
Approximate Computation of Exact Association Rules

Saurabh Bansal1 Sriram Kailasam1 Sergei Obiedkov2

1IIT Mandi, Mandi, India

2HSE University, Moscow, Russia

July 1, 2021

Overview

I Computing the canonical basis of a formal context is hard: no total–polynomial
time algorithm is known.

I Some algorithms generate all concept intents as a side product.
I Other algorithms compute different bases, which can then be reduced to the

canonical basis.

I Probably approximately correct computation of the canonical basis has been
considered before,

I but has never been properly evaluated in terms of efficiency in practice.

I We define a notion of frequency-aware approximation and give a total–polynomial
time probabilistic algorithm to compute it.

I We experimentally evaluate the algorithm.

Overview

I Computing the canonical basis of a formal context is hard: no total–polynomial
time algorithm is known.
I Some algorithms generate all concept intents as a side product.

I Other algorithms compute different bases, which can then be reduced to the
canonical basis.

I Probably approximately correct computation of the canonical basis has been
considered before,

I but has never been properly evaluated in terms of efficiency in practice.

I We define a notion of frequency-aware approximation and give a total–polynomial
time probabilistic algorithm to compute it.

I We experimentally evaluate the algorithm.

Overview

I Computing the canonical basis of a formal context is hard: no total–polynomial
time algorithm is known.
I Some algorithms generate all concept intents as a side product.
I Other algorithms compute different bases, which can then be reduced to the

canonical basis.

I Probably approximately correct computation of the canonical basis has been
considered before,

I but has never been properly evaluated in terms of efficiency in practice.

I We define a notion of frequency-aware approximation and give a total–polynomial
time probabilistic algorithm to compute it.

I We experimentally evaluate the algorithm.

Overview

I Computing the canonical basis of a formal context is hard: no total–polynomial
time algorithm is known.
I Some algorithms generate all concept intents as a side product.
I Other algorithms compute different bases, which can then be reduced to the

canonical basis.

I Probably approximately correct computation of the canonical basis has been
considered before,

I but has never been properly evaluated in terms of efficiency in practice.

I We define a notion of frequency-aware approximation and give a total–polynomial
time probabilistic algorithm to compute it.

I We experimentally evaluate the algorithm.

Overview

I Computing the canonical basis of a formal context is hard: no total–polynomial
time algorithm is known.
I Some algorithms generate all concept intents as a side product.
I Other algorithms compute different bases, which can then be reduced to the

canonical basis.

I Probably approximately correct computation of the canonical basis has been
considered before,
I but has never been properly evaluated in terms of efficiency in practice.

I We define a notion of frequency-aware approximation and give a total–polynomial
time probabilistic algorithm to compute it.

I We experimentally evaluate the algorithm.

Overview

I Computing the canonical basis of a formal context is hard: no total–polynomial
time algorithm is known.
I Some algorithms generate all concept intents as a side product.
I Other algorithms compute different bases, which can then be reduced to the

canonical basis.

I Probably approximately correct computation of the canonical basis has been
considered before,
I but has never been properly evaluated in terms of efficiency in practice.

I We define a notion of frequency-aware approximation and give a total–polynomial
time probabilistic algorithm to compute it.

I We experimentally evaluate the algorithm.

Overview

I Computing the canonical basis of a formal context is hard: no total–polynomial
time algorithm is known.
I Some algorithms generate all concept intents as a side product.
I Other algorithms compute different bases, which can then be reduced to the

canonical basis.

I Probably approximately correct computation of the canonical basis has been
considered before,
I but has never been properly evaluated in terms of efficiency in practice.

I We define a notion of frequency-aware approximation and give a total–polynomial
time probabilistic algorithm to compute it.

I We experimentally evaluate the algorithm.

Formal Contexts

Formal context K = (G ,M , I)

I a set of objects G

I a set of attributes M

I objects are described with attributes: the binary relation I ⊆ G ×M

Derivation operators

For A ⊆ G and B ⊆ M:

I A′ = {m ∈ M | ∀g ∈ A : (g ,m) ∈ I}
I B ′ = {g ∈ G | ∀m ∈ B : (g ,m) ∈ I}

A 7→ A′′ and B 7→ B ′′ are closure operators.
IntK = {B ′′ | B ⊆ M} is the set of concept intents of K.

Formal Contexts

Formal context K = (G ,M , I)

I a set of objects G

I a set of attributes M

I objects are described with attributes: the binary relation I ⊆ G ×M

Derivation operators

For A ⊆ G and B ⊆ M:

I A′ = {m ∈ M | ∀g ∈ A : (g ,m) ∈ I}
I B ′ = {g ∈ G | ∀m ∈ B : (g ,m) ∈ I}

A 7→ A′′ and B 7→ B ′′ are closure operators.
IntK = {B ′′ | B ⊆ M} is the set of concept intents of K.

Implications

Implication A→ B

A,B ⊆ M.

I An attribute subset X ⊆ M is a model of an implication A→ B if A 6⊆ X or
B ⊆ X .

I A→ B is valid in context K if A′ ⊆ B ′.

Valid implications are also called exact association rules.

Implications

I X is a model of an implication set L (X |= L) if it is a model of every implication
in L.

I ModL is the set of all models of L.

I Two implication sets are equivalent if they have the same models.

Closure operator X 7→ L(X)

Maps X ⊆ M to the smallest model of all the implications in L containing X :

L(X) =
⋂
{Y | X ⊆ Y ⊆ M, Y |= L}

Implications

I X is a model of an implication set L (X |= L) if it is a model of every implication
in L.

I ModL is the set of all models of L.

I Two implication sets are equivalent if they have the same models.

Closure operator X 7→ L(X)

Maps X ⊆ M to the smallest model of all the implications in L containing X :

L(X) =
⋂
{Y | X ⊆ Y ⊆ M, Y |= L}

Canonical Basis

Definition
A set L of implications over M is an implication basis of the context (G ,M, I) if it is

sound: each implication from L holds in (G ,M, I);

complete: each implication that holds in (G ,M, I) follows from L;

non-redundant: no implication in L follows from other implications in L.

Pseudo-closed set
A set P ⊆ M is called pseudo-closed if P 6= P ′′ and Q ′′ ⊂ P for every pseudo-closed
Q ⊂ P. P is also called pseudo-intent.

Canonical basis (Duquenne–Guigues basis)

is the set of all implications of the form P → P ′′ where P is pseudo-closed.

The canonical basis is minimal in the number of implications among all equivalent
implication sets.

Canonical Basis

Definition
A set L of implications over M is an implication basis of the context (G ,M, I) if it is

sound: each implication from L holds in (G ,M, I);

complete: each implication that holds in (G ,M, I) follows from L;

non-redundant: no implication in L follows from other implications in L.

Pseudo-closed set
A set P ⊆ M is called pseudo-closed if P 6= P ′′ and Q ′′ ⊂ P for every pseudo-closed
Q ⊂ P. P is also called pseudo-intent.

Canonical basis (Duquenne–Guigues basis)

is the set of all implications of the form P → P ′′ where P is pseudo-closed.

The canonical basis is minimal in the number of implications among all equivalent
implication sets.

Frequent Implications

I The support of A ⊆ M is |A′|.
I The relative support of A ⊆ M is |A′|/|G |.
I The (relative) support or frequency of A→ B is the (relative) support of A ∪ B.

Computing the Canonical Basis

I Known exact algorithms that compute the canonical basis L of K directly also
compute IntK as a side product.

I | IntK| can be exponentially larger than L.

I Probably approximately computation (PAC) of the canonical basis has been
considered in (Borchmann et al. 2017, 2020).
I The approach is based on the query-learning algorithm from (Angluin et al. 1992).

I We slightly generalise this approach.

Computing the Canonical Basis

I Known exact algorithms that compute the canonical basis L of K directly also
compute IntK as a side product.

I | IntK| can be exponentially larger than L.

I Probably approximately computation (PAC) of the canonical basis has been
considered in (Borchmann et al. 2017, 2020).
I The approach is based on the query-learning algorithm from (Angluin et al. 1992).

I We slightly generalise this approach.

Horn Distance

Let

K = (G ,M, I) be a formal context;

D be a probability distribution over subsets of M;

L be an implication set over M.

Definition (Horn D-distance between L and K)

distD(L,K) := Pr
D

(A ∈ ModL4 IntK)

Here, X 4 Y is the symmetric difference between X and Y .

Definition (Strong Horn D-distance between L and K)

distDstrong(L,K) := Pr
D

(L(A) 6= A′′)

Horn Distance

Let

K = (G ,M, I) be a formal context;

D be a probability distribution over subsets of M;

L be an implication set over M.

Definition (Horn D-distance between L and K)

distD(L,K) := Pr
D

(A ∈ ModL4 IntK)

Here, X 4 Y is the symmetric difference between X and Y .

Definition (Strong Horn D-distance between L and K)

distDstrong(L,K) := Pr
D

(L(A) 6= A′′)

Horn Distance

Let

K = (G ,M, I) be a formal context;

D be a probability distribution over subsets of M;

L be an implication set over M.

Definition (Horn D-distance between L and K)

distD(L,K) := Pr
D

(A ∈ ModL4 IntK)

Here, X 4 Y is the symmetric difference between X and Y .

Definition (Strong Horn D-distance between L and K)

distDstrong(L,K) := Pr
D

(L(A) 6= A′′)

Horn Approximation

Let

K = (G ,M, I) be a formal context;

D be a probability distribution over subsets of M;

L be an implication set over M.

Definition
L is an ε-Horn D-approximation of K = (G ,M, I) for 0 < ε < 1 if

distD(L,K) ≤ ε.

Strong Horn Approximation

Let

K = (G ,M, I) be a formal context;

D be a probability distribution over subsets of M;

L be an implication set over M.

Definition
L is an ε-strong Horn D-approximation of K = (G ,M, I) for 0 < ε < 1 if

distDstrong(L,K) ≤ ε.

With D being the uniform distribution, we get the notions of approximation from
(Borchmann et al. 2020).

Strong Horn Approximation

Let

K = (G ,M, I) be a formal context;

D be a probability distribution over subsets of M;

L be an implication set over M.

Definition
L is an ε-strong Horn D-approximation of K = (G ,M, I) for 0 < ε < 1 if

distDstrong(L,K) ≤ ε.

With D being the uniform distribution, we get the notions of approximation from
(Borchmann et al. 2020).

Upper Approximation

K = (G ,M, I) be a formal context;

D be a probability distribution over subsets of M;

L be an implication set over M.

Definition
An ε- (ε-strong) Horn D-approximation L of K = (G ,M, I) is an upper approximation
if all implications of L are valid in K, i.e., IntK ⊆ ModL.

Here, we work with upper approximations only.

Probably Approximately Correct Algorithm

Given

I a formal context K = (G ,M, I);
I an oracle EXD generating subsets of M according to probability

distribution D;
I 0 < ε < 1;
I 0 < δ < 1;

find, with probability ≥ 1− δ,

I an upper ε- (ε-strong) Horn D-approximation L of K
in time polynomial in |G |, |M|, the size of the canonical basis of K, 1/ε,
and 1/δ.

Probably Approximately Correct Algorithm

Given

I a formal context K = (G ,M, I);
I an oracle EXD generating subsets of M according to probability

distribution D;
I 0 < ε < 1;
I 0 < δ < 1;

find, with probability ≥ 1− δ,

I an upper ε- (ε-strong) Horn D-approximation L of K

in time polynomial in |G |, |M|, the size of the canonical basis of K, 1/ε,
and 1/δ.

Probably Approximately Correct Algorithm

Given

I a formal context K = (G ,M, I);
I an oracle EXD generating subsets of M according to probability

distribution D;
I 0 < ε < 1;
I 0 < δ < 1;

find, with probability ≥ 1− δ,

I an upper ε- (ε-strong) Horn D-approximation L of K
in time polynomial in |G |, |M|, the size of the canonical basis of K, 1/ε,
and 1/δ.

Probably Approximately Correct Algorithm

I Based on the query-learning algorithm from (Angluin et al. 1992),
I which is shown in (Arias and Balcázar 2011) to produce the canonical basis.

I First described in (Kautz et al. 1995) for the case of uniform distribution.

I Introduced into FCA in (Borchmann et al. 2017, 2020).

Probably Approximately Correct Algorithm

I Maintain a set L of valid implications.

I At each iteration, check if L is an ε-approximation of K.

I If not, obtain a counterexample X ∈ ModL \ IntK
I Use L(X) to either refine an implication from L or add a new implication to L.

I Use EXD for a number of times to try to generate a counterexample X .

I At ith iteration,

qi (ε, δ) =

⌈
log1−ε

δ

i(i + 1)

⌉
attempts are sufficient (Yarullin and Obiedkov 2020).

Probably Approximately Correct Algorithm

I Maintain a set L of valid implications.

I At each iteration, check if L is an ε-approximation of K.

I If not, obtain a counterexample X ∈ ModL \ IntK
I Use L(X) to either refine an implication from L or add a new implication to L.

I Use EXD for a number of times to try to generate a counterexample X .

I At ith iteration,

qi (ε, δ) =

⌈
log1−ε

δ

i(i + 1)

⌉
attempts are sufficient (Yarullin and Obiedkov 2020).

Probably Approximately Correct Algorithm

I Maintain a set L of valid implications.

I At each iteration, check if L is an ε-approximation of K.

I If not, obtain a counterexample X ∈ ModL \ IntK

I Use L(X) to either refine an implication from L or add a new implication to L.

I Use EXD for a number of times to try to generate a counterexample X .

I At ith iteration,

qi (ε, δ) =

⌈
log1−ε

δ

i(i + 1)

⌉
attempts are sufficient (Yarullin and Obiedkov 2020).

Probably Approximately Correct Algorithm

I Maintain a set L of valid implications.

I At each iteration, check if L is an ε-approximation of K.

I If not, obtain a counterexample X ∈ ModL \ IntK or, in the case of strong
approximation, X such that L(X) (X ′′.

I Use L(X) to either refine an implication from L or add a new implication to L.

I Use EXD for a number of times to try to generate a counterexample X .

I At ith iteration,

qi (ε, δ) =

⌈
log1−ε

δ

i(i + 1)

⌉
attempts are sufficient (Yarullin and Obiedkov 2020).

Probably Approximately Correct Algorithm

I Maintain a set L of valid implications.

I At each iteration, check if L is an ε-approximation of K.

I If not, obtain a counterexample X ∈ ModL \ IntK or, in the case of strong
approximation, X such that L(X) (X ′′.

I Use L(X) to either refine an implication from L or add a new implication to L.

I Use EXD for a number of times to try to generate a counterexample X .

I At ith iteration,

qi (ε, δ) =

⌈
log1−ε

δ

i(i + 1)

⌉
attempts are sufficient (Yarullin and Obiedkov 2020).

Probably Approximately Correct Algorithm

I Maintain a set L of valid implications.

I At each iteration, check if L is an ε-approximation of K.

I If not, obtain a counterexample X ∈ ModL \ IntK or, in the case of strong
approximation, X such that L(X) (X ′′.

I Use L(X) to either refine an implication from L or add a new implication to L.

I Use EXD for a number of times to try to generate a counterexample X .

I At ith iteration,

qi (ε, δ) =

⌈
log1−ε

δ

i(i + 1)

⌉
attempts are sufficient (Yarullin and Obiedkov 2020).

Probably Approximately Correct Algorithm

I Maintain a set L of valid implications.

I At each iteration, check if L is an ε-approximation of K.

I If not, obtain a counterexample X ∈ ModL \ IntK or, in the case of strong
approximation, X such that L(X) (X ′′.

I Use L(X) to either refine an implication from L or add a new implication to L.

I Use EXD for a number of times to try to generate a counterexample X .

I At ith iteration,

qi (ε, δ) =

⌈
log1−ε

δ

i(i + 1)

⌉
attempts are sufficient (Yarullin and Obiedkov 2020).

Probably Approximately Correct Algorithm

I Maintain a set L of valid implications.

I At each iteration, check if L is an ε-approximation of K.

I If not, obtain a counterexample X ∈ ModL \ IntK or, in the case of strong
approximation, X such that L(X) (X ′′.

I Use L(X) to either refine an implication from L or add a new implication to L.

I Use EXD for a number of times to try to generate a counterexample X .

I At ith iteration,

qi (ε, δ) =

⌈
log1−ε

δ

i(i + 1)

⌉
attempts are sufficient (Yarullin and Obiedkov 2020).

Frequency-Aware Approximation

Definition
An ε- (ε-strong) Horn D-approximation L of K = (G ,M, I) is a frequency-aware ε-
(ε-strong) Horn approximation of K if D = Df , where

Pr
Df

(A) =
|A′|∑

B⊆M |B ′|

for A ⊆ M.

I Favours frequent implications.

I Completely disregards implications describing incompatibilities between attributes.

I Is much more accurate w.r.t. well-supported implications than approximations
based on the uniform distribution.

Sampling Attribute Subsets According to Df
Boley et al. 2011

1. Select g ∈ G according to

Pr(g) =
2|g

′|∑
h∈G 2|h′|

.

2. Select a subset of g ′ uniformly at random.

Computing Frequency-Aware Approximations

I Use the algorithm for computing ε- (ε-strong) Horn D-approximations.

I Simulate EXD with Boley et al.’s algorithm.

I Obtain a total–polynomial time randomised algorithm for computing
frequency-aware approximations.

The Quality of Approximation

I Under the uniform distribution, we guarantee, with probability ≥ 1− δ,

|ModL| − | IntK|
2|M|

≤ ε.

I ModL contains at most ε2|M| extra subsets in addition to those in IntK.

I Still, ModL can be much larger than IntK.

Definition (Quality Factor)

For A ⊆ M,

QF (L,K,A) =
| IntK ∩P(A)|
|ModL ∩P(A)|

.

In the experiments, we measure QF for A consisting of α|M| most frequent attributes
of M, where α is 1/4 for real-world data sets and 1/2 for artificial data sets.

The Quality of Approximation

I Under the uniform distribution, we guarantee, with probability ≥ 1− δ,

|ModL| − | IntK|
2|M|

≤ ε.

I ModL contains at most ε2|M| extra subsets in addition to those in IntK.

I Still, ModL can be much larger than IntK.

Definition (Quality Factor)

For A ⊆ M,

QF (L,K,A) =
| IntK ∩P(A)|
|ModL ∩P(A)|

.

In the experiments, we measure QF for A consisting of α|M| most frequent attributes
of M, where α is 1/4 for real-world data sets and 1/2 for artificial data sets.

The Quality of Approximation

I Under the uniform distribution, we guarantee, with probability ≥ 1− δ,

|ModL| − | IntK|
2|M|

≤ ε.

I ModL contains at most ε2|M| extra subsets in addition to those in IntK.

I Still, ModL can be much larger than IntK.

Definition (Quality Factor)

For A ⊆ M,

QF (L,K,A) =
| IntK ∩P(A)|
|ModL ∩P(A)|

.

In the experiments, we measure QF for A consisting of α|M| most frequent attributes
of M, where α is 1/4 for real-world data sets and 1/2 for artificial data sets.

The Quality of Approximation

I Under the uniform distribution, we guarantee, with probability ≥ 1− δ,

|ModL| − | IntK|
2|M|

≤ ε.

I ModL contains at most ε2|M| extra subsets in addition to those in IntK.

I Still, ModL can be much larger than IntK.

Definition (Quality Factor)

For A ⊆ M,

QF (L,K,A) =
| IntK ∩P(A)|
|ModL ∩P(A)|

.

In the experiments, we measure QF for A consisting of α|M| most frequent attributes
of M, where α is 1/4 for real-world data sets and 1/2 for artificial data sets.

Experimental Evaluation

I C++ implementation at
https://github.com/saurabh18213/Implication-Basis

I Parallelised search for
I a counterexample through sampling and
I an implication to be refined

I Intel Xeon E5-2650 v3 @ 2.30GHz

I 20 cores and up to 40 threads

https://github.com/saurabh18213/Implication-Basis

Datasets

Context Attributes Objects Canonical basis Intents Density

Census 122 48842 71787 248846 0.08
nom10shuttle 97 43500 810 2931 0.10
Mushroom 119 8124 2323 238710 0.19
Connect 114 7222 86583 50468988 0.38
inter10shuttle 178 43500 936 38199148 0.46
Chess 75 3196 73162 930851337 0.49
Example 1 (n = 5) 25 3125 5 28629152 0.80
Example 1 (n = 6) 36 46656 6 62523502210 0.83
Example 2 (n = 10) 21 30 1024 2038103 0.92
Example 2 (n = 15) 31 45 32768 2133134741 0.95

Datasets
Example 1 (Ganter and Obiedkov 2016)

I M = M1 ∪ · · · ∪Mn Mi s are pairwise disjoint.

I |Mi | = n for all i ≤ n.

I Object intents g ′ are all possible attribute combinations with |g ′ ∩Mi | = n− 1 for
all i ≤ n.

I nn objects with intents of the same size.

I The (2n − 1)n + 1 concept intents are sets that do not contain any of Mi .

I Canonical basis:
{Mi → M | i ≤ n}

I n implications for n2 attributes and nn objects.

Datasets
Example 1 (Ganter and Obiedkov 2016)

I M = M1 ∪ · · · ∪Mn Mi s are pairwise disjoint.

I |Mi | = n for all i ≤ n.

I Object intents g ′ are all possible attribute combinations with |g ′ ∩Mi | = n− 1 for
all i ≤ n.

I nn objects with intents of the same size.

I The (2n − 1)n + 1 concept intents are sets that do not contain any of Mi .

I Canonical basis:
{Mi → M | i ≤ n}

I n implications for n2 attributes and nn objects.

Datasets
Example 2 (Kuznetsov 2004)

m0 m1, . . . ,mn mn+1, . . . ,m2n

g1
... 6= 6=

gn
gn+1 ×

...
...

...
... 6=

...
...

g3n ×

I The canonical basis consists of 2n implications:

{{mi1 , . . . ,min} → {m0} | ij ∈ {j , j + n}}

Default Parameter Values

Context ε δ

Census 0.1 0.1
nom10shuttle 0.1 0.1
Mushroom 0.1 0.1
Connect 0.1 0.1
inter10shuttle 0.1 0.1
Chess 0.1 0.1
Example 1 (n = 5) 0.01 0.1
Example 1 (n = 6) 0.01 0.1
Example 2 (n = 10) 0.01 0.1
Example 2 (n = 15) 0.001 0.1

Comparing Approximations

Uniform: generate subsets of M uniformly at random;

Frequent: generate subsets of M according to Df ;

Both: I first, generate subsets of M uniformly at random;
I if, at some iteration, all attempts fail, redo them generating subsets

according to Df ;
I use Df from this point on.

Comparing Approximations
Runtime in seconds

ε-strong Horn approximation ε-Horn approximation

Data set Uniform Frequent Both Uniform Frequent Both

Census 0.18 1451.64 1184.10 0.16 5.02 0.21
nom10shuttle 0.15 0.73 0.71 0.14 0.43 0.44
Mushroom 0.11 1.89 1.95 0.06 0.16 0.14
Connect 0.14 307.51 307.10 0.07 0.08 0.07
inter10shuttle 0.59 6.77 6.47 0.58 0.60 0.60
Chess 0.07 167.96 169.77 0.04 0.04 0.03

I On real-worlds datasets, Frequent is slower than Uniform.

I Strong approximation takes more time.

Comparing Approximations
The number of implications

ε-strong Horn approximation ε-Horn approximation Basis

Data set Uniform Frequent Both Uniform Frequent Both

Census 48 20882 19111 41 1210 71 71787
nom10shuttle 76 201 201 76 137 146 810
Mushroom 95 577 593 7 72 59 2323
Connect 120 10774 10730 7 9 9 86583
inter10shuttle 172 446 430 171 171 171 936
Chess 64 6514 6542 48 48 48 73162

I On real-worlds datasets, Frequent results in more implications than Uniform.

I Strong approximation contains more implications.

Comparing Approximations
The quality factor

ε-strong Horn approximation ε-Horn approximation

Data set Uniform Frequent Both Uniform Frequent Both

Census 0.0003 0.0184 0.0180 0.0003 0.0014 0.0004
nom10shuttle 0.0004 0.0695 0.0613 0.0004 0.0157 0.0208
Mushroom 0.0004 0.1454 0.1482 0.0001 0.0032 0.0014
Connect 0.9979 0.9979 0.9979 0.0001 0.0016 0.0016
inter10shuttle 0.4900 0.5533 0.5429 0.4900 0.4900 0.4900
Chess 0.6927 1.0000 0.9830 0.6927 0.6927 0.6927

I On real-worlds datasets, Frequent usually results in a higher QF value than
Uniform.

I Strong approximation is usually stronger.

Comparing Approximations
ε-strong Horn approximation ε-Horn approximation Basis

Data set Uniform Frequent Both Uniform Frequent Both

Runtime in seconds

Example 1-5 0.03 0.03 0.04 0.03 0.03 0.04
Example 1-6 0.31 0.27 0.36 0.31 0.29 0.37

The number of Implications

Example 1-5 5 0 5 5 0 5 5
Example 1-6 6 0 6 6 0 6 6

The quality factor

Example 1-5 1 0.9692 1 1 0.9692 1
Example 1-6 1 0.9844 1 1 0.9844 1

I Frequent is worse than Uniform, since all non-trivial implications have zero
support.

I No difference for stronger approximation, since the closures of all non-closed sets
are equal to M.

Comparing Approximations
ε-strong Horn approximation ε-Horn approximation Basis

Data set Uniform Frequent Both Uniform Frequent Both

Runtime in seconds

Example 2-10 0.27 0.17 0.27 0.21 0.19 0.26
Example 2-15 96.72 74.64 108.77 83.31 75.12 115.81

The number of Implications

Example 2-10 357 269 340 321 262 347 1024
Example 2-15 7993 6813 8375 7612 6970 8424 32768

The quality factor

Example 2-10 1 1 1 1 1 1
Example 2-15 1 1 1 1 1 1

I Frequent is similar to Uniform, since all non-trivial implications have non-zero
support and all implications from the canonical basis have support n/(2n + 1).

NB! The quality factor is meaningless here, since any selection of |M|/2 most frequent
attributes contains at most one subset that is not closed in the context.

Varying ε ε-strong, Both
Time in seconds

Data set 0.3 0.2 0.1 0.05 0.01

Census 0.19 37.63 1184.10 2345.26 2336.88
nom10shuttle 0.44 0.47 0.71 0.82 1.43
Mushroom 0.82 1.27 1.95 2.75 5.03
Connect 308.69 307.54 307.10 306.97 307.44
inter10shuttle 4.41 5.34 6.47 7.91 12.72
Chess 169.23 169.50 169.77 168.04 168.99
Example 1 (n = 5) 0.02 0.02 0.03 0.03 0.04
Example 1 (n = 6) 0.23 0.23 0.29 0.30 0.36
Example 2 (n = 10) 0.002 0.002 0.002 0.01 0.27
Example 2 (n = 15) 0.002 0.002 0.002 0.002 0.63

Varying ε ε-strong, Both
The number of implications

Data set 0.3 0.2 0.1 0.05 0.01 Basis

Census 49 2865 19111 26257 26253 71787
nom10shuttle 136 149 201 231 303 810
Mushroom 349 440 593 749 1036 2323
Connect 10790 10746 10730 10735 10759 86583
inter10shuttle 356 383 430 479 582 936
Chess 6563 6572 6542 6537 6578 73162
Example 1 (n = 5) 3 4 5 5 5 5
Example 1 (n = 6) 1 2 6 6 6 6
Example 2 (n = 10) 1 2 4 28 340 1024
Example 2 (n = 15) 0 0 0 1 422 32768

Varying ε ε-strong, Both
The quality factor

Data set 0.3 0.2 0.1 0.05 0.01

Census 0.0004 0.0034 0.0180 0.0208 0.0208
nom10shuttle 0.0090 0.0140 0.0613 0.1017 0.1753
Mushroom 0.0382 0.0692 0.1482 0.2726 0.4504
Connect 0.9979 0.9979 0.9979 0.9979 0.9979
inter10shuttle 0.4956 0.5202 0.5429 0.6451 0.8910
Chess 0.9981 1.0000 0.9830 0.9963 1.0000
Example 1 (n = 5) 0.9692 0.9815 1.0000 1.0000 1.0000
Example 1 (n = 6) 0.9844 0.9875 0.9969 1.0000 1.0000
Example 2 (n = 10) 1.0000 1.0000 1.0000 1.0000 1.0000
Example 2 (n = 15) 1.0000 1.0000 1.0000 1.0000 1.0000

Runtime in seconds ε-strong, Both

Data set 1 thread 40 threads QF NextClosure LinCbO

Census 29608.00 1184.10 0.0180 522 177
nom10shuttle 3.34 0.71 0.0613 1.25 0.44
Mushroom 25.92 1.95 0.1482 49 10.8
Connect 6239.75 307.10 0.9979 23 310 19 420
inter10shuttle 42.52 6.47 0.5429 19 223 16 698
Chess 1955.12 169.77 0.9830 325 076 234 309
Example 1-5 0.05 0.04 1.0000 384 65
Example 1-6 0.55 0.36 1.0000 – –
Example 2-10 0.22 0.27 1.0000 5.94 2.8
Example 2-15 84.97 108.77 1.0000 203 477 29 710

Conclusion

DONE:

I An approximation of the canonical basis biased towards its frequent part.

I A randomised algorithm that computes this approximation with desired probability.

I On dense contexts, the algorithm is (usually) significantly faster than Next
Closure–based algorithms computing the entire basis, while providing an
approximation of decent quality.

TODO:

I Various strategies for parallelising the algorithm.

I Approximations biased towards interestingness measures other than support.

	Introduction
	Main Definitions
	Probably Approximately Correct Computation of Implications
	Experimental Evaluation

