.1.4 SWRL . 10

2.2 Semantic Web Technologies . 12
2.2.1 OWL2 . 12
2.2.2 OWLAPI . 13
2.2.3 JENA . 13
2.2.4 Pellet . 13

2.3 Summary . 14

3 Text Annotation 15
3.1 Landscape of Annotations . 15
3.2 Approaches and Problems . 17
3.3 Integration . 17
3.4 Building Blocks . 18

3.4.1 Semantic Annotations . 19
3.4.2 Linguistic Annotations . 20
3.4.3 Domain Ontologies . 20

3.5 Summary . 21

4 Knowledge Representation and Reasoning 22
4.1 Knowledge Representation . 22

4.1.1 Semantic Annotations . 23
4.1.1.1 Syntax . 23
4.1.1.2 Semantics . 24
4.1.1.3 Satisfiability . 25

4.1.2 Representation of Linguistic Annotations . 25
4.2 Reasoning . 26

4.2.1 Reasoning with rules . 26
4.2.1.1 Rules . 27
4.2.1.2 Transformation of semantic annotations for A . 28

3

4.2.1.3 U∗ Revisited . 29
4.2.2 Reasoning with Domain Ontology . 31

4.2.2.1 Reduction to Classical DL . 31
4.2.2.2 Entailment of semantic annotations . 32

4.3 Summary . 33

5 Technology Application 34
5.1 Requirements . 34

5.1.1 System features . 34
5.1.2 External interface requirements . 35

5.2 System Description . 35
5.2.1 Architecture . 35

5.2.1.1 Inputs . 36
5.2.1.2 Interface . 37
5.2.1.3 Re-Writing Module . 38
5.2.1.4 Reasoning Module . 40
5.2.1.5 Logging Module . 41
5.2.1.6 Outputs . 42

5.2.2 Operation . 42
5.2.3 Optimization . 44

5.3 The Results . 44
5.4 Synopsis . 45

6 Epilogue 46
6.1 Current State . 46
6.2 Future Works . 47

6.2.1 Composite Annotations . 47
6.2.2 Re-injection Architectures . 47
6.2.3 Others . 47

6.3 Conclusion . 48

A Theorem Proofs 49

B Workout examples 52

Reference 56

4

List of Figures

1.1 Sample sentence . 4

3.1 Ontology-based Annotation on texts . 16
3.2 Integrated View of Text-Annotations generation and representation . 18
3.3 Sub-Ontology of Airline Services . 20

4.1 Reasoning Paradigm with text annotations . 26

5.1 System Architecrure . 37
5.2 System Operation . 43

B.1 Ontology-based Annotation on texts . 52
B.2 Use-Case 2 for inconsistency check . 53
B.3 Use-Case 3 for Coherency check . 54

5

List of Tables

2.1 Binding B(I) for the SWRL atoms . 11

5.1 Coverage of Rules on the Annotated Corpus, where type of nn is divided based on whether its head or
its modifiers are semantically annotated . 44

5.2 Statistical analysis of outputs . 45

6

Abstract

With the emerging need for automation of business processes and the advent of semantic web it has
become necessary that digital contents should be expressed not only in natural language, but also in a form
that can be understood, interpreted and used by software agents, thus permitting them to find, share and
integrate information more easily. Thus, Knowledge Representation and automated reasoning has been an
interesting field of research for recent years, which is greatly supported by the availability of various logical
languages underpinned with well defined syntax and semantics. Description logic (DL), which is also the
foundation of standardized web ontology language OWL, has become a highly used de-facto standard for
knowledge representation. DL reasoners can infer and detect logical contradictions in the ontologies speci-
fied in a certain web ontology language, such as OWL. Highly optimized DL reasoners like Pellet, Hermit,
Fact++ can be used for reasoning over knowledge base represented using classical DL.

Annotated corpus with various annotations viz semantic, syntactic and pragmatic are important features
for text-based applications, but are equally challenging and complex to be achieved, maintained and be used
in an integrated way. So, a framework in which various linguistic annotations, produced by different ad hoc
approaches and domain knowledge maintained by experts are integrated is useful for enrichment of the cor-
pus. With standard representation formalism the annotated documents can be made suitable for automated
reasoning. This formalism not only new annotations can be inferred from the existing ones but the same
formalism and framework can be used for checking the correctness and completeness of annotations.

In this thesis the underlying knowledge representation formalism for representation of annotations is an-
alyzed and solved by studying various logical languages including higher order logics, which accounts for
cooperation of the different sorts of knowledge. The annotations are interpreted in various ways to handle
the different needs to achieve varying useful results. At the same time different paradigms for reasoning with
annotations are discussed along with necessary algorithms for dealing with such cases. An integrated frame-
work is developed, the prototype version of which demonstrates the use of reasoning taking into account of
both linguistic and semantic annotations, to detect conflicting annotations, new annotations and overall con-
sistency of annotations. Thus, the research work that we have undertaken helped us to achieve an integrated
knowledge representation and reasoning framework for dealing with annotated text corpus,supported by ex-
isting cutting age semantic web technologies. This thesis, also paves a path towards a metric to evaluate
annotation i.e. detect logically inconsistent information, without depending on a golden standard, but by
making use of the axioms expressed in ontologies.

Keywords: Description logic (DL), DL-reasoners, Natural Language Processing, Text Annotation, Knowl-
edge Representation, Semantic Web Technology

1

Chapter 1
Introduction

”Logics is Everywhere”
EMCL students theme

With the emergence of standards for automation of business processes and the advent of semantic web
now its necessary that digital contents should be expressed not only in natural language, but also in a form
that can be understood, interpreted and used by software agents, thus permitting them to find, share and
integrate information more easily. Thus, Knowledge Representation and automated reasoning has been an
interesting field of research for recent years, which has been greatly supported by the availability of various
logical languages underpinned with well defined syntax and semantics. Description logic (DL), which is
also the foundation of standardized ontology language OWL, has become a highly used de-facto standard
for knowledge representation. DL reasoners can infer and detect logical contradictions in the ontologies
specified in a certain web ontology language, such as OWL. Highly optimized DL reasoners like Pellet 1,
Hermit 2, Fact++ 3 can be used for reasoning over knowledge base represented using classical DL. Reason-
ing with Annotation of Text is an area that we are exploring on the application of various logics and existing
standardized semantic web technologies.

Text corpus with various linguistic annotations, produced by different ad hoc approaches and domain
knowledge maintained by experts play an important role in the advancement of Computational Linguistics
(CL). At the same time, such annotations are equally challenging and complex to be achieved, maintained
and checked for correctness and completeness. In this thesis, we have thus explored the possibility to inte-
grate various annotations in a single framework and make use of existing technologies to extract additional
annotations and to assert that the annotated corpus is logically consistent. This thesis is thus basically the
study of how automated reasoning systems based on Description Logics (DLs) can be used for reasoning
about text annotations. The ability of reasoning automatically on annotated documents makes it possible to
provide computer aided support during text processing to automatically detect relevant properties, such as
inconsistencies and redundancies.

In this chapter, we will basically explain the background of our work and basic logical foundation,
related works, motivation behind the research work that we have undertaken and pave a foundation for
understanding the rest of the chapters.

1http://clarkparsia.com/pellet/
2http://hermit-reasoner.com/
3http://owl.man.ac.uk/factplusplus/

2

CHAPTER 1. INTRODUCTION

1.1 Background
About a decade ago, Tim Berners-Lee, James Hendler and Ora Lassila published their seminal paper [3]

describing the evolution of the current web from a human-processable environment to a machine-processable
one. The basic idea incubated was to annotate resources and give them a machine-processable meaning. In
the mean time many efforts have been placed to standardize both the language for representing the content
and the production of annotations/metadata. One step closer towards machine understandable text process-
ing is explained in [27] which is about annotations of documents with metadata also known as domain
knowledge, which is in turn stored in the form of ontologies with semi-automatic approach.

In the last decades, logics have been applied to numerous areas of computer science, including knowl-
edge representation, formal verification, database theory, distributed computing and, more recently, semantic
web and ontologies. Various logical languages and allies have been proposed, studied and implemented to
address the problem of automated reasoning. OWL has emerged as a standard for representing ontologies
with expressivity to model most of the domain of consideration and is still evolving with new features in the
latest version OWL2. At present we are equipped with highly optimized reasoners, which can be used for
consistency checking, concept satisfiability, classification and realization over OWL based Knowledge.

Meanwhile, a trend grows toward platforms allowing to use different tools on the same text (see e.g.
[13] for some descriptions, Stanford CoreNLP4 suite for an implementation and the UIMA norm5 for a
framework) have been successfully implemented and tested. The interaction of different levels of analysis
is well known by linguists, but the cooperation of different tools has been rarely studied in an integrated
environment and are not equipped with formal description or reasoning mechanisms. Moreover, the outputs
of each process are written in independent formats. Relying on a standard representation of different typed
annotations attached to text fragments, we propose a logical framework that is able to cope with the results
of different tools in a common formalism, to express logical relations linking them and, on this basis, to
detect incoherences or to add inferred annotations.

The links between texts and its semantic markups are important for real usages (i.g. checking the cor-
rection, debugging, explaining, maintaining, repairing inconsistencies). Two direct benefits of structured
semantic annotation are enhanced information retrieval and improved interoperability. Other applications
include checking the conformance of procedures [11] and facilitating business rules writing and update pur-
sued by the Ontorule project6 which extends semantic data with typed rules according to a slightly extended
SBVR classification [36].

1.2 Related Works
Knowledge acquisition or information extraction systems aim to acquire knowledge from texts, such as

event extraction, named entity recognition, ontology construction. The acquired results are usually stored
separately and used as semantic resources for other applications. Different from these systems, our work
coincides with semantic annotation approaches (e.g. KIM7 and Semantic Turkey8) with a focus on revealing
the meaning of texts explicitly, by marking texts with suitable annotations from some ontological vocabu-
laries. Naturally, to automate the semantic annotation process, I.E. techniques are beneficial and have been
explored [46, 30]. Refer to [46] for a significant review of this field and interesting scenarios on using
ontology for annotating texts. Note that most existing semantic annotation systems only consider a part of
ontological elements: individuals and their conceptual categories [14, 26]. However, our application is to
annotate domain specialized regulatory texts which differ from them in scale – each corpus is incomparably
smaller – and in scope – the annotations have to cover a larger part of the content. In our case, annotation
labels are from domain ontologies built by experts and thus extend far beyond general labels like Person,
Location, Organization.

4http://nlp.stanford.edu/software/corenlp.shtml
5http://uima.apache.org/
6http://ontorule-project.eu
7http://www.ontotext.com/kim/
8http://semanticturkey.uniroma2.it/

3

http://nlp.stanford.edu/software/corenlp.shtml
http://uima.apache.org/
http://ontorule-project.eu
http://www.ontotext.com/kim/
http://semanticturkey.uniroma2.it/

CHAPTER 1. INTRODUCTION

Additionally, concept or role occurrences in these texts are much more frequent than that of individuals.
This need for varied fine-grained annotations leads to knowledge modeling problems and to check, debug,
and explain inconsistent annotations of texts with regarding to domain ontologies. Therefore, while many
specific semantic annotation systems have been extensively studied, this work is to study the knowledge rep-
resentation issue underlying ontology-based multi-layer annotation systems, and to provide a sound way to
take advantage of different kinds of annotations. A problem highlighted in [46] and left for ongoing research
is about keeping annotations consistent with evolving resources, particularly in combination with evolving
ontologies. Our formalism provides a step in this direction by studying a way to detect conflicts in annota-
tions with regard to domain ontologies, which is not supported by trivial representations of annotations by
extending the usage of annotations of texts beyond semantic information retrieval by leveraging the relation
among texts, annotations of texts, and domain ontologies.

Last, (logic-based) declarative I.E. systems [39, 42, 40, 45] have been developed to encode annotation
process in logics, possibly with some predefined predicates for linguistic annotation patterns (e.g. patter-
nOcc, disambPrior, express). Different from them, our framework aims to be part of an annotation platform
on which users can uniformly analyze various linguistic and semantic annotations and their interactions.

1.3 Motivation
Modeling conceptual knowledge of a specific domain by ontologies and annotating texts with linguistic

information (linguistic) are two critical problems for content management in the traditional Artificial Intel-
ligence research. As seen from the previous section, there have been already much work on both tasks, but
each of them usually misses the aspect of the other. In this thesis, we try to reduce the gap by studying a
bridge between them, namely ontology-based semantic annotation of text. Basically the thesis addresses
following two issues: 1. analyze and propose the knowledge representation formalism for handling different
types of text annotations, 2. study and implement different reasoning paradigms to reason with text corpus
annotated by different sources, making use of existing semantic web technology.

Let us try to make a thorough analyze of the problem statement by considering one sentence (it will
be used in most of the places in the latter chapter, for giving examples) from regulatory texts provided by
American Airlines, which is an eleven pages text on an air-travel loyalty program, taken as input corpus for
our:

Figure 1.1: Sample sentence

This sentence can be annotated with a number of concepts from domain ontology. For instance credit
can be annotated as concept Credit from the ontology. At the same time, we can observe that mileage is the
noun-form modifier for credit, so we can make linguistic annotation between these two with a relationship.
Now, we know by intuitive linguistic studies that combination of head and modifier of the noun-form modi-
fier relationship should mean the same as the head. Thus, we should be able to infer the semantic annotation
to the combined word mileage credit as concept Credit.

With this example annotations, first questions that arise is how to link annotations to ontology, which
we will call semantic annotations. We will address the problems related to this in section 3.2 and provide
the logical formalism in section 4.1. Even though, annotations like noun-form modifier, which we call as
linguistic annotations seem easier, but using them in collaboration with semantic annotations arises new
paradigm for reasoning with rules, in addition to reasoning of semantic annotations with domain ontology.
Both these cases are studied in section 4.2. At the same time we would like to mention that our goal is not to
fully understand the text, but to modestly complement automatic annotation with some richer mechanisms,
knowing that the usability of one or the other is domain dependent. We call an inference allowing to com-
plete semantic knowledge by using other types of knowledge.

4

CHAPTER 1. INTRODUCTION

To achieve such an reasoning system taking into account of various forms of knowledge, our hypothesis
is that this knowledge management and reasoning problem can be solved by using semantic web tech-
nologies. Ontologies can be used in order to provide formal grounding for representing the semantics of
knowledge elements; they can guide creation of semantic annotations constituting a set of all meta-level
characterizations easing knowledge source description, evaluation, and access. DL-Reasoners can be used
to perform reasoning over the knowledge base formed from various sources, but represented in standardized
OWL2 format. Rules languages can be used to write rules, that can be used to extract new annotations,
based on the existing annotations and known information patterns. And one more important hypothesis is
that Higher Order DL constructs can be translated into Classical DL constructs.

We are motivate to reason with annotations of texts because of it’s importance to improve the results, and
this is the subject of discussion of our thesis. It can be helpful at least for two tasks. The first is adding anno-
tations to existing ones – e.g. proposing new annotations. The second is to detect and deal with inconsistent
annotations, which is important when analyzing annotations made by different annotators or generated au-
tomatically without golden standards - or simply helping the expert remaining consistent. The first task is
achieved by using hand written or learned logical rules, based on semantic web rule language and a shallow
representation of the annotations of text. For the second task, we make use of the logical reasoning of anno-
tations with respect to a domain ontology. The whole system follows the principle that semantic annotations
can be analyzed automatically, supported by techniques developed in the Semantic Web field.

1.4 Contribution of the Thesis
This thesis is an extension and improvisation of the research work at the LIPN lab, Universit Paris 13

(accepted at the 24th FLAIRS conference [29]). The major contribution of this research work is to deal with
various paradigm of reasoning with text annotations. Taking into account of the formalism proposed by
the previous research the annotations are represented in a format suitable for knowledge representation and
are interpreted in various ways(like strong satisfiability, weak satisfiability and classical interpretation) for
various different reasoning tasks (inconsistency checking of semantic annotations with respect to domain
ontology, entailment of semantic annotations or deducing new annotations by logical annotation rules). We
also present the paradigm to reason with annotated corpus, by considering various forms of annotations viz
semantic, syntactic, morphological in an single framework by integrating with rules developed by analysis
of the linguistic patterns often missed out by other previous works. Reasoning with annotation rules opens
up a wider spectrum to further research on various patters of annotations and relationship. The research
work is accompanied by working prototype implementation, to demonstrate the importance of the proposed
technology, which can provide useful and interesting outputs which can be inputs to other works related to
annotated texts. Moreover, this work also points out the way for evaluation of semantic annotations, without
using the golden standard, but making use of logical reasoning and axioms defined in ontology.

1.5 Organization of the Thesis
This thesis contains 6 chapters : Introduction, Preliminaries, Text Annotation, Knowledge Representation
and Reasoning, Technology Application and Epilogue. It also has two appendix sections for proof of the-
orems, application results and worked out examples. Each chapter ends with a summary, which highlights
the important readings of the chapter, necessary to be able to follow the next chapter. Summary of these
chapters are following:

• Introduction: This chapter [1] gives readers a brief over-view of our research. The basic idea, prob-
lems and motivation behind the work is justified along with the overall contribution of the thesis. It
contains a global summary of the thesis as well.

• Preliminaries: In this chapter [2] we will provide all background knowledge for the thesis. Here,
we have introduced the different logical languages involved on the proposed solution such as: DL,

5

CHAPTER 1. INTRODUCTION

HDL, QCL, SWRL and justify their necessity. Semantic Web technologies used for prototyping the
formalism such as OWL2, OWLAPI, JENA, PELLET are also discussed and justified.

• Text Annotation: This chapter [3] is the entry point for understanding the problem under considera-
tion. We have introduces the various types of annotations, historical background, their relationships
and our way of handling the text annotations. Various components involved on wider view of formal-
ism are discussed.

• Knowledge Representation and Reasoning: This chapter [4] focuses on Knowledge representation
issues to handle the different types of annotations. We discuss on the different paradigms of reasoning
with annotations with necessary algorithms to handle cases with existing semantic web technologies.
By the end of this chapter, reader will be familiar with how Knowledge base developed for the overall
application along with reasoning methodologies.

• Technology Application: This chapter [5] explains the prototype model that has been developed to
explore the proposed technology. It presents the system architecture, operation, optimization and
discusses on the statistical analysis of the results. The chapter involves the necessary algorithms for
our implementations supported by examples wherever necessary.

• Epilogue: As usual, this chapter sums up our work. It explains the current state of application along
with further enhancements that can be achieved.

6

Chapter 2
Preliminaries

”Most of the mistakes in thinking are inadequacies of perception rather than mistakes of logic.”
Edward de Bono

The problem that we are going to address involves a number of varying logical languages and This
chapter builds up the foundation for the logical and technical description of the overall research. It intro-
duces all the technologies being used for the formalism, along with the ones used for the implementation.
The chapter divided into two sections discusses on the basic formalisms of the formal logical languages
used for handling the knowledge representation and reasoning issues of the problem being addressed by
the thesis. Since, thesis is supported by a working prototype, background of various technologies used is
important to understand the system architecture and operations, which are discussed in the latter half of this
chapter. At the same time, we have also included the definition of some of the terms, frequently used in the
latter chapters to make it clear to the reader about the concepts being discussed.

2.1 Logics in Action
The work we had undertaken is a research in applicative logics. It’s not only an effort to build up text

processing application from the perspective of Computational Linguistics but demonstrate the application
of Computational Logics and existing technologies in development of useful applications. The theories thus
proposed involves various languages of logics, which are discussed briefly in this section.

2.1.1 Description Logics (DL)
Description logic (DL) is a well-known fragment of first order logic together with the development

of knowledge representation system because it provides the logical foundation for ontologies and Semantic
Web. In general, basic description logic is decidable and expensive enough for information system modeling.
The DL describes a system throughout concepts, roles, individuals and their relationship in the system where
an individual is an object in the system, a concept is a class of objects and a role is a relation between two
objects.

The language of DL in general often contains two disjoint sets of symbols for atomic concepts and
atomic roles which corresponding to symbols of unary predicates and binary predicates. It also contains a

7

CHAPTER 2. PRELIMINARIES

set of symbols for concept and role construction such as : negation(¬), conjunction (u), disjunction (t),
existence (∃), universal quantification (∀), cardinality restrictions (≥n,≤n) as well as a set of symbols for
the relation between concepts and between roles such as : subsumption (v). Almost description languages
also contain ⊥ and > symbols as special concepts. For different variants of DL, naming conventions and
detail we suggest [1]. The DL logics for our concern is ALCH, a combination of:

• AL Basic DL with atomic negation, concept intersection, value restriction and limited existential
quantification

• C Complex concept negation

• H Role hierarchy

We now provide the syntax and semantics of DL−ALCH with reference to [41].
Syntax

Let Uc be a set of concept names, Ur be a set of role names, A ∈ Uc and R ∈ Ur. Then the concept
expressions in DL−ALCH are built inductively as follows:

C ::= A | ¬C | C1 t C2 | C1 u C2 | ∃R.C | ∀R.C
And concept is a collection of concept inclusions such as:

C1 v C2

The (acyclic) role hierarchy is a collection of role inclusions such as:
R1 v R2

Following axioms are the part of ALCH A−Box
concept assertion C(a)
role assertion R(a, b)
role inclusion R v S
individual inequality a 6= b

Example 2.1 For example, we present a concept expression with role hierarchy:
∃R1.C1 u ∀R2.(C2 t ¬C3) with {R1 v R2, R2 v R3, }

Semantics
The semantics of DL−ALCH concepts is defined relative to an interpretation I = (∆I , .I), where ∆I is a
non-empty set, called domain of I , and .I is a valuation that maps every concept name to a subset of ∆I and
every role name to a subset of ∆I ×∆I . The interpretation can be lifted to concept expressions and satisfied
by role inclusion (role hierarchy) as follows:

1. (¬C)I = ∆I − CI

2. (C1 t C2)I = CI1 ∪ CI2

3. (C1 u C2)I = CI1 ∩ CI2

4. (∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I} : if (x, y) ∈ RI then y ∈ CI

5. (∃R.C)I = {x ∈ ∆I | ∃y ∈ ∆I} : (x, y) ∈ RI and y ∈ CI

6. (R1 v R2)I = RI1 ⊆ RI2

7. (C1 v C2)I = CI1 ⊆ CI2

Similarly the semantics for A−Box is as given below:

8. (C(a))I = aI ∈ CI

9. (R(a, b))I = (aI , bI) ∈ RI

10. (a 6= b)I = aI 6= bI

8

CHAPTER 2. PRELIMINARIES

Here, we would like to make two important definitions viz satisfiability and consistency which will be one
of the major task for us to check over the knowledge base we will develop.

Definition 2.1 Unsatisfiable Concept: A named concept C in the ontology O is unsatisfiable iff, for each
interpretation I of O, CI = φ.

Definition 2.2 Incoherent Ontology: An ontology O is incoherent iff there exists an unsatisfiable named
concept in O.

2.1.2 Higher Order Description logic
Higher Order Description logic (HDL) is an extension of DL with higher order capabilities. Adding

higher-order constructs to a DL form a spectrum of increasing expressive power, including domain meta-
modeling, i.e., using concepts and roles as predicate arguments. This becomes an obvious case for our
problem (more discussion on this in section 3.2(. Higher-version of a DL L is written as Hi(L). Here we
present a thorough introduction to the syntax of HDL and the reader is advised to follow [15] and [9] for
further discussions on HDL.

Syntax:
Let OP (L) the set of operators and MP (L) set of meta-predicates for description logics (ALCH for

our case). Let us assume two disjoint countably infinite alphabets: S, the set of names, and V , the set of
variables. The building blocks of a Hi(L) knowledge base are assertions, which in turn are based on expres-
sions. The set of expressions denoted by EL(S) are defined over the alphabet S for Hi(L) inductively as
follows:

if E ∈ S then E ∈ EL(S);
if C/n ∈ OP (L) and E1, ..., En ∈ EL(S) then C(E1, ..., En) ∈ EL(S).

Now in order to define the HiL assertion, let us define a set of MP (L) of meta-predicates as:
A Hi(L) assertion over EL(S) is a statement of the form M(E1, ..., En) where M ∈ MP (L), n ≥ 0 is

the arity of M , and for every 1 ≤ i ≤ n,Ei ∈ EL(S). A Hi(L) knowledge base (KB) is a set of assertions
over EL(S).

Example 2.2 InstR(Mileage; tf1; sa :concept) , where InstR is in the set MP (L) to denote a role in-
stance. Mileage is an ontological concept, tf is ontological individual and sa :concept is a role and all of
them belong to the set S.

The intended meaning is that the text-fragment tf1 is a concept defined by the concept Mileage in the
pntology.

Semantics:
The semantics of Hi (L) is based on the notion of interpretation structure which is a triple

∑
=

〈∆, Ic, Ir〉 where: (i) ∆ is a non-empty(possibly countably infinite) set; (ii) Ic is a function that maps
each d ∈ ∆ into a subset of ∆; and (iii) Ir is a function that maps each d ∈ ∆ into a subset of ∆ ×∆. In
other words,

∑
treats every element of ∆ simultaneously as: (i) an individual; (ii) a unary relation, i.e., a

concept, through Ic; and (iii) a binary relation, i.e., a role, through Ir.
An interpretation over

∑
is a pair I = 〈

∑
, Io〉, where triple

∑
= 〈∆, Ic, Ir〉 is an interpretation struc-

ture, and Io is a function that maps: (i) each element of S to a single domain object of ∆ and (ii) each
element C/n ∈ OP (L) to an n-ary function CIo : ∆n → ∆ that satisfies the conditions characterizing
the operator C/n. Io is extended to expressions in EL(S) inductively as follows: if C/n ∈ OP (L), then
(C(E1, ..., En))Io = CIo(EIo1 , ..., E

Io
n).

To interpret non-ground terms, we need assignments over interpretations. An assignment µ over 〈
∑
, Io〉

is a function µ : γ → ∆.
Now we describe how to interpret terms in Hi(L). Given an interpretation I = 〈

∑
, Io〉 and an assign-

ment µ over I , we define the function (.)Io,µ : τ(S, γ)→ ∆ as follows:

9

CHAPTER 2. PRELIMINARIES

if t ∈ S then tIo,µ = tIo ;
if t ∈ V then tIo,µ = µ(t);
if t is of the form C(t1, ..., tn), then tIo,µ = CIo(tIo,µ1 , ..., tIo,µn).

Satisfiability:
Satisfiability of an assertion with respect to an interpretation I and an assignment µ over I is defined

based on the semantics of the meta-predicates in MP (L). For the meta-predicates, satisfaction in I, µ is
defined follows:

I, µ |= InstC(E1, E2) if EIo,µ1 ∈ (EIo,µ2)Ic ;

I, µ |= InstR(E1, E2, E3) if
〈
EIo,µ1 , EIo,µ2

〉
∈ (EIo,µ3)Ir ;

I, µ |= IsaC(E1, E2) if (EIo,µ1)Ic ⊆ (EIo,µ2)Ic ;
I, µ |= IsaR(E1, E2) if (EIo,µ1)Ir ⊆ (EIo,µ2)Ir ;

Definition 2.3 A Hi(L) KB H is satisfied by I if all the assertions in H are satisfied by I . As usual, the
interpretations I satisfyingH are called the models ofH. A Hi(L) KBH is satisfiable if it has at least one
model.

2.1.3 Quasi-Classical Logics (QCL)
Quasi-Classical Logics (QCL) first introduced in [4] is based on the idea of weakening the classical

logics by adding restriction on proof theory. In this restriction, compositional proof rules (disjunction in-
troduction) cannot be followed by decomposition rule (resolution). Even though this weakens the classical
logics, this logical language is appealing for reasoning with inconsistencies arising in applications, more
generally in information fusion [8].

The most important concept of interest for us introduced by QCL is the two kinds of semantics, namely,
QC weak semantics written as |=w and QC strong semantics written as |=s. Readers are suggested to follow
[22] and [48] for further discussions on QCL. For our purpose, we will just need the concept of entailment
relation from QCL, which we will discuss over here. Entailment:

Here we define the concept of entailment relation (|=Q) as in [22, pg 9]. As, stated before QCL pro-
vides us with strong and weak semantics for satisfiability denoted as |=s and |=w respectively. The (|=Q) is
defined as:

Definition 2.4 |=Q is an entailment relation α1, ..., αn |=Q β iff ∀X(X |=s α1 and ... and X |=s αn
implies X |=w α1

where X is the interpretation and |=s and |=w mean strong satisfaction and weak satisfaction re-
spectively, whose semantics is explained at [22, pg 6] and [22, pg 8] respectively.

This concept of entailment, based on strong and weak satisfaction, is used in our formalism for defining
entailment of semantic annotations. In section 4.2.2.2 we will demonstrate the use of this entailment relation,
where we define the weak and strong semantics for our formalism. One important achievement we can make
is for inferring new annotations on text-fragment based on sub-class relations of the domain ontology.

2.1.4 SWRL
In the rule-based OWL reasoning paradigm, the asserted knowledge, that is the knowledge stemming

directly from the ontology definition, is mapped into an internal rule engine representation format, and
inference rules are applied in order to deduce new knowledge. The inference rules are based on OWL
entailments [25], that are rules which describe the information that should be inferred based on existing
knowledge.

A Semantic Web Rule Language (SWRL1) is based on a combination of the OWL DL and OWL Lite sub-
1http://www.w3.org/Submission/SWRL/

10

CHAPTER 2. PRELIMINARIES

languages of the OWL Web Ontology Language with the Unary/Binary Datalog RuleML sub-languages of
the Rule Markup Language2. The rules are of the form of an implication between an antecedent (body)
and consequent (head). The intended meaning can be read as: whenever the conditions specified in the
antecedent hold, then the conditions specified in the consequent must also hold. Now we will define the
syntax, semantics and satisfiability of SWRL rules.

Syntax
Atoms on SWRL are defined as:

Atom← C(i) | D(v) | R(i, j) | U(i, v) | builtIn(p, v1, ..., vn) | i = j | i 6= j, where

C = Class D = Data type
R = Object property U = Data type property
i, j = Object variable names or Object individual names
v1, ..., vn = Data type variable names or Data type value names
p = Built-in names

Then a SWRL rule is defined as:
a← b1, ..., bn where,

a : head (an atom) bi: body (all atoms)
A SWRL knowledge base (P) is defined by a finite set of rules.
Semantics

Let I be an interpretation, VIX = Object Variables, VDX = Data Type Variables and P = Power Set
Operator. Then I is a quadruplet such that I = (∆I ,∆D, .I , .D), where

∆I = Object Interpretation Domain
∆D = Datatype Interpretation Domain
.I = Object Interpretation function
.D = Datatype Interpretation function and
∆I ∩∆D = φ

such that
VIX → P (∆I); VDX → P (∆D)

With this definition of interpretation I , the following table shows the Binding B(I) for the SWRL atoms:

SWRL Atoms Condition on Interpretation
C(i) iI ∈ CI
R(i, j) (iI , jI) ∈ RI
U(i, v) (iI , vD) ∈ U I
D(v) vD ∈ DD

builtIn(p, v1, ..., vn) (vD1 , ..., v
D
n ∈ pD)

i = j iI = jI

i 6= j iI 6= jI

Table 2.1: Binding B(I) for the SWRL atoms

Satisfiability
In order to define the satisfiability of a SWRL rule R such that R = H ← B, where H and B are the

head and body of the rule respectively, we first define the satisfiability of B and H .

2http://ruleml.org/

11

CHAPTER 2. PRELIMINARIES

Definition 2.5 SWRL atoms in the body(B) or antecedent are satisfied,if it is empty (trivially true) or every
atom of it is satisfied.
SWRL atom in the head(H) or consequent is satisfied,if it is not empty and it is satisfied.

Then the satisfiability of rule R is defined as follows:

Definition 2.6 A rule(R) is satisfied by an interpretation of I if and only if for every binding B(I) that
satisfies the antecedent, B(I) satisfies the consequent.

In the context of reasoning with annotations, integration of rules can be beneficial for analyzing anno-
tations together, including propagating new semantic annotations, reporting missing semantic annotations,
detecting incoherence among semantic annotations or syntactic annotations and deducing axioms based on
annotations to be annotated to a complete sentence (explained with examples in section 4.2.1.1). At the
same time SWRL rules can be used fairly easily to define rules with various built in OWL constructs.

Even though SWRL is undecidable, adding the restriction of DL-safety makes it decidable, for details
on reasoning with DL-safe rules we suggest [18]. DL Safety is a simple idea which is implicit in many
rule systems: variables in DL Safe rules bind only to explicitly named individuals in your ontology. In the
context of our reasoning with annotations, DL-safety is valid, thus making SWRL a wonderful choice.

2.2 Semantic Web Technologies
In order to demonstrate the realization of the formalism proposed, a prototype application has been

developed and successfully tested. This section is a brief discussion on the number of latest semantic web
technologies used for application development.

2.2.1 OWL2
OWL2 is the latest version of OWL i.e. Web Ontology Language standardized by W3C Web Ontology

Working Group3. Ontologies are formalized vocabularies of terms, often covering a specific domain and
shared by a community of users[38]. They specify the definitions of terms by describing their relationships
with other terms in the ontology. OWL 2 is an extension and revision of the OWL Web Ontology Language
developed by the W3C Web Ontology Working Group and published in 2004. OWL2 comes with new
features and constructs with increased expressivity. Two important features of concern for us are Annotations
and punning, follow [37] for discussion on other features.

OWL2 extends the annotations in OWL1 and OWL2 allows annotations (such as labels or comments) on
ontologies, entities, anonymous individuals, axioms, and annotations themselves. With this added features
OWL2 becomes more expressive, but this is not enough for the application that we are considering. Hence
here froth the reader must be aware that by annotation assertion we mean the one given our formalism rather
than the one provided by OWL2.

Punning is an useful feature introduced in OWL2 which relaxes the requirement of OWL1 which strictly
separates between the names of, e.g., classes and individuals. OWL2 DL relaxes this separation somewhat
to allow different uses of the same term,[37] e.g., Eagle, to be used for both a class, the class of all Eagles,
and an individual, the individual representing the species Eagle belonging to the (meta)class of all plant and
animal species. However, it still imposes certain restrictions: it requires that a name cannot be used for
both a class and a data-type and that a name can only be used for one kind of property. The OWL 2 Direct
Semantics treats the different uses of the same name as completely separate, as is required in DL reasoners.
Even though this is an interesting feature, this is not enough for our case, which is discussed further in
section 3.2.

3http://www.w3.org/

12

CHAPTER 2. PRELIMINARIES

2.2.2 OWLAPI
OWLAPI4 is a Java API and reference implementation for creating, manipulating and serializing OWL

and is closely aligned with the OWL 2 specification ontologies. It includes first class change support, general
purpose reasoner interfaces, validators for the various OWL 2 profiles, and support for parsing and serial-
izing ontologies in a variety of syntaxes.[19] discusses the architecture, features and supported interfaces
provided by the API. One important point to be noted is that in OWLAPI, representation of class expres-
sions and axioms is not at the level of RDF triples. Indeed, the design of the OWL API is directly based on
the OWL 2 Structural Specification [34] i.e. an ontology is simply viewed as a set of axioms and annota-
tions5.

During the implementation OWL is the basic representation specification for storing semantic annota-
tions, syntactic annotations, linguistic annotations and rules for our system. So, most important implemen-
tation of OWLAPI is for rendering all the necessary OWL documents including serializing the rules in XML
format, which are otherwise written in clausal form for better readability. Besides it provides us an easy way
to parse and traverse an OWL document for Higher order to Classical translation of the Knowledge Base.
For a detailed explanation on the design of the API and class structures reader is advised to follow[2].

2.2.3 JENA
JENA6 is a Java framework for building Semantic Web applications. It provides a programmatic envi-

ronment for RDF, RDFS and OWL, SPARQL and includes a rule-based inference engine. Jena provides
various tools, including I/O modules for: RDF/XML with rich model API for manipulating RDF graphs.
Basically in Jena, each arc in a RDF model is a statement, comprising of: subject[the resource from which
the arc leaves], predicate [the property that labels the arc] and object [the resource or literal pointed to by
the arc].[5] is suggested for further reading on the architecture of the API, different features and useful ex-
amples.

Our application scenario involves some inputs/outputs in the format RDF and XML, and Jena provided
a much easier and cleaner way of manipulating such resources. One important feature of Jena, which made
it necessary for us to use Jena is handling reification. Jena provides an API notion of a reifiedStatement7

that encodes a statement in a model as a reification quad. This API-layer notion is reflected down into the
Graph interface. Each Graph has an associated reifier that is responsible for storing reified triples compactly.
Reified statements are used in our context to handle axioms, commonly used for composite annotations.

2.2.4 Pellet
Pellet8 is an OWL 2 reasoner and provides standard cutting-edge reasoning services for OWL ontologies.

OWL-DL9 restricts OWL-Full ontologies in several different ways and Pellet relaxes most of the OWL-
DL restrictions and handles OWL-Full ontologies10. This makes pellet a much easier option to handle
ontologies. For an detail study on architecture, reasoning strategies,query engine and other details [43] is
suggested.

Pellet supports two different incremental reasoning techniques: incremental consistency checking and
incremental classification, which is necessary for our case in reasoning with rules. We can directly load a file
that contains SWRL rules into Pellet and rules will be parsed and processed, and can be used for reasoning
with OWLAPI interface.Pellet interprets SWRL using the DL-Safe rules [35] notion which means rules will
be applied to only named individuals in the ontology and fits as per our requirement. In addition to reasoning
with rules, we need to check the consistency and coherency of the overall document with annotations with

4http://owlapi.sourceforge.net/index.html
5Concept of Text annotation is completely different from the annotation in OWL2
6http://jena.sourceforge.net/
7For example on reification http://jena.sourceforge.net/how-to/reification.html
8http://clarkparsia.com/pellet/
9http://www.w3.org/TR/owl-ref/#OWLDL

10http://clarkparsia.com/pellet/faq/owl-full/

13

CHAPTER 2. PRELIMINARIES

respect to domain ontology. Pellet is the first,and currently the only, complete OWL-DL consistency checker
and has the most coverage of OWL as a whole of any reasoner [43]. It also provides us the explanation for
the inconsistency and the axioms behind it.

2.3 Summary
This chapter, has thus built-up the necessary logical and technical foundation, necessary for the readers

to understand the overall work. Understanding of the logical language and the various necessary formalisms
of each of them is important to understand the formalism proposed in chapter 4 (Knowledge Representation
and Reasoning). While, the technologies are important for the understanding of chapter 5 (Technology Ap-
plication). The references provided at various points are suggested to be followed for deeper understanding
of each subsections, since we have precisely discussed within the boundaries necessary for the understand-
ability of this work. It is assumed that by the end of this chapter is, the reader is now familiar with the
problem statement in brief and technologies supporting the research issues addressed by the work. The next
chapter, is the entry point for description of the research work in details.

14

Chapter 3
Text Annotation

”Logic is one thing, the human animal another. You can quite easily propose a logical solution to something and at
the same time hope in your heart of hearts it won’t work out.”

-Luigi Pirandello

Annotation is basically a descriptive text containing the identification, function, location, physical char-
acteristics, and other information concerning a target textual unit in the text corpus. Thus, the annotations
provide a meta-data for the further understanding of the content of the document. In this chapter we will
study on the different types of text annotations and the mention various sources of obtaining annotation over
a text corpus. We define a number of terms related to text-annotation, frequently used in the latter chapters
to make it clear to the reader about the concepts being discussed. In the first section, we would analyze the
over all perspective of text annotations and some links to historical works in relation to our current work.
In section 3.2, we will discuss on some issues, approaches and the modeling issues so as to justify the new
formalism necessary for representation of semantic annotations. 3.3 discusses the process of using vari-
ous forms of annotation knowledge obtained from different sources, for an integrated reasoning framework.
The different building blocks involved for overall reasoning process are discussed in section 3.4, where we
will introduce the various annotation types used for semantic annotation, understanding of which is very
important to follow the rest of the work.

3.1 Landscape of Annotations
Annotation is the process of attaching a label to a piece of text. This definition covers in fact different

practices, some of which date back to long time before the web : the piece of texts, the accepted labels, and
the meaning of the annotation can be very different. Librarians for instance annotate whole documents with
list of keywords taken in a given thesaurus, meaning each keyword has to see with the topic of the document.
Literature studies annotate fragments (possibly sentences or words) with free text, where the annotation can
be any meta-comment of the fragment. Book indexes annotate fragments (paragraphs or pages or chapters)
with keywords. These keywords are specific to the book and indicate particularly relevant fragments for
somebody interested in the topic represented by this keyword ; the notion of relevance at hand depends on
the purpose of the book.

Text annotation process that we are considering is similar to the librarians one, in that the goal is to

15

CHAPTER 3. TEXT ANNOTATION

retrieve documents. It differs from it because the notion of document is wider : it may be any object identi-
fiable on the web - part of text, graphic, picture, movie. Another essential difference is that annotations have
a logical structure, commonly embeddable in an ontology, so they allow wording-in dependent queries and
the answer involves logically implied relations (subclasses, inverse relations, . . .). Uren and colleagues [47]
give a significant review of the field and consider requirements for quality and maintenance of annotations.
They analyze separately three types of data involved : ontologies, documents and annotations. They find that
the quality of an annotation still can be improved, with respect to its degree of automation and its quality.

Figure 3.1: Ontology-based Annotation on texts

To further understand the landscape of the overall work that we are taking into consideration, consider
the figure 3.1. The plain text Retain all flight documents until the mileage credit appears on your mileage
summary, can be enriched with further information. Linguistic analysis can lead to the discovery number of
syntactic and grammatical relationships and each word can be categoriezed into various parts of speech. At
the same time, textual units can be provided with meanings, so that the user can understand the sentence.
We distinguish these two cases of annotations as linguistic annotation and semantic annotation.

Linguistic annotations are the syntactic roles which are basically relations between two textual units,
such as subject(‘appears’, ‘credit’) where the word ‘appears’ is of type verb and ‘credit’ is of type noun.
Various formalisms have been used, which are generally translatable into graphs. Some efforts exist to ac-
commodate the web norms (e.g. [24]. Where as semantic annotations, provide the further understanding of
the textual unit, such as ‘credit’ can be linked to an ontological concept ‘Credit’ which has various properties
and relationships with other concepts in the ontology.

In the scenario that we propose various types of ontologies are the backbones of the annotations which
we term as Ontology-based Annotation. As shown in the figure above, two different types of ontologies
provide meta information about the concepts being used to annotate the corpus so that we have an onto-
logical interpretation such that the douments can be processed and understood by the machine. The above
diagram shows the ontologies involved are semantic ontology and linguistic ontology, collectively referred
as domain ontology henceforth, the structure of which is explained in section 3.4.3. Here we can observer
that the word(s) of the sentences are annotated by various concepts defined in the ontology, e.g. words
mileage, credit, appears, mileage summary are annotated from the domain ontology with various concepts
and various annotation types [annotation types are discussed in section 3.4.1]. At the same time the rela-
tionships between words are considered by different types of relations like nn, dobj, nsubj etc. This diagram
thus shows the overall picture of the landscape of ontology based text annotations.

It must be noted that, presently, most applications only use a part of ontological elements in annota-
tions: either concepts, or individuals. Roles can be considered, with the help of patterns borrowed from
information extraction(I.E.), but I.E. patterns are very specialized and costly to elaborate. Another need is
to extend management of texts beyond information retrieval. For instance, [12] translates regulatory texts
into a sequence of Abstract Syntax Trees, then into CTL formulas, and uses them to check the conformance
of procedures. The Ontorule project tackles the annotation of business rules in policy texts to translate them
into executable IT systems. They propose an architecture in the style of [?] but extend semantic data with

16

CHAPTER 3. TEXT ANNOTATION

typed rules according to a slightly extended SBVR classification [36]. Additionally, [30] extends the tradi-
tional pattern definition into context sensitive rules to add annotations.

3.2 Approaches and Problems
Much work has been done in the domain of Information Extraction for business intelligence, and good

automated results are obtained for ontology classes (see the MUSING project and [32]). Annotation of reg-
ulatory and other specialized texts differ from information extraction in scale - each corpus is incomparably
smaller - and in scope - the goal covers a larger part of the content. Figure 3.1 illustrates the idea of ontology
based annotation where all the standard ontological elements are involved. We believe that the size of texts
enables adding to standard tools and reasoning with the help of relations between heterogeneous knowledge
which are generally not considered together. This is the deep motivation of our work : on a per application
basis, some rules, depending on domain-specific language and knowledge, will improve the annotations,
sufficiently to justify the design effort.

The most important problem to be noted is that a naive modeling could cause loss of information or
representational mistakes. For instance, suppose we use a binary relation hasSemAnno(tf, C) to rep-
resent that a text fragment tf is semantically annotated by concept C. Then two annotations, such as
hasSemAnno(tf, C1) and hasSemAnno(tf, C2), are consistent even if disjointness of C1 and C2 results
from a domain ontology. At the same time let us assume, that the same annotation be plainly represented
as tf is a C, i.e. C(tf). Although the previous inconsistency can be computed, due to multiple ontologies
we may have to write both City(tf) and Noun(tf), which together entail that the concept City and the
grammatical category Noun have overlaps — it is not intended either. Note that although the “punning” of
OWL 2 relaxes the separation between the names of e.g., classes and individuals, it is not enough to solve
the above representation problems.

To solve the problem, semantic annotations are considered apart, and annotation assertions are used to
account of them. Globally, annotation assertions allow to perform various forms of reasoning which will
be discussed in chapter 4, and, as a prototype implementation in chapter 5. An interesting approach that
we have undertaken is to make use of rules to bridge inferences about constraints between semantic and
linguistic.

3.3 Integration
As stated beforehand, the tool like Stanford CoreNLP suite are available, which can be used to process

the same text corpus to obtain different types of annotations. It provides a set of natural language analysis
tools which can take raw English language text input and give the base forms of words, their parts of speech,
whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, and mark
up the structure of sentences in terms of phrases and word dependencies, and indicate which noun phrases
refer to the same entities. It integrates tools for the English language, including the part-of-speech (POS)
tagger, the named entity recognizer (NER), the parser, and the coreference resolution system. It thus enables
us to quickly and painlessly get complete linguistic annotations of natural language texts. At the same time
Stanford CoreNLP API is also available to use as per ones use1.

1see http://nlp.stanford.edu/software/corenlp.shtml for details explanation

17

CHAPTER 3. TEXT ANNOTATION

LIPN
annotator

Text-Corpus

Semantic Annotations

POSAnnotation

WordDependencies

Re-Writers

Linguistic annotations

Text-Annotations
Standard Format

StanfordCore
NLP Suit

Figure 3.2: Integrated View of Text-Annotations generation and representation

Figure 3.2 shows the view of generation and representation of different types of annotations. As in
figure from here on we will mention all forms of annotations, other than semantic annotations viz. syntac-
tic annotations, morphological annotations or whatsoever is available as linguistic annotations. Semantic
annotations are produced by Semantic Annotator produced at LIPN, University of Paris 13.

3.4 Building Blocks
An annotation notes a link between a text fragment and some knowledge, so it relies on several models:

a text model on the one side to describe annotated fragments, a knowledge model on the other to describe
annotations [28]. In order to be able to cope with several sorts of knowledge, several independent knowl-
edge models are needed. In this section, we will explain the different different blocks and role played by
each knowledge model on the overall application. It is to be noted that all forms of knowledge (semantic,
syntactic, linguistic) are described as ontologies, which has a good compromise between expressive power
and computability.

Before further discussion, we would like to define some terms to be used henceforth.

Definition 3.1 (Textual unit:) Each word in the text-corpus, is defined as an textual unit. So, we can say
that each textual unit or group of textual units can be annotated with entities from an ontology.

Definition 3.2 (Text-Link:) Textual unit(s) with unique semantic annotations refer to Text-Link. It is an
representation used by the semantic annotator for storing the annotations. If one textual unit or group of
textual units are annotated with n different entities, then we will have n text-links.

Definition 3.3 (Text-Fragment:) Text-Fragment makes the direct one-to-many relationship between textual-
unit(s) and semantic annotation. If one text-link is annotated with n different entities, then we will have 1
text-fragment, with n relations to domain ontology.

It is to be noted that each text-link/text-fragment is stored as RDF node/OWL individual and each
node/individual contains enough information to identify the textual unit in text corpus, corresponding to
the text-link/text-fragment.

Definition 3.4 (Domain Knowledge:) Domain knowledge is the knowledge used to refer to field of consid-
eration for processing the text-corpus. It’s described as ontology and is either developed automatically or
manually by specialists and experts in the particular field.

18

CHAPTER 3. TEXT ANNOTATION

3.4.1 Semantic Annotations
Semantic annotations map the link between the textual units with the domain knowledge. As justified

in section 3.2, a direct modeling of semantic annotation leads to loss of information or lead to relational
mistakes. So, we propose following five annotation types considered in our formalism, with their formal
names given in brackets. The semantics of each type is discussed in the next chapter.

Concept Annotation (sa:Concept) Some text fragments denote ontological concepts by themselves (e.g.
non-elite status member). Such text fragments are usually referred as elements of a domain terminology.
This is the most frequent case in our working corpus.

Role Annotation (sa:Role) Similarly, text fragments may also denote conceptual roles if the underlying
notions have been encoded as roles rather than as concepts in the ontology (e.g. applies to, be discontinued
for or reservation).

Individual Annotation (sa:Individual) Some text fragments directly denote ontological individuals. They
are traditionally referred to as named entities, such as X Airline which refers to a specific airline company,
or the minimum mileage guarantee, a special policy name. In this case, the semantic annotation is the onto-
logical individual itself.

Individual-Concept Annotation (sa:Ind-Con) Other text fragments refer to individuals but their annotations
indicate the concept they belong to. This is the often case when using concept City as a label of Paris or
when labeling the minimum mileage guarantee by concept Policy.

Note that when a concept from a reference ontology is used to annotate a text fragment, two cases
are possible: either the text fragment talks about a special instance of this concept (sa:Ind-Con), or it is
about the concept itself (sa:Concept) instead of any specific individual.

Axiom Annotation (sa:Axiom) Axioms cover all the complex annotations. For the semantic ones, an ax-
iom can be a sumbsumption relation, as is justified as annotation of ”AAmembers earn mileage”, which can
be annotated as an axiom corresponding to the relation earn(AAmember, mileage). Even though axioms can
also be a unary fact, as partner(YY company) but role structure are important, e.g. has subject(textfragment1,
textfragment2), where the role fillers are text fragments since their semantic value need not be known at the
moment. All the same, at the discourse level, the main axioms met in our experience are completed roles,
e.g. explanation(sentence1, sentence2).

With this last type of semantic annotation i.e. we sa:Axiom, we can introduce two types of semantic
annotations, which we define now and the syntax and semantics of semantic will be discussed in the next
chapter.

Definition 3.5 (Simple Annotation:) An annotation type is called simple if annotations are only concerned
with one single text fragment.

Definition 3.6 (Composite Annotation:) An annotation type is defined as the one under which annotations
concerns more than one text fragment. For instance the relational instance and the subclass axiom of
semantic annotation types.

Example 3.1 Suppose we have a sentence ”Your summary includes flight and participant mileage earned”
with eight textual units. The textual unit ”summary” is semantically annotated of type sa :Concept from an
ontology. But if the whole sentence which will form one text fragment of eight textual units is annotated as a
subclass declaration (accounting for ”includes”) between the text fragments ”participant mileage earned”
and ”summary”, then we have a composite annotation.

19

CHAPTER 3. TEXT ANNOTATION

3.4.2 Linguistic Annotations
Linguistic Annotations provide linguistic information about the segments in the primary data, e.g., a

morpho-syntactic annotation in which a part of speech and lemma are associated with each segment in the
data. It also includes the identification of a segment as a word, sentence, noun phrase and various grammat-
ical relations between textual units. Different types of linguistic annotations are produced by various tools.
[23] is a good reference on understanding the concepts of linguistic annotations, while [31] and [6] provide
readings on POS tagging and dependency grammar respectively.

In our context we take different annotations, generated by different tools, and the format in which the
annotation is rendered, e.g. XML, LISP, etc. independent of its content. For example, a phrase structure
syntactic annotation and a dependency-based annotation may both be represented using XML, even though
the annotation information itself is very different. But the raw annotations, that we directly obtain by various
tools are not useful enough for us to work with reasoning. So, each linguistic annotations are rewritten as
OWL. the algorithm for doing this transformation is explained by the algorithm 2 in the chapter Technology
Application, which is specific to our implementation.

3.4.3 Domain Ontologies
Domain ontologies under our consideration are semantic ontology and language ontology. We have

made the distinction on these based on the fact that semantic ontology provides semantic labels for seman-
tic annotation, and represents domain knowledge while language model embeds text model and linguistic
knowledge. Both ontologies are described in OWL.

Semantic ontology is used for annotating the text-corpus. Our formalism, accepts any OWL ontology as
the semantic one. The figure 3.3 shows a sub-ontology of the ontology taken into consideration.

Figure 3.3: Sub-Ontology of Airline Services

This sample sub-ontology, clearly depicts the information that we want to exploit by making use of
ontology to represent the domain knowledge.

The language ontology on the other hand is used to describes textual level information. As a basis, the
concept name TextFragment, whose individuals are annotatable segments of texts, belongs to the ontology.
Three role names contains, contains2, and contain3 are also included to describe the containing relation

20

CHAPTER 3. TEXT ANNOTATION

between text fragments, satisfying the following conditions:

(1) ObjectPropertyDomain(R TextFragment),

(2) ObjectPropertyRange(R TextFragment),

where R ∈ {contains, contains2, contains3};
(3) TextFragment v (≤ 2)contains2. T extFragment;

(4) TextFragment v (≤ 3)contains3. T extFragment;

(5) SubObjectProperty(contains2, contains);

(6) SubObjectProperty(contains3, contains).

The first (resp. second) OWL axiom says that the Domain(resp. Range) of all three roles is TextFrag-
ment. The third (resp. fourth) puts a constraint on contains2 (resp. contains3) : any given TextFragment
instance can only be related with at most two (resp. three) TextFragment instances. The fifth and the sixth
state that contains2 and contains3 are sub-roles of contains.

In this same language ontology, we can have various linguistic annotation types. We have taken into
consideration of some of them like, the noun compound modifier (nn for short),direct object (dobj for short)
and nominal subject (nsubj for short) as defined in [6] as an example. These are represented as any set of
binary syntactic relations (with the help of as many roles). Basically they follow the following conditions:

(1) ObjectPropertyDomain(R TextFragment),

(2) ObjectPropertyRange(R TextFragment),

where R ∈ {nn, dobj, nsubj, subj, obj};
(3) dobj v obj;
(4) nsubj v subj.

The subset relations 3 and 4 are added, by exploiting the grammatical relation hierarchy defined in [6,
fig 2].

Part of Speech (POS) tagging are also taken into consideration with the help of relation hasPos and POS
constants, as in hasPos(tf, Verb).

3.5 Summary
In this chapter, we have built the theoretical background necessary for understanding the formalism,

being discussed in the next chapter. The various definitions, examples and topics that have been discussed,
are important to understand the overall perspective of text annotation, while at the same time provides
necessary base for discussing our solution to handle reasoning with annotations. The points of discussion
in section 3.4.1 on types of semantic annotations and the structure of domain ontologies in section 3.4.3 are
important to follow up the logical formalism and rules being discussed in the next chapter. On the whole,
by the end of this chapter, it is assumed that the reader is now familiar with the necessity, process, existing
problems and types of text annotations along with the various components involved in our proposed solution
for handling reasoning with text-annotations.

21

Chapter 4
Knowledge Representation and Reasoning

”Logic is the technique by which we add conviction to truth”
Jean de la Bruyere

In the previous chapter, we have made it clear regarding the different types of annotations (including
related basic concepts), domain ontologies into considerations and the fields of logics that will be used for
achieving the goal. This chapter presents the knowledge representation formalism (SAoT) proposed in or-
der to achieve reasoning with annotations in compliance to the existing technologies. We also present the
interpretation of SAoT by higher order description logics and meta modeling mechanism of ontology web
language (OWL21).

In general, text annotation is simply adding label to the textual unit(s), providing a lots of information
for human user. But, it is still open the way on how precisely this attachment is to be interpreted. For ma-
chine processable applications, the method of storing the annotations and interpretations of annotations are
to be well defined and standardized. In this chapter thus we analyze the issues and provide solutions to the
knowledge representation issues of various types of annotations.

Reasoning with annotations can be performed for basically two purposes: Firstly to deduce new anno-
tations and secondly to check the correctness of the annotations. From our studies, we have observed that
we can integrate rule languages with our annotation base and can perform reasoning without considering
domain ontology to obtain new annotations based on existing ones. While, checking the correctness of
annotations must be performed with respect to domain ontology. These two forms of reasoning address
different problems, yet we do not want to represent annotations in different formats for different purposes.

Thus in the section Knowledge Representation we propose a formalism to standardize the annotations
obtained by other third parties. Then in the section of Reasoning we will address the two forms of reasoning
separately and deal with algorithms proposed to use the annotations as per the need.

4.1 Knowledge Representation
As, already stated in preceding chapters and pin pointed in figure 3.2 the annotations on a corpus are

obtained by various independent methods and procedures. Thus, obtained annotations are in different for-

1OWL2 also has the notion of annotation, which is different from the one we have used here. For details on OWL2 annotations
follow http://www.w3.org/TR/owl2-syntax/#Ontology Annotations

22

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

mats often unsuitable for reasoning. At the same time, since one of our motive is to address the modeling
issues discussed in section 3.2, it opens up the issue for formalism for annotations representation. So, in this
section, we propose the solutions to represent variant knowledge in an annotated corpus.

4.1.1 Semantic Annotations
Semantic annotations are one of the major components of annotated corpus, thus needing to be handled

carefully. In section 3.4.1 we have already discussed about different types of semantic annotation types viz.
sa:Individual, sa:Ind-Con,sa:Concept, sa:Role. Let us consider that a text fragment TF is annotated by a
concept/ a role (sa :isConceptOcc / sa :isRoleOcc annotation type), then the meaning of TF is covered
by its annotation term, but not necessarily equal to it (the exact meaning can be a subtype of the annota-
tion). In practice, it often happens that a concept which is not the exact meaning is chosen to annotate a
text fragment. This happens either because sometimes the most refined annotations are not necessary for
application scenario, or because they are hard to discover or may not occur in domain ontology because of
the incompleteness of the ontology. Only for the case of annotation type sa:Individual, the meaning of the
text fragment is supposed to be the instance in the ontology. Finally, for annotation type sa:Ind-Con, it states
that the meaning of the text fragment is a special instance of the annotation concept, and the choice of the
concept is a matter of relevance.

The following subsections give the necessary syntax and semantics used for representation of annota-
tions, without loosing the actual meaning, that they are supposed to convey. The formalism that is used is
taken directly from [29].

4.1.1.1 Syntax

Description Logics (DL), the logics underlying the OWL is the syntactic base for our formalism. It is
assumed that reader is familiar with DL; [1] is suggested for comprehensive background reading.

Vocabulary N of each classical DL language L is composed of three pairwise disjoint parts: a set of
concept names (or atomic concepts) Nc, a set of role names Nr, and a set of individuals Ni. Then, complex
concepts are built from N by a set of concept construction operators of L. For our purpose we use the DL
language mathcalALCH whose complex concepts can be defined inductively as follows, where A ∈ Nc,
R ∈ Nr:

C → A | C1 t C2 | C1 u C2 | ¬C | ∀R.C | ∃R.C

Axioms inALCH can be in the form of C v D,R v S,A(a), and R(a, b) with a, b ∈ Ni. More expressive
domain and language ontologies, not required for our current application scenario, can be treated similarly
if necessary.

In the formalism, we are given three pairwise disjoint sets of names Ntype,Ndomn, Nlang, where Ntype =
sa:Concept, sa:Role, sa:Individual, sa:Ind-Con},Ndomn and Nlang are vocabularies of a domain ontology
Odomn and a language ontologyOlang 2. The set of concepts (resp. roles, individuals) names of an ontology
O is denoted as Concept(O) (resp. Role(O), Individual(O)), or, abusing the notation, Concept(NO) (resp.
Role(NO), Individual(NO)).

Definition 4.1 (Semantic annotation assertion) A semantic annotation assertion is a triple in the form of
〈tf, ot, at〉 satisfying tf ∈ TextFragment and the following conditions:

• If at ∈ {sa:Concept, sa:Ind-Con}, then ot ∈ Concept(Odomn);

• If at ∈ {sa:Role}, then ot ∈ Role(Odomn);

• If at ∈ {sa:Individual}, then ot ∈ Individual(Odomn);

Finally, a text annotation knowledge base is defined below:

2Nlang contains at least {TextFragment, contains, contains2, contains3}. Other concepts in Nlang can be the concept
POS with instances Verb, Noun, Adj, Adv, etc. Other roles can be nn and hasPos as discussed in Section 3.4.3

23

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

Definition 4.2 A text annotation knowledge base is TaKb = Odomn ∪ Olang ∪ AnnoAsserSet, where
AnnoAsserSet is a set of semantic annotation assertions.

4.1.1.2 Semantics

In this section, we will provide the formal semantics of the formalism that we have proposed. In order to
do so we make use of ability of interpreting meta-data descriptions, inspired by the higher-order semantics
of description logics [15], which is an extension of classical description logics. We have taken into con-
sideration of only simple annotations due to the time constraint on completing the research on composite
annotations.

Semantic concepts or roles need to be dealt with as individuals when annotating text fragments, and
as concepts or roles to perform reasoning on annotations. All the same, different text fragments may be
interpreted one as concept, another as role or individual. To address this problem and to allow for richer
reasoning abilities over annotations of texts, we now extend classical model-theory semantics of description
logics with the ability of interpreting annotation assertions, which is inspired by the higher-order semantics
of description logics [16]. An interpretation I is first defined, which interprets the ontology term and the text
fragment individuals in a higher-order way, leaving other elements of the language ontology and the four
annotation types interpreted classically.

Definition 4.3 For a text annotation knowledge base TaKb, an interpretation I is a 4-tuple (∆, Ii, Ic, Ir),
where the set ∆ is called the domain of I , and where the mappings Ii, Ic, Ir satisfy:

1. Ii : Ndomn ∪ Individual(Nlang)→ ∆;

2. Ic : ∆ ∪ Concept(Nlang)→ 2∆ ;

3. Ir : ∆ ∪ Role(Nlang) ∪Ntype → 2∆×∆;

Definition 4.4 An interpretation I = (∆, Ii, Ic, Ir) is called extensible if and only if Ii can be extended to
a mapping of complex concepts of the domain ontology into ∆ such that:

- Ic(Ii(¬C)) = ∆ \ Ic(Ii(C));

- Ic(Ii(C ∧ C ′)) = Ic(Ii(C)) ∩ Ic(Ii(C ′));

- Ic(Ii(C ∨ C ′)) = Ic(Ii(C)) ∪ Ic(Ii(C ′));

- Ic(Ii(∀R.C)) = {x | ∀y.(x, y) ∈ Ir(Ii(R)) implies y ∈ Ic(Ii(C))};

- Ic(Ii(∃R.C)) = {x | ∃y.(x, y) ∈ Ir(Ii(R)) and y ∈ Ic(Ii(C))}.

Definition 4.5 Given an extensible interpretation I ,

• I satisfiesC v D if and only if Ic(Ii(C)) ⊆ Ic(Ii(D)) forC,D inOdomn, Ic(C) ⊆ Ic(D) otherwise;

• I satisfies R v S if and only if Ir(Ii(R)) ⊆ Ir(Ii(S)) for R,S in Odomn, Ir(R) ⊆ Ir(S) otherwise;

• I satisfies C(a) if and only if Ii(a) ∈ Ic(C) for C ∈ Concept(Nlang) and Ii(a) ∈ Ic(Ii(C)) other-
wise;

• I satisfies S(a, b) if and only if (Ii(a), Ii(b)) ∈ Ir(S) for S ∈ Role(Nlang)∪Ntype and (Ii(a), Ii(b)) ∈
Ir(Ii(S)) otherwise.

24

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

4.1.1.3 Satisfiability

An interpretation I satisfies a semantic annotation assertion TA = 〈tf, ot, at〉, written I |=s TA, if and
only if I is extensible and satisfies:

• (Ii(tf), Ii(ot)) ∈ Ir(at)

• Ii(tf) = Ii(ot) if at = sa:Individual;

Ic(Ii(tf)) ⊆ Ic(Ii(ot)) if at = sa:Concept;

Ii(tf) ∈ Ic(Ii(ot)) if at = sa:Ind-Con;

Ir(Ii(tf)) ⊆ Ir(Ii(ot)) if at = sa:Role.

Given a text annotation knowledge base TaKb = Odomn∪Olang∪AnnoSet, an interpretation I satisfies
(is a model of) TaKb, written I |=s TaKb, if and only if I is extensible and satisfies Odomn, Olang, and
AnnoSet, as defined above. TaKb is said satisfiable if it has a model. Note the use of the symbol |=s is
also motivated because we take this semantics as the strong satisfiability of the annotations.

Since, we will also be considering weak satisfiability which will be used to compute the entailment of
semantic annotations, let us define the weaker semantics. So, the weaker semantics is:

Definition 4.6 Weak Satisfiability of Semantic Annotation: An interpretation I weakly satisfies a semantic
annotation assertion TA = 〈tf, A, sa:Concept〉, written I |=w TA, if and only if I is extensible and satisfies:

• Ii(tf) = Ii(ot) if at = sa:Individual;

• Ic(Ii(tf)) ⊆ Ic(Ii(ot)) if at = sa:Concept;

• Ii(tf) ∈ Ic(Ii(ot)) if at = sa:Ind-Con;

• Ir(Ii(tf)) ⊆ Ir(Ii(ot)) if at = sa:Role.

With the definition, of the satisfiability, we can now define the coherency of the knowledge base. Checking
the consistency of all concept names mentioned in a TBox is called a TBox coherence check.

Definition 4.7 Incoherent TaKb: The knowledge base TaKb is incoherent iff there exists an unsatisfiable
named concept C in TaKb.

4.1.2 Representation of Linguistic Annotations
The different types of linguistic and syntactic relationships or tags on words are collectively called lin-

guistic annotations in our domain of problem as also shown in figure 3.2. We have considered word form
dependencies and part of speech annotations, obtained by using Stanford NLP Suit. The major motive to
use linguistic annotations is to use them in integration with semantic annotations and analyzed linguistic
patterns, to deduce new annotations. But, linguistic annotations do not play much role in reasoning with
domain ontology, thus freeing us from complex representation issues of linguistic annotations. Our observa-
tions revealed that linguistic annotations can be represented as pure binary relations between text-fragments.
Thus T-Box consists of various roles as defined by language ontology in section 3.4.3. And, A-Box for
linguistic annotation ontology is ALCH.

Definition 4.8 (Linguistic Annotation Assertion:) An linguistic annotation assertional axiom is an ex-
pression of the form r(tf1, tf2), where individual tf1 and tf2 are individuals corresponding to text-
fragments and r is role name corresponding to the relationship between text-fragments. Roles r are as
defined in the linguistic ontology as discussed in section 3.4.3.

25

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

Example 4.1 Let us consider the sentence we have considered in figure 3.1. The linguistic annotation nn
between text-fragments corresponding to textual-units mileage and credit can be asserted by an ALCH
axiom nn(tf8, tf7), where tf8 and tf7 are the text-fragments representing the textual-units at position 8
and 7 respectively in the considered sentence.

Since all the linguistic annotation assertions are ALCH, the semantics for them are same as discussed
in section 2.1.1.

4.2 Reasoning
After having represented the annotations in a formal way, under pinned with formal syntax and seman-

tics, we can address the issues with reasoning with annotations. As, already stated, we are dealing with two
forms of reasoning with annotations viz. with rules and with domain ontology, as depicted by the figure
below.

Figure 4.1: Reasoning Paradigm with text annotations

As seen from the above figure, two reasoning operations viz. A and B are defined, such that in case of
A: rules are considered for reasoning, while in B: domain ontology is considered for consistency check of
semantic annotations with respect to the domain ontology. In the over all reasoning paradigm A is performed
first, so that semantic annotations deduced at this stage are re-injected to the knowledge base and are used
for further reasoning with domain ontology in B. In the subsections that follows, we deal with each of these
paradigms separately. Before we discuss further, we are to mention that we are motivated to perform the
reasoning with existing highly optimized classical DL reasoners.

4.2.1 Reasoning with rules
In this section, we will discuss the reasoning with rules to show the benefit of providing a platform for

reasoning with various kinds of annotations of texts. Here we will discuss only a set of rules which are
proven to be working with the test corpora. This paradigm of reasoning over annotated corpus opens up a
novel way of reasoning and leaves a wide space for other rules to be used with other types of semantic and
linguistic annotations. One may argue that SPARQL might be enough to query the knowledge base to find
information on the existing knowledge base, but our observation revealed that SPARQL is not enough to
deduce new semantic annotations, with integration to linguistic annotations. We will explain further with
example rules to clarify the need of rule based reasoning. The following subsection explains rules with
examples, while the next section 4.2.1.2 deals with the transformation of semantic annotations formally
represented as discussed in 4.1.1 into the representation enough for our reasoning need with rules.

26

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

4.2.1.1 Rules

To, begin with we extend the language ontology Olang with an extra syntactic annotation type nn (noun
compound modifier), which will be used in the set of rules under our considerations. In the following, a
number of rules explained with examples are introduced to show the benefits of analyzing them together,
including recognizing conflicting annotations 1, propagating new semantic annotations (Rules 2 and 3),
reporting missing semantic annotations (Rule 4 and Rule 5), and detecting incoherence among semantic
annotations or between syntactic and semantic annotations (Rule 6 and Rule 7, respectively). Generated
semantic annotations are added in the knowledge base TaKb and are checked for consistency with respect
to domain ontology in our platform in step B as discussed in section 4.2.2, which is necessary to assure their
soundness.

Rule 1 (Recognizing conflicting annotations)

〈tf, R, sa:Role〉 ∧ hasPOS(tf, V I)→ wrongAnnoOn(tf, A∗)

This is a simple case of a rule used to detect wrong annotation on a text-fragment, which states that a text-
fragment cannot be annotated as an semantic ontological role and an intransitive verb at the same time.
This rule is a good example to demonstrate reasoning with rules, making use of both syntactic and linguis-
tic annotations. The new concept name wrongAnnoOn(tf, A∗) means that there is conflict between the
annotations on text-fragment tf either one of them is to be deleted.

Rule 2 (Recognizing semantic annotations) nn(tf2, tf1)∧ contains2(tf3, tf1)∧ contains2(tf3, tf2)∧
〈tf2, A, sa:Concept〉 → 〈tf3, A, sa:Concept〉

That is, if the head of an nn annotation has some semantic annotation concept A, then the whole text frag-
ment containing the head and modifier should have the same semantic annotation A.

For example, in sentence “Your summary includes participant mileage”, we have syntactic and seman-
tic annotation: nn(tf4, tf5) and 〈tf5, AA Mileage, sa :Concept〉, where tf4 = and tf5 are the 4th and
5th word in the sentence, respectively. By Rule 2, we can recognize a new semantic annotation 〈tf45,
AA Mileage, sa :Concept〉 with tf45 is the 2-word text fragment (participant-4 mileage-5).

Rule 3 (Recognizing semantic annotations) nn(tf3, tf1) ∧ nn(tf3, tf2) ∧ 〈tf23, B, sa:Concept〉∧∧
i=2,3 contains2(tf23, tfi) ∧

∧
i=1,2,3 contains3(tf123, tfi)→ 〈tf123, B, sa:Concept〉.

This is a 3-word case extension of Rule 2. That is, for a text fragment tf123 = tf1tf2tf3 with syntactical
structure nn(tf3, tf1) and nn(tf3, tf2), if its sub-text fragment tf2tf3 has a concept semantic annotation,
then tf should have the same semantic annotation.

This is the case of the sentence: “AAdavantage flight mileage credit is determined on the basis of non-
stop distances...” with tf1 =flight, tf2 =mileage, and tf3 = credit and semantic annotation 〈 tf2tf3 ,
Mileage Credit, sa:Concept〉. By this rule, we can get the text fragment “flight mileage credit” should
have a semantic annotation Mileage Credit.

Rule 4 (Reporting missing semantic annotations)

nn(tf2, tf1) ∧ 〈tf1, A, sa:Concept〉 → 〈tf2, U
∗, sa:Concept)

where U∗ is a new concept name.

That is, if the modifier of nn has some semantic annotation concept, then the head should be semantically
annotated, but which concept is unknown. The underlying idea is that if the modifier carries some meaning-
ful semantic information, so should the head.

An example sentence “ AAdvantage flight awards may not be combined with other AAdvantage flight
awards” where nn(AAdvantage,awards) and 〈 AAdvantage, AA Program, sa :Concept〉 hold but leav-
ing no semantic annotation for the text fragment “awards”. By Rule 4, we can get a report that semantic
annotations for “awards” is missing.

27

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

Rule 5 (Reporting missing semantic annotations)

nn(tf3, tf2)∧〈tf12, A, sa:Concept〉∧contains2(tf12, tf1)∧contains2(tf12, tf2)→ 〈tf3, U
∗, sa:Concept〉

where U∗ is a new concept name.

That is, if the modifier of nn is a part of a 2-word textual unit and whole textual unit has some semantic
annotation concept, then the head should be semantically annotated, but which concept is unknown. This is
generalizing rule 4 with the same underlying idea is that if the modifier carries some meaningful semantic
information, so should the head.

An example sentence “ AAdvantage mileage accrual eligibility on airline participant routes is subject to
change without notice.” where nn(routes, participant) and 〈 airline participant,Airline Participant, sa :Concept〉
hold but leaving no semantic annotation for the text fragment “routes”. By Rule 5, we can get a report that
semantic annotations for “routes” is missing.

Rule 6 (Conflicting linguistic & semantic annotations) nn(tf3, tf1)∧nn(tf3, tf2)∧〈tf12, A, sa:Concept〉∧

contains2(tf12, tf1)∧contains2(tf12, tf2)∧position(tf1, p1)∧position(tf2, p2)∧ tf1 6= tf2∧p1 < p2

→ isWrongNN(tf3, tf1) ∧ addNN(tf2, tf1)

where isWrongNN and addNN are two new roles to report a wrong nn relation and to suggest a new
nn relation between two text fragments, respectively.

That is, for a text fragment like tf1tf2tf3 if tf3 is the nn head of tf1, tf2, but tf12 = tf1tf2 is a text
fragment with some semantics, then it is highly potential that nn(tf3, tf1) is wrong, which should be
nn(tf2, tf1).

An example is for sentence “Only individual persons eligible for AAdavantage program membership”
with annotations nn(tf3, tf1), nn(tf3, tf2), and 〈tf12, AA Program,sa:Concept〉, where tf1 is “AAdvan-
tage”, tf2 is “program”, tf12 is the text fragment “AAdavantage program” and tf3 is “membership”, we get
that “AAdvantage” is modifier of “program” rather than that of “membership”.

Rule 7 (Problem between semantic annotations)

〈tf1, A, sa:Concept〉∧〈tf2, B, sa:Concept〉∧tf1 6= tf2∧
∧
i=1,2

contains(tfi, tf)→ wrongSemPair(tf1, tf2)

where wrongSemPair is a new role to report potentially wrong semantic annotation pairs.

Conflicts between two semantic annotations can be detected by this rule in the case that two different text
fragments are semantically annotated and share some common sub-fragment. There is no such semantic an-
notations in our originally annotated corpus. However, consider the example sentence for Rule 4 again. By
Rule 2 and the semantic annotation 〈tf3, AA Membership, sa:Concept〉, we have 〈tf23, AA Membership,
sa:Concept〉 which forms a wrong semantic annotation pairs together with the original semantic annotation
of tf12.

4.2.1.2 Transformation of semantic annotations for A

SWRL knowledge base is a pair: 〈Ontology,Rules〉. Reasoning with Rules and Ontology is not decid-
able in general. To solve this problem SWRL+DL-safe is the approach adopted by Pellet. For simplicity, in
our case3 we do not consider the interaction of ontology and rules while reasoning with logical annotation
rules as discussed in section 4.2.1.1. That is we have only a set of rules and facts. By observing the anno-
tation rules we can see that they are plain horn clauses without negation. For each semantic annotation for

3To avoid the higher order semantics of SWRL, which is not considered in this thesis

28

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

computing satisfiability we perform the following translation on semantic annotations set AnnoSet.
For each semantic annotation of the form 〈tf, ot, at〉 ∈ AnnoSet, we create a binary role such that,

σ(at)(σ(tf), σ(ot)) ∈ σ(AnnoSet); such that, the σ transformation satisfies:
σ(〈tf, ot, at〉) = at(tf, σ(ot)) where,
σ(ot) is the new individual satisfying σ(ot1) 6= σ(ot2) if ot1 6= ot2

With this representation, we will observe that all semantic annotations are binary relations. At the same
time as already implicitly clear in the rules itself, all the linguistic annotations are binary relations over the
text fragments [more correctly over σ(tf)]. Thus all the rules are in clausal form of binary relations and ex-
clusion of domain ontology for reasoning with rules, avoids the higher order semantics. Thus, computation
of satisfiability for knowledge base with rules same as for the computation of satisfiability with classical
semantics following the satisfiability of rules as discussed in section 2.1.4.

Definition 4.9 σ(TaKb) is the σ translated fragment of TaKb, in which semantic annotations are obtained
by the σ transformation explained above and by excluding the domain ontology. The semantics of σ(TaKb)
is thus classical. Thus, we can write σ(TaKb) = Olang ∪ σ(AnnoSet) ∪ Rules1−7, where Rules1−7 is
the ontology representing the set of rules and σ(AnnoSet) =σ(〈tf, ot, at〉) | 〈tf, ot, at〉 ∈ AnnoSet.

4.2.1.3 U∗ Revisited

In the section where we discussed rules, in two rules viz. 4 and 5 we have introduced a new concept
name U∗, which explicitly means UNKNOWN i.e semantic annotation is missing. From the semantics of
SWRL discussed in section 2.1.4, we can observe that any text-fragment satisfying the bodies of rules 4
and 5 can be inferred as 〈tf, U∗, sa:Concept〉. But, provided that if the same text-fragments are annotated
with some other annotation i.e. 〈tf, ot, sa:Concept〉, then such UNKNOWN annotations does not make any
sense and must be deleted from the Knowledge Base. Moreover we can say that while inferring with the
SWRL rules, we can get a logical closure which includes some redundant/unnecessary annotations, so we
have to define an deletion operation to delete them. This deletion operation is explained by the following
proposition:

Definition 4.10 Let ∀tf ∈ TFs.If 〈tf, U∗, sa:Concept〉 ∈ βu then

〈tf, U∗, sa:Concept〉 ∈ βdu iff ∃〈tf, A, sa:Concept〉 ∈ βk.

where TFs is the set of all text-fragments, βu are all annotations of the form 〈tf, U∗, sa:Concept〉,
βk are all annotations of the form 〈tf, A, sa:Concept〉.AnnoSet is the set of all semantic annotations;
AnnoSet

′
be the set of all semantic annotations that can be deduced from AnnoSet ∪ Rules1−7 under

the SWRL semantics, where Rules1−7 are the set of rules defined in section 4.2.1.1; βdu is the set of all
annotations of the form 〈tf, U∗, sa:Concept〉 to be deleted from TaKb

′
. Then βk ⊆ Annoset′, βu ⊆

Annoset′ and βdu ⊆ βu. Note that semantic annotations are obtained by transformation σ, as explained in
section 4.2.1.2.

The deletion operation as defined above makes changes in the knowledge base, moreover on the set of
semantic annotations i.eAnnoSet. Now, we will discuss on consequence of the deletion operation supported
by a theorem to show the logical correctness of the operation.

Theorem 4.11 If a semantic annotationα
′

is deduced by reasoning overAnnoSet∪Rules1−7 and {α1, ..., αn}
is the proof path for the conclusion α

′
, then if any αi ∈ βu occurring in the path is deleted i.e αi ∈ βdu then

the conclusion α
′

is also deleted i.e α
′ ∈ βdu.

The proof path is an ordered set of all the semantic annotations used for generation of a conclusion
i.e a new semantic annotation. The semantic annotations occurring in position n − 1 is the cause for the
conclusion at position n.

29

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

Example 4.2 Let us consider the following:
TFs = {tf1, tf2, tf12},
AnnoSet ={〈tf1, A, sa:Concept〉, 〈tf2, B, sa:Concept〉, nn(tf2, tf1)}.
Then by reasoning with rules we get
{〈tf12, B, sa:Concept〉, 〈tf2, U

∗, sa:Concept〉, 〈tf12, U
∗, sa:Concept〉} ∪Annoset ∈ AnnoSet′

and
{〈tf2, U

∗, sa:Concept〉, 〈tf12, U
∗, sa:Concept〉} ∈ βu.

Now, let us consider
α

′
= 〈tf12, U

∗, sa:Concept〉 for which the proof path is {〈tf1, A, sa:Concept〉, 〈tf2, U
∗, sa:Concept〉},

〈tf12, U
∗, sa:Concept〉}. Now by the deletion operation 4.10, 〈tf2, U

∗, sa:Concept〉} ∈ βdu, thus it should
be true that 〈tf12, U

∗, sa:Concept〉 ∈ βdu. This is true, because of the same reason for tf2 as defined in the
deletion operation 4.10.

Deletion operation and it’s consequence is interesting to study and understand. We must make sure
that the stability of the model is preserved by the operation, so to handle the case lets analyze the overall
system from the perspective of Datalog. Datalog is a declarative logic language in which each formula is a
function-free Horn clause, and every variable in the head of a clause must appear in the body of the clause.
The following presentation of the syntax and the semantics of disjunctive datalog is based on [33] and [10].
Let Σ be a first-order signature such that (i) the set of function signature F(Σ) contains only constants, and
(ii) the set of predicate signature P(Σ) contains≈ which is a special equality predicate with the arity of two.
A datalog program with equality P is a finite set of rules of the form

A← B1, ..., Bm

where m ≥ 0, and A and Bi are atoms defined over . Furthermore, each rule must be safe; that is, each
variable occurring in a head literal must occur in a body literal as well. For a rule r, the set of atoms
head(r) = A is called the rule head, whereas the set of atoms body(r) = {Bi | 1 ≤ i ≤ m} is called the
rule body. A rule with an empty body is called a fact.

The ground instance of P over the Herbrand universe HU of P , written ground(P,HU), is the set of
ground rules obtained by replacing all variables in each rule of P with constants from HU in all possible
ways. The Herbrand base HB of P is the set of all ground atoms defined over predicates in P . An inter-
pretation M of P is a subset of HB. An interpretation M is a model of P if the following conditions are
satisfied: (i) body(r) ⊆M implies head(r)∪M 6= ∅, for each rule r ∈ ground(P,HU); and (ii) all atoms
fromM with the≈ predicate yield a congruence relation that is, a relation that is reflexive, symmetric, tran-
sitive, and R(a1, ..., ai, ..., an) ∈ M and ai ≈ bi ∈ M imply R(a1, ..., bi, ..., an) ∈ M , for each predicate
symbol R ∈ P (Σ).

A model M of P is minimal if no subset of M is a model of P . The semantics of P is defined as the
set of all minimal models of P , denoted byMM(P). Finally, the notion of query answering is defined as
follows. A ground literal A is an answer of P , written P |= A, if A ∈ M for M ∈ MM(P); First-order
entailment coincides with the entailment for positive ground atoms on positive programs.

Definition 4.12 Given a grounded Datalog P and M ′ ⊆ HB(P). We define the restriction of P with
respect to M ′, denoted P |M ′ ⊆ P , by P |M ′ = {r | r ∈ P, head(r) ∩ body(r) ⊆ M ′}. We call M ′ is a
stable submodel of P , if M ′ =MM(P |M ′).

That is, P |M ′ is a subset of Datalog rules of P whose body and head atoms are all in M ′.

Example 4.3 Given P = {a, a → b, b → c}, if we choose M1 = {a, b}, P |M1 = {a, a → b}. But if
M2 = {a, c}, P |M2 = {a}. We can see that M1 is a stable submodel of P but M2 is not.

Note that the set of semantic annotations and linguistic annotations, together with the set of annotation
rules defined in section 4.2.1.1 form a Datalog, denoted Panno. Moreover, they are safe with the Herbrand
Universe HU = Ndomn ∪ Individual(Nlang). The deletion operation defined in definition 4.10 makes
sense in terms of having the the following theorem hold.

30

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

Theorem 4.13 SupposeM is the minimal model of the annotation DatalogPanno, that isM =MM(Panno).
Let M ′ be the set of ground atoms obtained after the deletion operation and P ′ = Panno|M ′ . We have
M ′ =MM(P ′).

That is, ours deletion operator can get a M ′ which is a stable sub-model of the given set of Panno. The
proof is provided in appendix A

Example 4.4 Let M = {〈tf1, A, sa:Concept〉, s〈tf2, B, sa:Concept〉, 〈tf12, B, sa:Concept〉,
〈tf2, U

∗, sa:Concept〉, 〈tf12, U
∗, sa:Concept〉}

and
P = {〈tf1, A, sa:Concept〉, 〈tf2, B, sa:Concept〉,
nn(tf2, tf1) ∧ 〈tf1, A, sa:Concept〉 → 〈tf2, U

∗, sa:Concept〉,
nn(tf2, tf1) ∧ 〈tf2, B, sa:Concept〉 → 〈tf12, B, sa:Concept〉,
nn(tf2, tf1) ∧ 〈tf2, U

∗, sa:Concept〉 → 〈tf12, U
∗, sa:Concept〉}.

Now after the deletion operation
M ′ = {〈tf1, A, sa:Concept〉, 〈tf2, B, sa:Concept〉 〈tf12, B, sa:Concept〉}
and
P

′
= {〈tf1, A, sa:Concept〉, 〈tf2, B, sa:Concept〉,

nn(tf2, tf1) ∧ 〈tf2, B, sa:Concept〉 → 〈tf12, B, sa:Concept〉.
Clearly, M ′ =MM(P ′). Hence we can say that the deletion operation, the consequence preserves the

stability of the model.

4.2.2 Reasoning with Domain Ontology
Reasoning with Domain ontology describing the domain of consideration is an important aspect of rea-

soning with annotations. It basically covers reasoning with semantic annotations, because semantic anno-
tations are used to link up the meaning of the textual units with the knowledge in the ontology. One of the
important advantage of this reasoning (B in figure 4.1) is checking the correctness of semantic annotations
and assert that the knowledge base of annotations together with domain ontology is logically consistent.

As seen from the semantics of our formalism of semantic annotations, its trivial that the union of the
ontologies that form the knowledge base TaKb is Higher Order. Since, we are motivated to make use of
classical reasoning technique, one obvious challenge is to find a satisfiable logical transformation to classi-
cal DL. In the following sections, we deal with such a transformation axioms and discuss on various logical
properties of transformed knowledge base.

4.2.2.1 Reduction to Classical DL

In order to compute satisfiability and to reuse with classical reasoners, we propose the transformation of
TaKb into classical form, hence-forth denoted as φ(TaKb). Thus, in order to compute the satisfiability of
a text annotation knowledge base TaKb, we will show a reduction from the satisfiability checking of TaKb
to the classical satisfiability checking of the transformed DL ontology φ(TaKb).

Firstly, we will define three injective functions fromNdomn∪Individual(Textfragment) to three pair-
wisely disjoint sets, each disjoint fromNdomn∪Nlang∪Ntype are defined below, where Individual(Textfragment)
is the set of instances of concept Textfragment in Olang:

µo : Ndomn ∪ Individual(Textfragment)→ Soi ;
µc : Ndomn ∪ Individual(Textfragment)→ Sci ;
µr : Ndomn ∪ Individual(Textfragment)→ Sri :

Based on µo; µc; µr, a function λ from Concept(Odomn) to a set of new DL concepts is inductively
defined as follows:

λ(A) = µc(A)forA ∈ Ndomn; λ(¬C) = ¬λ(C);
λ(C tD) = λ(C) t λ(D); λ(C uD) = λ(C) u λ(D);
λ(∀R.C) = ∀µr(R).λ(C); λ(∃R.C) = ∃µr(R).λ(C);

The underlying idea of the reduction is to rename the ontological elements which are interpretated

31

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

higher-orderly, according to their positions in ontological axioms. For TaKb = Odomn∪Olang∪AnnoSet,
its reduction φ(TaKb) is defined for each of them as following :

• Reduction of the domain ontology Odomn:
If C v D ∈ Odomn, µc(C) v µc(D) ∈ φ(Odomn);
If C(a) ∈ Odomn, µc(C)(µo(a)) ∈ φ(Odomn);
If R(a, b) ∈ Odomn, µr(R)(µo(a), µo(b)) ∈ φ(Odomn);
∀C ∈ Concept(Odomn), µc(ot) = λ(ot) ∈ φ(Odomn).

• Reduction of the domain ontology Olang:
If R v S ∈ Olang, R v S ∈ φ(Olang;
If C(a), R(a, b) ∈ Olang and a, b ∈ Textfragment
-then C(µo(a)) ∈ φ(Olang), R(µo(a), µo(b)) ∈ φ(Olang);
-otherwise, C(a), R(a, b) ∈ φ(Olang)

• Reduction of the AnnoSet:
For an assertion 〈tf, ot, at〉 of AnnoSet
µr(at)(tf, µo(ot)) ∈ φ(AnnoSet) and
µo(ot) = µo(tf) ∈ φ(AnnoSet) if at = sa :Individual;
µc(ot)(µo(tf)) ∈ φ(AnnoSet) if at = sa :Ind− Con;
µc(tf) ⊆ µc(ot) ∈ φ(AnnoSet) if at = sa :Concept;
µr(tf) ⊆ µr(ot) ∈ φ(AnnoSet) if at = sa :Role.

Proposition 4.14 Given a text annotation knowledge base TaKb,φ(TaKb) is a DLH ontology if the do-
main ontologies are in DL and the size of φ(TaKb) is linear in that of TaKb, where DLH is the language
containing constructors from DL plus role hierarchy.

Theorem 4.15 Given a text annotation knowledge base TaKb, TaKb is satisfiable if and only if φ(TaKb)
is satisfiable under classical DL semantics.

Theorem 4.16 Given a text annotation knowledge base TaKb, TaKb is coherent if and only if φ(TaKb)
is coherent under classical DL semantics.

Theorem 4.17 Given a text annotation knowledge base TaKb and the domain ontology is in ALC, then
checking the satisfiability of TaKb is EXPTIME-hard.

4.2.2.2 Entailment of semantic annotations

Entailment is an interesting feature to be considered. Let us assume that the domain ontology has the
subset relationship between two classes i.e. C v D. Now if a text-fragment tf is annotated by C, then we
must be able to imply that tf is annotated by D.

For the purpose of deducing the entailment we will make use of the QCL introduced in [22] and briefly
discussed in section 2.1.3. Based on the weak satisfiability semantics of semantic annotations as explained
in definition 4.6, here we propose the definition of entailment of semantic annotations.

Definition 4.18 An semantic annotation TA = 〈tf, A, sa:Concept〉 is entailed by TaKb, written as TaKb |=e

TA iff for any model I such that I |=s TaKb implies I |=w TA.

Now we give the translation for semantic annotations based on the weaker semantics to compute the entail-
ment.

• Reduction of the AnnoSet:
For an assertion 〈tf, ot, at〉 of AnnoSet
µo(ot) = µo(tf) ∈ φ(AnnoSet) if at = sa :Individual;

32

CHAPTER 4. KNOWLEDGE REPRESENTATION AND REASONING

µc(ot)(µo(tf)) ∈ φ(AnnoSet) if at = sa :Ind− Con;
µc(tf) ⊆ µc(ot) ∈ φ(AnnoSet) if at = sa :Concept;
µr(tf) ⊆ µr(ot) ∈ φ(AnnoSet) if at = sa :Role.

Definition 4.19 An ALCH axiom A is entailed by TaKb, written as TaKb |=e A iff TaKb |=s A

Based on the definition of entailment and the translation function we propose the following theorem
(proof is provided in appendix A)

Theorem 4.20 Suppose TaKb is the knowledge base satisfying TaKb |=e C v D and TaKb |=e 〈tf, C, sa:Concept〉
, then we have TaKb |=e 〈tf,D, sa:Concept〉.

4.3 Summary
In this chapter, we have presented the formal syntax of the solution for knowledge representation of the

text annotations: syntax, semantics, reasoning tasks and computations algorithms. The semantic annotations
are expressed as triples, but semantically interpreted in different way (strong satisfiability, weak satisfiability
and classical interpretation) for various different reasoning tasks (inconsistency checking of semantic anno-
tations with respect to domain ontology, entailment of semantic annotations or deducing new annotations
by logical annotation rules). Two important paradigms for reasoning with annotations are discussed, both of
which provide interesting reasoning service for text annotation systems. Since, the annotations of texts are
important information to access the content of the texts, our knowledge representation system will facilitate
the semantic access to the texts.Understanding of this chapter is important for the next chapter, which pro-
vides the technical description of the prototype model. Thus, by the end of this chapter its assumed that the
user is familiar with syntax and semantics of semantic annotations, linguistic annotations, rules under con-
siderations and the algorithms used for interpreting the annotations for both the paradigm of the reasoning
with annotations.

33

Chapter 5
Technology Application

”Logic takes care of itself; all we have to do is to look and see how it does it”
Ludwig Wittgenstein

This chapter describes the prototype model, that is developed in compliance to the theoretical back-
ground that has been developed in the previous chapters. The implementation of the prototype is supported
by the availability of various semantic web implementations, APIs, tools to deal with annotations, OWL
and DL-reasoners. The prototype handles all the issues related to knowledge representation, reasoning
paradigms and integration of various knowledge sources. During development, we have followed as closely
as possible the software development processes and principles. In the section that follows we will start to
analyze the application from the software engineering perspective and then provide solution to each of the
requirement. Next sections are the broader explanation of the system developed. The chapter concludes with
the rough statistical analysis of the achievements made on the improvement of the annotation knowledge,
when operated with text-corpus provided by American Airlines. The synopsis provided a summary of our
experience of implementing the system and some useful and reusable achievements as the product of the
implementation.

5.1 Requirements
As mentioned before our major goal is to develop a system, where reasoning is done over text corpus,

annotated with different linguistic and semantic knowledge. We were motivated to achieve this with existing
semantic web technologies and already proven highly optimized classical reasoners. So, the prototype
application developed must fulfill following requirements:

5.1.1 System features
• Integration: Given a text corpus with linguistic and semantic annotations, the system must consider

both of them for reasoning. At the same time provide an interface to use other form of annotations pro-
vided they are given in some standard formats. This feature accomplishes the theoretical foundation
explained in section 3.3.

34

CHAPTER 5. TECHNOLOGY APPLICATION

• Semantic Annotation: Represent and use semantic annotations in a format usable for reasoning with-
out loosing the meaning of different types of semantic annotations. Its to implement the knowledge
representation formalism discussed in section 4.1.1 and to implementations of algorithms discussed
in 4.2 for reasoning with different paradigms.

• Rule language integration: The system should be integrated with some rule language eg. SWRL
to allow the user to write the relationship between text-fragments based on some semantic/syntactic
pattern. We have integrated the rules discussed in section 4.2.1.1, for reasoning paradigm as explained
in section 4.2.1.

• Consistency and Coherence Check: Given a knowledge base, the system must report and explain to
the user regarding inconsistencies and incoherences. This will allow the user to detect the consistency
of the knowledge base. It is to accomplish the reasoning with respect to domain ontology as discussed
in section 4.2.2.

5.1.2 External interface requirements
• User interface: Though the system does not require an implicit user interface, but still a way to view

the annotated corpus would be handy. With this the user can make correction based on the results of
reasoning services.

• Reporting tool: This will help the user to make statistical analysis based on the input annotations and
inferred annotations after reasoning. The usefulness of different syntactic patterns can be compared.

• Suggestions and Explanations Interface: The causes of inconsistencies and incoherences must be
explained, so that the user can either make correction on the annotations or on domain ontology,
whichever is suitable. At the same time in addition to new inferred annotations, mismatching and
missing semantic/syntactic annotations are to be suggested.

5.2 System Description
In this section we will discuss about the system architecture, application flow and the different individual

components of the overall system. The system is developed using Java programming languages making use
of a number of APIs for various semantic web technologies as discusses in section 2.2. We have followed
to our best to make a implicit separation between the data layer (corpus and annotations) and the reasoning
layer, which will make system flexible to changes in data sources, reasoners and specific implementations.

5.2.1 Architecture
The figure 5.1 shows the layered architecture of the application, where three distinct layers viz inputs,

processing and outputs are depicted with various components of each layer. Each of the different modules of
the processing layer are loosely coupled with each other, depicted as independent components. In software:
coupling, is the degree to which each program module relies on each other module, for details see [44],
which discusses more on loose coupling and it’s advantages. Data Transfer Objects (DTOs) are used to
pass information between each modules, which will eventually make the application more flexible to change
in data sources. In this section we will discuss the technical aspect of each of the components. We will
illustrate each of the sections with algorithms and examples as necessary and it is to be noted that some of
the algorithms are specific to our implementations and requirements, which can be modified as necessary.
The algorithms thus give insight to understanding the prototype model developed.

35

CHAPTER 5. TECHNOLOGY APPLICATION

5.2.1.1 Inputs

Since, the overall system involves a various forms of knowledge, obtained from different sources and in
different formats, a thorough understanding of input parameters is important. In this section, we will discuss
about the inputs to the system.

Text corpus: It provides the collection of sentences in the documents in XML format. Each XML node
has the information regarding the document number where the sentence occurs and its position in that doc-
ument, along with the contents of the sentence.

Example 5.1

<SENTENCE ID="sent0#30" docoffset="4695">
AAdvantage mileage accrual eligibility on airline
participant routes is subject to change without notice.
</SENTENCE>

Each sentence is parsed using Stanford Natural Language Parser Wrapper 1 to generate the text-fragments
with their defining properties like offsets.

Semantic Annotations: These are the collection of RDF triplets, where each annotation is assigned to
text-link. The semantic annotations taken as input are generated by LIPN annotator developed at LIPN2.

Example 5.2

<TextLink rdf:ID="lc122">
<contentInSentence rdf:resource="#sent0-30"/>
<start_offset>0</start_offset>
<end_offset>18</end_offset>
<isSourceConcept rdf:resource="#AAdvantageMileage"/>
</TextLink>

Hench-forth we will call the collection of these text-links with semantic annotations as formatA.

Linguistic Annotations: Linguistic annotations are provided in XML format and represents the syntac-
tic relationships between words in sentences. Such annotations which are inputs for our system are outputs
of Stanford CoreNLP tools.

Example 5.3

<s id="31">
<dependencies style="typed">
.....................................
<dep type="nn">

<governor idx="4">eligibility</governor>
<dependent idx="2">mileage</dependent>

</dep>
......................................

</dependencies>
</s>

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://www-lipn.univ-paris13.fr/recherche/?lang=uk

36

CHAPTER 5. TECHNOLOGY APPLICATION

Rules: Rules that are developed by analysis of the corpus and linguistic studies are written in Semantic Web
Rule Language (SWRL) 3. The rules are stored as OWL file, written following the RDF Concrete Syntax
and is illustrated in Appendix B.

Example 5.4

contains2(?y, ?w), contains2(?y, ?x), isSourceConcept(?x, ?z), nn(?x, ?w)→ isSourceConcept(?y, ?z)

Domain Ontology: This is one of the most important input for reasoning with respect to the domain in-
formation concerning the text corpus over which reasoning is performed. Domain ontology describes the
concepts and their relationships, based on which the semantic annotations are made. The ontology we
have taken into consideration is an ontology developed at LIPN, based on the regulatory texts provided by
American Airlines, on air-travel loyalty program.

Inputs

Text Corpus Semantic
Annotations

Linguistic
Annotations Rules

Domain
Ontology

In
te

rf
ac

e

formatA
↔ formatB

formatB →
formatC

SWRL
reasoning

OWL
reasoning

DTOs DTOs

Logging Module

Reasoning ModulesRewriting Modules

Outputs

report.log Sem.
Annos’

φ(Domain
Ontology)

φ(Sem.
Annos)

Syntactic
Ontology

Figure 5.1: System Architecrure

5.2.1.2 Interface

This module acts as the bridge between all the other modules and is the point of communication between
each other. Inputs are feed to the system through this point and outputs are generated by this module. This

3http://www.w3.org/Submission/SWRL/

37

http://www.w3.org/Submission/SWRL/#6

CHAPTER 5. TECHNOLOGY APPLICATION

makes the system de-coupled with reasoning and re-writing modules. At the same time each of the reasoning
and re-writing modules are de-coupled with each other, thus avoiding the changes in each other other, if some
implementation is changed. For instance if some other useful reasoning paradigm is discovered, then it can
be integrated to the system, with only minor changes. At, the same time if further analysis of the work,
reveals that different reasoners can work better with our identified paradigm of reasoning, then any of the
module can be re-implemented, without effecting the others. For now both the reasoning paradigms are
implemented with Pellet.

5.2.1.3 Re-Writing Module

Re-writing from one format to another is an important aspect of the application. The inputs for the sys-
tem are in XML/RDF formats, which are processed by the rewriting modules and re-written into OWL in
a format proposed by our formalism as discussed in section 4.1. The re-writing modules are implemented
using different APIs like JENA, OWLAPI as discussed in 2.2 and utility functions provided by StanfordNLP
API4 and JAXP 5.

formatA↔ formatB module is used to write back and forth the semantic annotations in the text-link
notations (RDF format obtained from LIPN annotator) and text-fragment notations as three valued tuples
proposed in the formalism which is defined in definition 4.1. This module also implements methods to parse
the input documents and generates text-fragments, corresponding to single or multi-word textual units.

An important rewriting is for the representation of semantic annotations, where we rewrite Text-Links as
Text-Fragments. This procedure depicted by the process formatA→ formatB in our notation is achieved
with the algorithm 1.

4http://nlp.stanford.edu/software/corenlp.shtml
5http://java.sun.com/xml/downloads/jaxp.html

38

CHAPTER 5. TECHNOLOGY APPLICATION

Algorithm 1: Algorithm to convert Text Links to Text Fragments (formatA→ formatB)
Input: Text Links TL RDF //in RDF
Input: Text Links sentence
// the sentence being processed Output: Text Fragments TF OWL //in OWL

Collection〈TextFragment〉 TFs ;
Collection〈TextFragment〉 TF all ;
foreach Node ND ∈ TL RDF do

create new Text Fragment TF ;
TF .offsets=ND.offsets ;
TF .contentInSentence=sentence.number;
TextFragment tempTF=getSameTF(TFs,TF) ;
if tempTF== NULL then

TF .setSemanticAnnotation(ND.getSemanticAnnotation()) ;
TF .setID(RANDOM ID) ;
TFs.add(TF);

end
else

tempTF .addSemanticAnnotation(ND.getSemanticAnnotation()) ;
end

end
TF all=generateTextFragments(S) ; // utility function as described below foreach TF ∈ TFs do

TextFragment tempTF=getSameTF(TF all,TF) ;
if tempTF 6= NULL then

TF .ID=tempTF .ID ;
TS all.remove(tempTF);
TS all.add(TF);

end
end
foreach TF ∈ TF all do

Write TextFragment (TF) as OWL Individual, with respective data properties ;
end

In the above algorithm, we have seen a function generateTextFragments(S), which is an util-
ity implementation, used to generate text-fragments form a given sentence. Our implementation con-
siders 1-word, 2-word and 3-word text-fragments. To illustrate this, let us consider a fragment of the
sample sentence AAdvantage mileage accrual. If this sentence is taken as input then three 1-word text-
fragments corresponding to AAdvantage, mileage, accrual and two 2-word text-fragments correspond-
ing to AAdvantage mileage, mileage accrual and one 3-word text-fragment corresponding to AAdvan-
tage mileage accrual are created. The offsets for each words are obtained by using Stanford NLP API
to maintain standard used by other tools, rather than providing our own implementation. The unique id
for each text-fragment is generated by following this expression TFF+position+ +sentenceNumber for 1-
word text-fragments, while TFF+position+ +sentenceNumber+ +TO+ +position+ +sentenceNumber for
multi-word text-fragments. So, for the sentence that we have been considering and the text-link of the
example 5.2, after the formatA→ formatB translation we get

〈TFF1 0− 30 TO 2 0− 30, AAdvantageMileage, sa:Concept〉

and a number of text-fragments generated as just explained above.

A part of the same module, writes linguistic annotations obtained in XML format where relationships
are between words into OWL with relationships between text-fragments. Linguistic annotations are used for
reasoning with rules, thus need to be rewritten in OWL format. Syntactic Ontology [red box, in o/p block]
is the temporary file generated by this algorithm. OWL file representing linguistic annotations in each sen-

39

CHAPTER 5. TECHNOLOGY APPLICATION

tences are generated at run time, and are deleted once reasoning with rules is completed, because we do not
use linguistic annotations for reasoning with domain ontology.

Algorithm 2: Algorithm to write Linguistic annotations as OWL
Input: Stanford dependencies (grammatical relations between words) Dep XML //in XML
Input: Selected Sentence Number S No
Output: Linguistic Annotation LA OWL //in OWL

foreach Node ND ∈ Dep XML st ND.type=’S’ and ND.id = S No do
Nodes nds= all Nodes of type ’Dep’ ;
foreach Node nd ∈ nds do

Individual indv1= OWLIndividual(nd.childnode s.t. type=’governor’) ;
Individual indv2= OWLIndividual(nd.childnode s.t. type=’dependent’) ;
ObjectProperty role=OWLObjectProperty(nd.getValueOfAttribute(’type’)) ;
Relation rel= role(indv1,indv2) ;
//Write individuals, role and relation to OWL

end
end

After re-writing the linguistic annotations by the above algorithm for the example 5.3, we get an en-
try in the OWL file, storing linguistic annotations as:

Example 5.5

<owl:NamedIndividual rdf:about="#TFF4_0-30">
<nn rdf:resource="#TFF4_0-30"/>
</owl:NamedIndividual>

Note: All the rewritten outputs of A → B are used for reasoning using pellet with integration of SWRL
rules.

B → C module implements the higher order to classical logic rewriting, to in-cooperate the necessity
for representation of semantic annotations in classically reasonable format. This module implements the
algorithm stated in section 4.2.2.1 to rewrite the tuple representation of semantic annotations and domain
ontology (the combination of both of which is the Knowledge Base for us), such that union of which is
neither higher order nor misses any semantic information.

5.2.1.4 Reasoning Module

This module performs all the reasoning tasks, by making use of Pellet. One of the most important task to
be performed by this module is to check the consistency and coherency of the knowledge base of the system.
Pellet provided direct interface to check the consistency and explain the axioms necessary for inconsistency.
The algorithm below shows the implementation to check the coherency. This algorithm is based on the
definition 4.7 and supported by theorem 4.16.

Algorithm 3: Algorithm for checking incoherency
Input: domain knowledge base φ(TaKb)
Output: Inconsistent Classes with Explanation
foreach C ∈ φ(TaKb) do

boolean sat: satisfiable(C);
if !sat then

Get explanation
end

end

40

CHAPTER 5. TECHNOLOGY APPLICATION

This algorithm is used because Pellet API does not provide an implementation for checking in-coherency.
This algorithm thus makes use of the implementation of Pellet API to check the satisfiability of a class in the
knowledge base to check the coherency. An example of the case when we get the in-coherency is explained
with example 3.1.

Reasoning with SWRL rules is an important aspect of our application. Pellet provided interface to rea-
son with DL-safe SWRL rules as discussed in section 4.2.1. While reasoning with rules, a number of new
semantic annotations are generated, which need to be re-injected into the knowledge base as depicted in fig-
ure 4.1, so that such new semantic annotations are also used for reasoning with respect to domain ontology.
But, for reasoning with rules, the semantic annotation are treated as binary relations, with the annotation
type as the name of the role. So, thus obtained semantic annotations are to be re-interpreted as the tuple no-
tation, so that they can be re-injected into the AnnoSet. The algorithm below explains how such semantic
annotations represented as binary relations are re-interpreted as semantic annotation tuple as introduced by
our knowledge representation formalism.

Algorithm 4: Algorithm to interpret inferred relations as semantic annotations
Input: Inferred OWL axioms Axioms
Output: Set of semantic annotations Set < SemAnnoTuple > semAnnos
SemAnnoTuple temp ;
foreach Axiom ∈ Axioms do

if Axiom is of type ObjectPropertyAssertion then
if ObjecProperty /∈ specialObjectProperties then

temp= 〈getTFIndividual(Axiom), getOntologyTerm(Axiom), ObjectPRoperty〉 ;
semAnnos.add (temp);

end
end

end

getTFIndividual(Axiom){ foreach Individual ∈ Axiom do
if Individual.contains(”TFF ”) then

return Individual ;
end

end
}
getOntologyTerm(Axiom) { foreach Individual ∈ Axiom do

if !Individual.contains(”TFF ”) then
return Individual ;

end
end
}

The algorithm above is thus used to interpret the result of reasoning with SWRL, where we get the
inferred semantic annotations as relations as already explained in section 4.2.1.2. Note that by specialOb-
jectProperties we mean all the specifically defined object-properties in writing SWRL rules for our im-
plementation like isWrongNN,addNN, wrongSemPair etc. The function to obtain individuals representing
text-fragment and OntologyTerm are Very Specific to our implementation.

5.2.1.5 Logging Module

The application generates various types of information at different points of executions, which is nec-
essary to be logged for the purpose of usability. Reasoning module and Rewriting module make use of a

41

CHAPTER 5. TECHNOLOGY APPLICATION

central logging module implementing log4j 6 to write into log files. One basic log are all the text-links with
mismatching offset values, which the user can use to make the necessary corrections, an important finding
of such a log is the presence of semantic annotation on more than 3-word text-links, which are ignored for
reasoning with rules in our current implementation. At the same time, system logs the statistics regarding
the linguistic/semantic annotations based on inputs and outputs, to be used for analyzing the system and
detecting more useful syntactic patterns. Reasoning module makes use of logging module to log all the
generated semantic annotations including un-necessary annotations (which are eventually deleted) and warn
the user about the wrong/suggested linguistic annotations. So, this log is a useful part of the output to be
used by user to see the output annotations. Also, note that logging is also useful, because the prototype lacks
an interactive User Interface. One example of such a log after reasoning with rules is:

Example 5.6

<TFF6_0-30_TO_8_0-30,isSourceConcept,UNKNOWN>
<TFF8_0-30,isSourceConcept,UNKNOWN>
<TFF3_0-30_TO_4_0-30,isSourceConcept,UNKNOWN>
<TFF2_0-30_TO_4_0-30,isSourceConcept,Eligibility>
<TFF3_0-30_TO_4_0-30,isSourceConcept,Eligibility>
--Removed----<TFF3_0-30_TO_4_0-30,isSourceConcept,UNKNOWN>
<TFF7_0-30_TO_8_0-30,isSourceConcept,UNKNOWN>

****************WRONG ANNOTATIONS WARNINGS****************
< TFF6_0-30_TO_7_0-30 , Airline_Participant> OR < TFF7_0-30_TO_8_0-30 , UNKNOWN>

****************WRONG NN WARNINGS****************
Remove nn(TFF8_0-30,TFF6_0-30) and Add nn(TFF7_0-30,TFF6_0-30)

5.2.1.6 Outputs

All the modules write the outputs for the system through interface (except logs). Syntactic Annotation
ontology is temporary output, generated for reasoning with rules and is deleted once the SWRL reasoning
is completed. For each of the sentences temporary OWL files for both syntactic and semantic annotations
are generated, which are deleted after SWRL reasoning is complete. Sem. Annos’ is the RDF file (obtained
by formatB → formatA re-writing operation) with all the semantic annotations (original + re-injected
annotations obtained by reasoning with rules) re-written text-link format, which will be used by RDFa
processing tool 7 to display original document in HTML with semantic annotations. φ(sem.annos′) and
φ(domainontology) are the outputs of formatB → formatC modules, which are eventually used by the
OWL reasoning module, for our case of reasoning with respect to domain ontology.

5.2.2 Operation
As seen from the preceding section, prototype application is composed of number of modules, each of

them are to achieve different functionalities. In this section, we will explain the operation of the overall
application and sequence of executions, along with different outputs generated at different points. The
figure 5.2 shows the application flow and different types of annotations taken into consideration in the
prototype. Green blocks are RDFs, black blocks are XMLs, blue blocks are OWL files (among which some
are generated at runtime) and red blocks are the processing modules. The system operates in the sequence as
per to meet the requirements better explained by the figures 3.2 and 4.1 in the previous theoretical chapters.

First step is to process the input documents, with the Annotation Rewriters, which is the implementation
of Rewriter Module as described in 5.2.1. Re-writing is an important phase, because this initiates the task of
integrating various forms of knowledge, by writing them in the format suitable for reasoning. The outputs of
this phase are FormatB: are the tuple representation of semantic annotations, with probable Text-Fragments
produces by implementing the algorithms 1 and all text fragments generated as described after the agorithm,

6http://logging.apache.org/log4j/1.2/
7developed by other group in LIPN

42

CHAPTER 5. TECHNOLOGY APPLICATION

Annotations
Rewriter

Text Corpus

Semantic
Annotations

Stanford
Dependencies

FormatB

Syntatic
Annotations

SWRL
rules

SWRL
Reasoning

Service

New (syn/sem) annos
Wrong (syn/sem) annos

iFormatB

domOnt

HigherOrder-
Classical
Rewriter

φ(TF)

φ(Ont)

φ(TaKb)

Reasoning
Service

Check and Explain

• Consistency

• Coherence

• Entailment

Figure 5.2: System Operation

Syntatic Annotations: are the OWL representation of linguistic annotations obtained by implementation of
the algorithm 2. These outputs are now in the standard format usable for reasoning with rules.

SWRL reasoning service makes use of the outputs of the preceding process in combination of SWRL
rules as inputs. Before the semantic annotations are used for reasoning, σ transformation (not shown in
figure, because of space) as described in section 4.2.1.2 is performed over formatB, so that semantic annota-
tions are re-written in OWL format. This module implements all the reasoning and interpreting algorithms
described in subsection reasoning module of section 5.2.1. Note that while reasoning on this stage we don’t
consider domain ontology and also observe that SWRL reasoning precedes the reasoning with respect to
domain ontology. The, major output of this section, iFormatB is the tuple representation of semantic an-
notations, which contains all the Text-Fragments, with their semantic annotation(s) including the ones that
have been generated by reasoning. While, re-injecting semantic annotations we make use of the algorithm 4,
to make sure to not to miss out the actual intent of the inferred annotations. At the same time, at this stage,
we log all the linguistic annotations and the conflicts between semantic/linguistic annotations as warning
message to the user, which can be used for correction of annotations, with human innervation.

The next process that follows is one important implementation of the formalism that we have proposed.
The ‘Higher Order-Classical Rewriter’ implements the formalism described in section 4.2.2.1. At this sec-
tion we take care of the higher order semantics of the knowledge base caused by the inclusion of domain
ontology and translate the knowledge base into classically reasonable format8. The output of this process
is used by the reasoning service to perform classical reasoning to check the consistency and coherency (de-
scribed in algorithm 3) of the semantic annotations in the documents over the defined domain ontology. The
service also provides the explanations for the causes, whenever necessary. Note that the final annotation are
checked for correctness without making use of the golden standard. The outputs for some of the cases are
discussed in Appendix B, for further understanding.

8knowledge base is as φ(TaKB) as defined in 4.2

43

CHAPTER 5. TECHNOLOGY APPLICATION

5.2.3 Optimization
While existing techniques for TBox reasoning (i.e., reasoning about concepts) seem able to cope with

real world ontologies [21], but often existing techniques for ABox reasoning (i.e., reasoning about individu-
als) cannot cope with realistic sets of instance data. This difficulty arises not so much from the computational
complexity of ABox reasoning, but from the fact that the number of individuals (e.g., annotations) might be
extremely large [20]. Even though Pellet reasoner, that we have used for reasoning, makes use of various
optimizations techniques, as described in [43], we faced issues regarding space when using real time cor-
pus.

Our original corpus consists of 245 sentences, 727 semantic annotations and 843 syntactic annotations
and the domain ontology is moderately big and complex. On considering the whole of corpus at the same
time about 50k text fragments are generated. For each sentence with n words, we get n+(n-1)+(n-2) text-
fragments in account for 1-word,2-word and 3-word text-fragments respectively. On the first run of appli-
cation, in an environment of Intel Core 2 Duo 2GHZ processor, 3GB main memory and 1GB JVM heap
size, the system threw java.lang.OutOfMemoryError: Java heap space 9 error. So, to handle this case for
reasoning with large ABox, we have optimized the system without altering the expected results.

The Syntactic annotations that we have considered, depict the relationship between textual units in the
same sentence. The SWRL rules are used to discover new semantic and syntactic annotations, based on
such relationships and existing semantic annotations. It is thus obvious that processing each sentence at one
time and reasoning with annotations on only one sentence at a time does not make any change in the final
results. The one optimization that we obtained is by reasoning with annotations within chunks, each chunk
corresponding to a sentence, rather than the whole corpus at the same time. This solution not only solved
the memory issue, but also helped in generating organized outputs, which can be easily analyzed.

5.3 The Results
For the prototype evaluation, we have taken into consideration one syntactic relation nn (noun compound

modifier). The justification of choosing this type is as explained in [29], which states among 727 semantic
annotations we have on the corpus, 53% contain text fragments with at least one nn annotation. Whilst,
among 843 syntactic annotation nn on the corpus, 64% have at least one semantic annotation associated to
their text fragments. Considering that there are 48 syntactic dependency types defined in [7], these numbers
mean that the overlap between semantic annotations and nn annotations is remarkable. Thus the evaluation
of the system is performed based on the SWRL rules explained in section 4.2.1.1, the cause of such rule
pattern is also clear by the table 5.1 taken from [29].

Type of nn Number
head 186
modifiers only but no head 134
two modifiers together 49
head and one modifier together 10
none 235

Table 5.1: Coverage of Rules on the Annotated Corpus, where type of nn is divided based on whether its
head or its modifiers are semantically annotated

9http://java.sun.com/developer/technicalArticles/J2SE/monitoring/

44

CHAPTER 5. TECHNOLOGY APPLICATION

With the considered corpus with semantic annotations and syntactic annotations (of type nn) and 6
SWRL rules, we found the following results:

Total Sentences 245
I/P Semantic Annotations 727
I/P Syntactic Annotations 843
I/P rules 6
Total Execution Time 11mins,06secs
Inferred Semantic Annotations 717
Inferred missing semantic annotations(UNKNOWNS) 544
Unused missing semantic annotations(Deleted UNKNOWNS) 51
Suggested wrong semantic annotations 38
Suggested syntactic annotations to be removed and added 32

Table 5.2: Statistical analysis of outputs

At the same time, we made some experiments with checking the correctness of the semantic annotations.
The domain ontology that we have taken into considerations does not have any disjoint properties. Thus,
we added two dummy classes A and B and defined that disjoint(A,B). Then by annotating the textual
units in the corpus with these new classes, we checked for the working of application to find the consistency
and coherency of the corpus. If we have the annotation such that 〈tf, A, sa:Concept〉 and 〈tf, B, sa:Concept〉
then we will observe that the system will warn us with the message that the knowledge-base is in-coherent.
In case if we have 〈tf, A, sa:Ind-Con〉 and 〈tf, B, sa:Ind-Con〉 we will be informed that the knowledge base
is in-consistent. This result is as per required, which can not be detected in the original semantic annotations,
taken as input. Both these cases are explained further with example in appendix B.

5.4 Synopsis
This chapter, thus explains the problem form the perspective of the implementation. The prototype

model, clearly demonstrates that the proposed formalism is well supported by the existing technology. But,
development of the application was not a straight-forward task to be achieved. Designing of re-writing mod-
els, required extensive studies of the different independent formats obtained as input from various sources.
Due, to the difference in the input source, different APIs, utility packages had to be used along with writing
our own utility packages (distributable as independent packages), accessible for further work. Pellet and
OWLAPI provide different interfaces to reason with different paradigm and each have their own cons and
pros. We, had to use both the interfaces, mainly because our Knowledge Base is union of various ontologies.
Pellet interface does not provide explanation service for inconsistency and unsatisfiability, when reasoning
involves more than on ontologies, thus we had to use OWLAPI for reasoning with domain ontology. While,
interface provided by Pellet API, is optimized to work with SWRL rules, because of which we have used
this for this paradigm. Working with ontology with complex structures, specially when we need to consider
pretty small details, like implementing translation discussed in section 4.2.2.1 with OWLAPI was an inter-
esting challenge. A number of utility classes developed for traversing ontology in an easier way are useful
distributable obtained during the implementation.

By the end of this chapter, we have presented our research from both the theoretical and implementa-
tion perspective. We have addressed all the problems and issues behind the motivation to achieve an useful
technology to work with annotated corpus. In the last chapter that follows, we will conclude the overall
work by summarizing the current state of the work and some suggestions for the research work that can be
undertaken to work further in this field.

45

Chapter 6
Epilogue

”Logic is the beginning of wisdom, not the end.”
Leonard Nimoy

As we arrive at this point, starting from the motivation for undertaking the research, we have ex-
plained the solution that we have proposed to solve the issues regarding reasoning with text annotations.
Even though, we have worked on wider perspective of reasoning with text annotations, there are still issues
to be addressed and further researches to be undertaken. Before we wrap up everything, in this chapter we
precisely mention the state of the mechanism proposed, the doors opened by this work for further interesting
work that opens up new challenges and conclude with our observations.

6.1 Current State
We have formally defined an approach for reasoning with text annotations obtained from various kinds

of background knowledge. Moreover, semantics preserving formalism for representation of semantic anno-
tations is motivated, proposed and usability of which is demonstrated with a working prototype. The current
version of the prototype works well only with the case when the input semantic annotations are of simple
types. It is because, the LIPN semantic annotator, that is used to generate semantic annotations, produces
semantic annotations of simple types only. Even though the implementation for composite annotations is
provided, there is no standard representation of the composite annotations in the input format, which made
it harder for us to develop test cases to check the working with composite annotation types. But it works
fine with the composite annotations which are generated by SWRL rules, because at this point composite
annotations are represented in tuple format as provided by our formalism.

In the current state of the research we have thus provided two scenarios to illustrate the reasoning mech-
anism over annotated texts: One is aimed to reason the annotations with rule language by excluding the
domain ontology to deduce extra annotations, missing annotations and in-correct annotations; The other is
an effort to make use of classical DL formalism to provide the a metric to evaluate the annotation correct-
ness without golden-standards. The formalism is accompanied by the algorithms to translate the knowledge
base in higher order into classical satisfiability checking, so that the state of art ontology reasoners can be
reused for reasoning. All the proposed knowledge representation formalism, algorithms and knowledge in-
tegration approach is demonstrated with the fully functional prototype model, whose output can be usefully

46

CHAPTER 6. EPILOGUE

used as input for other applications that work with annotated text corpus providing an exciting platform for
interactions between textual and ontological information.

6.2 Future Works
The current state of work, provides a strong foundation for reasoning with text annotations, obtained

from various sources. With the help of the prototype model, we have demonstrated that the proposed for-
malism is well supported by the existing technologies. In this section, we will discuss on some major tasks
that can be under taken as further research in this field.

6.2.1 Composite Annotations
Composite annotations are important types of annotations, which can enrich the information contained

in an annotated corpus. We have defined composite annotations in section 3.4.1 and have explained with
examples. Annotating sentences or large group of words by axioms can be really useful for further under-
standing and interpretation of the text-corpus. But, we have excluded the formalism related to composite
annotations, due to the time constraint and incompleteness of the input annotated corpus. This can be one
challenging task to be undertaken. During the research we also came up with various types of rules, that
make use of composite annotations, which can help us to deduce new annotations. Moreover introduction
of composite annotations can help us to compose the rules as adopted in SSBVR through the distinction
between fact type and fact type form. One of the major issues on composite annotations is the representation
format to be used by the annotators, which opens up a new task for LIPN annotator to consider annotations
of composite annotations.

6.2.2 Re-injection Architectures
We have used a naive approach to re-inject only semantic annotations discovered by reasoning with

rules, and use them for reasoning with respect to domain ontology, which is depicted in figure 4.1. Further
study on re-usability of the added annotations to improve results of other tools can be interesting field to
work on. Richer treatment architectures become possible if new or problematic annotations can be re-
injected in some tools, possibly interactive ones. So, definition and experimenting with various re-injection
architecture can be interesting field to further work on. Importantly re-injection, deletion or updating the
linguistic annotations can be logically challenging and can lead to really useful work on reasoning with
annotated corpus.

6.2.3 Others
Even though in the current implementation we have used the optimization technique to solve the issue of

space (discussed in section 5.2.3), the way to optimize for faster execution has not been analyzed. At some
points number of useless text-fragments are generated, which uselessly increase the writing and searching
time, specially when the sentence is longer and have few annotations. This issue can be studied to some
extent to improve the prototype. Further more statistical analysis of the performance of different types of
DL reasoners can be studied to observe their compliance with reasoning with large A-box and SWRL rules,
where incremental reasoning plays an important role.

Thus this research work basically opens up two paths for further research. Firstly detail study on more
linguistic and semantic annotation types to discover new annotation types, new rules and gain more knowl-
edge. Secondly further work on optimization of processing and integration of the model with other tools
working with annotated corpus.

47

CHAPTER 6. EPILOGUE

6.3 Conclusion
This research work has thus addressed the problem of reasoning with different types of annotations ob-

tained from various sources in different paradigms each of which has it’s own advantage. The formalism
proposed for representation of semantic annotation provides a wider range for representation of semantic
annotations. Prototype model developed using the existing de-facto semantic web technologies generated
large number of new annotations which can be very useful for various tools. Not only did this research
enhanced the importance of annotated corpus, but also motivates the linguists for further research on lin-
guistic patters, so that they can be re-written in rule languages to automatically extract more annotations. It
is also to be noted that the new/conflicting linguistic annotations, which are now not considered for further
reasoning, open a challenge to handle/update such information in the knowledge base.

Above all this research work was an interesting field to work on, which gave an insight of various logical
languages that can be used to solve different issues in an integrated environment. It was also an great oppor-
tunity to study the applicability of various semantic web technologies for the development of an interesting
application based on logical reasoning.

48

Appendix A
Theorem Proofs

Theorem 4.15
Given a text annotation knowledge base TaKb, TaKb is satisfiable if and only if φ(TaKb) is satisfiable
under classical DL semantics.
Proof Lets assume that TaKb is satisfiable under higher order semantics. Now we need to prove that
φ(TaKb) is satisfiable under classical semantics.

Let us consider a interpretation I = (∆, Ii, Ic, Ir) such that:
Delta = {tf, A}
Ii = {tf}
Ic = {A}
Ir = {(tf, A)}

and a semantic annotation SA = 〈tf, A, sa :Concept〉, which is satisfiable in I , under the higher
order semantics as given in 4.1.1.2.

Now we get a interpretation I
′

after translation by applying φ function, which is as I ′ = (∆I , .I) such
that:

∆ = {tfindv, Aindv, tfconcept, Aconcept}
(µo(A))I = {Aindv}
(tf)I = {tfindv}
(µc(tf))I = {tfconcept}
(µc(A))I = {Aconcept, tfconcept}
(µr(sa :Concept))I = {(tfindv, Aindv)}

where the new names are obtained by the injective functions µ∗ defined in section 4.2.2.1
Also, the φ translation on SA gives us φ(SA) = µr(sa :concept)(tf, µo(A)) and µc(tf) ⊆ µc(ot).

Now we are to prove that phi(SA) is satisfiable under classical semantics in the interpretation I
′
.

µr(sa :Concept)(tf, µo(A)) is satisfiable if (tf I , (µo(A))I) ∈ (µr(sa :Concept))I . Which is true in
I

′

µc(tf) ⊆ µc(A) is satisfiable if (µc(tf))I ⊆ (µc(A))I . which is true in I
′
. Similar results will follow

for other cases of annotation types. Thus, we can observe that φ is a satisfiability preserving transforma-
tion. This allows to say that we can compute the satisfiability of TaKb by computing the satisfiability of
φ(TaKb) under the classical semantics.

The other way round of the proof can be proved the similar way, by taking the inverse of the µ relation.

49

Theorem 4.16
Given a text annotation knowledge base TaKb, TaKb is coherent if and only if φ(TaKb) is coherent under
classical DL semantics.
Proof The proof follows from the proof A, because checking coherency is the result of checking satisfiabil-
ity.

Theorem 4.17
Given a text annotation knowledge base TaKb and the domain ontology is in ALC, then checking the
satisfiability of TaKb is EXPTIME-hard.
Proof Trivial, from theorem 4.15. Because, checking satisfiability of TaKb is same as checking satisfiabil-
ity of φ(TaKb) under classical semantics.

Theorem 4.20
Suppose TaKb is the knowledge base satisfying TaKb |=e C v D and TaKb |=e 〈tf, C, sa:Concept〉 ,
then we have TaKb |=e 〈tf,D, sa:Concept〉.
Proof To solve this problem, we will make use of the definition 4.19 and the reductions used in 4.2.2.1. By
stronger semantics we get. Let I be an interpretation for TaKb, then I
|=s µc(C) v µc(D) ——-(1)
|=s µc(tf) v µc(C)——-(2)
then we get
|=s µc(tf) v µc(D) from 1 and 2

Now taking the weaker semantics we can write I |=w 〈tf,D, sa:Concept〉. By which we can claim
I |=s 〈tf, C, sa:Concept〉 and I |=s C v D implies I |=w 〈tf,D, sa:Concept〉.

Hence by definition of entailment 4.19 we get TaKb |=e 〈tf,D, sa:Concept〉

Theorem 4.11
If a semantic annotation α

′
is deduced by reasoning over AnnoSet ∪ Rules1−7 and {α1, ..., αn} is the

proof path for the conclusion α
′
, then if any αi ∈ βu occurring in the path is deleted i.e αi ∈ βdu then the

conclusion α
′

is also deleted i.e α
′ ∈ βdu.

Proof Let us consider the two words case, then we get the following text-fragments tf1, tf2, tf12 and
AnnoSet = {〈tf1, A, sa:Concept〉, nn(tf2, tf1)}. By reasoning we get AnnoSet

′
= AnnoSet ∪ {

〈tf2, U
∗, sa:Concept〉, 〈tf12, U

∗, sa:Concept〉 }. For this theorem since, we deal with U∗, so the conclu-
sion involving U∗ in it’s proof path is 〈tf12, U

∗, sa:Concept〉. The proof path is {〈tf2, U
∗, sa:Concept〉}.

Now, we get the following cases:
Case 1:
If, 〈tf2, U

∗, sa:Concept〉 /∈ βdu, then 〈tf12, U
∗, sa:Concept〉 /∈ βdu. Which is TRUE.

Case 2:
If, 〈tf2, U

∗, sa:Concept〉 ∈ βdu then its because ∃〈tf2, A, sa:Concept〉. But, if this is the case, then by rea-
soning with rules, we also get that 〈tf12, A, sa:Concept〉 by rule 2, which will trigger the deletion operation.
Thus, 〈tf12, U

∗, sa:Concept〉 ∈ βdu
This case can be generalized with the case of three word text-fragments.

50

Theorem 4.13
Suppose M is the minimal model of the annotation Datalog Panno, that is M = MM(Panno). Let
M ′ be the set of ground atoms obtained after the deletion operation and P

′
= Panno|M ′ . We have

M
′

=MM(P
′
).

That is, ours deletion operator can get a M
′

which is a stable sub-model of the given set of Panno.
Proof It is obvious thatMM(P

′
) ⊆M ′

because HB(P
′
) ⊆M ′

by the definition of P
′

(i.e. all atoms of
P

′
are in M

′
) andMM(P

′
) ⊆ HB(P

′
) by the definition of minimal model and Herbrand base.

To prove that M
′ ⊆ MM(P

′
), for any x ∈ M

′
, we have x ∈ M since M

′ ⊆ M . We claim that
there exists at least one proof path of x from P , denoted {x1, ..., xn, x} such that xi ∈ M ′. Otherwise, by
the definition 4.11, if xi(1 ≤ i ≤ n) is deleted, that is xi 6∈ M

′
, then x is also delete (x 6∈ M

′
) which

is contrary with the hypothesis that x ∈ M
′
. Therefore, {x1, ..., xn, x} is a proof path of x in P

′
(since

xi ∈ M
′
), so x ∈ MM(P

′
). Hence we get that for every x if x ∈ M ′

then x ∈ MM(P
′
) and if x /∈ M ′

then x /∈MM(P
′
). Hence M

′
=MM(P

′
)

51

Appendix B
Workout examples

Example: 1
To, demonstrate the use of reasoning on semantic and linguistic annotations with SWRL rules, let us

consider the figure below, which is the sentence 30 in the corpus that we have taken into consideration. The
text below marks the input semantic annotations corresponding to the textual units covered by the box. The
arrows are for the linguistic annotations and the label marks the type of linguistic annotation.

Figure B.1: Ontology-based Annotation on texts

After reasoning with SWRL rules, for this sentence, we get the following output for that sentence.

<TFF8_0-30,isSourceConcept,UNKNOWN>
<TFF6_0-30_TO_8_0-30,isSourceConcept,UNKNOWN>
<TFF7_0-30_TO_8_0-30,isSourceConcept,UNKNOWN>
<TFF3_0-30_TO_4_0-30,isSourceConcept,UNKNOWN>
<TFF2_0-30_TO_4_0-30,isSourceConcept,Eligibility>
<TFF3_0-30_TO_4_0-30,isSourceConcept,Eligibility>
--Removed----<TFF3_0-30_TO_4_0-30,isSourceConcept,UNKNOWN>

****************WRONG ANNOTATIONS WARNINGS****************
< TFF6_0-30_TO_7_0-30 , Airline_Participant> OR < TFF7_0-30_TO_8_0-30 , UNKNOWN>

****************WRONG NN WARNINGS****************
Remove nn(TFF8_0-30,TFF6_0-30) and Add nn(TFF7_0-30,TFF6_0-30)

Regarding the semantic annotations, TFF8 0-30 i.e textual unit routes is inferred UNKNOWN by rule 5. TFF7 0-
30 TO 8 0-30 and TFF6 0-30 TO 8 0-30 corresponding to textual units participant routes and airline participant routes
respectively are inferred UNKNOWN by the rules 2 and 3 respectively. TFF 4 0-30 is inferred UNKNOWN by rule 4 and
hence TFF 3 0-30 TO 4 0-30 (accrual eligibility) is UNKNOWN by rule 2. Similarly, TFF 3 0-30 TO 4 0-30 (mileage

52

accrual eligibility) and TFF 2 0-30 TO 4 0-30 is inferred Eligibility by rules 2 and 3 respectively. The deletion opera-
tion is performed as defined by proposition 4.10. Note, that all these inferred annotations are added in our knowledge
base TaKb to be used for checking the consistency and coherency after the φ transformation.

Now we will talk about the warnings generated which are for the information to the user and don’t change our
knowledge base. Regarding the linguistic annotations warning, it suggests the noun form modifiers to be removed
between TFF8 0-30 and TFF6 0-30 i.e. nn(routes, airline) and instead add between TFF7 0-30 and TFF6 0-30 i.e.
nn(participant, airline), which is inferred by the rule 6. Similarly the semantic annotations warning stating annotation
corresponding to one of the textual units airline participant OR participant routes is inferred by the rule 7.

Note: This example also demonstrates how incremental reasoning is used to infer new information, based on the origi-
nally asserted and the inferred assertion during reasoning with rules.

Example: 2
To demonstrate the pellet reasoning to check inconsistency let us consider the following sentence. In addition it is

to be noted that in the domain ontology we have defined the Disjoint relation between the concepts A and B.

Figure B.2: Use-Case 2 for inconsistency check

For the considered fragment of the sentence 30, in addition to the annotations in the figure B.1, we have two more
annotations viz textual-unit eligibility is annotated as A and B, linked with annotation type sa :isSourceInstanceOcc.
With this scenario we will get the following output:

Inconsistent: because:
DisjointClasses(<http://lipn.univ-paris13.fr/RCLN/semAnno#A>
<http://lipn.univ-paris13.fr/RCLN/semAnno#B>)
ClassAssertion(<http://lipn.univ-paris13.fr/RCLN/semAnno#B>
<http://lipn.univ-paris13.fr/RCLN/semAnnoTF#TFF4_0-30>)
ClassAssertion(<http://lipn.univ-paris13.fr/RCLN/semAnno#A>
<http://lipn.univ-paris13.fr/RCLN/semAnnoTF#TFF4_0-30>)

This shows the application of reasoning service to check the in-consistency.

Example: 3
To demonstrate the pellet reasoning to check incoherency let us consider the following figure taken as fragment of

sentence in fig B.1. The added information in domain ontology as in example above remains itact.

53

Figure B.3: Use-Case 3 for Coherency check

For this considered fragment, two more annotations viz textual-unit mileage is annotated as A and B, linked with
annotation type sa :isSourceInstanceOcc. With this scenario we will get the following output. In this case we get
the following output:

Not Coherent: because TFF2_0-30 is not Satisfiable

Example: 4 Here we will show the example of SWRL rule written in the OWL format, which is the format to
be used by the prototype model. All the rules written before in other format are used for readability purpose.
contains2(?y, ?w), contains2(?y, ?x), isSourceConcept(?x, ?z), nn(?x, ?w) → isSourceConcept(?y, ?z)

This rule is represented in this format. The name-spaces are defined as required.

<swrl:Imp>
<swrl:head>

<swrl:AtomList>
<rdf:rest rdf:resource="nil"/>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="isSourceConcept"/>
<swrl:argument1 rdf:resource="#y"/>
<swrl:argument2 rdf:resource="#z"/>

</swrl:IndividualPropertyAtom>
</rdf:first>

</swrl:AtomList>
</swrl:head>
<swrl:body>
<swrl:AtomList>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="contains2"/>
<swrl:argument2 rdf:resource="#w"/>
<swrl:argument1 rdf:resource="#y"/>

</swrl:IndividualPropertyAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:first>

54

<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="isSourceConcept"/>
<swrl:argument1 rdf:resource="#x"/>
<swrl:argument2 rdf:resource="#z"/>

</swrl:IndividualPropertyAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:rest rdf:resource="nil"/>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="nn"/>
<swrl:argument2 rdf:resource="#w"/>

<swrl:argument1 rdf:resource="#x"/>
</swrl:IndividualPropertyAtom>

</rdf:first>
</swrl:AtomList>

</rdf:rest>
</swrl:AtomList>

</rdf:rest>
<rdf:first>
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="contains2"/>
<swrl:argument2 rdf:resource="#x"/>

<swrl:argument1 rdf:resource="#y"/>
</swrl:IndividualPropertyAtom>

</rdf:first>
</swrl:AtomList>

</rdf:rest>
</swrl:AtomList>

</swrl:body>
</swrl:Imp>

55

Bibliography

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and Patel F. P. Schneider. The description logic handbook.
Cambridge University Press New York, NY, USA, 2007.

[2] Sean Bechhofer, Raphael Volz, and Phillip W. Lord. Cooking the semantic web with the owl api. In International
Semantic Web Conference, pages 659–675, 2003.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May 2001.

[4] Philippe Besnard and Anthony Hunter. Quasi-classical logic: Non-trivializable classical reasoning from incon-
sistent information. In Christine Froidevaux and Jrg Kohlas, editors, Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, volume 946 of Lecture Notes in Computer Science, pages 44–51. Springer Berlin /
Heidelberg, 1995.

[5] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and Kevin Wilkinson. Jena:
implementing the semantic web recommendations. In Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, WWW Alt. ’04, pages 74–83, New York, NY, USA, 2004. ACM.

[6] Marie catherine De Marneffe, Bill Maccartney, and Christopher D. Manning. Generating typed dependency parses
from phrase structure parses. In In LREC 2006, 2006.

[7] Marie catherine De Marneffe, Bill Maccartney, and Christopher D. Manning. Generating typed dependency parses
from phrase structure parses. In In LREC 2006, 2006.

[8] Laurence Cholvy and Anthony Hunter. Information fusion in logic: A brief overview. In Proceedings of the First
International Joint Conference on Qualitative and Quantitative Practical Reasoning, pages 86–95, London, UK,
1997. Springer-Verlag.

[9] Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and Azzurra Ragone. Second-
order description logics: Semantics, motivation, and a calculus. In Volker Haarslev, David Toman, and Grant E.
Weddell, editors, Description Logics, volume 573 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

[10] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressive power of logic
programming, 1997.

[11] Nikhil Dinesh, Aravind Joshi, Insup Lee, and Bonnie Webber. Extracting formal specifications from natural
language regulatory documents. In ICoS-5, Buxton, England, 2006.

[12] Nikhil Dinesh, Aravind Joshi, Insup Lee, and Bonnie Webber. Extracting formal specifications from natural lan-
guage regulatory documents. In In: Proceedings of the Fifth International Workshop on Inference in Computational
Semantics, 2006.

[13] Patrice Enjalbert, BenoˆHabert, and Kalina Bontcheva., editors. Platforms for Natural Language Processing,
volume 49-2 of TAL. Atala, 2008.

[14] Francesca Fallucchi, Maria Teresa Pazienza, Noemi Scarpato, and Armando Stellato. Semantic turkey - a new web
experience in between ontology editing and semantic annotation. In José Cordeiro, Joaquim Filipe, and Slimane
Hammoudi, editors, WEBIST (2), pages 90–97, 2008.

[15] Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. On higher-order description logics. In Grau
et al. [17].

56

[16] Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. On higher-order description logics. In
Bernardo Cuenca Grau, Ian Horrocks, Boris Motikand, and Ulrike Sattler, editors, Description Logics, volume
Vol. 477, Oxford, July 2730 2009. CEUR Workshop Proceedings.

[17] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors. Proceedings of the 22nd Interna-
tional Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30, 2009, volume 477 of CEUR Workshop
Proceedings. CEUR-WS.org, 2009.

[18] Peter Haase, Pascal Hitzler, Markus Krtzsch, Jrgen Angele, and Rudi Studer. Practical reasoning with owl and
dl-safe rules. 2006.

[19] Matthew Horridge and Sean Bechhofer. The owl api: A java api for working with owl 2 ontologies, 2009.

[20] Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The instance store: Dl reasoning with large numbers of
individuals. In Proc. of the 2004 Description Logic Workshop, 2004.

[21] Ian R. Horrocks. Using an expressive description logic: Fact or fction? In Proc. of KR 98, pages 636–647, 1998.

[22] Anthony Hunter. Reasoning with contradictory information using quasi-classical logic. Journal of Logic and
Computation, 10:677–703, 1999.

[23] Nancy Ide and Laurent Romary. Outline of the international standard linguistic annotation framework. In Pro-
ceedings of ACL’03 Workshop on Linguistic Annotation: Getting the Model, pages 1–5, 2003.

[24] Nancy Ide and Laurent Romary. Representing linguistic corpora and their annotations. In Proceedings of the Fifth
Language Resources and Evaluation Conference (LREC, 2006.

[25] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. OWLIM A Pragmatic Semantic Repository for OWL.
pages 182–192. 2005.

[26] Atanas Kiryakov, Borislav Popov, Damyan Ognyanoff, Dimitar Manov, and Kirilov Miroslav Goranov. Semantic
annotation, indexing, and retrieval. Journal of Web Semantics, 2:49–79, 2004.

[27] Michal Laclavik, Martin Seleng, Emil Gatial, Zoltan Balogh, and Ladislav Hluchy. Ontology based text annotation
- ontea, 2006.

[28] F. Levy, A. Guisse, A. Nazarenko, N. Omrane, and S. Szulman. An environment for the joint management of
written policies and business rules. Tools with Artificial Intelligence, IEEE International Conference on, 2:142–
149, 2010.

[29] Yue Ma, Francois Levy, and Sudeep Ghimire. Reasoning with text annotations. In Proc. of the 24th Florida
Artificial Intelligence Research Society Conference (FLAIRS-24), 2011.

[30] Yue Ma, Adeline Nazarenko, and Laurent Audibert. Formal description of resources for ontology-based semantic
annotation. In LREC 2010, 2010.

[31] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of
english: The penn treebank. COMPUTATIONAL LINGUISTICS, 19(2), 1993.

[32] Diana Maynard, Horacio Saggion, Milena Yankova, and Wim Peters. natural language technology for information
integration in business intelligence. In 10th International Conference on Business Information Systems, pages
25–27, 2007.

[33] Boris Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis, Universitt
Karlsruhe (TH), Karlsruhe, Germany, January 2006.

[34] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology Language: Structural Specification
and Functional-Style Syntax.
urlhttp://www.w3.org/TR/owl2-syntax/, 2008.

[35] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with rules. In Journal of Web Semantics,
pages 549–563. Springer, 2004.

[36] OMG. Sbvr, http://www.omg.org/spec/sbvr/current (2008). http://www.omg.org/spec/SBVR/
Current, 2006.

[37] OMG. Owl 2 web ontology language new features and rationale. http://www.w3.org/TR/
owl2-new-features/, 2009.

[38] OMG. Owl2, http://www.w3.org/tr/owl2-overview/introduction. http://www.w3.org/TR/
owl2-overview, 2009.

57

 http://www.omg.org/spec/SBVR/Current
 http://www.omg.org/spec/SBVR/Current
 http://www.w3.org/TR/owl2-new-features/
 http://www.w3.org/TR/owl2-new-features/
 http://www.w3.org/TR/owl2-overview
 http://www.w3.org/TR/owl2-overview

[39] Hoifung Poon and Pedro Domingos. Joint inference in information extraction. In AAAI 2007, pages 913–918.
AAAI Press, 2007.

[40] Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu, and Shivakumar Vaithyanathan. An
algebraic approach to rule-based information extraction. In Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, pages 933–942, Washington, DC, USA, 2008. IEEE Computer Society.

[41] Satya S. Sahoo and Krishnaprasad Thirunarayan. Tableau algorithm for concept satisfiability in description logic
alch, 2009.

[42] Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrishnan. Declarative information extraction
using datalog with embedded extraction predicates. In Proceedings of the 33rd international conference on Very
large data bases, VLDB 2007, pages 1033–1044. VLDB Endowment, 2007.

[43] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pellet: A practical owl-dl
reasoner, 2007.

[44] Refresh Software. Applying loosely-coupled architectures to the content driven enterprise. http:
//www.refreshsoftware.com/SiteObjects/031230514FB35BB8010DAA48FA4F1C1C/
Applying%20Loosely%20Coupled%20Architecture%20To%20The%20CDE.pdf, 2006.

[45] Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum. Sofie: A self-organizing framework for information
extraction. Technical Report 5-004, Max Planck Institute, Saarbrcken, Nov 2008.

[46] Victoria Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria Vargas-Vera, Enrico Motta, and Fabio
Ciravegna. Semantic annotation for knowledge management: Requirements and a survey of the state of the art.
Journal of Web Semantics, 4(1):14–28, 2006.

[47] Victoria Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria Vargas-Vera, Enrico Motta, and Fabio
Ciravegna. Semantic annotation for knowledge management: Requirements and a survey of the state of the art.
Web Semant., 4:14–28, January 2006.

[48] Xiaowang Zhang, Guilin Qi, Yue Ma, and Zuoquan Lin. Quasi-classical semantics for expressive description
logics. In Grau et al. [17].

58

http://www.refreshsoftware.com/SiteObjects/031230514FB35BB8010DAA48FA4F1C1C/Applying%20Loosely%20Coupled%20Architecture%20To%20The%20CDE.pdf
http://www.refreshsoftware.com/SiteObjects/031230514FB35BB8010DAA48FA4F1C1C/Applying%20Loosely%20Coupled%20Architecture%20To%20The%20CDE.pdf
http://www.refreshsoftware.com/SiteObjects/031230514FB35BB8010DAA48FA4F1C1C/Applying%20Loosely%20Coupled%20Architecture%20To%20The%20CDE.pdf

	Introduction
	Background
	Related Works
	Motivation
	Contribution of the Thesis
	Organization of the Thesis

	Preliminaries
	Logics in Action
	Description Logics (DL)
	Higher Order Description logic
	Quasi-Classical Logics (QCL)
	SWRL

	Semantic Web Technologies
	OWL2
	OWLAPI
	JENA
	Pellet

	Summary

	Text Annotation
	Landscape of Annotations
	Approaches and Problems
	Integration
	Building Blocks
	Semantic Annotations
	Linguistic Annotations
	Domain Ontologies

	Summary

	Knowledge Representation and Reasoning
	Knowledge Representation
	Semantic Annotations
	Syntax
	Semantics
	Satisfiability

	Representation of Linguistic Annotations

	Reasoning
	Reasoning with rules
	Rules
	Transformation of semantic annotations for A
	U* Revisited

	Reasoning with Domain Ontology
	Reduction to Classical DL
	Entailment of semantic annotations

	Summary

	Technology Application
	Requirements
	System features
	External interface requirements

	System Description
	Architecture
	Inputs
	Interface
	Re-Writing Module
	Reasoning Module
	Logging Module
	Outputs

	Operation
	Optimization

	The Results
	Synopsis

	Epilogue
	Current State
	Future Works
	Composite Annotations
	Re-injection Architectures
	Others

	Conclusion

	Theorem Proofs
	Workout examples
	Reference

