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Kurzfassung

In dieser Arbeit wird die Methode der strukturellen Verfeinerung (im Folgenden Ver-
feinerung genannt) vorgestellt, die dazu dient, die relationale (Kripke-)Semantik einer
modalen und/oder konstruktiven Logik in ein “sparsames” Beweissystem zu transformie-
ren, indem zwei beweistheoretische Paradigmen verbunden werden: gelabelte Sequenzen
und verschachtelte Sequenzkalküle. Der Formalismus der gelabelten Sequenzen hat sich
insofern bewährt, als dass schnittfreie Kalküle im Besitz wünschenswerter beweistheoreti-
scher Eigenschaften (z. B. Zulässigkeit von Strukturregeln, Invertierbarkeit von Regeln,
etc.) für große Klassen von Logiken automatisch generiert werden können. Trotz dieser
Eigenschaften verwenden gelabelte Systeme eine komplizierte Syntax, die die Semantik
der zugehörigen Logik explizit einbezieht, und solche Systeme verletzen normalerweise
die Subformel-Eigenschaft in hohem Maße. Im Gegensatz dazu verwenden verschach-
telte Sequenzkalküle eine einfachere Syntax und halten sich an eine strenge Lesart der
Subformel-Eigenschaft, welche solche Systeme für den Entwurf von automatischen Schluss-
folgerungsalgorithmen sinnvoll macht. Der Nachteil des Paradigmas der verschachtelten
Sequenzen ist jedoch, dass eine allgemeine Theorie zur automatischen Konstruktion sol-
cher Kalküle (wie im gelabelten Formalismus) im Wesentlichen fehlt, was bedeutet, dass
die Konstruktion von verschachtelten Systemen und die Bestätigung ihrer Eigenschaften
in der Regel auf einer Fall-zu-Fall-Basis erfolgt. Die Verfeinerungsmethode verbindet
beide Paradigmen erfolgreich, indem sie gelabelte Systeme in geschachtelte (oder verfei-
nerte gelabelte) Systeme transformiert, wobei die Eigenschaften der Ersteren während
des Transformationsprozesses erhalten bleiben. Die Eigenschaften von verschachtelten
und verfeinerten gelabelten Systeme erleichtern die Arbeit mit ihnen, können zu einer
Platzersparnis führen und eine gesteigerte Effizienz beim Automatisieren und Lösen von
Argumentationsaufgaben bewirken (z. B. Beweissuche, effektive Interpolation, etc.).

Um die Methode der Verfeinerung und einige ihrer Anwendungen zu demonstrieren,
betrachten wir eine vielfältige Gruppe von modalen und konstruktiven Logiken: kon-
textfreie Grammatiklogiken mit Konversen, intuitionistische Logiken erster Ordnung
und deontische STIT -Logiken. Die vorgestellten verfeinerten gelabelten Kalküle werden
verwendet, um die ersten Algorithmen zur Beweissuche und zur automatischen Extraktion
von Gegenmodellen für deontische STIT -Logiken bereitzustellen und damit Entschei-
dungsprozeduren für die Logiken zu erhalten. Darüber hinaus verwenden wir unsere
verfeinerten gelabelten Kalküle für kontextfreie Grammatiklogiken mit Konversen, um zu
zeigen, dass jede Logik in der Klasse die effektive Lyndon-Interpolationseigenschaft besitzt.
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Um dieses Ergebnis zu realisieren, verwenden wir ein syntaktisches, beweistheoretisches
Verfahren der Lyndon-Interpolation.



Abstract

This thesis introduces the method of structural refinement (that will be referred to more
simply as refinement), which serves as a means of transforming the relational (Kripke)
semantics of a modal and/or constructive logic into an ‘economical’ proof system by
connecting two proof-theoretic paradigms: labelled sequent and nested sequent calculi.
The formalism of labelled sequents has been successful in that cut-free calculi in possession
of desirable proof-theoretic properties (e.g. admissibility of structural rules, invertibility
of rules, etc.) can be automatically generated for large classes of logics. Despite these
qualities, labelled systems make use of a complicated syntax that explicitly incorporates
the semantics of the associated logic, and such systems typically violate the subformula
property to a high degree. By contrast, nested sequent calculi employ a simpler syntax
and adhere to a strict reading of the subformula property, making such systems useful
in the design of automated reasoning algorithms. However, the downside of the nested
sequent paradigm is that a general theory concerning the automated construction of such
calculi (as in the labelled setting) is essentially absent, meaning that the construction of
nested systems and the confirmation of their properties is usually done on a case-by-case
basis. The refinement method connects both paradigms in a fruitful way, by transforming
labelled systems into nested (or, refined labelled) systems with the properties of the
former preserved throughout the transformation process. The qualities of nested and
refined labelled systems makes them easier to work with, can lead to a savings in space,
and can bring about an increased efficiency in automating and solving reasoning tasks
(e.g. proof-search, effective interpolation, etc.).

To demonstrate the method of refinement and some of its applications, we consider a
varied group of modal and constructive logics: context-free grammar logics with converse,
first-order intuitionistic logics, and deontic STIT logics. The introduced refined labelled
calculi will be used to provide the first proof-search and automated counter-model
extraction algorithms for deontic STIT logics, thus yielding decision procedures for the
logics. Furthermore, we employ our refined labelled calculi for context-free grammar
logics with converse to show that every logic in the class possesses the effective Lyndon
interpolation property. In order to carry out this result, we make use of a syntactic,
proof-theoretic method of Lyndon interpolation.
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CHAPTER 1
Introduction

Between 1932 and 1935, Gerhard Gentzen introduced the natural deduction and se-
quent calculus frameworks for classical and intuitionistic logic, which broke with the
proof-theoretic paradigm of the time [Gen35a, Gen35b, vP18]. Up until that point,
proof systems—based on the work of Frege, Peano, and Russell [Fre79, Pea89, Rus06]—
consisted primarily of axioms and few inference rules (e.g. modus ponens and universal
generalization). By contrast, Gentzen’s formalisms consisted primarily of rules, and
explicitly defined proofs as trees with assumptions, or trivial logical truths, as the leaves,
and inference rules as the edges synthesizing the information via repeated applications into
a concluding formula (i.e. the root of the tree)—taken to be the theorem derived [NVP11].

Both of Gentzen’s formalisms possessed a significant advantage over the proof systems
of the antecedent paradigm, namely, proofs constructed within Gentzen’s natural de-
duction and sequent calculus frameworks were found to enjoy the so-called subformula
property [Gen35a, Gen35b, Pra65, Rag65] (for a historical discussion, see [vP18]). The
subformula property states that any theorem derivable within the deductive system is
derivable with a proof consisting solely of subformulae of the derived theorem, that is to
say, every formula used to reach the conclusion, occurs as a subformula of the conclusion.
Typically, proofs and proof systems that possess this property (or a variation thereof) are
qualified as analytic. This property is not only useful in establishing the consistency of a
system’s associated logic, but can be harnessed for other applications (e.g. decidability).

The subformula property, however, does not come for free, as the natural deduction
systems contain elimination rules and the sequent calculi contain the cut rule, which delete
formulae when going from the premises to the conclusion; thus, both frameworks prima
facie break the subformula property. To overcome this obstacle in the sequent calculus
framework, Gentzen proved the celebrated Hauptsatz (now called the cut elimination
theorem) showing that any formula derivable in the sequent calculus (for classical and
intuitionistic logic) is derivable without the cut rule [Gen35a, Gen35b]. The subformula
property of the calculi followed as a corollary. Later work by Prawitz [Pra65] and
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1. Introduction

Raggio [Rag65] showed that natural deduction proofs could be normalized, i.e. put into
a form where no formula occurs as the major premise of an elimination rule and as the
conclusion of an introduction rule.

Due to its utility and simplicity, Gentzen’s sequent formalism has continued to be
implemented, leading to the creation (or, discovery) of analytic calculi for a wide variety
of logics (e.g. [Cor89, Cur52, Gir87, Rau80, Ten87]), and leading even to the discovery of
new logics (e.g. [Gir87]). Such calculi have found a range of applications: from establishing
logical properties (e.g. consistency, decidability, interpolation), to automating reasoning
with the associated logic (e.g. [Dyc92, Sla97]). In spite of these advantages, Gentzen’s
sequent formalism does have its drawbacks; namely, the formalism appears to be too
simple to provide proof systems for the vast classes of non-classical logics studied by
contemporary logicians. For example, despite effort to the contrary, a perspicuous and
modular framework—in the style of Gentzen—that uniformly covers normal modal and
tense logics (e.g. Kt, KB, and S5) has proven to be elusive (see [Wan02]). The inability
of the Gentzen sequent formalism to uniformly provide analytic calculi for large classes
of non-classical logics is a serious limitation, as the study and application of such logics
has grown substantially over the last few decades (see [Avr96]), implying the need for a
suitable proof theory.

In this thesis, we will focus on refining labelled systems within the context of a particular
group of non-classical logics, that is, modal and constructive logics. We will consider
grammar logics [dCP88, DdN05], first-order intuitionistic logics [Kle52, Grz64], and
deontic STIT logics [vBL19b, vBL21, Hor01, Mur04]; we now briefly describe these
logics and their utility. Grammar logics are multi-modal logics that were introduced
in [dCP88], and were used—in that paper—to establish an equivalence between the
problem of checking if a grammar generates a word and the problem of checking if a
formula is a logical theorem. The strong relationship between grammar logics and formal
language theory has allowed for (un)decidability results to be transferred between the
two settings [Bal00, dCP88, DdN05]. Moreover, the class of grammar logics is interesting
in that it contains a large assortment of modal logics which can be viewed as epistemic
logics [Bal00, HM92], temporal logics [dCH95], and even description logics (used in
knowledge representation) with inverse roles and complex role inclusions axioms [HS04,
TIG12]. First-order (and propositional) intuitionistic logics have been employed in
the study of constructive reasoning and mathematics [TvD88], and are highly relevant
in computer science; e.g. the Curry-Howard correspondence [How80], and answer-set
programming [ONA04]. A set of logics that will be of particular interest in this work is
the logic of STIT (an acronym for ‘Seeing To It That’) introduced by Belnap and Perloff
in [BP90] to study and clarify agentive sentences. Since then, their formalism has been
extended and applied to model agent-based choice making and interaction in the domain
of epistemic reasoning [Bro11a], deontic reasoning [vBL19b, vBL21, Hor01, Mur04], the
formal analysis of legal reasoning [Bro11a, LS15], and has been used to model and verify
autonomous systems [SBA20]. Thus, the logics we consider are not only diverse in their
nature, but in their applications.
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In search of a suitable and uniform proof-theoretic framework for modal and con-
structive logics, a diverse number of formalisms have been assembled and proposed—
examples include (prefixed) tableaux [Fit72, Fit14], display calculi [Bel82, Wan94], hy-
persequents [Pot83, Avr96], labelled sequents [Gab96, Neg05, Vig00], 2-sequents [Mas92,
Mas93], nested sequents [Bul92, Brü09, Kas94, Pog09], and linear nested sequents [Lel15,
LP15]. Each formalism extends or reworks the structure of the Gentzen-style sequent in
a distinct way, incorporating additional bureaucracy that allows for proof-calculi to be
constructed for certain classes of logics within the formalism, and which tend to uniformly
possess fundamental proof-theoretic properties such as cut-admissibility, invertibility of
rules, etc. (see, e.g. [GPT11, Neg05]). (NB. We will discuss the proof-theoretic formalisms
relevant for, and used within, this thesis in more detail below.) As the number and
diversity of proof-theoretic formalisms and systems increased, logicians began to ponder
which criteria should be used to distinguish ‘nice’ proof systems from less desirable ones,
leading to some notable proposals [Avr96, Doš88, Wan94].

One significant proposal, which we will consider, comes from Wansing [Wan94], who
argues on philosophical and functional grounds, that proof systems ought to satisfy the
following desiderata:

(W1) Separation: Each logical rule exhibits no other logical connectives than the one to
be introduced.

(W2) (Weak) Symmetry: Each logical rule should be a left or right introduction rule, and
symmetry stipulates that that the calculus is weakly symmetric and each logical
connective has a left and right introduction rule.

(W3) (Weak) Explicitness: Each introduced logical connective appears only in the con-
clusion of its corresponding logical rule, and explicitness holds if the calculus is
weakly explicit and there is only one occurrence of the logical connective in the
conclusion of each corresponding logical rule.

(W4) Unique Characterization: Each logical connective should be uniquely characterized
by its corresponding logical rules.

(W5) Došen’s Principle: “[T]he rules for the logical operations are never changed: all
changes are made in the structural rules” [Doš88, p. 352].

(W6) Subformula property and cut-freedom: The cut rule should be admissible and the
system should possess the subformula property.

Desiderata (W1)–(W3) fix the meaning of a logical connective independent of the other
logical connectives present in the language, and (W4) ensures that two logical connectives
collapse to the same connective if their logical rules are essentially identical (with the
only distinguishing feature being that each set of logical rules introduces their own
version of the connective). In addition, Wansing remarks ([Wan94, p. 129]) that if
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1. Introduction

(W1)–(W3) hold of a system and the cut rule is admissible (meaning that anything
provable with cut, is provable without cut), then the subformula property holds for
the system as a consequence. Došen’s principle (W5) stipulates that the logical rules
should fix a base system for a base logic (e.g. the modal logic K) with structural rule
extensions yielding new systems for extensions of the base logic (e.g. the modal logics S4
and S5). If a formalism satisfies such a principle, then a high degree of modularity is
obtained, allowing for a uniform proof-theoretic presentation for the corresponding set of
logics. The last desideratum (W6) is desirable as the subformula property is useful in
automated reasoning, and cut-freedom/elimination has relevance to the Curry-Howard
correspondence [How80], in proving completeness, and in proving interpolation [Mae60],
among other things.

Wansing’s desiderata are mentioned not only due to their historical relevance in char-
acterizing desirable proof systems, but due to their relevance in judging the systems
obtained via the method of structural refinement (the central topic of this thesis), which
we refer to more simply as refinement and which begets calculi that satisfy Wansing’s
proof-theoretic design principles to a high degree (though, we will argue below that
Došen’s principle is too strong and ought to be weakened). Refinement is intimately
connected with the formalism of labelled sequents, and is a strategy for transforming
such systems into systems of a ‘simpler’ formalism. Before making this strategy precise,
we discuss the two main proof-theoretic formalisms that refinement concerns, namely,
the labelled sequent and nested sequent formalisms.

The formalism of labelled sequents is rooted in the work of Kanger [Kan57], who intro-
duced sequent calculi for the modal logics T, S4, and S5 that made use of spotted formulae
(i.e. formulae annotated with natural numbers). This method of annotating, or prefixing,
formulae with labels became the characteristic feature of the labelled paradigm, and is
commonly used to incorporate semantic information into the syntax of the associated proof
systems. There are numerous examples of calculi that fall within the labelled formalism,
such as tableaux [BGM98, BG97, Gab96, Ner91], natural deduction systems [BMV97,
Sim94, Vig00], and sequent-style systems [DN12, Min97, Neg05, NVP11, Sim94, Vig00].
We will be chiefly concerned with the latter—labelled sequent systems.

The labelled sequent formalism offers many advantages: first, for sizable classes of modal
and constructive logics, it has been shown that the relational semantics of each logic
can be straightforwardly transformed into an associated labelled sequent calculus [DN12,
Neg05, NVP11, Sim94, Vig00]; in fact, it was shown that the process of constructing
labelled sequent calculi can be automated [CMS13]. Second, calculi built within the
labelled paradigm tend to be exceptionally modular, meaning that such systems allow for
the addition or deletion of rules to obtain calculi for logics with desired properties. Third,
general results have been given, which show that for a wide array of modal and constructive
logics, their associated labelled calculi uniformly possess proof-theoretic properties such
as height-preserving admissibility of structural rules, height-preserving invertibility of
rules, and syntactic cut-elimination [DN12, Neg05, NVP11, Vig00]. Although such
characteristics are certainly desirable, the labelled formalism does have its shortcomings.
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For example, labelled calculi commonly involve a complicated syntax (due to the explicit
incorporation of semantic information), labelled sequents encode general graphs (which
contrasts with other formalisms that employ simpler data structures such as linear
graphs [Lel15], or trees [Fit14, GR12]), and labelled systems usually contain larger sets
of rules compared to other calculi (within different formalisms) for the same logics. The
more complex data structures encoded in labelled sequents and the larger number of
inference rules (which increases the size of proofs) can cause proof-search algorithms
based on such systems to consume more spatial and temporal resources than is optimally
required. Not only this, their complex nature can make labelled proof systems unwieldy
both in use and in applications. Last, labelled calculi typically contain inference rules
that delete formulae from premise to conclusion, thus violating the subformula property
to a high degree—in contradiction with Wansing’s desideratum (W6).

While labelled calculi customarily employ sequents that encode a general graph structure,
nested sequents encode a tree of formulae, and therefore, employ a simpler data struc-
ture. The origin of the nested sequent formalism is often attributed to Bull [Bul92] and
Kashima [Kas94], though it should be noted that the prefixed tableaux of Fitting [Fit72]
can be viewed as ‘upside-down’ versions of nested sequent calculi. (NB. For a discussion
on the relationship between prefixed tableaux and nested sequent calculi, see [Fit14]). In
recent times, the use of nested sequents has become more widespread, with nested calculi
constructed for normal modal logics [Brü09, Pog09], tense logics [GPT11], grammar log-
ics [TIG12], intuitionistic modal logics [Str13], and (first-order) intuitionistic logics [Fit14].
Moreover, such calculi have been used in applications such as providing proof-search and
counter-model construction algorithms for logics (e.g. [GPT11, TIG12]), and confirming
interpolation as well as automating the extraction of interpolants (e.g. [FK15, LTGC20]).
A strength of such calculi is that they employ a relatively simple data structure, min-
imizing the bureaucracy occurring in proofs and making the calculi better suited for
applications (relative to labelled calculi). Despite these advantages, a major drawback of
the nested formalism is that the construction of such calculi, and the confirmation of
their proof-theoretic properties (e.g. cut-admissibility), is often done on a case-by-case
basis. That is to say, the nested paradigm does not currently possess the same generality
of results as those enjoyed in the labelled setting concerning the automatic construction
of calculi in possession of fundamental properties.

Since the labelled formalism is well-suited for constructing calculi in possession of favorable
proof-theoretic properties, and the nested formalism is simpler and better-suited for
applications, a method of transforming calculi of the former formalism into the latter
formalism—with proof-theoretic properties sufficiently preserved—is highly desirable.
By connecting the two formalisms, we effectively obtain the best of both worlds: we
may invoke the general results of the labelled paradigm to construct large classes of
calculi for modal and constructive logics, and then transform these calculi into more
refined versions of themselves (e.g. nested calculi) that are suitable for applications.
We will see that such calculi utilize simpler structures, leading to a compression in
proof size and allowing for uniform presentations of terminating proof-search. Similar
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1. Introduction

relationships between labelled and ‘more refined’ systems have been discussed in the
literature [GR12, Lyo20a, Lyo20b, LvB19, Pim18], where nested, tree-hypersequent,
and ‘forestlike’ labelled calculi were derived from proper labelled calculi for modal and
constructive logics.

The first component of the method of refinement consists of extracting labelled sequent
calculi from the semantics of a class of logics for which one is interested. Such methods of
extraction have been known for some time, with large classes of labelled sequent calculi
being produced for large classes of modal and constructive logics [vBL19a, CS02, DN12,
KO03, Neg05, Sim94, Vig00]. If the labelled calculi are of a certain form (as will be
discussed in Ch. 4 and 5), then through the elimination of structural rules (encoding
properties such as reflexivity, transitivity, etc.), we obtain classes of refined labelled calculi
complete relative to their respective classes of logics. (NB. It will be seen that refined
labelled calculi are ordinarily notational variants of nested sequent systems, though not
necessarily so, as discussed in Sect. 4.2.)

The second step in the refinement procedure—structural rule elimination—proceeds
by considering how logical rules in the labelled calculi ought to be strengthened to
ensure the elimination of structural rules. The strengthened logical rules required to
complete the second step are frequently found to be propagation rules. Such rules have
been employed in prefixed tableaux [CdCGH97, Fit72], nested [TIG12], and labelled
sequent systems [CLRT20, LvB19] in the literature, and acquire their name on the basis
of their functionality—when applied bottom-up, the rules propagate formulae to the end
of ‘paths’ occurring within sequents or tableaux. What is interesting however, is that the
investigations offered in this thesis will also identify a new class of rules—reachability rules.
These rules generalize the behavior of propagation rules by not only propagating formulae
along paths, but additionally checking if data occurs along (potentially alternative) paths
within a sequent. Reachability rules will be discussed in Ch. 5 on refining labelled calculi
for first-order intuitionistic logics.

It should be noted that in the first-order setting structural rule elimination is composed
with a further step in the refinement process—domain atom removal. Although structural
rule elimination does yield ‘simpler’ proof calculi in the first-order setting, the syntax
of sequents can be simplified further by showing the superfluity of certain syntactic
structures that encode information about domains (hence, this step is unnecessary in the
propositional setting where quantification over domains is absent).

The last component of refinement regards the establishment of proof-theoretic properties
for the refined labelled calculi. This step can be carried out by either showing that
the refined labelled calculi inherit the properties of their ‘parent’ labelled calculi, or
by directly showing that each refined calculus possesses desirable properties without
making reference to the original labelled systems that begat them. The former approach
proceeds by reversing the structural rule elimination process to show that not only can
the derivations in the parental labelled systems be transformed into derivations in the
refined labelled systems, but the reverse transformation is possible as well. We will make
use of both approaches in this thesis.

6



Furthermore, the calculi obtained via the method of refinement satisfy Wansing’s desider-
ata completely (or to a high degree) with the only exception being Došen’s principle
(W5). Došen’s principle implicitly equates modularity and uniform coverage of logics
with the addition and subtraction of structural rules. Nevertheless, our refined labelled
calculi will be highly modular and provide uniform coverage over large classes of logics
by making use of grammar theoretic machinery within propagation and reachability
rules, as opposed to using structural rules. This idea is motivated by and based upon
the work in [CLRT20, GPT11, LvB19, TIG12]. As explained above, propagation and
reachability rules operate by considering ‘paths’ within sequents, and then propagate
formulae accordingly. Since we will encode these paths as strings generated by formal
grammars, we can change the operation of our propagation and reachability rules by
simply changing the formal grammar considered by the rule. This offers an alternative
approach to the type of modularity expressed in Došen’s principle, which has become
widespread (for good reason) in the construction of proof systems. Still, the benefits of
this alternative approach to modularity and uniform coverage are many: first, propa-
gation and reachability rules are formula driven, meaning that bottom-up applications
of rules only rely on logical formulae occurring within sequents (as opposed to other
structures), typically making proof-search procedures easier to write. Second, systems
built with grammar theoretic machinery tend to have fewer rules since certain structural
rules are rendered superfluous—the omission of such structural rules brings about a
compression in proof size and minimization of sequential structure. Third, exploiting
formal grammars provides information about the complexity and (un)decidability of
the associated logics by recognizing which formal grammars are required in a logic’s
propagation and reachability rules. Therefore, although the refined calculi we will obtain
are in violation of Došen’s principle, we argue that our calculi capture the essence of the
principle, namely, modularity and uniform coverage of logics.

Beyond the construction of ‘nice’ proof systems, refining labelled systems also brings
about an intriguing observation: many of the refined labelled calculi happen to be
notational variants of existing nested systems. For example, in [CLRT20] it was found
that refining labelled sequent systems for tense logics produced the nested sequent systems
of [GPT11]; in [Lyo20a, Lyo20b] refining labelled systems for propositional and first-order
intuitionistic logics yielded the nested systems of Fitting [Fit14]; and, as will be shown in
Sect. 4.1, refining labelled calculi for grammar logics gives the nested calculi of [TIG12].
These observations suggest a naturalness to the method of refinement, which can be
seen as an underlying procedure unifying various nested sequent systems within a single
theoretical framework.

Although the thesis will primarily focus on the method of refinement, we will also put
our refined systems to work, showing that the class of grammar logics considered admit
effective Lyndon interpolation, and providing proof-search and counter-model extraction
algorithms for a class of deontic STIT logics. The interpolation method is an additional,
novel feature of this thesis and is based on the author’s joint work in [LTGC20]. The
interpolation method provides a purely syntactic and uniform approach to proving
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1. Introduction

that logics possess the Lyndon (and Craig) interpolation property by harnessing their
nested sequent systems, i.e. such systems can be used to show that for any valid
implication φ → ψ, there exists a formula χ built with propositional atoms from φ
and ψ (in Craig interpolation) and propositional atoms from φ and ψ with the same
polarity (in Lyndon interpolation) such that φ→ χ and χ→ ψ are valid; such properties
have been used in verification [McM18], to establish Beth definability [KO10], and to
conceal or forget information in ontology querying [LW11]. This method is both a
generalization of Maehara’s method [Mae60] and a variant of the successful semantic
method of interpolation, initially provided by Fitting and Kuznets in [FK15], and
expanded upon by the latter author in a sequence of papers [Kuz16b, Kuz16a, Kuz18,
KL18].

The main contributions of this thesis are as follows: first, the refinement method is put
forth, which transforms relational semantics into a nested or refined labelled proof system
for a diverse class of logics. To illustrate this method, labelled calculi are constructed
for grammar logics, first-order intuitionistic logics, and deontic STIT logics. The thesis
dedicates many pages to explaining how propagation and reachability rules are discovered
through the process of structural rule elimination, giving the thesis added explanatory
value. Furthermore, comparisons are provided for labelled and refined labelled calculi,
showing and justifying why the latter require less structure in their sequents compared to
the former. Also, although the nested calculi for grammar logics (obtained via refinement)
already exist in Tiu et al.’s paper [TIG12], the nested and refined labelled calculi for
first-order intuitionistic logics and deontic STIT logics are new. Even though the nested
calculi for first-order intuitionistic logics resemble Fitting’s nested calculi to a degree
(cf. [Fit14]), it will be argued that the use of propagation and reachability rules permit
the calculi to be easily transformed into calculi for alternative logics. Last, the first
proof-search and counter-model extraction algorithms for (single-agent) deontic STIT
logics are provided, along with an application of a syntactic method of interpolation to
uniformly prove that context-free grammar logics with converse have the effective Lyndon
interpolation property, thus generalizing the results of [GN05], which proved effective
Craig interpolation for regular grammar logics.

1.1 Outline of Dissertation

The dissertation is structured as follows:

In Ch. 2, we introduce the semantics and axiomatizations of context-free grammar logics
with converse, first-order intuitionistic logics, and deontic STIT logics. Ch. 3 presents
labelled calculi for the three classes of logics and argues that the calculi possess proof-
theoretic properties such as hp-admissibility of structural rules, hp-invertibility of rules,
and syntactic cut-elimination. In Ch. 4, the method of refinement is introduced and
applied to the labelled calculi for grammar logics and deontic STIT logics. The first
section of Ch. 4 will also show that all refined labelled calculi for grammar logics are
notational variants of (slight reformulations of) the existing nested systems provided
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1.2. Publications

in [TIG12], and will touch on the relationship between such systems and display calculi.
The second section of Ch. 4 will show how to refine the labelled calculi for deontic STIT
logics. In Ch. 5, we will cover refinement in the first-order setting and will show that the
refined labelled calculi obtained are labelled versions of nested systems. Ch. 6 discusses
applications of refined labelled calculi, giving proof-search and counter-model extraction
procedures for deontic STIT logics in the first section, followed by a uniform proof of
effective Lyndon interpolation for grammar logics in the second section; also, we will
briefly compare the syntactic method of interpolation from [LTGC20] and the semantic
method from [FK15]. The last chapter (Ch. 7) concludes and discusses future work. Also,
we note that all logics and proof systems discussed within the thesis are presented in
tables prior to this introduction (p. xvii) along with short descriptions of each and the
number of the page where the logic or proof system is introduced.

1.2 Publications
This dissertation is based on work from the following papers:

1. Ciabattoni, A., Lyon, T., & Ramanayake, R. (2018). From Display to Labelled
Proofs for Tense Logics. In International Symposium on Logical Foundations of
Computer Science (pp. 120-139). Springer, Cham.

2. Berkel, K., & Lyon, T. (2019). Cut-Free Calculi and Relational Semantics for
Temporal STIT Logics. In European Conference on Logics in Artificial Intelligence
(pp. 803-819). Springer, Cham.

3. Lyon, T., & Berkel, K. (2019). Automating Agential Reasoning: Proof-Calculi and
Syntactic Decidability for STIT Logics. In International Conference on Principles
and Practice of Multi-Agent Systems (pp. 202-218). Springer, Cham.

4. Lyon, T., Tiu, A., Goré, R., & Clouston, R. (2020). Syntactic Interpolation for
Tense Logics and Bi-Intuitionistic Logic via Nested Sequents. In 28th EACSL
Annual Conference on Computer Science Logic (CSL 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

5. Lyon, T. (2020). On Deriving Nested Calculi for Intuitionistic Logics from Semantic
Systems. In International Symposium on Logical Foundations of Computer Science
(pp. 177-194). Springer, Cham.

6. Lyon, T. (2021). On the Correspondence between Nested Calculi and Semantic
Systems for Intuitionistic Logics. Journal of Logic and Computation. Oxford
University Press.

7. Berkel, K. & Lyon, T. (2021). The Varieties of Ought-Implies-Can and Deontic
STIT Logic. In: Fenrong Liu, Alessandra Marra, Paul Portner, and Frederik Van De
Putte (eds.). Deontic Logic and Normative Systems: 15th International Conference
(DEON2020/2021, Munich). London: College Publications.
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8. Ciabattoni, A., Lyon, T., Ramanayake, R., & Tiu, A. (2021). Display to Labelled
Proofs and Back Again for Tense Logics. ACM Transactions on Computational
Logic (TOCL).
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CHAPTER 2
Preliminaries for Modal and

Constructive Logics

Contemporary modal logic is often traced back to the work of C.I. Lewis who at-
tempted to resolve paradoxes of material implication via the formulation of strict impli-
cation [Lew18]. Languages of modal logics are characterized by their incorporation of
modalities—expressions that qualify the truth of a proposition. Common examples of
modalities (see [Gar13]) include alethic modalities such as “It is necessary that” (often
denoted with �) and “It is possible that” (often denoted with ♦), temporal modalities
such as “It will always be the case that” (often denoted by G) and “It has been the
case that” (often denoted by P), and deontic modalities such as “It is obligatory that”
(often denoted by O) and “It is permissible that” (often denoted by P). The extension
of a propositional language with modalities makes for a more expressive language for
modeling, though, a benefit of modal logics is that despite their increased expressivity
over classical propositional logic, decidability commonly holds [Var97]. Moreover, such
logics are usually equipped with a relational semantics, which evaluates formulae at
points in a relational structure. It can be seen that modal logics possess many advantages
then: such logics allow for the qualification of truth, permitting one to model phenom-
ena whose logical consequences depend on such qualifications, such formalisms increase
the expressivity of a language while retaining decidability, and their evaluation over
relational structures (ubiquitous in mathematics and computer science) is of practical
consequence [BdRV01].

Related to modal logics, intuitionistic logics employ a version of implication that is stronger
than its classical counterpart, as well as a stronger version of universal quantification
(in the first-order setting), both of which can be viewed as modalities. The advent of
intuitionistic reasoning came in 1907/08 with the work of L.E.J. Brouwer, who put forth
a philosophy of mathematics arguing that the truth of a mathematical statement rests
upon a mental construction demonstrating its truth [BH75]. Motivated by the work of
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2. Preliminaries for Modal and Constructive Logics

Brouwer, axiomatic systems for propositional intuitionistic logic (based on Brouwer’s
intuitionism) were provided by Kolmogorov [Kol67], Orlov [Orl28], and Glivenko [Gli29],
and a first-order system was given by Heyting [Hey30]. Such logics are essential in the
field of constructive mathematics [TvD88], and have important applications in computer
science [How80, ONA04].

In this thesis, we study the the refinement of labelled proof calculi for grammar
logics [dCP88], first-order intuitionistic logics [Grz64, Hey30], and deontic STIT log-
ics [Hor01, Mur04, vBL21]. These logics are similar enough to permit a parallel and
uniform investigation of their proof theory while also possessing enough distinguishing
features from each other to make the investigation interesting and to justify the generality
of the refinement method. In addition, as mentioned in the introduction (Ch. 1) such
logics have a wide variety of applications, thus allowing for the work in this thesis to
have potential practical effect.

Each class of logics will be introduced accordingly in the three subsequent sections: we
introduce context-free grammar logics with converse in Sect. 2.1, first-order intuitionistic
logics in Sect. 2.2, and deontic STIT logics in Sect. 2.3. In each section, we define the
language of each logic, supply a semantics, introduce fundamental concepts, and confirm
soundness and completeness of each logic’s axiomatization. We also adapt the method of
canonical models (see [BdRV01]) in Sect. 2.3 to prove a new strong completeness result
for our deontic STIT axiom systems.

2.1 Grammar Logics

Grammar logics are multi-modal logics that were introduced in 1988 by Fariñas del
Cerro and Penttonen [dCP88]. In that paper, the authors established equivalences
between the validity problem for certain classes of grammar logics and the problem of
checking if a word (or, string) is generated from a formal grammar. This relationship
between modal logic and formal language theory has allowed for (un)decidability results
to be transferred between the two settings [BGM98, dCP88, DdN05]. Grammar logics
have been widely studied [BGM98, dCP88, Dem01, DdN05, GN05, HS04, NS11] and are
significant as they cover many well-known logics such as: description logics with complex
role inclusion axioms and inverse roles [HS04], epistemic logics [FMHV95], information
logics [Vak87], temporal logics [dCH95], and standard modal logics (e.g. K, K4, T, B, S4,
and S5 [DdN05]).

The language of grammar logics is defined relative to an alphabet
∑

consisting of a
(non-empty) countable set of characters. Following [DdN05], we assume that

∑
can be

partitioned into a forward part
∑+ = {a, b, c, . . .} and backward part

∑− = {a, b, c, . . .},
of the same cardinality, satisfying the following:

∑
:=
∑+ ∪

∑− where
∑+ ∩

∑− = ∅ , and a ∈
∑+ iff a ∈

∑− .
12



2.1. Grammar Logics

We use a, b, c, . . . (occasionally with subscripts) to denote the forward characters of∑+, a, b, c, . . . . (occasionally with subscripts) to denote the backward characters of∑−, and refer to both forward and backward characters as characters more generally,
using x, y, z, . . . to range over such characters in

∑+ ∪
∑− =

∑
. In other words, our

alphabet
∑

consists of the concrete characters a, a, b, b, . . . but we use x, y, z, . . . as
‘meta-characters’ ranging over such concrete characters. This notation will be convenient
in the following definitions and results, as it lets us reference characters in

∑
without

specifying if they are forward or backward characters.

We define an involutory converse operation · on characters that maps each forward
character a ∈

∑+ to its converse a ∈
∑−, and maps each backward character a ∈

∑−
to its converse a ∈

∑+ (cf. [DdN05]). Notice that this operation is in fact an involution,
since it satisfies the equation x = x. We stipulate that the symbol

∑
will be reserved

to denote an alphabet for the remainder of the document. Using such an alphabet, we
may define our language, which employs two modalities: 〈x〉 and [x].1 Similar to the
interpretation of standard modalities (e.g. ♦ and � [BdRV01]), 〈x〉φ is interpreted as
saying that there exists an x successor state where φ holds, and [x]φ is interpreted as
saying that φ holds in all x successor states; these interpretations are made explicit in
Def. 5.

Definition 1 (The Language LKm(
∑

)). The language LKm(
∑

) for our grammar logics
is defined via the following grammar in BNF:

φ ::= p | ¬p | (φ ∨ φ) | (φ ∧ φ) | 〈x〉φ | [x]φ

where p is among a denumerable set of propositional variables Prop = {p, q, r, . . .}, and
x ∈

∑
. We use φ, ψ, χ, . . . (occasionally with subscripts) to denote formulae in LKm(

∑
),

and refer to formulae of the form p and ¬p (with p ∈ Prop) as literals.

The formulae in our language LKm(
∑

) are given in negation normal form, meaning that
applications of negations are restricted to propositional variables. This will simplify
the structure of the sequents employed in our calculi as well as reduce the number of
cases we need to consider when proving certain proof-theoretic results (see Sect. 3.2).
Furthermore, it will be helpful to define the complexity of a formula φ from LKm(

∑
),

which corresponds to the number of binary connectives and modalities present in φ. This
measure will occasionally be employed as a parameter in proofs by induction.

Definition 2 (Complexity of an LKm(
∑

) Formula). We define the complexity |φ| of a
formula φ ∈ LKm(

∑
) inductively as follows:

I |p| = |¬p| = 0

I |ψ ∧ χ| = |ψ ∨ χ| = max{|ψ|, |χ|}+ 1
1We note that the language of common modal logics (e.g. K, S4, and S5) may be obtained by

restricting our alphabet to a single character without its corresponding converse.
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2. Preliminaries for Modal and Constructive Logics

I |[x]ψ| = |〈x〉ψ| = |ψ|+ 1

We take the literals p and ¬p (for each p ∈ Prop), the binary operators ∧ and ∨, and the
modalities [x] and 〈x〉 (for each x ∈

∑
) to be duals of each other. Using the notion of

duality, we may define the negation ¬φ of a formula φ as the replacement of each literal,
binary connective, and modality with its corresponding dual. The formal definition of
negation is given below:

Definition 3 (Negation of a LKm(
∑

) Formula). We define the negation ¬φ of a formula
φ ∈ LKm(

∑
) in the usual way, inductively as follows:

I If φ = p, then ¬φ := ¬p

I If φ = ¬p, then ¬φ := p

I If φ = ψ ∧ χ, then ¬φ := ¬ψ ∨ ¬χ

I If φ = ψ ∨ χ, then ¬φ := ¬ψ ∧ ¬χ

I If φ = [x]ψ, then ¬φ := 〈x〉¬ψ

I If φ = 〈x〉ψ, then ¬φ := [x]¬ψ

For example, if φ = [a]¬p ∧ q, then ¬φ = 〈a〉p ∨ ¬q. Negation lets us further define the
logical constants (> and ⊥) as well as classical implication and bi-implication (→ and
↔, resp.), which we will use later on (e.g. Def. 12). For the definition of > and ⊥, we fix
an arbitrary propositional variable p ∈ Prop; the definitions are as follows:

> := p ∨ ¬p, ⊥ := p ∧ ¬p, φ→ ψ := ¬φ ∨ ψ, and φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

Due to our partitioning of
∑
, our language consists of forward modalities [a] and 〈a〉

where a ∈
∑+, and backward modalities [a] and 〈a〉 where a ∈

∑−. We say that these
modalities are converse to one another since, as will be seen via the semantics of our
language (Def. 5), each class of modalities is interpreted relative to accessibility relations
that are converse to one another. We formally define, and make use of, the relational
semantics for grammar logics provided in [DdN05] below. Note that these semantics
are an extension and slight reformulation of the semantics for grammar logics that were
given in Fariñas del Cerro and Penttonen’s seminal paper [dCP88].

Definition 4 (Frames and Models for Grammar Logics [DdN05]). A
∑
-frame is an

ordered pair F = (W, {Rx | x ∈
∑
}) such that (i) W is a non-empty set of worlds w, u,

v, . . . and (ii) for each x ∈
∑
, Rx ⊆ W ×W is a binary relation on W satisfying the

converse condition:

(C1) (w, u) ∈ Rx iff (u,w) ∈ Rx.

A
∑
-model is a tuple M = (F, V ) such that F is a

∑
-frame and V : Prop 7→ 2W is a

valuation function mapping propositional variables from Prop to subsets of W .
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2.1. Grammar Logics

The converse condition (C1) ensures that the backward modalities behave as expected
and are truly converse to the forward modalities. That is to say, if we think of the ‘forward’
relations Ra (indexed with a forward character a ∈

∑+) as relating states to successor
states, then the converse condition (C1) ensures that the ‘backward’ relations Ra (indexed
with a backward character a ∈

∑−) relate states to predecessor states. This has the
consequence that forward modalities such as [a] and 〈a〉 reference truth in successor
states, whereas the backward modalities [a] and 〈a〉 reference truth in predecessor states.
This semantic relationship between the forward and backward modalities is made explicit
via the following definition:

Definition 5 (Satisfaction, Global Truth [DdN05]). Let M = (W, {Rx | x ∈
∑
}, V ) be

a
∑
-model with w ∈ W , and define Rx(w) := {u | (w, u) ∈ Rx} for x ∈

∑
. We define

the satisfaction of a formula φ ∈ LKm(
∑

) on M at w (written M,w  φ) inductively as
follows:

I M,w  p iff w ∈ V (p);

I M,w  ¬p iff w 6∈ V (p);

I M,w  φ ∧ ψ iff M,w  φ and M,w  ψ;

I M,w  φ ∨ ψ iff M,w  φ or M,w  ψ;

I M,w  [x]φ iff for all u ∈ Rx(w), M,u  φ;

I M,w  〈x〉φ iff for some u ∈ Rx(w), M,u  φ.

We say that a formula φ ∈ LKm(
∑

) is globally true on M (written M  φ) iff M,w  φ
for all w ∈W .

As mentioned previously (and as is implied by the name), grammar logics connect
concepts concerning formal grammars to logical concepts. Therefore, due to the intimate
connection between formal grammars and grammar logics, we will introduce additional
formal language theoretic concepts below. Such concepts will allow us to establish a
correspondence between formal grammars—in particular, specific types of Semi-Thue
Systems (Def. 8)—with properties imposed on

∑
-frames (Def. 2.1), and to define new

classes of grammar logics (Def. 12). Most definitions are taken from [DdN05].

Definition 6 (Strings over
∑
). We let · represent the usual concatenation operation

and let ε be the empty string. The set
∑∗ of strings over

∑
is defined to be the smallest

set of strings such that:

I
∑
∪{ε} ⊆

∑∗
I If s, t ∈

∑∗ , then s · t ∈∑∗
15



2. Preliminaries for Modal and Constructive Logics

As usual, we define s · ε = ε · s = s for s ∈
∑∗, showing that the empty string ε is an

identity element for the concatenation · operation. Furthermore, for strings s, t ∈
∑∗, we

let s · t := st, that is, we will omit explicit mention of the concatenation operation, and
simply stick strings together when performing concatenation, as is typically done.

We use s, t, r, . . . (possibly annotated) to denote strings in
∑∗. Moreover, we extend the

converse operation to strings as follows:

I ε := ε

I If s = x0x1 · · ·xn−1xn, then s := xnxn−1 · · ·x1x0

Last, we define the length of a string in s ∈
∑∗ inductively as follows:

I |s| := 0, if s = ε

I |s| = |tx| := |t|+ 1, if s = tx with t ∈
∑∗ and x ∈∑

The context will easily determine if the notation | · | is being used to denote the complexity
of a formula or the length of a string.

Since characters from
∑

are used to index the accessibility relations in a
∑
-frame or

∑
-

model, strings from
∑∗ denote paths. We extend our relations Rx to relations Rs defined

relative to strings below. Correspondingly, we define strings of modalities as follows: if
s = x0x1 · · ·xn−1xn, then [s] = [x0][x1] · · · [xn−1][xn] and 〈s〉 = 〈x0〉〈x1〉 · · · 〈xn−1〉〈xn〉,
and if s = ε, then [s]φ = 〈s〉φ = φ.

Definition 7 (Generalized Relations). Let F = (W, {Rx | x ∈
∑
}) be a

∑
-frame, x ∈

∑
,

and s ∈
∑∗. We extend the definition of an accessibility relation (defined in Def. 5) to

strings and define Rs inductively as follows:

I Rε := {(w,w) | w ∈W};

I Rsx := {(w, u) | ∃v ∈W, (w, v) ∈ Rs and (v, u) ∈ Rx}.

Remark 1. The above definition immediately implies that (w, u) ∈ Rs iff (u,w) ∈ Rs.

As in [DdN05], we utilize a language-theoretic framework to define the supplementary
frame conditions we will impose on

∑
-frames. For example, we can encode the well-known

symmetry frame condition ∀w, u(Rawu→ Rawu) by the production rule a −→ a, or a
version of three-to-one transitivity ∀w, u, v, z(Rawu∧Rbuv∧Rcvz → Rdwz) (equivalently,
represented as ∀w, u(Rabcwu → Rdwu)) by the production rule d −→ abc. (NB. See
Fig. 2.1 for a collection of common frame conditions and their associated production
rules.) In general, a production rule of the form x −→ s corresponds to a frame condition
of the form ∀w, u(Rswu→ Rxwu).
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2.1. Grammar Logics

Name Frame Property Production Rule
Reflexivity ∀wRaww a −→ ε
Symmetry ∀w, u(Rawu→ Rawu) a −→ a
Transitivity ∀w, v, u(Rawv ∧Ravu→ Rawu) a −→ aa
Euclideanity ∀w, v, u(Ravw ∧Rawu→ Ravu) a −→ aa

Figure 2.1: Common frame properties and their associated production rules.

To make such frame conditions and their consequences precise, we define a restricted
version of a Semi-Thue System (cf. [Pos47]), i.e. we define a string rewriting system
that is context-free—meaning the head of each production rule is a single character—
and which is closed—meaning that the production rules are closed under converses
(cf. [DdN05, TIG12]).

Definition 8 (CFCST System). We let x −→ s represent a production rule that rewrites
the character x ∈

∑
to the string s ∈

∑∗, and refer to x as the head and s as the tail of
the production rule. A context-free, closed, Semi-Thue (CFCST) System is a set S of
production rules satisfying the following closure condition:

(C2) x −→ s ∈ S iff x −→ s ∈ S.

A CFCST system S re-writes strings in the following manner: if x −→ s ∈ S, then the
string txr may be re-written as tsr. For example, if our CFCST system is S = {a −→
bb, a −→ bb, b −→ b, b −→ b}, then ab can be re-written as bbb or ab by applying the
first and third production rule in S, respectively; that is, the strings bbb and ab can be
derived from ab in one-step. As usual, through successive applications of the production
rules, one can derive all possible strings produced by taking a string s ∈

∑∗ as initial,
thus generating a set of strings (i.e. language) determined on the basis of the CFCST
system and s. Continuing the above example, we could derive the strings bbb, abb, or abbb
by taking ab as initial. We make the above notions formally precise with the following
definition:

Definition 9 (Derivation Relation, Language). Let S be a CFCST system. We define the
one-step derivation relation�S relative to S as follows: s�S t iff there exist s0, s1 ∈

∑∗,
and x −→ r ∈ S, such that s = s0xs1 and t = s0rs1.

We define the derivation relation �∗S to be the reflexive and transitive closure of the
one-step derivation relation �S.

The length of a derivation s�∗S t is defined to be equal to the minimal number of one-step
derivations needed to derive t from s in S.

Last, for each s ∈
∑∗, we define the language of s relative to S to be LS(s) := {t | s�∗S t}.
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The definition below explains how CFCST systems are exploited to impose certain
conditions on

∑
-frames and models. This leads to a notion of S-validity for formulae

(with S a CFCST system) that is provided in the ensuing definition.

Definition 10 (Production Rule Satisfaction). Let the following ordered pair F =
(W, {Rx | x ∈

∑
}) be a

∑
-frame. A

∑
-frame satisfies a production rule a −→ s iff

Rs ⊆ Ra.

A
∑
-frame satisfies a CFCST system S iff it satisfies all production rules in S.

Last, a
∑
-model satisfies a production rule or CFCST system iff its underlying

∑
-frame

does.

Definition 11 (S-validity). Let S be a CFCST system. We say that a formula φ ∈
LKm(

∑
) is S-valid iff for every

∑
-model M , if M satisfies S, then M  φ.

A favorable feature of the grammar logics we are considering is that a set of S-validities
(with S a CFCST system) is always axiomatizable. Below, we present an axiomatization
and definition for the grammar logic Km(S), defined relative to a CFCST system S.
Similar axiomatizations for grammar logics have been provided in the literature [dCP88,
DdN05, TIG12], albeit, such axiom systems were provided for languages based on a
different signature, whereas our axiomatization is suited for formulae in negation normal
form.

Definition 12 (Axiomatization HKm(S)). Let S be a CFCST system with alphabet
∑
.

The axiomatization HKm(S) for the logic Km(S) is as follows:

A0 All instances of (classical) propositional tautologies

A1 For all x ∈
∑
, [x](φ→ ψ)→ ([x]φ→ [x]ψ)

A2 For all x ∈
∑
, φ→ [x]〈x〉φ

A3 For all x −→ s ∈ S, 〈s〉φ→ 〈x〉φ

R0 φ φ→ ψ

ψ

R1 For all x ∈
∑
, φ

[x]φ

We define the logic Km(S) to be the smallest set of formulae from LKm(
∑

) that is closed
under substitutions of the axioms and applications of the inference rules. Also, we
refer to a logic Km(∅) (relative to an alphabet

∑
) as a minimal grammar logic and let

Km := Km(∅). Last, we say that a formula φ ∈ LKm(
∑

) is a Km(S)-theorem (written
`Km(S) φ) iff φ ∈ Km(S).
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2.2. First-Order Intuitionistic Logics

The axioms A0 ensure that the logic Km(S) is an extension of classical propositional logic,
and R0 is the well-known rule modus ponens. The A1 axioms are the typical K axioms,
which, together with the R1 necessitation rules, ensure that all modalities are normal.2
The A2 axioms encode the fact that the [a] and 〈a〉 modalities are converses of the [a] and
〈a〉 modalities, respectively. Last, the A3 axioms are determined by the CFCST system
S and add an axiom—called a path axiom (cf. [CLRT20, TIG12])—for each production
rule present in S. By standard methods for normal modal logics [BdRV01], the following
soundness and completeness theorem for Km(S) can be shown:

Theorem 1 (Soundness and Completeness). For all φ ∈ LKm(
∑

), φ is S-valid iff
`Km(S) φ.

2.2 First-Order Intuitionistic Logics
First-order intuitionistic logic proper (also called first-order intuitionistic logic with non-
constant domains) was axiomatized by Heyting early in the development of intuitionistic
logic [Hey30]. Over three decades later, a variation of the logic, called first-order
intuitionistic logic with constant domains was introduced by Grzgorczyk [Grz64], and
axiomatized independently by Klemke [Kle69] and Görneman [Gör71]. Both logics admit
a relational semantics, with Kripke providing the first relational semantics for first-order
(and propositional) intuitionistic logic in 1965 [Kri65]. In this section, we will introduce
the semantics and axiomatizations for both first-order intuitionistic logic with constant
(IntQ) and non-constant domains (IntQC), and when reference is made to first-order
intuitionistic logics, these two logics are taken to be the referents. Such logics will be
of interest when refining labelled calculi since they will demonstrate how the method is
applied in the first-order setting.

Definition 13 (The Language LInt). The language LInt for first-order intuitionistic logics
is defined via the following grammar in BNF:

φ ::= p(x1, . . . , xn) | ⊥ | (φ ∨ φ) | (φ ∧ φ) | (φ ⊃ φ) | (∃x)φ | (∀x)φ

where p is among a denumerable set of n-ary predicate symbols Pred = {p, q, r, . . .} and
x1, . . . , xn, x (with n ∈ N) are among a denumerable set of variables Var = {x, y, z, . . .}.

We refer to formulae of the form p(x1, . . . , xn) as atomic formulae, and also refer to
formulae of the form p as propositional variables when n = 0, that is to say, a 0-ary
predicate p is a propositional variable. We will use φ, ψ, χ, . . . to denote formulae from
LInt, and define intuitionistic negation in the usual way as ¬φ := φ ⊃ ⊥.

As usual, we impose an operator precedence on our logical operators occurring in
formulae of LInt as follows: ∃ and ∀ bind tighter than ∨ and ∧, which bind tighter
than ⊃. For example, the formula ∀xp(x) ∨ q ⊃ r(x) ∧ q would be disambiguated as

2See [BdRV01] for a discussion and definition of normal modal logics.
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2. Preliminaries for Modal and Constructive Logics

((∀xp(x)) ∨ q) ⊃ (r(x) ∧ q). Imposing a precedence lets us omit parentheses to improve
the readability of formulae.

Another concept that will come in handy when studying and leveraging the proof theory
of first-order intuitionistic logics is the complexity of a formula in LInt. The complexity of
a formula in LInt is equal to the number of unary and binary logical operators occurring
in a formula, and is useful as it provides a well-founded measure that may be invoked
to prove certain results by induction (e.g. the cut-elimination theorem for first-order
intuitionistic logics, Thm. 10). The formal definition is given below:

Definition 14 (Complexity of an LInt Formula). We define the complexity |φ| of a
formula φ ∈ LInt inductively as follows:

I |p(x1, . . . , xn)| = |⊥| = 0

I |ψ ∨ χ| = |ψ ∧ χ| = |ψ ⊃ χ| = max{|ψ|, |χ|}+ 1

I |∃xψ| = |∀xψ| = |ψ|+ 1

A useful concept will be the notion of free and bound variables occurring in a formula φ.
Intuitively, a variable x in φ is free iff it is not within the scope of a quantifier, and it is
bound iff it is within the scope of a quantifier (cf. [GSS09]). The formal definition of free
and bound variables is given below:

Definition 15 (Free and Bound Variables). We define the set FV (φ) of free variables
in a formula φ ∈ LInt inductively as follows:

I FV (p(x1, . . . , xn)) = {x1, . . . , xn}

I FV (⊥) = ∅

I FV (ψ ∨ χ) = FV (ψ ∧ χ) = FV (ψ ⊃ χ) = FV (ψ) ∪ FV (χ)

I FV (∀xψ) = FV (∃xψ) = FV (ψ)− {x}

We say that a variable x is free in φ iff x ∈ FV (φ). Similarly, we define the set BV (φ)
of bound variables in a formula φ ∈ LInt inductively as follows:

I BV (p(x1, . . . , xn)) = ∅

I BV (⊥) = ∅

I BV (ψ ∨ χ) = BV (ψ ∧ χ) = BV (ψ ⊃ χ) = BV (ψ) ∪BV (χ)

I BV (∀xψ) = BV (∃xψ) = BV (ψ) ∪ {x}

We say that a variable x is bound in φ iff x ∈ BV (φ).
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Note that the above definition allows for FV (φ) ∩ BV (φ) 6= ∅, that is, variables are
allowed to be both free and bound. For instance, the variable x is both free and bound
in the formula ∀xp(x)∧ q(x). Occasionally, we will refer to the occurrence of a variable x
as being free or bound in a formula φ, in which case, the occurrence of the variable will
be exclusively free or bound.

As explained previously, Kripke provided a relational semantics for first-order intuitionistic
logic with non-constant domains [Kri65]. Here, we put forth a variant of Kripke’s
semantics provided by Gabbay et al. in [GSS09] for both first-order intuitionistic logic
with non-constant and constant domains (see Def. 20 for a definition of these logics).

Definition 16 (First-Order Intuitionistic Frames and Models [GSS09]). We define an
IntQ-frame to be a tuple F = (W,≤, D) such that:

I W is a non-empty set of worlds w, u, v, . . .

I ≤ ⊆W ×W is a reflexive and transitive binary relation on W .3

I D is a domain function mapping a world w ∈ W to a non-empty set of objects
Dw = {a, b, c, . . . } satisfying the nested domain condition shown below:

(ND) If a ∈ Dw and w ≤ v, then a ∈ Dv.

A IntQC-frame is an IntQ-frame that additionally satisfies the following constant domain
condition shown below:

(CD) If a ∈ Dv and w ≤ v, then a ∈ Dw.

An IntQ-model ( IntQC-model) M is an ordered pair (F, V ) where F is an IntQ-frame
(IntQC-frame) and V is a valuation function such that V (p, w) ⊆ (Dw)n (with n ∈ N)
satisfying the following monotonicity condition:

(M) If w ≤ u, then V (p, w) ⊆ V (p, u).

We uphold the convention in [GSS09] and assume that for each world w ∈W , (Dw)0 =
{w}, so V (p, w) = {w} or V (p, w) = ∅, for a propositional variable p.

As in [GSS09], we forgo the direct interpretation of formulae from LInt on IntQ- and IntQC-
models, and instead, introduce Dw-sentences (see Def. 17 below). Defining satisfaction
relative to Dw-sentences gives rise to notions of validity for formulae in LInt (Def. 18).
Additionally, this notion depends on the universal closure of a formula, which is defined
as follows: For φ ∈ LInt such that FV (φ) = {x1, . . . , xn}, the universal closure ∀~xφ is
taken to be the formula ∀x1 . . . ∀xnφ.

3The properties imposed on ≤ are defined as follows: (reflexivity) for all w ∈ W , w ≤ w, and
(transitivity) for all w, u, v ∈W , if w ≤ v and v ≤ u, then w ≤ u.
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Definition 17 (Dw-Sentence). Let M = (W,≤, D, V ) be an IntQ- or IntQC-model with
w ∈W . We define the set of parameters Parw := {a | a ∈ Dw}. The language LInt(Dw)
is defined the same as LInt, but with atomic formulae of the form p(t1, . . . , tn), where
p ∈ Pred and t1, . . . , tn ∈ Var ∪ Parw.

A Dw-formula is simply a formula in LInt(Dw), and a Dw-sentence is a Dw-formula
that does not contain any free variables. (NB. Free variables are defined for formulae in
LInt(Dw) in the same way as for formulae in LInt, but with the exception that parameters
from Parw are ignored.)

Last, it should be made explicit that we use a, b, c, . . . to denote parameters corresponding
to objects in Dw = {a, b, c, . . .}.

Definition 18 (Satisfaction, Global Truth). Let M = (W,≤, D, V ) be an IntQ- or IntQC-
model with w ∈W . The satisfaction relation M,w  φ between w and a Dw-sentence φ
is inductively defined as follows:

I M,w  p(a1, · · · , an) iff (a1, · · · , an) ∈ V (p, w);

I M,w 6 ⊥;

I M,w  φ ∨ ψ iff M,w  φ or M,w  ψ;

I M,w  φ ∧ ψ iff M,w  φ and M,w  ψ;

I M,w  φ ⊃ ψ iff for all u ∈W , if w ≤ u and M,u  φ, then M,u  ψ;

I M,w  ∀xφ iff for all u ∈W and all a ∈ Du, if w ≤ u, then M,u  φ(a/x);

I M,w  ∃xφ iff there exists an a ∈ Dw such that M,w  φ(a/x).

We say that a formula φ is globally true on M , written M  φ, iff M,u  ∀~xφ for all
worlds u ∈W . A formula φ is IntQ-valid ( IntQC-valid), written IntQ φ (IntQC φ, resp.),
iff it is globally true on all IntQ-models (IntQC-models).

We note that in the intuitionistic setting the universal quantifier is stronger than the
existential quantifier, that is, unlike in the classical setting the two operators fail to be
interdefinable (see [Kri65]). The monotonicity condition (M), together with the semantic
clauses of Def. 18, necessitates a general form of monotonicity, detailed below:

Lemma 1 (General Monotonicity). Let M be an IntQ- or IntQC-model with w, v ∈W
of M . For any Dw-sentence φ, if M,w  φ and w ≤ v, then M,v  φ.

Proof. See [GSS09, Lem. 3.2.16] for details.
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Below (Def. 20), we provide axiomatizations for first-order intuitionistic logic with
non-constant domains [GSS09, p. 119] and first-order intuitionistic logic with constant
domains [GSS09, p. 136]. Both axiomatizations are extensions of the axiomatization for
propositional intuitionistic logic which can be found in [GSS09, p. 6]. Axioms A9 and
A10 make use of a substitution (y/x) of the variable y for the free variable x on a formula
φ. We define φ(y/x) in the standard way below as the replacement of all free occurrences
of x in φ with y, and define additional substitutions that will be used in the sequel. Also,
the side condition y is free for x in φ is imposed on both axioms, and is taken to mean
that y does not become bound by a quantifier if substituted for x in φ.4

Definition 19 (Substitutions). Let φ ∈ LInt(Dw) and t, t′, s, t1, . . . , tn ∈ Var∪Parw. We
define the substitution (t/s) inductively as follows:

I s(t/t′) := t if t′ = s and s(t/t′) := s otherwise.

I p(t1, . . . , tn)(t/s) := p(t1(t/s), . . . , tn(t/s)).

I ⊥(t/s) := ⊥.

I (ψ ◦ χ)(t/s) := ψ(t/s) ◦ χ(t/s) for ◦ ∈ {∨,∧,⊃}.

I (∀xψ)(t/s) := ∀xψ(t/s) and (∃xψ)(t/s) := ∃xψ(t/s).

Definition 20 (Axiomatizations HIntQ and HIntQC). The axiomatization HIntQ for
the logic IntQ is obtained by taking axioms A0–A12 and rules R0 and R1, whereas the
axiomatization HIntQC for the logic IntQC is obtained by taking all axioms and inference
rules.

A0 φ ⊃ (ψ ⊃ φ)

A1 (φ ⊃ (ψ ⊃ χ))⊃((φ ⊃ ψ) ⊃ (φ ⊃ χ))

A2 φ ⊃ (ψ ⊃ (φ ∧ ψ))

A3 (φ ∧ ψ) ⊃ φ

A4 (φ ∧ ψ) ⊃ ψ

A5 φ ⊃ (φ ∨ ψ)

A6 ψ ⊃ (φ ∨ ψ)

A7 ⊥ ⊃ φ

A8 (φ ⊃ χ) ⊃ ((ψ ⊃ χ) ⊃ ((φ ∨ ψ) ⊃ χ))

A9 ∀xφ ⊃ φ(y/x) y free for x in φ

A10 φ(y/x) ⊃ ∃xφ y free for x in φ

A11 ∀x(ψ ⊃ φ) ⊃ (ψ ⊃ ∀xφ) x 6∈ FV (ψ)

A12 ∀x(φ ⊃ ψ) ⊃ (∃xφ ⊃ ψ) x 6∈ FV (ψ)

A13 ∀x(φ ∨ ψ) ⊃ ∀xφ ∨ ψ x 6∈ FV (ψ)

R0 φ φ ⊃ ψ (mp)
ψ

R1 φ

∀xφ
4See [vD04, pp. 64–66] for a formal definition one variable being free for another variable in a formula.
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We define the logic IntQ (and IntQC) to be the smallest set of formulae from LInt that is
closed under substitutions of the axioms and applications of the inference rules in HIntQ
(HIntQC, resp.). We say that a formula φ ∈ LInt is an IntQ-theorem ( IntQC-theorem),
written `IntQ φ (`IntQC φ, resp.) iff φ ∈ IntQ (φ ∈ IntQC, resp.).

The axioms A0–A8, together with modus ponens (rule R0), is an axiomatization for
propositional intuitionistic logic Int (cf. [GSS09, p. 6]). (NB. We define propositional
intuitionistic logic Int to be the smallest set of formulae derivable from the axioms A0–A8
with rule R0.) The sole difference between the axiomatizations for IntQ and IntQC is
that the former omits the constant domain axiom ∀x(φ ∨ ψ) ⊃ ∀xφ ∨ ψ with x 6∈ FV (ψ)
(first introduced by A. Grzegorczyk; cf. [GSS09, p. 136]) whereas the latter includes it.
The inclusion of this axiom in HIntQC is what causes the logic IntQC to be sound and
complete relative to frames with constant domains. Soundness and completeness of each
of the above systems can be found, for example, in [GSS09].

Theorem 2 (Soundness and Completeness). For any φ ∈ LInt, IntQ φ (IntQC φ) iff
`IntQ φ (`IntQC φ, resp.).

Proof. The forward direction follows from [GSS09, Cor. 6.2.21], [GSS09, Prop. 6.2.22],
[GSS09, Prop. 7.2.9], and [GSS09, Prop. 7.3.6]. The backward direction is obtained
from [GSS09, Lem. 3.2.31].

2.3 Deontic STIT Logics
Traditional multi-agent STIT logics (with STIT an acronym for ‘Seeing To It That’)
have been used to model multi-agent choice making [BP90, BPX01, Hor01]. Such logics
employ an atemporal choice operator [i] expressing that ‘agent i sees to it that’ (some
proposition is realized). For example, the formula [i]door_Closed might be interpreted
as saying that ‘agent i sees to it that the apartment door is closed’, thus expressing that
the proposition ‘the door is closed’ is realized via a choice available to (and selected by)
the agent i.

Since their inception, STIT logics have been augmented with deontic notions to addition-
ally allow for normative reasoning in multi-agent scenarios [BP90]. Numerous proposals
have been put forth regarding the extension of STIT logics with deontic notions. For
example, in [BPX01] traditional multi-agent STIT logics were extended with traditional
deontic operators (e.g. “It is obligatory that,” “It is permissible that,” and “It is for-
bidden that” [Åqv84]), in [Hor01, Mur04] utilitarian deontic operators were discussed,
and in [vBL19b, vBL21] an assortment of non-utilitarian deontic operators and their
interrelations were analyzed. We make use of an agent-specific (non-utilitarian deontic)
obligation operator ⊗i, interpreted to mean that ‘it ought to be the case for agent i that’
(some proposition is realized). For example, the formula ⊗idoor_Open expresses that ‘it
ought to be the case for agent i that the apartment door is open’, meaning that in an
ideal world for agent i the apartment door would be open.
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STIT logics and extensions thereof continue to receive considerable attention and have
found a range of applications, being applied in epistemic [Bro11a], temporal [vBL19b],
and legal [LS15] reasoning. Additionally, such logics have proven fruitful in the clarifi-
cation of philosophical principles (e.g. [vBL21]) and in the verification of autonomous
systems [SBA20].

We note that the deontic STIT logics introduced in this section are closely related to those
of Murakami [Mur04]. Yet, rather than supplying a utilitarian, branching-time semantics
that orders states of affairs according to an agent’s preferences (as is done in [Mur04]),
we supply a relational semantics indicating which possible worlds are optimal for an agent
(similar to what is done in [vBL19b, vBL21]). This difference necessitates a proof of
strong completeness for our axiom systems relative to the new relational semantics, which
we prove via a canonical model construction (cf. [BdRV01]) in Sect. 2.3.2. First, however,
we introduce our deontic STIT logics and associated preliminary concepts (Sect. 2.3.1).

2.3.1 Logical Preliminaries

The deontic STIT logics we consider employ a variety of modal operators to formalize
reasoning about multi-agent choice making and agent dependent obligations. First off,
such logics make use of a settledness operator �, which is prefixed to formulae expressing
that a proposition is ‘settled true’ at a specific moment. As mentioned above, the
language of each logic also includes a choice operator [i] expressing that ‘agent i sees to
it that’ and an obligation operator ⊗i expressing that ‘it ought to be the case for agent i
that’. The operators ♦, 〈i〉, and 	i are the duals of �, [i], and ⊗i, respectively.

Definition 21 (The Language LDSk
n
). We let Ag := {0, 1, . . . , n} be our set of agents.

The multi-agent language LDSk
n
(with n = |Ag| ∈ N) is defined via the following grammar

in BNF:

φ ::= p | ¬p | (φ ∨ φ) | (φ ∧ φ) | ♦φ | �φ | 〈i〉φ | [i]φ | 	i φ | ⊗i φ

where p is among a denumerable set of propositional variables Prop = {p, q, r, . . .} and
i ∈ Ag. We use φ, ψ, χ, . . . (occasionally with subscripts) to denote formulae in LDSk

n
,

and refer to formulae of the form p and ¬p (with p ∈ Prop) as literals.

As in the previous two sections, we introduce a measure on our logical formulae called
the complexity, which counts the number of binary connectives and modalities occurring
in a formula. We define this measure on logical formulae from LDSk

n
in the usual manner:

Definition 22 (Complexity of a LDSk
n
Formula). We define the complexity |φ| of a

formula φ ∈ LDSk
n
inductively as follows:

I |p| = |¬p| = 0

I |ψ ∧ χ| = |ψ ∨ χ| = max{|ψ|, |χ|}+ 1
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I |�ψ| = |♦ψ| = |[i]ψ| = |〈i〉ψ| = | ⊗i ψ| = | 	i ψ| = |ψ|+ 1

Our formulae in LDSk
n
are in negation normal form, which—as in the case of grammar

logics (Sect. 2.1)—lets us simplify the sequents employed in our calculi and reduce the
number of cases we need to consider when proving certain proof-theoretic results (see
Sect. 3.4). We stipulate that p and ¬p (for p ∈ Prop), ∧ and ∨, � and ♦, [i] and 〈i〉 (for
i ∈ Ag), and ⊗i and 	i (for i ∈ Ag) are duals of one another. By utilizing the notion of
duality, we may define the negation ¬φ of a formula φ ∈ LDSk

n
to be the formula obtained

by replacing each literal and logical operator with its corresponding dual. For example,
given that φ is the formula �(〈i〉¬p ∧ ⊗iq), ¬φ would be equal to ♦([i]p ∨ 	i¬q). The
formal definition of negation is given below:

Definition 23 (Negation of a LDSk
n
Formula). We define the negation ¬φ of a formula

φ ∈ LKm(
∑

) inductively as follows:

I If φ = p, then ¬φ = ¬p

I If φ = ¬p, then ¬φ = p

I If φ = ψ ∧ χ, then ¬φ = ¬ψ ∨ ¬χ

I If φ = ψ ∨ χ, then ¬φ = ¬ψ ∧ ¬χ

I If φ = �ψ, then ¬φ = ♦¬ψ

I If φ = ♦ψ, then ¬φ = �¬ψ

I If φ = [i]ψ, then ¬φ = 〈i〉¬ψ

I If φ = 〈i〉ψ, then ¬φ = [i]¬ψ

I If φ = ⊗iψ, then ¬φ = 	i¬ψ

I If φ = 	iψ, then ¬φ = ⊗i¬ψ

Occasionally, we may also use the following abbreviations, where p ∈ Prop is a fixed
propositional variable:

> := p ∨ ¬p, ⊥ := p ∧ ¬p, φ→ ψ := ¬φ ∨ ψ, and φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

Due to the fact that our logic concerns instantaneous decision making, we make use
of single moments in time where choices are made, as in [BHT08, vBL21, LvB19].
Therefore, we forgo the use of the (more complex) traditional branching time structures
often employed in atemporal STIT logics [BPX01, Hor01]. Making use of this simplified
semantics has the benefit that it simplifies our proof calculi (given in Sect. 3.4) and
associated automated reasoning procedures (given in Sect. 6.1).

Definition 24 (Frames and Models for Deontic STIT Logics). For each i ∈ Ag, we
let R[i](w) := {v ∈ W | (w, v) ∈ R[i]}. A DSkn-frame is defined to be a tuple F =
(W, {R[i] | i ∈ Ag}, {I⊗i | i ∈ Ag}), where W is a non-empty set of worlds w, u, v, . . .
and the following hold:

(S1) For all i ∈ Ag, R[i] ⊆W ×W is an equivalence relation.
(S2) For all u1, ..., un ∈W ,

⋂
i∈Ag R[i](ui) 6= ∅.

(S3) Let k > 0. For all i ∈ Ag and w0, w1, · · · , wk ∈W ,∨
0≤m≤k−1, m+1≤j≤k

R[i]wmwj .
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(D1) For all i ∈ Ag, I⊗i ⊆W .
(D2) For all i ∈ Ag, I⊗i 6= ∅.
(D3) For all i ∈ Ag and w, v ∈W , if w ∈ I⊗i and v ∈ R[i](w), then v ∈ I⊗i.

A DSkn-model is a tuple M = (F, V ) where F is a frame and V : Prop → 2W is a
valuation function mapping propositional variables to subsets of W .

As in [BHT08, LvB19], W represents a single moment of possible worlds where agents
from Ag are making decisions. Also, it should be noted that the parameters n and k
(in DSkn) represent the number of agents in Ag and the maximum number of choices
available to an agent in Ag at any given moment, respectively. Condition (S1) ensures
that each relation R[i] is a binary relation on W and partitions W into equivalence classes
called choice-cells, which represents a set of possible worlds that an agent can realize via
their choice at a moment. Condition (S2)—referred to as the independence of agents
condition [BPX01]—ensures that all choices made by agents are consistent, i.e., regardless
of which choices are made, some state of affairs is realized. Condition (S3) limits the
number of choices available to an agent at a moment to a maximum of k, though we
stipulate that if k = 0, then condition (S3) is not enforced at all, and agents may have
any number of choices available at a moment. The condition (D1) ensures that all ideal
worlds at the present moment for any agent i (which are those worlds contained in I⊗i)
are in fact possible worlds. Condition (D2) ensures that at least one ideal world exists
for an agent i at a moment, and (D3) states that every ideal world extends to an ideal
choice; in other words, (D2) and (D3) together ensure the existence of an ideal choice
for each agent i at a given moment.

Below, we define satisfaction, global truth, and validity relative to these DSkn-frames and
-models:

Definition 25 (Satisfaction, Global Truth, Validity). LetM = (W, {R[i] | i ∈ Ag}, {I⊗i | i ∈
Ag}), V ) be a DSkn-model and let w ∈W . We define the satisfaction of a formula φ ∈ LDSk

n

on M at w (written M,w  φ) inductively as follows:

I M,w  p iff w ∈ V (p)

I M,w  ¬p iff w 6∈ V (p)

I M,w  φ ∧ ψ iff M,w  φ and M,w  ψ

I M,w  φ ∨ ψ iff M,w  φ or M,w  ψ

I M,w  �φ iff for all u ∈W , M,u  φ

I M,w  ♦φ iff for some u ∈W , M,u  φ

I M,w  [i]φ iff for all u ∈ R[i](w), M,u  φ
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I M,w  〈i〉φ iff for some u ∈ R[i](w), M,u  φ

I M,w  ⊗iφ iff for all u ∈ I⊗i, M,u  φ

I M,w  	iφ iff for some u ∈ I⊗i, M,u  φ

A formula φ is globally true on a model M (written M  φ) iff M,u  φ for all u ∈W .
A formula φ is DSkn-valid (written DSk

n
φ) iff it is globally true on every DSkn-model.

Last, we say that X semantically implies φ (written X  φ) iff for all models M and
worlds w in M , if M,w  ψ for all ψ ∈ X, then M,w  φ.

It is useful to observe that all modalities used in LDSk
n
are normal and that the condi-

tions (S1)–(S3) and (D1)–(D3) fall within the class of Kracht formulae (cf. [BdRV01,
Def. 3.58]). This implies that each (first-order) condition (S1)–(S3) and (D1)–(D3)
corresponds to a modal axiom in the Sahlqvist class that is canonical for that prop-
erty (cf. [BdRV01, Thm. 3.59]). We use this insight to provide sound and complete
axiomatizations HDSkn for each logic DSkn:

Definition 26 (The Axiomatization HDSkn). The axiomatization HDSkn consists of all
axioms and inference rules below, for all i ∈ Ag.

A0 All instances of (classical) propositional tautologies

A1 �(φ→ ψ)→ (�φ→ �ψ)

A2 [i](φ→ ψ)→ ([i]φ→ [i]ψ)

A3 ⊗i(φ→ ψ)→ (⊗iφ→ ⊗iψ)

A4 �φ→ [i]φ

A5 �φ→ ⊗iφ

A6 �φ→ φ

A7 ♦φ→ �♦φ

A8 [i]φ→ φ

A9 〈i〉φ→ [i]〈i〉φ

A10 ⊗iφ→ 	iφ

A11 ♦⊗i φ→ �⊗i φ

A12 ⊗iφ→ ⊗i[i]φ

A13 ♦[0]φ0 ∧ · · · ∧ ♦[n]φn → ♦([0]φ0 ∧ · · · ∧ [n]φn)
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A14 ♦[i]φ1 ∧ ♦(¬φ1 ∧ [i]φ2) ∧ · · · ∧ ♦(¬φ1 ∧ · · · ∧ ¬φk−1 ∧ [i]φk)→ φ1 ∨ · · · ∨ φk

R0 φ φ→ ψ

ψ

R1 φ

�φ

We define the logic DSkn to be the smallest set of formulae from LDSk
n
that is closed under

substitutions of the axioms and applications of the inference rules in HDSkn. We say that
a formula φ ∈ LDSk

n
is a DSkn-theorem (written `DSk

n
φ) iff φ ∈ DSkn.

Axiom A0 ensures that each logic DSkn is an extension of classical propositional logic,
and R0 is the familiar rule modus ponens. Axioms A1 - A5 and rule R1 ensure that
all modalities are normal. Furthermore, the bridge axioms—A4 and A5—correspond
to the fact that R[i] ⊆W ×W in condition (S1) and that I⊗i ⊆W in condition (D1),
respectively. Axioms A6 - A9 encode the S5 behavior of the �, ♦, [i], and 〈i〉 modalities.
Within the deontic logic community, axiom A10 is referred to as the principle of deontic
consistency [vW51], whereas in the philosophical literature it is commonly called the
ought implies logical possibility principle [Vra07]. The axiom corresponds to condition
(D2) and establishes that whatever is obligatory is possible (i.e. consistent). Axiom
A11 stipulates that whatever is obligatory from the perspective of a world in a model, is
obligatory from the perspective of all worlds in the model, thus making every obligation
settled-true at any given moment. Axiom A12 corresponds to condition (D3) and secures
that if a state of affairs is obligatory, then there is a choice available to the agent that
realizes the obligatory state of affairs. Axiom A13 is the well-known independence of
agents axiom [BPX01], which coincides with condition (S2) and encodes the fact that
any collection of choices made by the agents are consistent with one another. Last, axiom
A14 corresponds to condition (S3) and limits the number of choices available to each
agent at a moment to a maximum of k, though when k = 0, we omit this axiom from the
axiomatization, thus placing no limit on the number of choices available to each agent.
That is to say, when k > 0, axiom A14 is included in our axiomatization for each i ∈ Ag
and semantically corresponds to each agent being limited to a maximum of k choices at
a moment, and when k = 0, no upper bound on choices is imposed.

Definition 27 (DSkn-derivable). We say that φ is DSkn-derivable from a set of premises
X, written X `DSk

n
φ, iff there exist ψ1, . . . , ψm ∈ X such that ψ1 ∧ · · · ∧ ψm → φ ∈ DSkn.

It is quick to verify that the notion of a formula being an element of a deontic STIT logic
is equivalent to being derivable from an empty set of premises:

Proposition 1. For any formula φ ∈ LDSk
n
, `DSk

n
φ iff ∅ `DSk

n
φ.

A nice feature of our logics DSkn is that the notion of being derivable from a set of premises
(Def. 27) coincides with the notion of being semantically implied by a set of premises
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(Def. 25), that is, our logics are (strongly) sound and complete (cf. [BdRV01, Def. 4.10]).
Soundness is straightforward, and is shown below. Completeness, on the other hand,
requires more work, and is proven in the following section (Sect. 2.3.2) using a slight
variation canonical model technique for normal modal logics [BdRV01, Ch. 4].

Theorem 3 (Soundness). Let φ ∈ LDSk
n
and X ⊆ LDSk

n
. If X `DSk

n
φ, then X  φ.

Proof. It is straightforward to show that if `DSk
n
φ, then DSk

n
φ by showing that each

axiom is DSkn-valid and that each inference rule of HDSkn preserves DSkn-validity. We use
this fact to prove our claim and suppose that X `DSk

n
φ. Then, by Def. 27, we know that

there exist ψ1, . . . , ψm ∈ X such that ψ1∧· · ·∧ψm → φ ∈ DSkn, i.e. `DSk
n
ψ1∧· · ·∧ψm → φ.

To prove the desired conclusion, let M be an arbitrary DSkn-model with w ∈W of M , and
assume that for all χ ∈ X, M,w  χ. It follows that M,w  ψ1 ∧ · · · ∧ψm, implying that
M,w  φ (since `DSk

n
ψ1 ∧ · · · ∧ ψm → φ, which implies that DSk

n
ψ1 ∧ · · · ∧ ψm → φ).

Hence, X  φ.

2.3.2 Completeness via Canonical Models

In this section, we prove the completeness of each logic DSkn by adapting and adjusting
the canonical model construction for normal modal logics from [BdRV01] to our setting.
We use the following notation throughout the course of the section: if X is a given set
of formulae, then

∧
X represents a conjunction of all formulae (assuming X is finite)

and ♥X is taken to be the set of all formulae in X prefixed with a ♥ modality (for
♥ ∈ {�,♦, [i], 〈i〉,⊗i,	i}).

As is typical when proving completeness via canonical models for modal logics, we first
define a notion of a maximally consistent set of formulae, and then show that such sets
possess advantageous properties [BdRV01, Ch. 4]. We define such sets below and detail
their properties in Lem. 2. Note that such sets will be used as worlds in our canonical
models, and, since such sets are inherently founded upon syntactic notions (e.g. being
DSkn-derivable Def. 27), they will serve as a point of connection between our syntactically
defined logics DSkn and the semantics. Ultimately, this connection will be leveraged to
prove completeness.

Definition 28 (DSkn-CS, DSkn-MCS). A set X ⊂ LDSk
n
is a DSkn consistent set (DSkn-CS)

iff X 6`DSk
n
⊥. We call a set X ⊂ LDSk

n
a DSkn-maximally consistent set (DSkn-MCS) iff X

is a DSkn-CS and for any set X′ such that X ⊂ X′, X′ `DSk
n
⊥.

The following is similar to [BdRV01, Prop. 4.16].

Lemma 2. Let X be a DSkn-MCS. Then, the following hold:

(i) X `DSk
n
φ iff φ ∈ X;
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(ii) φ ∈ X iff ¬φ 6∈ X.

Proof. (i) For the forward direction, assume for a contradiction that X `DSk
n
φ and

φ 6∈ X. By the latter assumption, X ∪ {φ} `DSk
n
⊥ by Def. 28, from which it follows that

X `DSk
n
¬φ, contradicting our other assumption. The backward direction is trivial.

(ii) For the forward direction, assume that φ ∈ X and ¬φ ∈ X. Then, X `DSk
n
⊥,

contradicting the fact that X is consistent. For the backward direction, assume that
¬φ 6∈ X and φ 6∈ X. By the first assumption, X ∪ {¬φ} `DSk

n
⊥, implying that X `DSk

n
φ,

which by part (i), means that φ ∈ X, contradicting our second assumption and proving
the desired claim.

Using standard techniques, it is straightforward to show that every DSkn-CS can be
extended to a DSkn-MCS. This fact will be frequently used.

Lemma 3 (Lindenbaum’s Lemma). Every DSkn-CS can be extended to a DSkn-MCS.

Proof. Similar to [BdRV01, Lem. 4.17].

By using DSkn-MCS’s as building blocks, we define our canonical models relative to a
DSkn-MCS X. The fact that our canonical models are defined relatively, is what contrasts
our approach with the standard approach of building canonical models for normal modal
logics [BdRV01, Ch. 4]. Typically, the models for normal modal logics integrate an
explicit relation for each modality occurring in the language (e.g. R[i] is used to interpret
[i] and I⊗i is used to interpret ⊗i in LDSk

n
). However, as explained in the previous section,

we employ a simplified semantics for our DSkn logics, which forgoes the introduction of a
relation for the � and ♦ modalities. Instead, these modalities are interpreted relative to
the set of worlds in a DSkn-model, which has two consequences. First, this interpretation
of � and ♦ causes the modalities to exhibit S5 behavior, though, such behavior is not only
acceptable, but desirable, as these operators are usually interpreted as S5-type modalities
in STIT logics [BPX01, BHT08, vBL19b, Mur04]. Second, since the interpretation of �
and ♦ depends on the set of worlds, and not on an explicitly associated relation, the
standard canonical model definition—which defines a relation over the set of maximally
consistent sets, used to interpret the corresponding modalities—is rendered insufficient.
Therefore, we slightly adjust the canonical model definition given in [BdRV01, Ch. 4] to
account for our simplified semantics.

Definition 29 (Canonical Model). Let X be a DSkn-MCS. We define the canonical model
(relative to X) to be the tuple MX = (WX, {RX

[i] | i ∈ Ag}, {IX
⊗i
| i ∈ Ag}, V X) such that:

I WX := {w | w is a DSkn-MCS and for all �φ ∈ LDSk
n
, if �φ ∈ X, then φ ∈ w.};

I For all w, u ∈WX, u ∈ RX
[i](w) iff for all [i]φ ∈ w, φ ∈ u;

31



2. Preliminaries for Modal and Constructive Logics

I For all w, u ∈WX, w ∈ IX
⊗i

iff for all ⊗iφ ∈ u, φ ∈ w;

I V X(p) = {w ∈WX | p ∈ w}.

We now show that our canonical models possess favorable properties, which will be used
in establishing both the Containment Lemma (Lem. 7) and Truth Lemma (Lem. 8)—both
of which are crucial in verifying completeness (Thm. 4).

Lemma 4. Let w and u be DSkn-MCS’s. (i) w ∈WX iff for all φ ∈ LDSk
n
, if φ ∈ w, then

♦φ ∈ X, (ii) For all u,w ∈ WX, u ∈ RX
[i](w) iff φ ∈ LDSk

n
, if φ ∈ u, then 〈i〉φ ∈ w, and

(iii) For all w, u ∈WX, w ∈ IX
⊗i

iff φ ∈ LDSk
n
, if φ ∈ w, then 	iφ ∈ u.

Proof. Let w and u be DSkn-MCS’s. We prove claim (i); claims (ii) and (iii) are similar.
(i) For the forward direction, suppose that w ∈WX and φ ∈ w. Since w is a DSkn-MCS
by Def. 29, our supposition implies that �¬φ 6∈ X by Def. 29 as well. It follows that
¬�¬φ ∈ X, yielding that ♦φ ∈ X. For the other direction, we assume that for all
φ ∈ LDSk

n
, if φ ∈ w, then ♦φ ∈ X, and further suppose that �ψ ∈ X for an arbitrary ψ.

It follows that ¬�ψ 6∈ X, implying that ♦¬ψ 6∈ X. Therefore, ¬ψ 6∈ w, meaning that
ψ ∈ w, showing that w ∈WX.

Lemma 5 (Existence Lemma). (i) For any world w ∈WX, if ♦φ ∈ w, then there exists
a world u ∈WX such that and φ ∈ u. (ii) For any world w ∈WX, if 〈i〉φ ∈ w, then there
exists a world u ∈WX such that u ∈ RX

[i](w) and φ ∈ u. (iii) For any world w ∈WX, if
	iφ ∈ w, then there exists a world u ∈WX such that u ∈ IX

⊗i
and φ ∈ u.

Proof. Similar to [BdRV01, Lem. 4.20].

Lemma 6. For all w, u ∈WX, ♦φ ∈ w iff ♦φ ∈ u.

Proof. For the forward direction, suppose that ♦φ ∈ w. Then, by Lem. 4-(i), we have
♦♦φ ∈ X, which implies that �♦φ ∈ X since X is a DSkn-MCS. We therefore have that
♦φ ∈ u. For the backward direction, the proof is almost identical.

The following lemma ensures that any given canonical model is contained in our class of
DSkn-models.

Lemma 7 (Containment Lemma). Let X be a DSkn-MCS. The canonical model MX is a
DSkn-model.

Proof. Let X be a DSkn-MCS. Observe that {φ | �φ ∈ X} ⊆ X due to the fact that X is a
DSkn-MCS and �φ→ φ is an axiom of HDSkn. This fact and Def. 29 ensures that X ∈WX,
thus proving WX non-empty. We now show that MX satisfies properties (S1)–(S3) and
(D1)–(D3). We confirm below that each property holds:
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(S1) The fact that RX
[i] ⊆ WX ×WX follows from the definition of RX

[i]. To prove that
RX

[i] is an equivalence relation, we must show that (i) RX
[i] is reflexive, and (ii) RX

[i] is
Euclidean. For (i), let w be an arbitrary world in WX, and assume that [i]φ ∈ w. Since
w is a DSkn-MCS and [i]φ→ φ is an axiom, we know that w `DSk

n
φ, which implies that

φ ∈ w by Lem. 2-(i). By the definition of RX
[i], this implies that w ∈ RX

[i](w). For (ii),
let w, u, and v be arbitrary worlds in WX, and assume that u, v ∈ RX

[i](w). We aim to
show that v ∈ RX

[i](u). Suppose that φ ∈ v. It follows that 〈i〉φ ∈ w by Lem. 4-(ii), and
since 〈i〉φ→ [i]〈i〉φ is an axiom, we know that w `DSk

n
[i]〈i〉φ, meaning that [i]〈i〉φ ∈ w

by Lem. 2-(i). Due to the fact that u ∈ RX
[i](w), and by the definition of RX

[i] (Def. 29),
we have 〈i〉φ ∈ u. Thus, by Lem. 4-(ii), it follows that v ∈ RX

[i](u).

(S2) Let u0, . . . , un ∈ WX. We aim to show that there exists a v ∈ WX such that
v ∈

⋂
i∈Ag R

X
[i](ui). Let v

′ :=
⋃
i∈Ag{φ | [i]φ ∈ ui} ∪ {ψ | �ψ ∈ X}, and suppose that v′

is inconsistent to derive a contradiction. Due to the inconsistency of v′, we know that
there exist φ1, . . . , φk ∈

⋃
i∈Ag{φ | [i]φ ∈ ui} and ψ1, . . . , ψm ∈ {ψ | �ψ ∈ X} such that

`DSk
n
φ1 ∧ · · · ∧ φk → ¬ψ1 ∨ · · · ∨ ¬ψm. Define Φi := {φl | [i]φl ∈ ui} ∩ {φ1, . . . , φk},

and observe that for each i ∈ Ag,
∧

[i]Φi ∈ ui, implying that [i]
∧

Φi ∈ ui, by modal
reasoning and Lem. 2. Since [i]

∧
Φi → ♦[i]

∧
Φi is a theorem of HDSkn, it follows

that ♦[i]
∧

Φi ∈ ui for all i ∈ Ag. Consequently, by Lem. 6, for any i ∈ Ag, we have
♦[0]

∧
Φ0, . . . ,♦[n]

∧
Φn ∈ ui, implying that ♦[0]

∧
Φ0 ∧ · · · ∧ ♦[n]

∧
Φn ∈ ui since ui

is a DSkn-MCS. By the independence of agents axiom, ♦([0]
∧

Φ0 ∧ · · · ∧ [n]
∧

Φn) ∈ ui
for any i ∈ Ag. By Lem. 5-(i), it follows that there exists a world u′ ∈ WX such
that [0]

∧
Φ0 ∧ · · · ∧ [n]

∧
Φn ∈ u′, which further implies that

∧
Φ1 ∧ · · · ∧

∧
Φn ∈ u′

by modal reasoning and the fact that [i]
∧

Φi →
∧

Φi is an axiom instance for each
i ∈ Ag. Hence,

∧
Φ1 ∧ · · · ∧

∧
Φn ∈ u′, so by the definition of each Φi and the fact that

`DSk
n
φ1 ∧ · · · ∧ φk → ¬ψ1 ∨ · · · ∨ ¬ψm, we have that u′ `DSk

n
¬ψ1 ∨ · · · ∨ ¬ψm. Since

u′ ∈ WX, we know that {ψ | �ψ ∈ X} ⊆ u′, which implies that u′ `DSk
n
ψ1 ∧ · · · ∧ ψm,

giving a contradiction. It follows that v′ is a DSkn-CS. By Lem. 3, v′ can be extended
to a DSkn-MCS v such that {ψ | �ψ ∈ X} ⊆ v. Therefore, v ∈WX and for all [i]φ ∈ ui,
φ ∈ v, so, by Def. 29, v ∈ RX

[i](ui) for all i ∈ Ag, which implies the desired result.

(S3) For a contradiction, suppose that WX contains k′ > k choice-cells, this is, there exist
worlds w0, . . . wk′ ∈WX such that wj 6∈ RX

[i](wm) for 0 ≤ m ≤ k′ − 1 and m+ 1 ≤ j ≤ k′.
Let us first consider the world w0. By our assumption, we have that wj 6∈ RX

[i](w0)
for 1 ≤ j ≤ k′. This, in conjunction with Def. 29, implies that there exists formulae
[i]φ0,1, . . . , [i]φ0,k′ ∈ w0 such that φ0,1 6∈ w1, . . ., φ0,k′ 6∈ wk′ . Let us define

∧
Φ0,1≤j≤k′ :=

φ0,1 ∧ · · · ∧ φ0,k′ . By Def. 2, the fact that w0 is a DSkn-MCS, by modal reasoning, and by
the fact that φ0,j 6∈ wj for 1 ≤ j ≤ k′ (entailing ¬φ0,j ∈ wj for 1 ≤ j ≤ k′), we know that:

[i](
∧

Φ0,1≤j≤k′) ∈ w0 and ¬
∧

Φ0,1≤j≤k′ ∈ wj for 1 ≤ j ≤ k′.

We continue in the above fashion for the worlds wm with 1 ≤ m ≤ k. By our assumptions,
[i]φm,j ∈ wm and φm,j 6∈ wj for m+ 1 ≤ j ≤ k′. Furthermore, we let

∧
Φm,m+1≤j≤k′ :=
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φm,m+1∧· · ·∧φm,k′ . Similar to the w0 case above, Def. 2, the fact that wm is a DSkn-MCS,
by modal reasoning, and by the fact that φm,j 6∈ wj for m+ 1 ≤ j ≤ k′ (meaning that
¬φm,j ∈ wj for m+ 1 ≤ j ≤ k′), we have for each m (with 1 ≤ m ≤ k) that:

[i](
∧

Φm,m+1≤j≤k′) ∈ wm and ¬
∧

Φm,m+1≤j≤k′ ∈ wj for 1 ≤ j ≤ k′.

Without loss of generality, we now consider the world wk′ . By Lem. 6 and the above
facts, the following large conjunction is an element of wk′ :

♦[i](
∧

Φ0,1≤j≤k′) ∧

♦
(
¬
∧

Φ0,1≤j≤k′ ∧ [i]
(∧

Φ1,2≤j≤k′)
)
∧

♦
(
¬
∧

Φ0,1≤j≤k′ ∧ ¬
∧

Φ1,2≤j≤k′ ∧ [i]
(∧

Φ2,3≤j≤k′)
)
∧

...
♦
(
¬
∧

Φ0,1≤j≤k′ ∧ · · · ∧ ¬
∧

Φk−1,k≤j≤k′ ∧ [i]
(∧

Φk,k≤j≤k′)
)

Therefore, by axiom A14, we have the following:

∧
Φ0,1≤j≤k′ ∨ · · · ∨

∧
Φk,k≤j≤k′ ∈ wk′

Observe that φm,k′ 6∈ wk′ for 0 ≤ m ≤ k, implying that ¬φm,k′ ∈ wk′ for 0 ≤ m ≤ k.
This fact, in conjunction with the definition of

∧
Φm,m+1≤j≤k′ for 0 ≤ m ≤ k, by Lem. 2,

and by modal reasoning, it follows that ¬
∧

Φm,m+1≤j≤k′ ∈ wk′ for 0 ≤ m ≤ k. Hence,
by modal reasoning,

¬
∧

Φ0,1≤j≤k′ ∧ · · · ∧ ¬
∧

Φk,k≤j≤k′ ∈ wk′ ,

which gives a contradiction. Therefore, it must be the case that the number of choice-cells
in MX is a maximum of k.

(D1) Follows from the definition of IX
⊗i

(Def. 29).

(D2) Fix an i ∈ Ag. We want to show that there exists a v ∈ WX such that v ∈ IX
⊗i
.

Let v′ :=
⋃
w∈WX{ψ | ⊗i ψ ∈ w} ∪ {φ | �φ ∈ X} and assume that v′ is inconsistent to

derive a contradiction. Since v′ is inconsistent, we know that `DSk
n
χ1 ∧ · · · ∧ χm → ⊥.

Define Φ := {χ1, . . . , χm} ∩ {φ | �φ ∈ X}, and Ψw := {χ1, . . . , χm} ∩ {ψ | ⊗i ψ ∈ w}.
It follows that `DSk

n

∧
Φ ∧

∧
Ψw1 ∧ · · · ∧

∧
Ψwk

→ ⊥ for some w1, . . . , wk ∈WX. Using
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modal reasoning, we obtain the following:

`DSk
n
⊗i
∧

Φ ∧ ⊗i
∧

Ψw1 ∧ · · · ∧ ⊗i
∧

Ψwk
→ ⊗i⊥ (2.1)

`DSk
n
�
∧

Φ ∧ ⊗i
∧

Ψw1 ∧ · · · ∧ ⊗i
∧

Ψwk
→ ⊗i⊥ (2.2)

`DSk
n
�
∧

Φ ∧ ⊗i
∧

Ψw1 ∧ · · · ∧ ⊗i
∧

Ψwk
→ 	i⊥ (2.3)

`DSk
n
�
∧

Φ ∧ ⊗i
∧

Ψw1 ∧ · · · ∧ ⊗i
∧

Ψwk
→ ⊥ (2.4)

`DSk
n
��

∧
Φ ∧�⊗i

∧
Ψw1 ∧ · · · ∧�⊗i

∧
Ψwk

→ �⊥ (2.5)

`DSk
n
�
∧

Φ ∧�⊗i
∧

Ψw1 ∧ · · · ∧�⊗i
∧

Ψwk
→ ⊥ (2.6)

`DSk
n

∧
�Φ ∧

∧
�⊗i Ψw1 ∧ · · · ∧

∧
�⊗i Ψwk

→ ⊥ (2.7)

`DSk
n

∧
�Φ ∧

∧
♦⊗i Ψw1 ∧ · · · ∧

∧
♦⊗i Ψwk

→ ⊥ (2.8)

We explain each of the step in the above deduction: 2.2 follows from 2.1 by the bridge
axiom A5 (i.e. �φ→ ⊗iφ), 2.3 follows from 2.2 by the deontic consistency axiom A10
(i.e. ⊗iφ→ 	iφ), 2.4 and 2.5 follow from 2.3 by modal reasoning, 2.6 follows from 2.5
by modal reasoning and the fact that � is an S5 modality (by axioms A6 and A7), 2.7
follows from 2.6 by modal reasoning, and last, 2.8 follows from 2.7 by axiom A11 (i.e.
♦⊗i φ→ �⊗i φ). Now, observe that �Φ,♦⊗i Ψw1 , . . . ,♦⊗i Ψwk

⊆ X (by the definition
of v′ and Lem. 4-(i)), which implies that X `DSk

n
⊥. Since X is a DSkn-MCS, this gives

a contradiction, and shows that v′ is consistent. By Lem. 3, v′ may be extended to a
DSkn-MCS v. Since {φ | �φ ∈ X} ⊆ v, we know that v ∈ WX, and further, because
{ψ | ⊗i ψ ∈ w} ⊆ v for each w ∈WX, it follows that v ∈ IX

⊗i
.

(D3) Let w, u ∈WX and i ∈ Ag. Assume that w ∈ IX
⊗i

and u ∈ RX
[i](w). We aim to show

that u ∈ IX
⊗i
. To prove this, we let v be an arbitrary world in WX and suppose that

⊗iφ ∈ v, with the aim of showing that φ ∈ u. Since v is a DSkn-MCS and ⊗iφ→ ⊗i[i]φ
is an axiom instance, it follows that ⊗i[i]φ ∈ v. By Def. 29 and the assumption that
w ∈ IX

⊗i
, we have that for all v′ ∈WX and each ⊗iψ ∈ v′, ψ ∈ w. This fact, in conjunction

with our supposition above, implies that [i]φ ∈ w. By Def. 29 and the assumption that
u ∈ RX

[i](w), we have that φ ∈ u, which entails the desired result.

The following is similar to [BdRV01, Lem. 4.21].

Lemma 8 (Truth Lemma). For any φ ∈ LDSk
n
, MX, w  φ iff φ ∈ w.

Proof. We prove the result by induction on the complexity of φ. The base case trivially
follows from the definition of V X (Def. 29), so we focus on the inductive step. We show
the ∨, �, [i], and ⊗i cases since the dual cases are similar.

Inductive step. We consider each connective in turn.

(∨) MX, w  ψ ∨ χ iff MX, w  ψ or MX, w  χ (by Def. 25) iff ψ ∈ w or χ ∈ w (by IH)
iff ψ ∨ χ ∈ w (by the fact that w is a DSkn-MCS).
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(�) For the forward direction, suppose that MX, w  �ψ. It follows that for all u ∈WX,
MX, u  ψ (by Def. 25), which implies that for all u ∈WX, ψ ∈ u (by IH). By Lem. 5-(i),
�ψ ∈ w. For the backward direction, assume that �ψ ∈ w and let u ∈ WX. By
Lem. 4-(i), ψ ∈ u, which implies that MX, u  ψ by IH. Since u was arbitrary, it follows
that MX, w  �ψ by Def. 25.

([i]) For forward direction, assume that MX, w  [i]ψ. By Def. 25 and IH, for all u ∈WX,
if u ∈ R[i](w), then ψ ∈ u. By Lem. 5-(ii), [i]ψ ∈ w. For the backward direction, suppose
that [i]ψ ∈ w and let u ∈ WX such that u ∈ R[i](w). By Def. 29, ψ ∈ u, which implies
that MX, u  ψ by IH. We may conclude that MX, w  [i]ψ.

(⊗i) For the forward direction, assume that MX, w  ⊗iψ. By Def. 25 and IH, for all
u ∈ IX

⊗i
, ψ ∈ u. By Lem. 5-(iii), ⊗iψ ∈ w. For the backward direction, suppose that

⊗iψ ∈ w and let u ∈ IX
⊗i
. By Def. 29, ψ ∈ u, implying that MX, u  ψ by IH. Therefore,

MX, w  ⊗iψ since u was an arbitrary world in WX.

Theorem 4 (Completeness). Let φ ∈ LDSk
n
and X ⊆ LDSk

n
. If X  φ, then X `DSk

n
φ.

Proof. We prove the claim by contraposition. Suppose that X 6`DSk
n
φ. Then, it follows

that X ∪ {¬φ} is consistent. By Lem. 3, we may extend this set to a DSkn-MCS X′.
By Lem. 8 and the fact that ¬φ ∈ X′, we have that MX′ ,X′  ψ for all ψ ∈ X, and
MX′ ,X′  ¬φ. Hence, X 6 φ by Def. 25.
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CHAPTER 3
Labelled Systems for Modal and

Constructive Logics

In this chapter, we introduce labelled sequent systems for context-free grammar logics
with converse (Sect. 3.2), for first-order intuitionistic logics (Sect. 3.3), and for deontic
STIT logics (Sect. 3.4). In each of these sections, we define the sequents and structures
used in each class of labelled calculi, prove that such systems possess desirable properties
(e.g. hp-invertibility of rules and syntactic cut-elimination), and confirm soundness and
completeness relative to the classes of logics we are considering. In the first section
(Sect. 3.1), we discuss preliminary concepts of labelled sequent systems, as well as touch
on the history of such systems and significant results obtained in the labelled paradigm.

3.1 Preliminaries and Related Work

Labelled sequent systems extend the structure of Gentzen-style systems by explicitly
incorporating labels and semantic elements into the syntax of sequents. This idea—of
integrating labels directly into the syntax of sequents—stretches back to the work of
Kanger [Kan57], who introduced sequent systems for modal logics based on spotted
formulae. Since then, numerous labelled sequent systems have been provided for large
classes of modal and constructive logics [CS02, DN12, Gab96, KO03, Min97, Neg05,
Vig00].

The paradigm of labelled sequents has proven itself successful in producing modular
calculi that uniformly cover extensive classes of logics, even when other proof-theoretic
formalisms fail to do so, that is, through the addition or deletion of structural rules, a
labelled sequent system for one logic may be converted into a labelled sequent system for
another logic within a given class. In addition to uniform coverage and modularity, general
results exist ([DN12, Neg05, Sim94, Vig00]) showing that labelled sequent systems share
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3. Labelled Systems for Modal and Constructive Logics

the same fundamental properties; e.g. height-preserving admissibility of contractions and
syntactic cut-elimination. Perhaps one of the most beneficial characteristics however, is
the ease with which labelled calculi are constructed. In essence, the semantic clauses
and frame properties within a logic’s relational semantics are transformed into inference
rules, yielding a sound and complete calculus for the associated logic, which precisely
demonstrates the semantic reasoning utilized in deriving a theorem. As was explained in
the introduction (Ch. 1), this characteristic of the labelled paradigm, when composed with
the process of refinement, effectively supplies a method for transforming the semantics
of a logic into a calculus of economical structure that is also in possession of desirable
properties and is well-suited for applications. After briefly introducing Viganò’s labelled
sequent formalism below (which is predated by Simpson’s labelled sequent formalism
for modal intuitionistic logics [Sim94]), we will illustrate how semantic information is
transformed into inference rules by considering the semantic clause for the standard �
modality.

In [Vig00], Viganò demonstrated the utility of the labelled formalism and provided labelled
sequent calculi for a substantially broad class of modal, constructive, and relevance logics.
The logics Viganò considers are founded upon relational semantics, and allow for the
accessibility relation(s) to satisfy any number of Horn formulae of the form:

∀~x
(
Rit

1
1 . . . t

1
n ∧ · · · ∧Ritm1 . . . tmn → Rit

0
1 . . . t

0
n

)
where Ri is an n-ary relational symbol and each term tkj is built from the variables in ~x
along with function symbols [Vig00, p. 61]. Viganò’s systems employ two types of labelled
sequents: (i) labelled sequents of the form R,Γ⇒ ∆, where R is a multiset of relational
atoms of the form Rit1 . . . tn, and Γ and ∆ are multisets of labelled formulae of the form
w : φ, and (ii) labelled sequents of the form R ⇒ Rit1 . . . tn, where R is a multiset of
relational atoms. The relational atoms encode information about accessibility relations,
and labelled formulae encode the satisfaction relation (i.e. w : φ can be interpreted
as M,w  φ). The separation between the two types of sequents is based on work by
Gabbay [Gab96], whereby labelled proof systems are divided into two parts: a base
calculus that corresponds to a base logic (with inference rules operating on the sequents
of the form R,Γ⇒ ∆), and a relational algebra that is used to reason about relational
atoms, i.e. the properties of accessibility relations (with inference rules operating on the
sequents of the form R ⇒ Rit1 . . . tn) [Vig00, p. 7]. In essence, the base calculus is a
proof system consisting of rules for deriving logical formulae, and the relational algebra
is a proof system consisting of rules that allow the derivation of relational properties.
Viganò argues that the modularity of his labelled sequent calculi is partially due to this
division, which allows for a labelled sequent calculus to be constructed for a logic by
taking the base calculus and equipping it with the proper relational algebra encoding the
properties of that logic’s accessibility relation(s). If another logic’s accessibility relations
possess distinct characteristics, then by modifying the relational algebra accordingly, a
new labelled system for the logic can be obtained, showing that the formalism is modular.
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3.1. Preliminaries and Related Work

To exhibit how a semantic clause can be transformed into a set of inference rules in the
labelled formalism, let us consider the standard semantic clause for the � modality in the
modal logic K (cf. [BdRV01]), which is similar to the semantic clause for the [x] modality
used in grammar logics (see Sect. 5).

M,w  �φ iff for all u ∈W , if Rwu, then M,u  φ.

The above semantic clause can be transformed into the following two clauses by means
of classical reasoning—one of which expresses when �φ is satisfied, and another which
expresses when �φ is unsatisfied (in a relational model M = (W,R, V )).

(i) If for all u ∈W , if (w, u) ∈ R, then M,u  φ, then M,w  �φ.

(ii) If there exists a u ∈W such that (w, u) ∈ R and M,u 6 φ, then M,w 6 �φ.

Clause (i) can be written as the inference rule shown top-left below, which states that if
for any u, if (w, u) ∈ R, then M,u  φ holds, then M,w  �φ holds. Putting this into
sequent notation, we can use “Rwu⇒ u : φ” to represent “if (w, u) ∈ R, then M,u  φ
holds”, and “⇒ w : �φ” to represent “M,w  �φ”. This notational substitution gives
the inference rule shown top-middle below. To obtain the final labelled sequent rule that
corresponds to the first clause, we add in contexts R, Γ, and ∆, which gives the final
form of the rule shown top-right below. We note that a side condition must be imposed
on the rule once contexts are added, i.e. u is not allowed to occur in the conclusion,
which ensures that the label is implicitly universally quantified. The inference rule
corresponding to clause (ii) is obtained in a similar fashion, and its derivation is shown
second below.

if (w, u) ∈ R, then M,u  φ
M,w  �φ

 
Rwu⇒ u : φ
⇒ w : �φ

 
R, Rwu,Γ⇒ u : φ,∆
R,Γ⇒ w : �φ,∆

(w, u) ∈ R and M,u 6 φ
 

M,w 6 �φ
⇒ Rwu u : φ⇒

 
w : �φ⇒

R⇒ Rwu R, u : φ,Γ⇒ ∆
R, w : �φ,Γ⇒ ∆

Building off of Viganò’s [Vig00] and Simpson’s [Sim94] work, Dyckhoff and Negri [DN12,
Neg05], showed that cut-free labelled sequent systems could be provided for an even
broader class of modal and constructive logics than those provided by Viganò. In [DN12,
Neg05], the authors showed that labelled sequent calculi could be provided for any
extension of intuitionistic logic Int, and any extension of the modal logic K, with the
accessibility relation satisfying any number of geometric formulae [Sim94], that is, formu-
lae of the form shown below left. These classes of logics go beyond those considered by
Viganò, as Viganò only considers extensions of Int and K where the accessibility relation
satisfies Horn formulae.
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∀~x
( n∧
i=1

φi → ∃~y(
m∨
j=1

lj∧
k=1

ψj,k)
) R, φ, ψ1,Γ⇒ ∆ · · · R, φ, ψm,Γ⇒ ∆

R, φ,Γ⇒ ∆

In the geometric formula (above left), each φi and ψj,k is taken to be an atomic formula.
Each geometric formula is equivalent to a geometric structural rule (introduced in
Simpson’s PhD thesis [Sim94]) of the form shown above right, where φ := φ1, . . . , φn,
ψj := ψj,1, . . . , ψj,lj , and each variable from ~y is an eigenvariable, meaning that it does
not occur in the conclusion of the rule. Interestingly, the addition of any number of
geometric structural rules to a base (labelled) calculus for Int or K yields a sound and
complete labelled sequent calculus for that extension of Int or K with the corresponding
geometric formulae.

Another distinction between the work of Viganò [Vig00] and the work in [DN12, Neg05],
is that the latter abandons the division between a base calculus and the relational algebra,
and instead, only employs labelled sequents of the form R,Γ⇒ ∆ (as in Simpson’s PhD
thesis [Sim94]). Consequently, reasoning about relational atoms (i.e. applying inference
rules that manipulate relational atoms) is done directly on labelled sequents of the form
R,Γ⇒ ∆, instead of on labelled sequents of the form R ⇒ Rit1 . . . tn. As will be seen
in the succeeding chapters (Ch. 4 and 5), this difference is conducive to refining our
labelled calculi since it allows for the interaction of rules that would have otherwise been
kept separate in Viganò’s formalism. Therefore, we will build labelled sequent calculi
for grammar logics, first-order intuitionistic logics, and deontic STIT logics within the
formalism of [DN12, Neg05, Sim94], thus setting the stage for refinement in Ch. 4 and 5.

Last, we note that although our labelled sequent systems admit syntactic cut-elimination,
a strict form of analyticity (i.e. the subformula property) fails to hold—as is typical of
labelled systems. That is to say, cut-elimination does not immediately imply that every
formula occurring within a cut-free derivation is a subformula of the conclusion. The
blame for the loss of (a strict notion of) analyticity lies with the incorporation of structural
rules that delete relational atoms from premise to conclusion. Nevertheless, since labelled
sequent systems regularly include such rules, they are often qualified as analytic if every
labelled formula occurring in a derivation is a subformula of some labelled formula in the
conclusion [Neg05, Vig00]. It will be seen that this weaker notion of analyticity holds for
our labelled sequent systems; yet, interestingly, the systems obtained via refinement (in
the following chapters) will either possess a strict form of the subformula property or a
higher degree of the property.

Terminology and Notation.

We introduce notation and terminology which is uniformly applicable to the wide variety
of labelled sequent systems we consider. First off, labelled sequents are syntactic objects
of the form Λ := R,Γ⇒ ∆. The multiset R of relational atoms may be empty, or may
consist of relational atoms of the form Rxwu, a ∈ Dw, w ≤ u, or R[i]wu depending on
if the labelled calculus is for a grammar logic, first-order intuitionistic logic, or deontic
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3.1. Preliminaries and Related Work

STIT logic. The labels w and u are taken to be among a denumerable set of labels
Lab, and the multisets Γ and ∆ occurring in a labelled sequent may be empty, or may
consist of labelled formulae of the form w : φ, where φ ∈ LKm(

∑
), φ ∈ LInt, or φ ∈ LDSk

n
,

depending on the logic under consideration. In each of the following sections, we will
formally define the set of labelled sequents used. Also, we define the following useful
operations on multisets:

Definition 30. If Γ is a multiset of labelled formulae, then we define Γ � w to be the
multiset {φ | w : φ ∈ Γ}, and if Γ := φ1, . . . , φk is a multiset of formulae, then we define
w : Γ := w : φ1, . . . , w : φk.

A labelled calculus is a set of inference rules, which are objects of the following form:

Λ1 · · · Λn (r)Λ

Inference rules are schematic, and when used in practice they will be instantiated with
concrete labelled sequents, thus allowing for an instance of Λ (the conclusion) to be
derived from instances of Λ1, . . ., Λn (the premises). Also, if n = 0 in an inference rule,
that is, the inference rule does not contain premises, then we say that the inference rule
is initial and each labelled sequent given as a conclusion of the rule is an initial sequent.

Aside from initial rules, there are two other types of rules that our systems make use of:
logical rules and structural rules. An inference rule is a logical rule iff the rule explicitly
introduces a complex logical formula, called the principal formula, from less complex
logical formulae, called the auxiliary formulae (all other formulae in the inference are
called side formulae or parametric formulae). Furthermore, we refer to the principal and
auxiliary formulae of an inference as active, more generally. For example, the following
rules are logical rules since they introduce the complex logical formulae φ ∧ ψ and �φ,
respectively.

R,Γ, w : φ,w : ψ ⇒ ∆
R,Γ, w : φ ∧ ψ ⇒ ∆

R, Rwu,Γ⇒ u : φ,∆
R,Γ⇒ w : �φ,∆

In the above rules, the formulae w : φ ∧ ψ and w : �φ are principal, w : φ,w : ψ and
Rwu, u : φ are auxiliary, and all such formulae are active. The formulae in R,Γ, and ∆
are side (or, parametric) formulae.

In contrast to logical rules, our labelled calculi also contain structural rules which are
rules that do not make explicit reference to a logical connective being introduced (as
in the case of the logical rules), but rather, directly manipulate labelled sequents in a
manner consistent with the associated logic’s meta-logical properties. For example, the
following two rules are labelled structural rules:

R, w ≤ w,Γ⇒ ∆
R,Γ⇒ ∆

R,Γ⇒ w : φ,w : φ,∆
R,Γ⇒ w : φ,∆
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The top-left rule deletes a relational atom, and the top-right rule contracts the labelled
formula w : φ from two copies into one copy.

A proof is defined to be a tree of labelled sequents such that each labelled sequent is the
conclusion of an inference rule with premises also in the proof, and all leaves of the proof
are initial sequents. The root of the proof is called the end sequent, and the height of the
proof is the maximal number of labelled sequents that occur from the end sequent to an
initial sequent.

We say that a rule (r) is admissible (height-preserving (hp-) admissible) in a labelled
calculus iff derivability of the premise(s) implies derivability of the conclusion with an
(r)-free proof (whose height is less than or equal to the height(s) of the derivation(s) of
the premise(s)). A rule (r) is eliminable in a labelled calculus iff there exists an algorithm
that transforms any proof in the labelled calculus into an (r)-free proof (observe that
eliminability implies admissibility). Last, we say that a rule is invertible (height-preserving
(hp-) invertible) in a labelled calculus iff if an instance of the conclusion is derivable, then
the premise(s) is (are) derivable (with height(s) less than or equal to the height of the
derivation of the conclusion).

All of the above proof-theoretic terminology is fairly standard and can be found in
most introductory texts on proof theory (e.g. [Bus98, Tak13]). Moreover, we extend
such terminology to systems built within other proof theoretic formalisms (e.g. nested
sequents).

If a rule is (hp-)admissible or eliminable, then this implies that given a proof Π of the
premise of the rule, one can find a proof Π′ of the conclusion of the rule. Similarly, if a
rule is (hp-)invertible, then this implies that given a proof Π of the conclusion of the rule,
one can find a proof Π′ of the premise(s) of the rule. When applying an (hp-)admissible,
eliminable, or (hp-)invertible rule (r) in a derivation, we will use a dashed line (as shown
below left) to represent that the conclusion is not obtained via an inference rule, but
rather, is obtained via the (hp-)admissibility, eliminability, or (hp-)invertibility property
of the rule. Also, we will use a dashed line to indicate that a labelled sequent is known
to be derivable by an assumption or by some result. Last, we use dotted lines (as shown
below right) to indicate that two labelled sequents are identical to one another.

R,Γ⇒ ∆ (r)
R′,Γ′ ⇒ ∆′

R,Γ⇒ ∆. . . . . . . . . . . . . . . =
R′,Γ′ ⇒ ∆′

In order to understand the data structures encoded by labelled sequents, we will transform
labelled sequents into graphs. Therefore, it will be useful to define the notion of a
(sub)graph, various types of graphs (e.g. trees, DAGs, etc.), and isomorphisms between
graphs. In the following chapters, we will see that refining our labelled calculi necessitates
a “simplification” in the data structures encoded by labelled sequents in derivations.

Definition 31 (Graph, Induced Subgraph). A graph is an object of the form G =
(V,E, L), where V is a set of vertices, the set of edges E ⊆ V × V is a binary relation on
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V (we also allow the set of edges E ⊆ V × V × S to be indexed with elements of a set S),
and L is a labelling function mapping elements from V to elements in a set S′.

We define an induced subgraph G′ = (V ′, E′, L′) of a graph G = (V,E, L) to be a graph
such that V ′ ⊆ V , E′ = E � V ′, and L′ = L � V ′.

Definition 32 (Tree). A graph G = (V,E,L) is a tree iff there exists a vertex w ∈ V
(called the root) such that there is a unique directed path from w to every other vertex
u ∈ V . Equivalently, a tree is a graph that is connected, free of directed cycles, and
contains no backward branching.

Definition 33 (Polytree). We say that a graph G = (V,E, L) is a polytree iff it is
connected, free of directed cycles, and free of undirected cycles.

Definition 34 (Forest). A graph G = (V,E, L) is a forest iff it consists of a disjoint
union of trees. We refer to each root of a tree in the disjoint union as a root of the forest.

Definition 35 (Directed Acyclic Graph (DAG)). A graph G = (V,E,L) is a directed
acyclic graph (DAG) iff it is free of directed cycles. We refer to a vertex v ∈ V as a root
of a DAG given that no vertices u ∈ V exist such that there is an edge from u to v.

Definition 36 (Isomorphism, Isomorphic). Let G = (V,E,L) and G′ = (V ′, E′, L′) be
two graphs. An isomorphism f : V 7→ V ′ from G to G′ is a function such that:

I f is bijective,

I (x, y) ∈ E iff (fx, fy) ∈ E′ (or, (x, y, s) ∈ E iff (fx, fy, s) ∈ E′, if edges are
indexed with elements from a set S), and

I L(w) = L′(fw).

We say G and G′ are isomorphic (and write G ∼= G′) iff there exists an isomorphism
between them.

3.2 Labelled Calculi for Grammar Logics
Although grammar logics were introduced in 1988 [dCP88], the proof theory for such logics
did not come about until a decade later [BGM98]. In [BGM98], Baldoni et al. formulated
prefixed analytic tableaux for grammar logics and leveraged these systems to show the
decidability of right linear grammar logics and the undecidability of context-free grammar
logics. In subsequent years, alternative tableaux were proposed for classes of grammar
logics, such as (non-prefixed) tableau with automaton-labelled formulae for regular
grammar logics [GN05] and tableaux for regular grammar logics with converse [NS09,
NS11]. The former were used to provide EXPTIME decision procedures for regular
grammar logics as well as to give an effective Craig interpolation lemma, while the latter
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was used to provide optimal EXPTIME decision procedures for regular grammar logics
with converse.

Beyond the tableau formalism, nested sequent calculi were given for context-free grammar
logics with converse [TIG12]. In that paper, the authors define proof-search and counter-
model extraction algorithms, which are of EXPSPACE complexity when termination
holds. Interestingly, the method of refinement (discussed in the next chapter) yields
(slight variants of) the nested calculi of [TIG12] when applied to the labelled sequent
calculi for context-free grammar logics with converse introduced in this section.

Below, we adapt the formalism and methodology of [DN12, Neg05, Sim94, Vig00] to
introduce labelled sequent systems for grammar logics. Our calculi consist of rules that
manipulate labelled sequents, that is, formulae extending the language LKm(

∑
) and which

are used to derive theorems. We define these as follows:

Definition 37 (Labelled Sequents for Grammar Logics). Labelled sequents for grammar
logics are defined to be syntactic objects of the form Λ := R ⇒ Γ, where R (the antecedent)
and Γ (the consequent) are defined via the following grammars in BNF:

R ::= ε | Rxwu | R,R Γ ::= ε | w : φ | Γ,Γ

with x ∈
∑
, φ ∈ LKm(

∑
), and where w and u are among a denumerable set of labels

Lab := {w, u, v, . . .}. We refer to formulae of the form Rxwu as relational atoms, to
formulae of the form w : φ as labelled formulae, and let Lab(Λ), Lab(R), and Lab(Γ)
represent the set of labels in Λ, R, and Γ, respectively.

We use Λ, Λ′, . . . (occasionally with subscripts) to denote labelled sequents, R, R′, . . .
(occasionally with subscripts) to denote multisets of relational atoms, and Γ, Γ′, . . .
(occasionally with subscripts) to denote multisets of labelled formulae. Hence, we take
the comma operator to be both associative and commutative; for example, we identify
Rawu,Rbuv with Rbuv,Rawu and w : φ, u : ψ, v : χ with v : χ,w : φ, u : ψ. This
interpretation of comma is what lets us view strings R and Γ as multisets. The symbol ε
is taken to represent the empty string that acts as an identity element for the comma
operator (e.g. Rawu, ε,Rbuv is identified with Rawu,Rbuv); hence, ε will typically be
implicit in labelled sequents.

Labelled sequents serve as an abstraction of a
∑
-model (Def. 4), where the labels from

Lab represent the worlds, the relational atoms represent the accessibility relations, and
the labelled formulae determine at which world a formula φ ∈ LKm(

∑
) is (un)satisfied.

Intuitively, we interpret a labelled sequent R ⇒ Γ as saying, ‘if all relational atoms in R
hold, then some formula in Γ holds.’ See Def. 41 for the formal definition of a labelled
sequent interpretation, which also spells out the exact relationship between labelled
sequents and

∑
-models.

Our labelled calculi for grammar logics Km(S) are displayed in Fig. 3.1, and the derivability
relation is defined below. Moreover, examples of concrete derivations in a calculus
G3Km(S) can be found in the proof of Thm. 7 below.
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(id)R ⇒ w : p, w : ¬p,Γ
R ⇒ w : φ,w : ψ,Γ (∨r)R ⇒ w : φ ∨ ψ,Γ

R ⇒ w : φ,Γ R ⇒ w : ψ,Γ (∧r)R ⇒ w : φ ∧ ψ,Γ
R, Rxwu⇒ w : 〈x〉φ, u : φ,Γ

(〈x〉)
R, Rxwu⇒ w : 〈x〉φ,Γ

R, Rxwu⇒ u : φ,Γ
([x])†R ⇒ w : [x]φ,Γ

R, Rswu,Rxwu⇒ Γ (pxs )R, Rswu⇒ Γ
R, Rxwu,Rxuw ⇒ Γ (Cx1 )R, Rxwu⇒ Γ

Figure 3.1: The labelled calculus G3Km(S) for the grammar logic Km(S). We have an
([x]), (〈x〉), and (Cx1 ) rule for each x ∈

∑
, and for each production rule x −→ s ∈ S, we

have a corresponding (pxs ) rule (see Def. 39 below for a description of the correspondence
between production rules and structural rules). The side condition † states that the
associated rule can be applied only if the label u is an eigenvariable, i.e. it does not occur
in the conclusion of the rule. Last, we assume that each calculus satisfies the closure
condition (given in Def. 40).

Definition 38. We write `G3Km(S) Λ to indicate that a labelled sequent Λ is derivable in
a calculus G3Km(S). (NB. We will use the notation `X throughout the thesis to denote
that a sequent is derivable in the calculus X.)

The rules of the calculi are obtained from the notion of a
∑
-model (Def. 4), and from

the semantic clauses for the various connectives (Def. 5). The (id) rule encodes the fact
that in a

∑
-model the valuation function will either make a propositional variable p true

at a world, or it will not. The rules (∧r), (∨r), ([x]), and (〈x〉) are obtained from the
semantic clauses of the respective logical connectives, and each rule (pxs ) lets us derive
theorems based on the frame property obtained from the corresponding production rule
in S (see Def. 39 for the correspondence between production rules and frame properties).
Each (Cx1 ) rule encodes the fact that in a

∑
-model, the relation Rx is the converse of the

relation Rx for any x ∈
∑
, thus corresponding to the converse condition (C1) (Def. 4).

As mentioned previously, a nice feature of the labelled paradigm is that it is relatively
straightforward to transform the relational semantics of a logic into a labelled calculus.1
In addition to ease of construction, labelled calculi typically possess desirable proof-
theoretic properties, such as (hp-)admissibility of structural rules (e.g. those presented in
Fig. 3.2 below) and hp-invertibility of rules [DN12, Neg05, Sim94, Vig00]. In [Neg05], the
author shows that such properties are preserved under any extension of the labelled base
calculus G3K (for the minimal modal logic K) with geometric structural rules (mentioned
into the introduction to this chapter). By analogy, let us think of the set of rules
{(id), (∧r), (∨r), ([x]), (〈x〉) | x ∈

∑
} as being a base calculus akin to G3K. Despite the

1As shown in [CMS13], the process of constructing labelled calculi for intermediate logics can be
automated.
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fact that [Neg05] does not address the construction and properties of labelled calculi
in the multi-modal setting (and considers only the uni-modal setting), if we think of
the aforementioned set as our base calculus, and because the rules (pxs ) and (Cx1 ) fit
within the geometric rule scheme, it is straightforward to adapt the methods and results
from [Neg05] to our setting. Below, we will explain how this is done.

Although we may think of the set of rules {(id), (∧r), (∨r), ([x]), (〈x〉) | x ∈
∑
} as a base

calculus in order to draw an analogy with the method of [Neg05] and transfer results to
our setting, the set of rules {(id), (∧r), (∨r), ([x]), (〈x〉), (Cx1 ) | x ∈

∑
} serves as a sound

and complete calculus for the base grammar logic Km = Km(∅) relative to an alphabet∑
(see Thm. 5 and 7). To obtain a calculus for an extension of a minimal grammar

logic Km with a CFCST system S (defined in Def. 8), i.e. for the logic Km(S), we add a
structural rule (pxs ) for each production rule in S. The correspondence between structural
and production rules is detailed in the definition below:

Definition 39 (Production and Structural Rules). Let S be a CFCST system, and let
x −→ s ∈ S. If s = x1 · · ·xn ∈

∑∗−{ε}, we define Rswu := Rx1wv1, . . . , Rxnvn−1u, and
if s = ε, then we define Rswu := ε. Depending on if s = ε or not, the structural rule
corresponding to the production rule x −→ s is defined as follows:

s 6= ε s = ε

R, Rswu,Rxwu⇒ Γ (pxs )R, Rswu⇒ Γ
R, Rxww ⇒ Γ (pxs )R ⇒ Γ

In the rule top right, observe that Rswu does not occur because s = ε, meaning that Rswu
is the empty string ε.

Although labelled calculi generally permit the hp-admissibility of relational atoms con-
tractions (ctrR) (see Fig. 3.2), there is an important caveat. When labelled calculi are
extended with geometric structural rules of a specific shape, additional rules must be
added to the system to ensure the hp-admissibility of (ctrR) [Neg05]. To motivate and
explain the need for such rules, we consider an example: suppose we have a CFCST
system S := {b −→ aa, b −→ aa}. The first production rule gives rise to the (pbaa)
structural rule shown below left. (NB. Since the structural rule (pbaa) is obtained from
the first production rule, we let b instantiate x and aa instantiate s in the schema (pxs )
as explained in Def. 39 above.) To explain why the hp-admissibility of relational atom
contractions (ctrR) is not immediately permitted, let us assume that we are given a
derivation ending with the following two inferences shown below right, where an instance
of (pbaa) (with the label w substituted for v and u) is followed by an instance of (ctrR):

R, Rawv,Ravu,Rbwu⇒ Γ
(pbaa)R, Rawv,Ravz ⇒ Γ

R, Raww,Raww,Rbww ⇒ Γ
(pbaa)R, Raww,Raww ⇒ Γ (ctrR)R, Raww ⇒ Γ
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Typically, when proving a rule (such as (ctrR)) hp-admissible, one shows that the rule
can be permuted above any rule of the calculus and can be deleted at initial sequents.
Notice though, if we attempt to permute (ctrR) above (pbaa) and apply the rule directly
to the top sequent, then we obtain the labelled sequent R, Raww,Rbww ⇒ Γ. This
labelled sequent is no longer in a form matching the premise of (pbaa), and so the rule is
inapplicable; the other production rule of S does not give rise to a structural rule that
could be used to delete Rbww (in order to derive the desired end sequent) either.

Nevertheless, this obstacle can be overcome by stipulating that our labelled calculi must
adhere to the so-called closure condition [Neg05]. Essentially, the closure condition states
that if a substitution of labels within a structural rule causes a duplication of principal
relational atoms (i.e. those occurring in the conclusion), then another instance of the
rule with those relational atoms contracted must be added to the calculus. Since the
closure condition is only enforced when a duplication of principal relational atoms arises
in the conclusion of the structural rule, this condition need not be enforced for the (Cx1 )
structural rules, which only contain a single principal relational atom in the conclusion.
Howbeit, each (pxs ) rule may contain more than a single principal relational atom, so we
define the closure condition for such rules below:

Definition 40 (Closure Condition). Let S be a CFCST system, and let (r1) be either
a structural rule (pxs ) obtained from a production rule x −→ s ∈ S, or a structural rule
(pxs )‡ obtained from the closure condition. (NB. We use a ‡ subscript to indicate rules
obtained via the closure condition.) For all such rules (r1), if the following is an instance
of (r1):

R, Rtwv,Ryvz,Ryvz,Rrzu,Rxwu⇒ Γ
(r1)R, Rtwv,Ryvz,Ryvz,Rrzu⇒ Γ

then our calculus satisfies the closure condition iff it also contains the following instance
of the rule (with Ryvz contracted in both premise and conclusion):

R, Rtwv,Ryvz,Rrzu,Rxwu⇒ Γ
(r2)R, Rtvu,Ryvz,Rrzu⇒ Γ

As stated in Fig. 3.1, we assume that each G3Km(S) calculus satisfies the closure condition.

For any given structural rule (pxs ) only a finite number of instances with duplications
can arise, implying that the closure condition only adds a finite number of rules for each
(pxs ) rule. Hence, the above recursively defined condition terminates, meaning that the
imposition of the closure condition is unproblematic.

Now that we have defined each calculus G3Km(S), we show how to interpret labelled
sequents on

∑
-models, giving rise to a notion of validity for sequents. We then utilize

this notion to show that our calculi are sound (see Thm. 5 below).
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Definition 41 (G3Km(S) Semantics). Let M = (W, {Rx | x ∈
∑
}, V ) be a

∑
-model

satisfying the CFCST system S with I : Lab 7→ W an interpretation function map-
ping labels to worlds. We define the satisfaction of a relational atom Rxwu (written
M, I |=Km(S) Rxwu) and labelled formula w : φ (written M, I |=Km(S) w : φ) as follows:

I M, I |=Km(S) Rxwu iff (I(w), I(u)) ∈ Rx

I M, I |=Km(S) w : φ iff M, I(w)  φ

We say that a multiset of relational atoms R is satisfied in M with I (written M, I |=Km(S)
R) iff M, I |=Km(S) Rxwu for all Rxwu ∈ R, and we say that a multiset of labelled
formulae Γ is satisfied in M with I (written M, I |=Km(S) Γ) iff M, I |=Km(S) w : φ for
all w : φ ∈ Γ.

A labelled sequent Λ = R ⇒ Γ is satisfied in M with I (written, M, I |=Km(S) Λ) iff if
M, I |=Km(S) R, then M, I |=Km(S) Γ. Also, we say that a labelled sequent Λ is falsified
in M with I iff M, I 6|=Km(S) Λ, that is, Λ is not satisfied by M with I.

Last, a labelled sequent Λ is Km(S)-valid (written |=Km(S) Λ) iff it is satisfiable in every∑
-model M satisfying S with every interpretation function I. We say that a labelled

sequent Λ is Km(S)-invalid iff 6|=Km(S) Λ, i.e. Λ is not Km(S)-valid.

Theorem 5 (Soundness). If `G3Km(S) Λ, then |=Km(S) Λ

Proof. Let S be a CFCST system. We argue that each rule preserves validity by
contraposition, that is, we show that if the conclusion of the rule is Km(S)-invalid, then
at least one premise of the rule is Km(S)-invalid. We only consider the ([x]), (〈x〉), (pxs ),
and (Cx1 ) cases.

([x]) Suppose that the conclusion of ([x]) is Km(S)-invalid, that is, there exists a
∑
-model

M satisfying S and an interpretation function I such that M, I 6|=Km(S) R ⇒ w : [x]φ,Γ.
It follows that M, I(w) 6 [x]φ, which further implies that there exists a world v such
that (I(w), v) ∈ Rx and M, v 6 φ. We define a new interpretation function I ′ where
I ′(z) = I(z) if z 6= u and I ′(u) = v otherwise. Consequently, M, I ′(u) 6 φ, and since u is
an eigenvariable and (I ′(w), I ′(u)) ∈ Rx, we have that the premise is falsified in M with
I ′.

(〈x〉) Suppose that the conclusion of an (〈x〉) inference in Km(S)-invalid, i.e. there exists
a
∑
-model M satisfying S and an interpretation function I such that M, I 6|=Km(S)

R, Rxwu⇒ w : 〈x〉φ,Γ. It follows that (I(w), I(u)) ∈ Rx and M, I(w) 6 〈x〉φ, implying
that M, I(u) 6 φ. This shows that the premise is falsified in M and I.

(pxs ) Let x −→ s be the production rule corresponding to (pxs ). We have two cases to
consider: either (i) s = ε or (ii) s 6= ε. For case (i), suppose that the conclusion of (pxs )
is Km(S)-invalid. Then, there exists a

∑
-model M satisfying S and an interpretation

function I such that M, I 6|=Km(S) R, Rswu ⇒ Γ. Since our
∑
-model satisfies all
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production rules in S, and x −→ s ∈ S, we know that Rs ⊆ Rx by Def. 10. This implies
that (I(w), I(u)) ∈ Rx, showing that the premise is falsified by M with I. For case (ii),
suppose that there exists a

∑
-modelM satisfying S and an interpretation function I such

that M, I 6|=Km(S) R ⇒ Γ. Since our
∑
-model satisfies S, which includes the production

rule x −→ ε, we know that Rε ⊆ Rx by Def. 10. By Def. 7, (I(w), I(w)) ∈ Rε ⊆ Rx,
implying that the premise is falsified by M with I. Also, note that the soundness of any
rule (pxs )‡ obtained from (pxs ) via the closure condition holds as well.

(Cx1 ) Suppose the conclusion of (Cx1 ) is Km(S)-invlaid, that is, there exists a
∑
-model

M and interpretation function I such that M, I 6|=Km(S) R, Rxwu ⇒ Γ. It follows
that (I(w), I(u)) ∈ Rx, and since M satisfies the converse condition (C1), we have
(I(u), I(w)) ∈ Rx, showing that the premise is falsified in M with I.

As mentioned previously, we may adapt the work from [Neg05] to our setting and confirm
that each calculus G3Km(S) possesses desirable proof theoretic properties. Not only are
these properties useful in refining our labelled calculi, thus leading to applications—e.g.
proving that all grammar logics based on CFCST systems have the effective Lyndon
interpolation property (Sect. 6.2)—but also help us confirm the completeness of our
calculi (Thm. 7). Before listing the properties of each calculus G3Km(S), we follow
[DN12, Neg05] and define the notion of a label substitution, which is an operation
fundamental in establishing the results that follow.

Definition 42 (Label Substitution). We define a label substitution (w/u) for w, u ∈ Lab
on individual relational atoms and labelled formulae as follows:

I (Rxvz)(w/u) =


Rxwz if u = v and v 6= z

Rxww if u = v and v = z

Rxuw if u = z and v 6= z

Rxvz otherwise

I (v : φ)(w/u) =
{
w : φ if u = v

v : φ otherwise

We define the label substitution (w/u) on a multiset of relational atoms R and a multiset
of labelled formulae Γ to be the multiset obtained by applying (w/u) to each element of
the multiset.

We are now in a position to leverage the results of [Neg05] in order to confirm that each
calculus G3Km(S) possesses useful characteristics. As mentioned previously, the work
of [Neg05] holds for uni-modal logics, that is, the language makes use of the standard
modalities � and ♦ (cf. [BdRV01]) as opposed to a variety of modalities like the ones
we are using in the current multi-modal setting. Nevertheless, if we inspect the proofs
of certain results in [Neg05], we can see that by identifying [x] with � and 〈x〉 with ♦,
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R ⇒ Γ (wk)
R,R′ ⇒ Γ′,Γ

R ⇒ Γ (lsb)
R(w/u)⇒ Γ(w/u)

R, Rawu,Rawu⇒ Γ (ctrR)R, Rawu⇒ Γ

R ⇒ w : φ,w : φ,Γ (ctrr)R ⇒ w : φ,Γ
R ⇒ w : φ,Γ R ⇒ w : ¬φ,Γ (cut)R ⇒ Γ

Figure 3.2: The set Str(Km(S)) of structural rules consists of all rules shown above.

all proofs go through. Moreover, only minor modifications to the proofs are needed to
account for the different logical signatures and the fact that our formulae are in negation
normal form. (NB. In [Neg05], the logical connectives consist of {⊥,∨,∧,→,�,♦}; by
contrast, our language uses {¬,∨,∧, [x], 〈x〉 | x ∈

∑
}.) In what follows, we state the

various properties possessed by each calculus G3Km(S), and mention in the corresponding
proof what results from [Neg05] are exploited.

Lemma 9. For all φ ∈ LKm(
∑

), `G3Km(S) R ⇒ w : φ,w : ¬φ,Γ.

Proof. The claim is shown by induction on the complexity |φ| of φ.

Lemma 10. The (lsb), (wk), (ctrR), and (ctrr) rules are hp-admissible.

Proof. All claims are shown by induction on the height of the given derivation and are
similar to the proofs of Lem. 4.3, Prop. 4.4, and Thm. 4.12 of [Neg05].

Lemma 11. All rules of G3Km(S) are hp-invertible.

Proof. Hp-invertibility of the (〈x〉), (pxs ), and (Cx1 ) rules follows from the hp-admissibility
of (wk). The remaining rules are shown hp-invertible by induction on the height of the
given derivation and are similar to the proof of Prop. 4.11 of [Neg05].

Theorem 6. The rule (cut) is eliminable in G3Km(S).

Proof. The result is shown by induction on the lexicographic ordering of pairs (|φ|, h1+h2),
where |φ| is the complexity of the cut formula φ, h1 is the height of the derivation of the
left premise of (cut), and h2 is the height of the derivation of the right premise of (cut).
The proof is similar to the proof of Thm. 4.13 of [Neg05].

Let us now harness the above results to prove each calculus G3Km(S) complete relative
to Km(S). Prior to proving full completeness (i.e. completeness relative to Km(S)), we
confirm that the rules (id), (∨r), and (∧r) are enough to confirm classical completeness,
that is, all instances of classical propositional tautologies are derivable in each G3Km(S)
calculus. This is needed as it ensures that the axioms A0 (see Def. 12 for each grammar
logic axiomatization HKm(S)) are satisfied. Although this result is needed to confirm full
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completeness of our calculi, we defer the proof to the appendix (Appendix B on p. 208)
to simplify presentation.

Lemma 12 (Classical Completeness). All instances of classical propositional tautologies
in LKm(

∑
) are derivable in G3Km(S).

Proof. See Appendix B (p. 208) for details.

Theorem 7 (Completeness). If `Km(S) φ, then `G3Km(S) ε⇒ w : φ.

Proof. By Lem. 12, we know that all instances of classical propositional tautologies in
LKm(

∑
) are derivable in G3Km(S), ensuring that A0 holds. Therefore, we need only show

that the axioms A1 – A4 and the rules R0 and R1 (see Def. 12 for the axiomatization of
Km(S)) are derivable in G3Km(S) to show completeness.

Axiom A1.

Π1 Π2
Rxwu⇒ w : 〈x〉(φ ∨ ¬ψ), u : ¬φ ∨ ψ,w : 〈x〉¬φ, u : ψ

(〈x〉)
Rxwu⇒ w : 〈x〉(φ ∨ ¬ψ), w : 〈x〉¬φ, u : ψ

([x])
⇒ w : 〈x〉(φ ∨ ¬ψ), w : 〈x〉¬φ,w : [x]ψ

(∨)× 2
⇒ w : 〈x〉(φ ∨ ¬ψ) ∨ (〈x〉¬φ ∨ [x]ψ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
⇒ w : [x](φ→ ψ)→ ([x]φ→ [x]ψ)

Π1 :=
{ Lem. 9

Rxwu⇒ w : 〈x〉(¬φ ∨ ψ), u : φ,w : 〈x〉¬φ, u : ¬φ, u : ψ
(〈x〉)

Rxwu⇒ w : 〈x〉(¬φ ∨ ψ), u : φ,w : 〈x〉¬φ, u : ψ

Π2 :=
{

Lem. 9
Rxwu⇒ w : 〈x〉(¬φ ∨ ψ), u : ¬ψ,w : 〈x〉¬φ, u : ψ

Rule R0. In the derivation of R0, the use of (cut) is eliminable due to Thm. 6.

⇒ w : φ→ ψ. . . . . . . . . . . . . . . . . . =
⇒ w : ¬φ ∨ ψ

Lem. 11⇒ w : ¬φ,w : ψ ⇒ w : φ (cut)⇒ w : ψ

Axiom A2.
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Lem. 9
Rxwu,Rxuw ⇒ w : ¬φ, u : 〈x〉φ,w : φ

(〈x〉)
Rxwu,Rxuw ⇒ w : ¬φ, u : 〈x〉φ

(Cx1 )
Rxwu⇒ w : ¬φ, u : 〈x〉φ

([x])
⇒ w : ¬φ,w : [x]〈x〉φ

(∨)
⇒ w : ¬φ ∨ [x]〈x〉φ. . . . . . . . . . . . . . . . . . . . . . . . =
⇒ w : φ→ [x]〈x〉φ

Axiom A3 and rule R1. The use of (lsb) in the proof of R1 is admissible due to the use
of Lem. 10.

Lem. 9
Rswu,Rxwu⇒ u : ¬φ,w : 〈x〉φ, u : φ

(〈x〉)
Rswu,Rxwu⇒ u : ¬φ,w : 〈x〉φ

(pxs )
Rswu⇒ u : ¬φ,w : 〈x〉φ

([x])× |s|
⇒ w : [s]¬φ,w : 〈x〉φ

(∨)
⇒ w : [s]¬φ ∨ 〈x〉φ. . . . . . . . . . . . . . . . . . . . . . . . =
⇒ w : 〈s〉φ→ 〈x〉φ

⇒ w : φ (wk)
Rxuw ⇒ w : ψ [x]
⇒ u : [x]ψ

(lsb)
⇒ w : [x]ψ

An interesting question to ask of labelled calculi is: what structures are necessary to
ensure completeness? Once we refine our labelled calculi (in the following chapter), we
will see that the labelled sequents needed to ensure completeness in the refined versions
of our calculi are more minimalistic than those used in the G3Km(S) calculi. To make
this notion of “structure” precise, we define sequent graphs (for grammar logics) below:

Definition 43 (Sequent Graph for Grammar Logics). Let Λ := R ⇒ Γ be a labelled
sequent. We define the sequent graph of Λ, G(Λ) = (V,E, L), as follows:

I V = Lab(Λ)

I E = {(w, u, x) | Rxwu ∈ R}

I L(w) = Γ � w

(NB. Recall that Γ � w was defined in Def. 30.)

Example 1. Below, we give an example of a labelled tree sequent Λ (see Def. 44) and
its corresponding sequent graph G(Λ).
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Λ := Rbwv,Rbwu,Rauc,Rdup⇒
w : q, w : r, v : ¬q, u : q ∨ r

q, r
w

b

}}
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��
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��
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In the following chapter, for each calculus G3Km(S), we will obtain a refined variant which
makes use of labelled sequents whose graphs possess less structure, namely, labelled tree
sequents [GR12]. Such sequents are essentially the same as the labelled nested sequents
presented in [Pim18]. We define labelled tree sequents here and provide a theorem below
which shows that restricting to such sequents invalidates the completeness of each calculus
G3Km(S), that is, each calculus G3Km(S) requires labelled sequents with a more liberal
syntactic structure to ensure completeness.

Definition 44 (Labelled Tree Sequent for Grammar Logics). A labelled sequent Λ is a
labelled tree sequent iff G(Λ) = (V,E, L) is a tree.

Definition 45 (Labelled Tree Proof, Fixed Root Property for Grammar Logics). We
say that a proof is a labelled tree proof iff it consists solely of labelled tree sequents.

Also, we say that a labelled tree proof has the fixed root property iff the every labelled
tree sequent in the proof has the same root.

As specified in the theorem below, if we restricted G3Km(S) to only allow labelled tree
derivations, then there would be theorems of Km(S) that would no longer be provable.
In such a situation, G3Km(S) would be incomplete relative to Km(S). We will refer to a
calculus as incomplete when it does not derive all theorems of its intended, associated
logic.

Theorem 8. Let S be a CFCST system. The calculus G3Km(S) is incomplete relative
to labelled tree derivations.

Proof. Since
∑

is non-empty by definition, we know there exists an x ∈
∑
. The claim

follows by considering the proof of p→ [x]〈x〉p (an instance of axiom A3), which requires
sequents that are not labelled tree sequents.

3.3 Labelled Calculi for First-Order Intuitionistic Logics
In this section, we provide labelled sequent calculi for first-order intuitionistic logic with
non-constant domains (also called, first-order intuitionistic logic proper), and first-order

53



3. Labelled Systems for Modal and Constructive Logics

intuitionistic logic with constant domains (introduced by Grzegorczyk in [Grz64]). A
sequent calculus for the former has been in existence since the initiation of the sequent
formalism by Gentzen [Gen35a, Gen35b]. Yet, sequent calculi for the latter were not
provided until nearer the close of the century [KS94, FM99]. In [Fit14], Fitting showed
that both logics could be uniformly captured within the prefixed tableau and nested
sequent formalisms, and also defined translations between the distinct calculi, thus
showing their deductive equivalence.2

As it so happens, the labelled sequent calculi defined in this section have a natural
relationship with Fitting’s nested calculi. In [Lyo20b] it was shown that the labelled
calculi for the first-order intuitionistic logics IntQ and IntQC can be transformed into
Fitting’s nested calculi for the logics via the refinement process (with some “additional
adjustments”). Also, both [Lyo20a, Pim18] show how labelled calculi for propositional
intuitionistic logic can be transformed into nested calculi that are identical to, or equivalent
to, Fitting’s nested calculus for the logic, respectively. In the next chapter, we will show
how refining the labelled calculi for first-order intuitionistic logics begets nested calculi
that are related to Fitting’s. As will be commented on, these nested variants allow for
a higher degree of modularity than Fitting’s nested calculi via the modification of side
conditions imposed on certain logical rules.

The labelled calculi presented in this section are defined by extending the labelled calculus
G3I for propositional intuitionistic logic of Dyckhoff and Negri [DN12] with quantifier
rules and rules concerning domains. Some of these quantifier and domain rules can be
found in Viganò [Vig00] and in [NVP11], where the authors provide labelled sequent
calculi for first-order modal logics. These works however do not provide rules for the
intuitionistic (i.e. strong) universal quantifier or the first-order monotonicity condition
(M), and so, we present rules for these in this section. Since our labelled sequent calculi
are based on the work and formalisms of [DN12, NVP11, Sim94, Vig00], so are our
labelled sequents; these are defined as follows:

Definition 46 (Labelled Sequents for First-Order Intuitionistic Logics). A labelled
sequent for first-order intuitionistic logics is a syntactic object of the form Λ := L1 ⇒ L2,
where L1 (the antecedent) and L2 (the consequent) are defined via the following grammars
in BNF:

L1 ::= ε | w : φ | a ∈ Dw | w ≤ u | L1, L1 L2 ::= ε | w : φ | L2, L2

with φ ∈ LInt, a among a denumerable set of parameters Par = {a, b, c, . . .}, and w, u
among a denumerable set of labels Lab = {w, u, v, . . .}. We refer to formulae of the forms
w ≤ u and a ∈ Dw as relational atoms (with formulae of the form a ∈ Dw referred to
as domain atoms, more specifically) and refer to formulae of the form w : φ as labelled
formulae.

2In 1983 [Fit83], Fitting sketched a prefixed tableau calculus for propositional intuitionistic logic,
which stood as a basis for his work in the first-order setting.
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We use Λ, Λ′, . . . (occasionally annotated) to denote labelled sequents as a whole, and due
to the two types of formulae occurring in a labelled sequent, we useR, R′, . . . (occasionally
annotated) to denote multisets of relational atoms, and Γ, Γ′, ∆, ∆′, . . . (occasionally
annotated) to denote multisets of labelled formulae, thus distinguishing between the
two. We therefore take the comma operator to be commutative and associative; for
example, we identify the labelled sequent w ≤ u,w : φ, a ∈ Dw ⇒ v : ψ, u : χ with
a ∈ Dw, w ≤ u,w : φ⇒ u : χ, v : ψ. This means that we may write a labelled sequent Λ
in a general form as R,Γ⇒ ∆, where we separate the relational atoms from the labelled
formulae in the antecedent. Moreover, our interpretation of comma is what lets us view
the antecedent R,Γ and the consequent ∆ of a labelled sequent R,Γ⇒ ∆ as multisets.
We use Lab(Λ), Lab(R), and Lab(Γ) to denote the sets of labels that occur in a labelled
sequent Λ, a multiset R of relational atoms, and a multiset Γ of labelled formulae,
respectively. Also, as in the previous section, we use ε to denote the empty string which
acts as the identity element for the comma operator (e.g. we identify w ≤ v, ε, v : ψ with
w ≤ v, v : ψ). Consequently, ε will often be implicit in labelled sequents.

We syntactically distinguish between bound variables {x, y, z, . . .} and free variables, which
are replaced with parameters {a, b, c, . . .}, to avoid clashes between the two categories
(cf. [Fit14, Sect. 8]). Instead of making use of formulae from the first-order language LInt,
we use formulae from the first-order language where each freely occurring variable x has
been replaced by a distinct parameter a. For example, we would make use of the labelled
formula w : (∀x)p(a, x) ∨ q(a, b) instead of w : (∀x)p(y, x) ∨ q(y, z) in a labelled sequent.

We use the notation φ(a1, . . . , an), with n ∈ N, to denote that the parameters a1, . . . , an
are all parameters occurring in the formula φ. (NB. If n = 0, then we assume that the
formula φ does not contain any parameters). We write φ(~a) as shorthand for φ(a1, . . . , an)
and ~a ∈ Dw as shorthand for a1 ∈ Dw, . . . , an ∈ Dw. Furthermore, the notation φ(a/x)
represents the formula obtained by substituting the parameter a for each free occurrence
of x in φ. Substitutions of the form (a/x) are formally defined as in Def. 19 in Sect. 2.2.

Our labelled calculi are given in Fig. 3.3, and are obtained from the models and semantic
clauses of IntQ and IntQC. The derivability relations for our calculi are defined as follows:

Definition 47. We write `G3IntQ Λ and `G3IntQC Λ to indicate that the labelled sequent
Λ is derivable in G3IntQ and G3IntQC, respectively.

The rules for (⊥l), (∧l), (∧r), (∨l), (∨r), (⊃l), (⊃r), (∃l), (∃r), (∀l), and (∀r) are rule
representations of the semantic clauses given in Def. 18. The (ref) and (tra) rules
allow inferences arising from the fact that frames (Def. 16) are reflexive and transitive,
whereas (ned), (nd), and (cd) allow inferences based on the fact that the domains of
frames are always inhabited (i.e. non-empty), satisfy the nested domain condition (ND),
and satisfy the constant domain condition (CD), respectively. The rule (id) encodes
the monotonicity condition (M) imposed on models (Def. 16). Let us also comment on
the new (∀l) and (∀r) rules for introducing universal quantifiers: since in the first-order
intuitionistic setting the satisfaction of a universally quantified formula is determined
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(id)
R, w ≤ u,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆ (⊥l)R,Γ, w : ⊥ ⇒ ∆

R,Γ, w : φ,w : ψ ⇒ ∆ (∧l)R,Γ, w : φ ∧ ψ ⇒ ∆
R,Γ⇒ w : φ,∆ R,Γ⇒ w : ψ,∆ (∧r)R,Γ⇒ w : φ ∧ ψ,∆

R,Γ, w : φ⇒ ∆ R,Γ, w : ψ ⇒ ∆ (∨l)R,Γ, w : φ ∨ ψ ⇒ ∆
R, w ≤ w,Γ⇒ ∆ (ref)R,Γ⇒ ∆

R, w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ R, w ≤ u,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆ (⊃l)R, w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆

R, w ≤ u,Γ, u : φ⇒ u : ψ,∆
(⊃r)†1R,Γ⇒ w : φ ⊃ ψ,∆

R,Γ⇒ w : φ,w : ψ,∆ (∨r)R,Γ⇒ w : φ ∨ ψ,∆

R, w ≤ u, u ≤ v, w ≤ v,Γ⇒ ∆ (tra)R, w ≤ u, u ≤ v,Γ⇒ ∆
R, a ∈ Dw,Γ⇒ ∆

(ned)†2R,Γ⇒ ∆

R, w ≤ u, a ∈ Du,Γ⇒ u : φ(a/x),∆
(∀r)†3R,Γ⇒ w : ∀xφ,∆

R, a ∈ Dw,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(∃r)R, a ∈ Dw,Γ⇒ w : ∃xφ,∆

R, a ∈ Dw,Γ, w : φ(a/x)⇒ ∆
(∃l)†2R,Γ, w : ∃xφ⇒ ∆

R, w ≤ u, a ∈ Du,Γ, u : φ(a/x), w : ∀xφ⇒ ∆
(∀l)R, w ≤ u, a ∈ Du,Γ, w : ∀xφ⇒ ∆

R, w ≤ u, a ∈ Dw, a ∈ Du,Γ⇒ ∆ (nd)R, w ≤ u, a ∈ Dw,Γ⇒ ∆
R, u ≤ w, a ∈ Du, a ∈ Dw,Γ⇒ ∆ (cd)R, u ≤ w, a ∈ Dw,Γ⇒ ∆

Figure 3.3: The labelled calculus G3IntQ for IntQ consists of all rules minus the (cd)
rule, and all rules give the calculus G3IntQC for IntQC. The side condition †1 states that
the variable u does not occur in the conclusion, †2 states that a does not occur in the
conclusion, and †3 states that neither a nor u occurs in the conclusion. As usual, labels
and parameters restricted from occurring in the conclusion of an inference are called
eigenvariables.

not only by logical information holding at the present world, but at all future worlds, the
corresponding logical rules require information at future labels to be considered when
applying the rule.

Remark 2. We note that when the predicate p is of arity 0 (i.e. p is a propositional
atom), the (id) rule is of the following form:

(id)R, w ≤ u,Γ, w : p⇒ u : p,∆

The calculus obtained by taking (⊥l), (∧l), (∧r), (∨l), (∨r), (⊃l), (⊃r), (ref), (tra),
and (id) restricted to the use of propositional atoms (i.e. the form of (id) shown above)
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is referred to as G3I, and is a sound and complete labelled calculus for propositional
intuitionistic logic [DN12]. The above instance of our (id) rule generates the initial
sequents of G3I when we restrict ourselves to the propositional setting [DN12]. Thus,
our initial sequents are first-order generalizations of the initial sequents utilized for
propositional intuitionistic logic.

Furthermore, the rules (∃l), (∃r), (nd), (cd), and (ned) appear in Viganò [Vig00, Ch. 6]
and in [NVP11, Ch. 12]; however, the (id), (∀l), and (∀r) rules are (to the best of the
author’s knowledge) new.

In fact, not only can the above calculi be seen as proof-theoretic encodings of semantic
clauses (Def. 18) and frame properties (Def. 16) for IntQ and IntQC, but labelled sequents
can be seen as abstractions of IntQ- and IntQC-models. The relationship between the
syntactic structures present in labelled sequents (Def. 46) and the semantics for the logics
IntQ and IntQC is spelled out formally in the definition below (Def. 48). Moreover, we
also leverage the semantics for labelled sequents to define a notion of validity for labelled
sequents, which is used in the subsequent theorem (Thm. 9) to prove our calculi sound.

Definition 48 (G3IntQ and G3IntQC Semantics). Let IntX ∈ {IntQ, IntQC} and M =
(W,≤, D, V ) be an IntX-model with D =

⋃
w∈W Dw. We let I : Lab ∪ Par 7→W ∪D be

an interpretation function mapping labels to worlds and parameters to elements of D.

We define the satisfaction of a relational atom w ≤ u or a ∈ Dw (writtenM, I |=IntX w ≤ u
and M, I |=IntX a ∈ Dw, resp.), and labelled formula w : φ (written M, I |=IntX w : φ) as
follows:

I M, I |=IntX w ≤ u iff I(w) ≤ I(u)

I M, I |=IntX a ∈ Dw iff I(a) ∈ DI(w)

I M, I |=IntX w : φ iff M, I(w)  φ

We say that a multiset of relational atoms R is satisfied in M with I (written M, I |=IntX
R) iff M, I |=IntX w ≤ u and M, I |=IntX a ∈ Dw for all w ≤ u, a ∈ Dw ∈ R, and we say
that a multiset of labelled formulae Γ is satisfied in M with I (written M, I |=IntX Γ) iff
M, I |=IntX w : φ for all w : φ ∈ Γ.

A labelled sequent Λ = R,Γ⇒ ∆ is satisfied in M with I (written, M, I |=IntX Λ) iff if
M, I |=IntX R and M, I |=IntX Γ, then M, I |=IntX ∆. Also, we say that a labelled sequent
Λ is falsified in M with I iff M, I 6|=IntX Λ, that is, Λ is not satisfied by M with I.

Last, a labelled sequent Λ is IntX-valid (written |=IntX Λ) iff it is satisfiable in every
IntX-model M with every interpretation function I. We say that a labelled sequent Λ is
IntX-invalid iff 6|=IntX Λ, i.e. Λ is not IntX-valid.

By making use of the above notion of IntQ- and IntQC-validity for labelled sequents, we
prove our calculi G3IntQ and G3IntQC sound.
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Theorem 9 (Soundness). Let X ∈ {Q,QC}. If `G3IntX Λ, then |=IntX Λ.

Proof. Let IntX ∈ {IntQ, IntQC}. With the exception of the (id), (∀l), and (∀r) rules,
we can leverage the work of [DN12, NVP11, Vig00] to confirm that all other rules are
sound. Therefore, we show that (id) produces only valid sequents, and that (∀l) and (∀r)
preserve validity.

(id) LetM = (W,≤, D, V ) be an arbitrary IntX-model and I be an arbitrary interpretation
function. Suppose that the antecedent R, w ≤ u,~a ∈ Dw, w : p(~a),Γ is satisfied inM with
I. Then, I(w) ≤ I(u), I(a1) ∈ DI(w), . . ., I(an) ∈ DI(w), and M, I(w)  p(~a). These
facts, along with the monotonicity condition (M), implies that (I(a1), . . . , I(an)) ∈
V (p, I(w)) ⊆ V (p, I(u)). Hence, M, I(u)  p(~a), showing that any sequent generated by
the (id) rule is IntX-valid.

(∀l) Let M be an IntX-model and I be an interpretation function such that M, I 6|=
R, w ≤ u, a ∈ Du,Γ, w : ∀xφ⇒ ∆. Thus, I(w) ≤ I(u), I(a) ∈ DI(u), and M, I(w)  ∀xφ.
It follows that M, I(u)  φ(a/x), showing that the premise is falsified by M with I.

(∀r) Suppose that M is an IntX-model and I is an interpretation function such that
M, I 6|= R,Γ⇒ w : ∀xφ,∆. Then,M, I(w) 6 ∀xφ, which implies that there exists a world
u′ and an a ∈ Du′ such that I(w) ≤ u′ and M,u′ 6 φ(a/x). Let us define I ′(b) = I(b) for
b 6= a and I ′(a) = a, and I ′(v) = I(v) for v 6= u′ and I ′(u) = u′. Therefore, I ′(w) ≤ I ′(u),
I ′(a) ∈ DI′(u), and M, I ′(u) 6 φ(a/x). Since u and a are eigenvariable, it follows that
the premise is falsified by M with I ′.

We now go on to show that the labelled calculi possess proof-theoretic properties such
as the hp-admissibility of substitutions and structural rules (e.g. (psb) and (wk)), hp-
invertibility of all rules, and syntactic cut-elimination. The hp-admissible and eliminable
structural rules are presented in Fig. 3.4. Ultimately, these properties will let us prove
the completeness of our calculi (Thm. 11). While proving our results, we adapt proofs
and results from [DN12, NVP11], though, since these works do not explicitly consider
first-order intuitionistic logic with (non-)constant domains, we still consider a few cases
in our proofs.

Before moving on to showing that our calculi possess useful properties, we define the
notion of a label substitution and parameter substitution. Intuitively, a label substitution
(w/u) on a multiset of relational atoms or labelled formulae replaces all occurrences of
the label u with the label w, and a parameter substitution replaces all occurrences of the
parameter b with the parameter a. We formally define these operations below:

Definition 49 (Label and Parameter Substitution). We define a label substitution (w/u)
for w, u ∈ Lab on individual relational atoms and labelled formulae as follows:
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R,Γ⇒ ∆ (lsb)
R(w/u),Γ(w/u)⇒ ∆(w/u)

R,Γ⇒ ∆ (psb)
R(a/b),Γ(a/b)⇒ ∆(a/b)

R,Γ⇒ ∆ (wk)
R′,R,Γ′,Γ⇒ ∆′,∆

R,R′,R′,Γ⇒ ∆ (ctrR)
R,R′,Γ⇒ ∆

R, w : φ,w : φ,Γ⇒ ∆ (ctrl)R, w : φ,Γ⇒ ∆

R,Γ⇒ w : φ,w : φ,∆ (ctrr)R,Γ⇒ w : φ,∆
R,Γ⇒ ∆, w : A R, w : A,Γ⇒ ∆ (cut)R,Γ⇒ ∆

Figure 3.4: The set Str(Int) of structural rules consists of all rules shown above.

I (v ≤ z)(w/u) =


w ≤ z if u = v and v 6= z

w ≤ w if u = v and v = z

u ≤ w if u = z and v 6= z

v ≤ z otherwise

I (a ∈ Dv)(w/u) =
{
a ∈ Dw if u = v

a ∈ Dv otherwise

I (v : φ)(w/u) =
{
w : φ if u = v

v : φ otherwise

We define the label substitution (w/u) on a multiset of relational atoms R and a multiset
of labelled formulae Γ to be the multiset obtained by applying (w/u) to each element of
the multiset.

We define a parameter substitution (a/b) for a, b ∈ Par on individual relational atoms
and labelled formulae as follows:

I (w ≤ u)(a/b) := w ≤ u

I (c ∈ Dv)(a/b) := a ∈ Dv if b = c, and (c ∈ Dv)(a/b) := c ∈ Dv otherwise.

I (w : φ)(a/b) := w : φ(a/b)

Note that for the last displayed parameter substitution (on a labelled formula) we make
use of the notion of a parameter substitution on a formula, which is defined as in Def. 19.

We define the parameter substitution (a/b) on a multiset of relational atoms R and a
multiset of labelled formulae Γ to be the multiset obtained by applying (a/b) to each
element of the multiset.
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The first property we prove below is fundamental in securing completeness (Thm. 11),
and ensures that all instances of the axioms in HIntQ and HIntQC (Def. 20) are derivable
in G3IntQ and G3IntQC, respectively.

Lemma 13. Let G3X ∈ {G3IntQ,G3IntQC}.

(i) For all φ ∈ LInt, `G3X R, w ≤ u,~a ∈ Dw, w : φ(~a),Γ⇒ u : φ(~a),∆.

(ii) For all φ ∈ LInt, `G3X R,~a ∈ Dw, w : φ(~a),Γ⇒ ∆, w : φ(~a).

Proof. We prove claims (i) and (ii) for both calculi G3IntQ and G3IntQC simultaneously
by mutual induction on the complexity of φ.

Base case for (i). The base cases for claim (i) trivially follow from the (id) rule for atomic
formulae and propositional variables, and from the (⊥l) rule for ⊥.

Inductive step for (i). We provide the cases for when φ(~a) is of the form ∃xψ(~a) and
∀xψ(~a), and omit the remaining cases which follow from [DN12, Lem. 1]. In the ∃xψ(~a)
case, we let ∆′ := u : ∃xψ(~a),∆, and in the ∀xψ(~a) case, we let R′ = R, w ≤ u, u ≤
v,~a ∈ Dw.

IHR, w ≤ u, b ∈ Dw,~a ∈ Dw, w : ψ(~a)(b/x),Γ⇒ u : ψ(~a)(b/x),∆′
(∃r)R, w ≤ u, b ∈ Dw,~a ∈ Dw, w : ψ(~a)(b/x),Γ⇒ u : ∃xψ(~a),∆

(∃l)R, w ≤ u,~a ∈ Dw, w : ∃xψ(~a),Γ⇒ u : ∃xψ(~a),∆

IHR′, w ≤ v, b ∈ Dv, v : ψ(~a)(b/x), w : ∀xψ(~a),Γ⇒ v : ψ(~a)(b/x),∆
(∀l)R′, w ≤ v, b ∈ Dv, w : ∀xψ(~a),Γ⇒ v : ψ(~a)(b/x),∆

(tra)
R′, b ∈ Dv, w : ∀xψ(~a),Γ⇒ v : ψ(~a)(b/x),∆

(∀r)R, w ≤ u,~a ∈ Dw, w : ∀xψ(~a),Γ⇒ u : ∀xψ(~a),∆

Base case for (ii). The base case for atomic formulae is shown below (the base case for
propositional variables is similar), and the case for when φ is of the form ⊥ is omitted as
it is simple to verify using the (⊥l) rule.

(id)
R, w ≤ w,~a ∈ Dw, w : p(~a),Γ⇒ w : p(~a),∆

(ref)
R,~a ∈ Dw, w : p(~a),Γ⇒ w : p(~a),∆

Inductive step for (ii). We only show the case when φ(~a) is of the form ∀xψ(~a), as all
other cases follow from [DN12, Lem. 1] and [NVP11, Lem. 12.1].

IHR, w ≤ u, b ∈ Du,~a ∈ Dw, u : ψ(~a)(b/x), w : ∀xψ(~a),Γ⇒ u : ψ(~a)(b/x),∆
(∀l)R, w ≤ u, b ∈ Du,~a ∈ Dw, w : ∀xψ(~a),Γ⇒ u : ψ(~a)(b/x),∆

(∀r)R,~a ∈ Dw, w : ∀xψ(~a),Γ⇒ w : ∀xψ(~a),∆
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Lemma 14. The rule (lsb) is hp-admissible in G3IntQ and G3IntQC.

Proof. We prove the result by induction on the height of the given derivation.

Base case. The base case is easily resolved as any application of (lsb) to (id) or (⊥l)
yields another instance of the rule.

Inductive step. We need only consider the (∀l) and (∀r) cases, as all other cases follow
from [DN12, Lem. 3] and [NVP11, Lem. 12.4]. The (∀l) case is handled by applying IH
and then the corresponding rule. The non-trivial (∀r) case arises when the substitution
introduces the eigenvariable of the (∀r) inference. We show how to resolve this non-
trivial case below, and omit the trivial case as it follows by applying IH and then the
corresponding rule. In what follows, we let z be a fresh label.

R, w ≤ u, a ∈ Du,Γ⇒ u : φ(a/x),∆
(∀r)R,Γ⇒ w : ∀xφ,∆ (lsb)

R(u/v),Γ(u/v)⇒ (w : ∀xφ)(u/v),∆(u/v)
 

R, w ≤ u, a ∈ Du,Γ⇒ u : φ(a/x),∆
IHR(z/u), (w ≤ u)(z/u), (a ∈ Du)(z/u),Γ(z/u)⇒ (u : φ(a/x))(z/u),∆(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, w ≤ z, a ∈ Dz,Γ⇒ z : φ(a/x),∆
IHR(u/v), (w ≤ z)(u/v), (a ∈ Dz)(u/v),Γ(u/v)⇒ (z : φ(a/x))(u/v),∆(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R(u/v), w ≤ z, a ∈ Dz,Γ(u/v)⇒ z : φ(a/x),∆(u/v)
(∀r)R(u/v),Γ(u/v)⇒ (w : ∀xφ)(u/v),∆(u/v)

Lemma 15. The rule (psb) is hp-admissible in G3IntQ and G3IntQC.

Proof. We prove the claim by induction on the height of the given derivation.

Base case. The base is trivial as any application of (lsb) to an instance of (id) or (⊥l)
yields another instance of the rule.

Inductive step. With the exception of the (∃l), (∀r), and (ned) cases, all other cases follow
by applying IH and then the corresponding rule. The (∃l) and (ned) cases are handled
as explained in [NVP11, Lem. 12.4]. The non-trivial (∀r) case arises when the parameter
substitution (a/b) introduces the eigenvariable of the (∀r) inference. We show how to
resolve the non-trivial case below, and omit the trivial case as it follows from invoking
IH followed by the corresponding rule. In the case below, we let c be a fresh parameter.

R, w ≤ u, a ∈ Du,Γ⇒ u : φ(a/x),∆
(∀r)R,Γ⇒ w : ∀xφ,∆ (psb)

R(a/b),Γ(a/b)⇒ (w : ∀xφ)(a/b),∆(a/b)
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R, w ≤ u, a ∈ Du,Γ⇒ u : φ(a/x),∆
IHR(c/a), (w ≤ u)(c/a), (a ∈ Du)(c/a),Γ(c/a)⇒ (u : φ(a/x))(c/a),∆(c/a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, w ≤ u, c ∈ Du,Γ⇒ u : φ(c/x),∆
IHR(a/b), (w ≤ u)(a/b), (c ∈ Du)(a/b),Γ(a/b)⇒ (u : φ(c/x))(a/b),∆(a/b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R(a/b), w ≤ u, c ∈ Du,Γ(a/b)⇒ u : φ(c/x)(a/b),∆(a/b)
(∀r)R(a/b),Γ(a/b)⇒ (w : ∀xφ)(a/b),∆(a/b)

Lemma 16. The rule (wk) is hp-admissible in G3IntQ and G3IntQC.

Proof. We prove the result by induction on the height of the given derivation.

Base case. The base case is straightforward since any application of (wk) to (id) or (⊥l)
yields another instance of the rule.

Inductive step. The only non-trivial cases concern (⊃r), (∃l), (∀r), and (ned), and arise
when (wk) introduces a parameter or label identical to an eigenvariable of one of the
aforementioned inferences. The (⊃r) case is resolved as in [DN12, Prop. 1], and the (∃l)
and (ned) cases are resolved as in [NVP11, Thm. 12.5]. Therefore, we only show how
to resolve non-trivial (∀r) case below. We let c and z be a fresh parameter and label,
respectively.

R, w ≤ u, a ∈ Du,Γ⇒ u : φ(a/x),∆
(∀r)R,Γ⇒ w : ∀xφ,∆ (wk)

R,R′,Γ,Γ′ ⇒ w : ∀xφ,∆,∆′
 

R, w ≤ u, a ∈ Du,Γ⇒ u : φ(a/x),∆
(lsb)

R(z/u), (w ≤ u)(z/u), (a ∈ Du)(z/u),Γ(z/u)⇒ (u : φ(a/x))(z/u),∆(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, w ≤ z, a ∈ Dz,Γ⇒ z : φ(a/x),∆

(psb)
R(c/a), (w ≤ z)(c/a), (a ∈ Dz)(c/a),Γ(c/a)⇒ (z : φ(a/x))(c/a),∆(c/a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, w ≤ z, c ∈ Dz,Γ⇒ z : φ(c/x),∆
IHR,R′, w ≤ z, c ∈ Dz,Γ,Γ′ ⇒ z : φ(c/x),∆,∆′
(∀r)R,R′,Γ,Γ′ ⇒ w : ∀xφ,∆,∆′

Lemma 17. All rules are hp-invertible in G3IntQ and G3IntQC.

Proof. The result is shown by induction on the height of the given derivation, and is
proven similarly to [DN12, Prop. 2] and [NVP11, Thm. 12.7].

Lemma 18. The rules (ctrR), (ctrl), and (ctrr) are hp-admissible in G3IntQ and
G3IntQC.
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Proof. The result is shown by induction on the height of the given derivation, and is
proven similarly to [DN12, Thm. 3] and [NVP11, Thm. 12.8].

Theorem 10. The rule (cut) is eliminable in G3IntQ and G3IntQC.

Proof. The result is shown by induction on the lexicographic ordering of pairs (|φ|, h1+h2),
where |φ| is the complexity of the cut formula φ, h1 is the height of the derivation of the
left premise of (cut), and h2 is the height of the derivation of the right premise of (cut).
We may assume w.l.o.g. that (cut) is the last rule used in our given derivation, and that
no other instances of (cut) appear in the given derivation. The general result follows by
repeatedly applying the procedure given in the proof to successively eliminate topmost
instances of (cut) until the derivation is free of such inferences.

Due to the modularity of the labelled formalism, we may leverage the results [DN12,
Thm. 4] and [NVP11, Thm. 12.9] to cover all cases with the exception of the case where
the cut formula is of the form ∀xψ and is principal in both premises of (cut). This case
is resolved as shown below:

Π1 =
{

R, w ≤ v, w ≤ u, a ∈ Dv, b ∈ Du,Γ⇒ ∆, u : ψ(b/x)
(∀r)R, w ≤ v, a ∈ Dv,Γ⇒ ∆, w : ∀xψ

Π2 =
{

R, w ≤ v, a ∈ Dv, v : ψ(a/x), w : ∀xψ,Γ⇒ ∆
(∀l)R, w ≤ v, a ∈ Dv, w : ∀xψ,Γ⇒ ∆

Π1 Π2 (cut)R, w ≤ v, a ∈ Dv,Γ⇒ ∆
 

Π′1 Π′2 IHR, w ≤ v, a ∈ Dv,Γ⇒ ∆

Π′1 =
{ R, w ≤ u, b ∈ Du,Γ⇒ ∆, u : ψ(b/x)

(lsb)
R, w ≤ v, b ∈ Dv,Γ⇒ ∆, v : ψ(b/x)

(psb)
R, w ≤ v, a ∈ Dv,Γ⇒ ∆, v : ψ(a/x)

Π′2 =
{ R, w ≤ v, w ≤ u, a ∈ Dv, b ∈ Du,Γ⇒ ∆, u : ψ(b/x)

(wk)
R, w ≤ v, w ≤ u, a ∈ Dv, b ∈ Du, v : ψ(a/x),Γ⇒ ∆, u : ψ(b/x)

(∀r)R, w ≤ v, a ∈ Dv, v : ψ(a/x),Γ⇒ ∆, w : ∀xψ Π′3 IHR, w ≤ v, a ∈ Dv, v : ψ(a/x),Γ⇒ ∆

Π′3 =
{
R, w ≤ v, a ∈ Dv, v : ψ(a/x), w : ∀xψ,Γ⇒ ∆

Note that we may invoke IH in Π′2 since the sum of the heights h1 +h2 is one less than the
original (cut), and we may invoke the second use of IH since the cut formula v : ψ(a/x)
is of a smaller complexity, that is |ψ(a/x)| < |∀xψ| = |φ|.
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Theorem 11 (Completeness). Let φ ∈ LInt, and let φ(~a) := φ(a1/x1) · · · (an/xn), that
is, φ(~a) is the formula φ where the parameters ~a = a1, . . . , an have been substituted for
each respective free variable x1, . . . , xn in φ.

(i) If `IntQ φ, then `G3IntQ ~a ∈ Dw ⇒ w : φ(~a).

(ii) If `IntQC φ, then `G3IntQC ~a ∈ Dw ⇒ w : φ(~a).

Proof. By Rmk. 2, we know that our calculi G3IntQ and G3IntQC can derive all axioms
A0 – A8, that is, the axioms for propositional intuitionistic logic (cf. Def. 20 and [GSS09,
p. 6]). Therefore, we need only show that they can derive the axioms A9 – A12 and
A9 – A13, respectively, as well as simulate the inference rules R0 and R1 (see Def. 20
for the axioms of IntQ and IntQC). We show this below, and note that the only proof
that makes use of the constant domain rule (cd) is the proof of axiom A13 (the constant
domain axiom). The conclusion of each derivation displays the axiom derived.

Axiom A9. We present the case below where the universal quantifier is not vacuous, and
note that the case where the universal quantifier is vacuous is similar.

Lem. 13
w ≤ u, u ≤ u,~a ∈ Dw, a ∈ Dw, a ∈ Du,~a ∈ Du, u : ∀xφ(~a, x), u : φ(~a, a)⇒ u : φ(~a, a)

(∀l)
w ≤ u, u ≤ u,~a ∈ Dw, a ∈ Dw, a ∈ Du,~a ∈ Du, u : ∀xφ(~a, x)⇒ u : φ(~a, a)

(nd)× n
w ≤ u, u ≤ u,~a ∈ Dw, a ∈ Dw, u : ∀xφ(~a, x)⇒ u : φ(~a, a)

(ref)
w ≤ u,~a ∈ Dw, a ∈ Dw, u : ∀xφ(~a, x)⇒ u : φ(~a, a)

(⊃r)
~a ∈ Dw, a ∈ Dw ⇒ w : ∀xφ(~a, x) ⊃ φ(~a, a)

Axiom A10. Similar to the previous case, we show the case where the existential quantifier
is not vacuous. The case where the quantifier is vacuous is proven similarly.

Lem. 13
w ≤ u,~a ∈ Dw, a ∈ Dw,~a ∈ Du, a ∈ Du, u : φ(~a, a)⇒ u : φ(~a, a), u : ∃xφ(~a, x)

(∃r)
w ≤ u,~a ∈ Dw, a ∈ Dw,~a ∈ Du, a ∈ Du, u : φ(~a, a)⇒ u : ∃xφ(~a, x)

(nd)× n
w ≤ u,~a ∈ Dw, a ∈ Dw, u : φ(~a, a)⇒ u : ∃xφ(~a, x)

(⊃r)
~a ∈ Dw, a ∈ Dw ⇒ w : φ(~a, a) ⊃ ∃xφ(~a, x)

Axiom A11. We show how to derive the axiom A11 below when the universal quantifier
is not vacuous, and omit the proof of the axiom when the universal quantifier is vacuous
as the proof is similar. To save space and improve readability, we let R := w ≤ v, v ≤
u, u ≤ z,~a ∈ Dw,~b ∈ Dw, a ∈ Dz, R′ := R, v ≤ z, z ≤ z, and Γ := u : ψ(~b) ⊃ φ(~a, a), v :
∀x(ψ(~b) ⊃ φ(~a, x)). Moreover, we suppose that k1 is equal to the number of domain
atoms ~b ∈ Dw = b1 ∈ Dw, . . . , bk1 ∈ Dw, and k2 is equal to the number of domain atoms
~a ∈ Dw = a1 ∈ Dw, . . . , ak2 ∈ Dw.

Π1 =
{ Lem. 13

R′,~b ∈ Dv,~b ∈ Du,Γ, u : ψ(~b)⇒ z : ψ(~b), z : φ(~a, a)
(nd)× 2k1

R′,Γ, u : ψ(~b)⇒ z : ψ(~b), z : φ(~a, a)
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Π2 =
{ Lem. 13

R′,~a ∈ Dv,~a ∈ Du,~a ∈ Dz,Γ, u : ψ(~b), z : φ(~a, a)⇒ z : φ(~a, a)
(nd)× 3k2

R′,Γ, u : ψ(~b), z : φ(~a, a)⇒ z : φ(~a, a)

Π1 Π2 (⊃l)
R, v ≤ z, z ≤ z, z : ψ(~b) ⊃ φ(~a, a), v : ∀x(ψ(~b) ⊃ φ(~a, x)), u : ψ(~b)⇒ z : φ(~a, a)

(ref)
R, v ≤ z, z : ψ(~b) ⊃ φ(~a, a), v : ∀x(ψ(~b) ⊃ φ(~a, x)), u : ψ(~b)⇒ z : φ(~a, a)

(∀l)
R, v ≤ z, v : ∀x(ψ(~b) ⊃ φ(~a, x)), u : ψ(~b)⇒ z : φ(~a, a)

(tra)
R, v : ∀x(ψ(~b) ⊃ φ(~a, x)), u : ψ(~b)⇒ z : φ(~a, a)

(∀r)
w ≤ v, v ≤ u,~a ∈ Dw,~b ∈ Dw, v : ∀x(ψ(~b) ⊃ φ(~a, x)), u : ψ(~b)⇒ u : ∀xφ(~a, x)

(⊃r)
w ≤ v,~a ∈ Dw,~b ∈ Dw, v : ∀x(ψ(~b) ⊃ φ(~a, x))⇒ v : ψ(~b) ⊃ ∀xφ(~a, x)

(⊃r)
~a ∈ Dw,~b ∈ Dw ⇒ w : ∀x(ψ(~b) ⊃ φ(~a, x)) ⊃ (ψ(~b) ⊃ ∀xφ(~a, x))

Axiom A12. We show how to derive axiom A12 below and only consider the case where
the quantifiers are non-vacuous, since the case where the quantifiers vacuously quantify ψ
is similar. To save space and improve readability, we let R := w ≤ v, v ≤ u,~a ∈ Dw,~b ∈
Dw, a ∈ Du and Γ := u : ψ(~b, a) ⊃ φ(~a), v : ∀x(ψ(~b, x) ⊃ φ(~a)). Also, we let k1 be equal
to the number of domain atoms ~b ∈ Dw = b1 ∈ Dw, . . . , bk1 ∈ Dw, and k2 be equal to the
number of domain atoms ~a ∈ Dw = a1 ∈ Dw, . . . , ak2 ∈ Dw.

Π1 =
{ Lem. 13

R, u ≤ u,~b ∈ Dv,~b ∈ Du,Γ, u : ψ(~b, a)⇒ u : ψ(~b, a), u : φ(~a)
(nd)× 2k1

R, u ≤ u,Γ, u : ψ(~b, a)⇒ u : ψ(~b, a), u : φ(~a)

Π2 =
{ Lem. 13

R, u ≤ u,~a ∈ Dv,~a ∈ Du,Γ, u : ψ(~b, a), u : φ(~a)⇒ u : φ(~a)
(nd)× 2k2

R, u ≤ u,Γ, u : ψ(~b, a), u : φ(~a)⇒ u : φ(~a)

Π1 Π2 (⊃l)
R, u ≤ u, u : ψ(~b, a) ⊃ φ(~a), v : ∀x(ψ(~b, x) ⊃ φ(~a)), u : ψ(~b, a)⇒ u : φ(~a)

(ref)
R, u : ψ(~b, a) ⊃ φ(~a), v : ∀x(ψ(~b, x) ⊃ φ(~a)), u : ψ(~b, a)⇒ u : φ(~a)

(∀l)
R, v : ∀x(ψ(~b, x) ⊃ φ(~a)), u : ψ(~b, a)⇒ u : φ(~a)

(∃l)
w ≤ v, v ≤ u,~a ∈ Dw,~b ∈ Dw, v : ∀x(ψ(~b, x) ⊃ φ(~a)), u : ∃xψ(~b, x)⇒ u : φ(~a)

(⊃r)
w ≤ v,~a ∈ Dw,~b ∈ Dw, v : ∀x(ψ(~b, x) ⊃ φ(~a))⇒ v : ∃xψ(~b, x) ⊃ φ(~a)

(⊃r)
~a ∈ Dw,~b ∈ Dw ⇒ w : ∀x(ψ(~b, x) ⊃ φ(~a)) ⊃ (∃xψ(~b, x) ⊃ φ(~a))

Axiom A13. Below, we derive the constant domain axiom A13 and consider the case
where the universal quantifier non-vacuously quantifiers over φ; the case where the
universal quantifier is vacuous is similar. Note that the derivation requires an application
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of the constant domain rule (cd), showing that the axiom is derivable in G3IntQC,
but not G3IntQ (see proof Π1 below). To save space and improve readability, we let
R := w ≤ v, v ≤ u,~a ∈ Dw,~b ∈ Dw, a ∈ Du.

Π1 =
{ Lem. 13

R, a ∈ Du, v ≤ v,~a ∈ Dv, v : φ(~a, a), v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ u : φ(~a, a), v : ψ(~b)
(nd)× k1

R, a ∈ Du, v ≤ v, v : φ(~a, a), v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ u : φ(~a, a), v : ψ(~b)

Π2 =
{ Lem. 13

R, a ∈ Du, v ≤ v,~b ∈ Dv, v : ψ(~b), v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ u : φ(~a, a), v : ψ(~b)
(nd)× k2

R, a ∈ Du, v ≤ v, v : ψ(~b), v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ u : φ(~a, a), v : ψ(~b)

Π1 Π2 (∨l)
R, a ∈ Du, v ≤ v, v : φ(~a, a) ∨ ψ(~b), v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ u : φ(~a, a), v : ψ(~b)

(∀l)
R, a ∈ Du, v ≤ v, v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ u : φ(~a, a), v : ψ(~b)

(cd)
R, v ≤ v, v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ u : φ(~a, a), v : ψ(~b)

(ref)
R, v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ u : φ(~a, a), v : ψ(~b)

(∀r)
w ≤ v,~a ∈ Dw,~b ∈ Dw, v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ v : ∀xφ(~a, x), v : ψ(~b)

(∨r)
w ≤ v,~a ∈ Dw,~b ∈ Dw, v : ∀x(φ(~a, x) ∨ ψ(~b))⇒ v : ∀xφ(~a, x) ∨ ψ(~b)

(⊃r)
~a ∈ Dw,~b ∈ Dw ⇒ w : ∀x(φ(~a, x) ∨ ψ(~b)) ⊃ ∀xφ(~a, x) ∨ ψ(~b)

Rule R0. To show that modus ponens can be simulated, we let ~a be all parameters
occurring in φ, ~b be all parameters occurring in ψ, and let ~c consist of all parameters
occurring in ψ, but not φ. The last inference consists of a sequence of k (ned) applications
that delete all domains atoms containing parameters from φ, but not ψ.

Π =
{ ~a ∈ Dw,~c ∈ Dw ⇒ w : φ(~a) ⊃ ψ(~b)

Lem. 17
w ≤ u,~a ∈ Dw,~c ∈ Dw, u : φ(~a)⇒ u : ψ(~b)

(lsb)
(w ≤ u)(w/u), (~a ∈ Dw)(w/u), (~c ∈ Dw)(w/u), (u : φ(~a))(w/u)⇒ (u : ψ(~b))(w/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

w ≤ w,~a ∈ Dw,~c ∈ Dw, w : φ(~a)⇒ w : ψ(~b)
(ref)

~a ∈ Dw,~c ∈ Dw, w : φ(~a)⇒ w : ψ(~b)

~a ∈ Dw ⇒ w : φ(~a)
(wk)

~a ∈ Dw,~c ∈ Dw ⇒ w : φ(~a) Π
(cut)

~a ∈ Dw,~c ∈ Dw ⇒ w : ψ(~b)
(ned)× k

~b ∈ Dw ⇒ w : ψ(~b)

Rule R1. Last, we show that the generalization rule R1 can be simulated. We assume
there are k domains atoms ~a ∈ Dw := ~a1 ∈ D1, . . . ,~ak ∈ Dk.
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~a ∈ Dw, a ∈ Dw ⇒ w : φ(~a, a)
(wk)

u ≤ w,~a ∈ Du,~a ∈ Dw, a ∈ Dw ⇒ w : φ(~a, a)
(nd)× k

u ≤ w,~a ∈ Du, a ∈ Dw ⇒ w : φ(~a, a)
(∀r)

~a ∈ Du ⇒ u : ∀xφ(~a, x)
(lsb)

~a ∈ Dw ⇒ w : ∀xφ(~a, x)

As in the previous section, we define sequent graphs for labelled sequents, which uncovers
the underlying data structures inherent in our sequents. This theoretical tool will assist
us while refining our calculi in the next chapter.

Definition 50 (Sequent Graph for First-Order Intuitionistic Logics). Let Λ := R,Γ⇒ ∆
be a labelled sequent for first-order intuitionistic logics. We define the sequent graph of
Λ, G(Λ) = (V,E,L), as follows:

I V = Lab(Λ)

I E = {(w, u) | w ≤ u ∈ R}

I L(w) = Γ � w ⇒ ∆ � w

Last, we define labelled tree sequents, labelled tree proofs, and the fixed root property
analogous to Def. 44 and 45.

Example 2. We provide an example of a labelled tree sequent Λ1 along with its corre-
sponding sequent graph.

Λ1 = w ≤ u, u ≤ z, u ≤ v,
w : p, z : q, z : q ⇒ w : p, z : r, v : ⊥

p⇒ p
w

��
ε⇒ ε
u

##zz
q, q ⇒ r

z
ε⇒ ⊥
v

Theorem 12. Each calculus G3IntQ and G3IntQC is incomplete relative to labelled tree
derivations.

Proof. The result follows by considering the proof of (p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)),
which requires the use of the (tra) rule, thus breaking the labelled tree property.
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3.4 Labelled Calculi for Deontic STIT Logics
Although STIT logics were introduced three decades ago by Belnap and Perloff [BP90],
the proof theory for such logics has only recently been developed. Tableau calculi for tradi-
tional (non-deontic) multi-agent STIT logics were introduced by Wansing in 2006 [Wan06],
with extended versions introduced in 2018 [OW18]. The first cut-free labelled sequent
calculi for traditional multi-agent STIT logics were presented in 2019 [vBL19a], along
with cut-free labelled sequent calculi for the temporal STIT logics: TSTIT [Lor13] and
XSTIT [Bro11a, Bro11b]. While the papers [vBL19a, LvB19] provided labelled calculi for
traditional, multi-agent STIT logics based on Kripke semantics [BHT08], an equivalent
set of labelled calculi were given for the same class of logics in [NP20] based on branching-
time semantics [BPX01]. Furthermore, the proof theory for a class of deontic STIT logics
was addressed as well, with labelled calculi being introduced in [vBL21] and employed to
map out the interrelationships between certain deontic STIT logics and Ought-implies-
Can principles. The most relevant work for our purposes however is [LvB19], where a
simplified semantics for multi-agent STIT logics was exploited to design labelled calculi
amenable to the method of refinement. These calculi were then refined and used to
provide the first proof-search and counter-model construction algorithms for STIT logics.

In this section, labelled sequent calculi are given for deontic STIT logics based on the
author’s joint work in [vBL19a, vBL21, LvB19]. It will be shown that these calculi
possess useful proof-theoretic properties, and refined versions of the calculi (obtained in
Ch. 4) will be applied to provide proof-search and counter-model extraction algorithms
for a class of deontic STIT logics (in Ch. 6).

Definition 51 (Labelled Sequents for Deontic STIT Logics). We define labelled sequents
for deontic STIT logics to be syntactic objects of the form Λ := R ⇒ Γ, where R (the
antecedent) and Γ (the consequent) are defined via the following grammars in BNF:

R ::= ε | R[i]wu | I⊗iw | R,R Γ ::= ε | w : φ | Γ,Γ

with i ∈ Ag, φ ∈ LDSk
n
, and w, u elements from a denumerable set of labels Lab :=

{w, u, v, ...}. We refer to formulae of the form R[i]wu and I⊗iw as relational atoms, and
refer to formulae of the form w : φ as labelled formulae.

We use Λ, Λ′, . . . (occasionally annotated) to denote labelled sequents, R, R′, . . . (occa-
sionally annotated) to denote multisets of relational atoms, and Γ, Γ′, . . . (occasionally
annotated) to denote multisets of labelled formulae. We therefore take the comma operator
to commute and associate in R and Γ; therefore, we would identify R[1]wu,R[2]wv, I⊗iv
with R[2]wv, I⊗iv,R[1]wu, and v : [1]φ, u : ψ,w : [1]φ with u : ψ,w : [1]φ, v : [1]φ. This
interpretation of comma is what lets us view strings R and Γ as multisets. As in the
previous two sections, we let ε represent the empty string, which acts as an identity
element for comma (e.g. we identify R[1]wu, ε,R[2]wv with R[1]wu,R[2]wv). Therefore,
the empty string ε will usually be implicit in labelled sequents. Last, we use the notation
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(id)R ⇒ w : p, w : ¬p,Γ
R ⇒ w : φ,Γ R ⇒ w : ψ,Γ (∧r)R ⇒ w : φ ∧ ψ,Γ

R ⇒ w : φ,w : ψ,Γ (∨r)R ⇒ w : φ ∨ ψ,Γ
R, R[i]wu,R[i]wv,R[i]uv ⇒ Γ

(euci)R, R[i]wu,R[i]wv ⇒ Γ

R ⇒ u : φ,Γ
(�)†R ⇒ w : �φ,Γ

R ⇒ w : ♦φ, u : φ,Γ (♦)R ⇒ w : ♦φ,Γ
R, R[i]ww ⇒ Γ

(refi)R ⇒ Γ

R, I⊗i
u⇒ w : 	iφ, u : φ,Γ

(	i)R, I⊗i
u⇒ w : 	iφ,Γ

R, R[i]wu⇒ w : 〈i〉φ, u : φ,Γ
(〈i〉)

R, R[i]wu⇒ w : 〈i〉φ,Γ

R, R[i]wu⇒ u : φ,Γ
([i])†R ⇒ w : [i]φ,Γ

R, I⊗i
u⇒ u : φ,Γ

(⊗i)†R ⇒ w : ⊗iφ,Γ
R, I⊗i

u⇒ Γ
(Di

2)†R ⇒ Γ

R, R[0]w0u, ..., R[n]wnu⇒ Γ
(IOA)†R ⇒ Γ

R, R[i]wu, I⊗i
w, I⊗i

u⇒ Γ
(Di

3)R, R[i]wu, I⊗i
w ⇒ Γ{

R, R[i]wmwj ⇒ Γ
∣∣∣ 0 ≤ m ≤ k − 1, m+ 1 ≤ j ≤ k

}
(APCki )R ⇒ Γ

Figure 3.5: The calculi G3DSkn (with |Ag| = n+ 1 and n, k ∈ N). The superscript † on
(�), ([i]), (⊗i), (IOA), and (D2i) indicates that u is a eigenvariable, i.e. it does not
occur in the conclusion. We have ([i]), (〈i〉), (⊗i), (	i), (refi), (euci), (Di

2), (Di
3), and

(APCki ) rules for each i ∈ Ag. We stipulate that if k = 0, then (APCki ) is omitted from
the calculus.

Lab(R), Lab(Γ), and Lab(R ⇒ Γ) to represent the set of labels contained in R, Γ, and
R ⇒ Γ respectively (e.g., Lab(R[2]wv ⇒ u : p) = {w, v, u}).

The calculus G3DSkn for the logic DSkn (with |Ag| = n + 1, k the maximum number
of choices available to agents, and n, k ∈ N) is shown in Fig. 3.5 with the derivability
relation defined as follows:

Definition 52. We write `G3DSk
n

Λ to indicate that a labelled sequent Λ is derivable in
G3DSkn.

The (id) rule encodes that fact that in a DSkn-model, either a propositional atom holds
at a world, or it does not. The (∨r), (∧r), (♦), (�), (	i), (⊗i), (〈i〉), and ([i]) rules are
obtained from the corresponding semantic clauses (Def. 25). The structural rules (refi)
and (euci) encode the fact that choice-cells in a DSkn-model are equivalence classes, that
is each R[i] relation is both reflexive and Euclidean as dictated by condition (S1). The
other conditions (S2), (D2), (D3), and (S3) imposed on a DSkn-model are encoded by
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the rules, (IOA), (Di
2), (Di

3), and (APCki ), respectively. Note that when the maximum
number of choices k > 0, the (APCki ) rule contains k(k+ 1)/2 premises, and each sequent
R, R[i]xmxj ⇒ Γ (for 0 ≤ m ≤ k − 1 and m+ 1 ≤ j ≤ k) represents a different premise
of the rule. For example, if k = 1 or k = 2, then the form of the (APCki ) rule is as shown
below top and below bottom, respectively:

R, R[i]w0w1 ⇒ Γ
(APC1

i )R ⇒ Γ

R, R[i]w0w1 ⇒ Γ R, R[i]w0w2 ⇒ Γ R, R[i]w1w2 ⇒ Γ
(APC2

i )R ⇒ Γ

As is characteristic of labelled systems, our labelled sequents represent an abstraction
of a model (viz. a DSkn-model) with the labels denoting worlds, the relational atoms
expressing the relations of the model, and labelled formulae representing that formulae
are (un)satisfied at a particular world. To make the correspondence between the syntax
of our labelled sequents and the content of a DSkn-model, we define how to interpret
labelled sequents below. In addition, our sequent semantics will allow us to prove each
G3DSkn calculus sound relative to the associated logic DSkn, which we show after defining
the sequent semantics.

Definition 53 (G3DSkn Semantics). Let M = (W, {R[i] | i ∈ Ag}, {I⊗i | i ∈ Ag}, V ) be a
DSkn-model with I an interpretation function mapping labels to worlds, i.e. I : Lab 7→W .
We define the satisfaction of a relational atom R[i]wu or I⊗iw (written M, I |=DSk

n
R[i]wu

and M, I |=DSk
n
I⊗iw, resp.) and labelled formula w : φ (written M, I |=DSk

n
w : φ) as

follows:

I M, I |=DSk
n
R[i]wu iff (I(w), I(u)) ∈ R[i]

I M, I |=DSk
n
I⊗iw iff I(w) ∈ I⊗i

I M, I |=DSk
n
w : φ iff M, I(w)  φ

We say that a multiset of relational atoms R is satisfied in M with I (written M, I |=DSk
n

R) iff M, I |=DSk
n
R[i]wu and M, I |=DSk

n
I⊗iw for all R[i]wu, I⊗iw ∈ R, and we say

that a multiset of labelled formulae Γ is satisfied in M with I (written M, I |=DSk
n

Γ) iff
M, I |=DSk

n
w : φ for all w : φ ∈ Γ.

A labelled sequent Λ := R ⇒ Γ is satisfied in M with I (written, M, I |=DSk
n

Λ) iff if
M, I |=DSk

n
R, then M, I |=DSk

n
Γ. Also, we say that a labelled sequent Λ is falsified in M

with I iff M, I 6|=DSk
n

Λ, that is, Λ is not satisfied by M with I.

Last, a labelled sequent Λ is DSkn-valid (written |=DSk
n

Λ) iff it is satisfiable in every
DSkn model M with every interpretation function I. We say that a labelled sequent Λ is
DSkn-invalid iff 6|=DSk

n
Λ, i.e. Λ is not DSkn-valid.

70



3.4. Labelled Calculi for Deontic STIT Logics

Intuitively, the above definition expresses that a sequent Λ := R ⇒ Γ is satisfied in a
DSkn-model iff some labelled formula w : φ ∈ Γ holds, given that all relational atoms in
R hold. Therefore, in traditional fashion, we interpret the comma in the antecedent
conjunctively, and the comma in the consequent disjunctively, with the sequent arrow ⇒
representing an implication. Using the above definition, we prove our calculi sound:

Theorem 13 (Soundness). If `G3DSk
n

Λ, then |=DSk
n

Λ.

Proof. The result is proven by showing that each initial sequent generated by (id) is
DSkn-valid, and that each additional rule of G3DSkn preserves validity. We prove the latter
by contraposition, and show that if the conclusion of the rule is DSkn-invalid, then at least
one of the premises (or, the premise) of the rule is DSkn-invalid. We omit consideration of
the (id), (∨r), and (∧r) cases, as they are simple.

(�) Suppose that M, I 6|=DSk
n
R ⇒ w : �φ,Γ. It follows that M, I(w) 6 �φ, implying

that there exists some u′ such that M,u′ 6 φ. Let us define I ′(v) = I(v) if v 6= u
and I ′(u) = u′ otherwise. By definition, we have that M, I ′(u) 6 φ. Since u is an
eigenvariable, it follows that the premise is falsified by M with I ′.

([i]) Assume that M, I 6|=DSk
n
R ⇒ w : [i]φ,Γ. Then, M, I(w) 6 [i]φ, implying that there

exists a world u′ such that (I(w), u′) ∈ R[i] and M,u′ 6 φ. We let I ′(v) = I(v) if v 6= u
and I ′(u) = u′ otherwise. By definition, (I ′(w), I ′(u)) ∈ R[i] and M, I ′(u) 6 φ. Since the
label u is an eigenvariable, it follows that the premise is falsified by M with I ′.

(⊗i) Assume that M, I 6|=DSk
n
R ⇒ w : ⊗iφ. It follows that M, I(w) 6 w : ⊗iφ, implying

that there exists a world u′ such that u′ ∈ I⊗i and M,u′ 6 φ. We define I ′(v) = I(v) if
v 6= u and I ′(u) = u′ otherwise. By definition, I ′(u) ∈ I⊗i and M, I ′(u) 6 φ, and since u
is an eigenvariable, it follows that the premise is falsified by M with I ′.

(♦) Assume that M, I 6|=DSk
n
R ⇒ w : ♦φ,Γ. Then, M, I(w) 6 ♦φ, meaning that for all

v ∈W , M,v 6 φ. Since I(u) ∈W , this implies that M, I(u) 6 φ, which shows that the
premise is falsified by M with I.

(〈i〉) Assume that M, I 6|=DSk
n
R, R[i]wu ⇒ w : 〈i〉φ,Γ. Then, M, I(w) 6 [i]φ, which

implies that for all u′, if (I(w), u′) ∈ R[i], then M,u′ 6 φ. Since (I(w), I(u)) ∈ R[i], it
follows that M, I(u) 6 φ, which shows that the premise is falsified by M with I.

(	i) Let us suppose thatM, I 6|=DSk
n
R, I⊗iu⇒ w : 	iφ,Γ. It follows thatM, I(w) 6 	iφ,

implying that for all u′, if u′ ∈ I⊗i , then M,u′ 6 φ. Since I(u) ∈ I⊗i , we have that
M, I(u) 6 φ, which shows that the premise is falsified by M with I.

(refi) Let us suppose that M, I 6|=DSk
n
R ⇒ Γ. Since the relation R[i] is reflexive, it

follows that (I(w), I(w)) ∈ R[i], showing that the premise is falsified by M with I.

(euci) Let us suppose that M, I 6|=DSk
n
R, R[i]wu,R[i]uv ⇒ Γ. Therefore, (I(w), I(u)) ∈

R[i] and (I(u), I(v)) ∈ R[i]. Since the relationR[i] is Euclidean, it follows that (I(w), I(v)) ∈
R[i], which shows that the premise is falsified by M with I.
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(Di
2) Let us suppose that M, I 6|=DSk

n
R ⇒ Γ. Since I⊗i satisfies condition (D2), we know

there exists some u′ ∈ W such that u′ ∈ I⊗i . Let us define I ′(v) = I(v) if v 6= u, and
I ′(u) = u′ otherwise. By definition, I ′(u) ∈ I⊗i , and since u is an eigenvariable, it follows
that the premise is falsified by M with I ′.

(Di
3) Suppose that M, I 6|=DSk

n
R, R[i]wu, I⊗iw ⇒ Γ. This entails that (I(w), I(u)) ∈ R[i]

and I(w) ∈ I⊗i . Since our modelM satisfies the condition (D3), it follows that I(u) ∈ I⊗i ,
which shows that the premise is falsified by M with I.

(IOA) Suppose that M, I 6|=DSk
n
R ⇒ Γ. Since our model M satisfies the (S2) condition,

we know that for I(w0), . . . , I(wn) ∈W , there exists some u′ such that (I(wi), u′) ∈ R[i]
for i ∈ {0, . . . , n}. Let us define I ′(v) = I(v) if v 6= u and I ′(u) = u′ otherwise. Then,
it follows that (I(wi), I(u)) ∈ R[i] for i ∈ {0, . . . , n}. Because u is an eigenvariable, we
have that the premise is falsified by M with I ′.

(APCki ) Suppose that M, I 6|=DSk
n
R ⇒ Γ. Then, since our model M satisfies the (S3)

condition, we know there exist worlds I(w0), . . . , I(wk) ∈W such that∨
0≤m≤k−1,m+1≤j≤k

(I(wm), I(wj)) ∈ R[i]

holds. Hence, there must exist an m and j (with 0 ≤ m ≤ k − 1,m+ 1 ≤ j ≤ k) such
that (I(wm), I(wj)) ∈ R[i] holds, showing that one of the premises is falsified by M with
I.

Our labelled calculi for deontic STIT logics possess fundamental proof-theoretic properties
such as the hp-admissibility of label substitutions (lsb), weakening (wk), and contractions
(ctrR), (ctrr). Moreover, all rules of the calculi are hp-invertible, and each calculus admits
syntactic cut-elimination. All results are shown below, with the methods of proof based
upon the work in [Neg05, Sim94, Vig00].

The aforementioned properties are useful not only in establishing the completeness of
our calculi (Thm. 15), but are useful in applications such as decidability via proof-search
(see Sect. 6.1). Before moving on to establish these results, we define the notion of a label
substitution, which is an operation that is fundamental for establishing our results.

Definition 54 (Label Substitution). We define a label substitution (w/u) for w, u ∈ Lab
on individual relational atoms and labelled formulae as follows:

I (R[i]vz)(w/u) =


R[i]wz if u = v and v 6= z

R[i]ww if u = v and v = z

R[i]uw if u = z and v 6= z

R[i]vz otherwise

I (I⊗iv)(w/u) =
{
I⊗iw if u = v

I⊗iv otherwise
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R ⇒ Γ (lsb)
R(w/u)⇒ Γ(w/u)

R ⇒ Γ (wk)
R,R′ ⇒ Γ,Γ′

R,R′,R′ ⇒ Γ (ctrR)
R,R′ ⇒ Γ

R ⇒ w : φ,w : φ,Γ (ctrr)R ⇒ w : φ,Γ
R ⇒ w : φ,Γ R ⇒ w : ¬φ,Γ (cut)R ⇒ Γ

Figure 3.6: The set Str(DSkn) of structural rules consists of the rules above.

I (v : φ)(w/u) =
{
w : φ if u = v

v : φ otherwise

We define the label substitution (w/u) on a multiset of relational atoms R and a multiset
of labelled formulae Γ to be the multiset obtained by applying (w/u) to each element of
the multiset.

Lemma 19. For all φ ∈ LKm(
∑

), `G3DSk
n
R ⇒ w : φ,w : ¬φ,Γ.

Proof. We prove the result by induction on the complexity of φ.

Base case. If |φ| = 0, then φ is of the form p or ¬p. In either case, the desired result
is obtained as an instance of (id). (NB. If φ is of the form ¬p, then observe that the
sequent R ⇒ w : ¬p, w : ¬¬p,Γ is identical to R ⇒ w : ¬p, w : p,Γ by the definition of
negation (Def. 23), which is an instance of (id).)

Inductive step. We show the cases where φ is of the form �ψ, 〈i〉ψ, and ⊗iψ; the other
cases when φ is of the form ψ ∨ χ, ψ ∧ χ, ♦ψ, [i]ψ, or 	iψ are simple or are shown
similarly.

IHR ⇒ u : φ,w : ♦¬ψ, u : ¬ψ,Γ (♦)R ⇒ u : φ,w : ♦¬ψ,Γ (�)R ⇒ w : �ψ,w : ♦¬ψ,Γ

IHR, R[i]wu⇒ w : 〈i〉ψ, u : ψ, u : ¬ψ,Γ
(〈i〉)

R, R[i]wu⇒ w : 〈i〉ψ, u : ¬ψ,Γ
([i])

R ⇒ w : 〈i〉ψ,w : [i]¬ψ,Γ

IHR, I⊗iu⇒ u : ψ, u : ¬ψ,w : 	i¬ψ,Γ (	i)R, I⊗iu⇒ u : ψ,w : 	i¬ψ,Γ (⊗i)R ⇒ w : ⊗iψ,w : 	i¬ψ,Γ

Lemma 20. The rule (lsb) is hp-admissible in G3DSkn.
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Proof. We prove the result by induction on the height of the given derivation.

Base case. Any application of (lsb) to an instance of (id) yields another instance of (id),
which solves the base case.

Inductive step. With the exception of the (�), ([i]), (⊗i), (Di
2), and (IOA) rules, all

cases are resolved by applying IH and then the corresponding rule. Concerning the (�),
([i]), (⊗i), (Di

2), and (IOA) cases, the non-trivial cases occur when the label substituted
in is identical to the eigenvariable. We show how to resolve these non-trivial cases below
and note that all other cases (i.e. the trivial cases) are resolved by applying IH followed
by the corresponding rule. Below, we assume that z is a fresh label.

R ⇒ u : φ,Γ (�)R ⇒ w : �φ,Γ (lsb)
R(u/v)⇒ (w : �φ)(u/v),Γ(u/v)

 

R ⇒ u : φ,Γ
IHR(z/u)⇒ (u : φ)(z/u),Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R ⇒ z : φ,Γ
IHR(u/v)⇒ (z : φ)(u/v),Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R(u/v)⇒ z : φ,Γ(u/v)
(�)

R(u/v)⇒ (w : �φ)(u/v),Γ(u/v)

R, R[i]wu⇒ u : φ,Γ
([i])

R ⇒ w : [i]φ,Γ
(lsb)

R(u/v)⇒ (w : [i]φ)(u/v),Γ(u/v)
 

R, R[i]wu⇒ u : φ,Γ
IHR(z/u), (R[i]wu)(z/u)⇒ (u : φ)(z/u),Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, R[i]wz ⇒ z : φ,Γ
IHR(u/v), (R[i]wu)(u/v)⇒ (z : φ)(u/v),Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R(u/v), (R[i]wu)(u/v)⇒ z : φ,Γ(u/v)
([i])

R(u/v)⇒ (w : [i]φ)(u/v),Γ(u/v)

R, I⊗iu⇒ u : φ,Γ
(⊗i)R ⇒ w : ⊗iφ,Γ (lsb)

R(u/v)⇒ (w : ⊗iφ)(u/v),Γ(u/v)
 

R, I⊗iu⇒ u : φ,Γ
IHR(z/u), (I⊗iu)(z/u)⇒ (u : φ)(z/u),Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, I⊗iz ⇒ z : φ,Γ
IHR(u/v), (I⊗iz)(u/v)⇒ (z : φ)(u/v),Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R(u/v), I⊗iz ⇒ z : φ,Γ(u/v)
(⊗i)R(u/v)⇒ (w : ⊗iφ)(u/v),Γ(u/v)
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R, I⊗iu⇒ Γ
(Di

2)R ⇒ Γ (lsb)
R(u/v)⇒ Γ(u/v)

 

R, I⊗iu⇒ Γ
IHR(z/u), (I⊗iu)(z/u)⇒ Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, I⊗iz ⇒ Γ
IHR(u/v), (I⊗iz)(u/v)⇒ Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R(u/v), I⊗iz ⇒ Γ(u/v)
(Di

2)R(u/v)⇒ Γ(u/v)

R, R[0]w0u, ..., R[n]wnu⇒ Γ
(IOA)R ⇒ Γ (lsb)

R(u/v)⇒ Γ(u/v)
 

R, R[0]w0u, ..., R[n]wnu⇒ Γ
IHR(z/u), (R[0]w0u, ..., R[n]wnu)(z/u)⇒ Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, R[0]w0z, ..., R[n]wnz ⇒ Γ
IHR(u/v), (R[0]w0u, ..., R[n]wnu)(u/v)⇒ Γ(u/v)
(IOA)

R(u/v)⇒ Γ(u/v)

Lemma 21. The rule (wk) is hp-admissible in G3DSkn.

Proof. We prove the result by induction on the height of the given derivation.

Base case. The base case is easily resolved as any application of (wk) to an instance of
(id) gives another instance of (id).

Inductive step. With the exception of the (�), ([i]), (⊗i), (Di
2), and (IOA) cases, all

cases are resolved by invoking IH followed by the corresponding rule. The non-trivial
(�), ([i]), (⊗i), (Di

2), and (IOA) cases arise when a relational atom or labelled formula is
weakened in containing the eigenvariable of the inference. We show how to resolve these
cases below and omit the other (trivial) cases as they follow by invoking IH and then
applying the corresponding rule. We let z be a fresh label below.

R ⇒ u : φ,Γ (�)R ⇒ w : �φ,Γ (wk)
R,R′ ⇒ w : �φ,Γ,Γ′

 

R ⇒ u : φ,Γ (lsb)
R(z/u)⇒ u : φ(z/u),Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R ⇒ z : φ,Γ
IHR,R′ ⇒ z : φ,Γ,Γ′ (�)R ⇒ w : �φ,Γ
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R, R[i]wu⇒ u : φ,Γ
([i])

R ⇒ w : [i]φ,Γ
(wk)

R,R′ ⇒ w : [i]φ,Γ,Γ′
 

R, R[i]wu⇒ u : φ,Γ
(lsb)

R(z/u), R[i]wu(z/u)⇒ u : φ(z/u),Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, R[i]wz ⇒ z : φ,Γ

IHR,R′, R[i]wz ⇒ z : φ,Γ,Γ′
([i])

R,R′ ⇒ w : [i]φ,Γ,Γ′

R, I⊗iu⇒ u : φ,Γ
(⊗i)R ⇒ w : ⊗iφ,Γ (wk)

R,R′ ⇒ w : ⊗iφ,Γ,Γ′
 

R, I⊗iu⇒ u : φ,Γ
(lsb)

R(z/u), I⊗iu(z/u)⇒ u : φ(z/u),Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, I⊗iz ⇒ z : φ,Γ

IHR,R′, I⊗iz ⇒ z : φ,Γ,Γ′
(⊗i)R,R′ ⇒ w : ⊗iφ,Γ,Γ′

R, I⊗iu⇒ Γ
(Di

2)R ⇒ Γ (wk)
R,R′ ⇒ Γ,Γ′

 

R, I⊗iu⇒ Γ
(lsb)

R(z/u), I⊗iu(z/u)⇒ Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, I⊗iz ⇒ Γ

IHR,R′, I⊗iz ⇒ Γ,Γ′
(⊗i)R,R′ ⇒ Γ,Γ′

R, R[0]w0u, ..., R[n]wnu⇒ Γ
(IOA)R ⇒ Γ (wk)

R,R′ ⇒ Γ,Γ′
 

R, R[0]w0u, ..., R[n]wnu⇒ Γ
(lsb)

R(z/u), R[0]w0u(z/u), ..., R[n]wnu(z/u)⇒ Γ(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, R[0]w0z, ..., R[n]wnz ⇒ Γ

IHR,R′, R[0]w0z, ..., R[n]wnz ⇒ Γ,Γ′
(IOA)

R,R′ ⇒ Γ,Γ′

Lemma 22. All rules in G3DSkn are hp-invertible.

Proof. The hp-invertibility of (♦), (〈i〉), (	i), (refi), (euci), (IOA), (Di
2), and (Di

3)
follow from Lem. 21. The remaining rules are shown to be hp-invertible by induction
on the height of the given derivation, and the proof is similar to the proof of [Neg05,
Prop. 4.11].

Lemma 23. The rules (ctrR) and (ctrr) is hp-admissible in G3DSkn.
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Proof. The result is shown by induction on the height of the given derivation. The hp-
admissibility of (ctrR) is straightforward, as any application of (ctrR) to an initial sequent
yields another initial sequent, and each case of the inductive step follows by applying IH
and then the corresponding rule. Therefore, we focus solely on the hp-admissibility proof
of (ctrr).

Base case. Any application of (ctrr) to an instance of (id) yields another instance of (id),
resolving the base case.

Inductive step. For the inductive step, we assume that the given derivation ends with
an application of (r) followed by an application of (ctrr). If the principal formula of
(r) is not active in (ctrr), then the active formulae of (ctrr) occur in the premise(s) of
(r). Hence, the desired conclusion is obtained by applying IH to the premise(s) of (r),
followed by an application of (r). We may therefore assume that the principal formula
of (r) is active in (ctrr). If the rule (r) is an instance of (♦), (〈i〉), or (	i) then since
the principal formula occurs in the premise of the rule, the case is resolved by applying
IH to the premise, followed by an application of the respective rule. Also, note that (r)
cannot be (refi), (euci), (Di

2), (Di
3), (IOA), or (APCki ) by our assumption, since it does

not have a principal formula on the right. This leaves the (∨r), (∧r), (�), ([i]), and (⊗i)
cases; we show the latter three cases below, as the first two are resolved as in [Neg05,
Thm. 4.12].

R ⇒ u : φ,w : �φ,Γ (�)R ⇒ w : �φ,w : �φ,Γ (ctrr)R ⇒ w : �φ,Γ
 

R ⇒ u : φ,w : �φ,Γ
Lem. 22R ⇒ u : φ, v : φ,Γ (lsb)

R(u/v)⇒ (u : φ)(u/v), (v : φ)(u/v),Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R ⇒ u : φ, u : φ,Γ

IHR ⇒ u : φ,Γ (�)R ⇒ w : �φ,Γ

R, R[i]wu⇒ u : φ,w : [i]φ,Γ
([i])

R ⇒ w : [i]φ,w : [i]φ,Γ
(ctrr)R ⇒ w : [i]φ,Γ

 

R, R[i]wu⇒ u : φ,w : [i]φ,Γ
Lem. 22R, R[i]wu,R[i]wv ⇒ u : φ, v : φ,Γ

(lsb)
R(u/v), (R[i]wu)(u/v), (R[i]wv)(u/v)⇒ (u : φ)(u/v), (v : φ)(u/v),Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, R[i]wu,R[i]wu⇒ u : φ, u : φ,Γ
(ctrR) + IHR, R[i]wu⇒ u : φ,Γ

([i])
R ⇒ w : [i]φ,Γ

R, I⊗iu⇒ u : φ,w : ⊗iφ,Γ (⊗i)R ⇒ w : ⊗iφ,w : ⊗iφ,Γ (ctrr)R ⇒ w : ⊗iφ,Γ
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R, I⊗iu⇒ u : φ,w : ⊗iφ,Γ Lem. 22R, I⊗iu, I⊗iv ⇒ u : φ, v : φ,Γ
(lsb)

R(u/v), (I⊗iu)(u/v), (I⊗iv)(u/v)⇒ (u : φ)(u/v), (v : φ)(u/v),Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, I⊗iu, I⊗iu⇒ u : φ, u : φ,Γ

(ctrR) + IHR, I⊗iu⇒ u : φ,Γ
(⊗i)R ⇒ w : ⊗iφ,Γ

Theorem 14. The rule (cut) is eliminable in G3DSkn.

Proof. We assume w.l.o.g. that we are given a derivation where (cut) is the last rule used,
and that no other instances of (cut) appear in the given derivation. The general result
follows by repeatedly applying the algorithm described below to successively eliminate
topmost instances of (cut) until the derivation is free of (cut) instances. We prove the
result by induction on the lexicographic ordering of pairs (|φ|, h1 + h2), where |φ| is the
complexity of the cut formula φ, h1 is the height of the derivation of the left premise of
(cut), and h2 is the height of the derivation of the right premise of (cut). As is typical
when proving cut elimination, there are a large number of cases, and so, we explicitly
write the assumptions being made in each case for clarity.

1. One of the premises of (cut) is an instance of (id).

1.1 The left premise of (cut) is an instance of (id). Then, the left premise of (cut) is
of the form R ⇒ w : p, w : ¬p,∆, and there are three subcases to consider:

1.1.1 The cut formula is w : p. It follows that the right premise of (cut) is of the
form R ⇒ w : ¬p, w : ¬p,Γ, and the conclusion of (cut) is of the form R ⇒ w : ¬p,Γ.
Observe that applying the hp-admissiblity of (ctrr) (Lem. 23) to the proof of the right
premise yields a proof of the desired conclusion.

1.1.2 The cut formula is w : ¬p. This case is similar to the previous case 1.1.1.

1.1.3 The cut formula is in Γ. Then, the conclusion of (cut) is of the form R ⇒ w :
p, w : ¬p,Γ′, which is an instance of (id).

1.2 The right premise of (cut) is an instance of (id). This case is shown similarly to
the previous case 1.1.

2. None of the premises of (cut) are an instance of (id). In this case, we let R ⇒ w : φ,Γ
be the left premise of (cut) and R ⇒ w : ¬φ,Γ by the right premise of (cut).

2.1 The cut formula w : φ is not principal in the left premise of (cut). We show the
(⊗i), (♦), and (IOA) cases, as the remaining cases are similar. In each case below we
may invoke IH as the sum of the heights h1 + h2 has decreased.

2.1.1 The left premise of (cut) is derived with (⊗i).
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R, I⊗iu⇒ u : ψ,w : φ,Γ
(⊗i)R ⇒ v : ⊗iψ,w : φ,Γ R ⇒ v : ⊗iψ,w : ¬φ,Γ (cut)R ⇒ v : ⊗iψ,Γ

 

R, I⊗iu⇒ u : ψ,w : φ,Γ
R ⇒ v : ⊗iψ,w : ¬φ,Γ

Lem. 22R, I⊗iu⇒ u : ψ,w : ¬φ,Γ
IHR, I⊗iu⇒ u : ψ,Γ

(⊗i)R ⇒ v : ⊗iψ,Γ

2.1.2 The left premise of (cut) is derived with (♦).

R ⇒ v : ♦ψ, u : ψ,w : φ,Γ (♦)R ⇒ v : ♦ψ,w : φ,Γ R ⇒ v : ♦ψ,w : ¬φ,Γ (cut)R ⇒ v : ♦ψ,Γ
 

R ⇒ v : ♦ψ, u : ψ,w : φ,Γ
R ⇒ v : ♦ψ,w : ¬φ,Γ

Lem. 22R ⇒ v : ♦ψ, u : ψ,w : ¬φ,Γ
IHR ⇒ v : ♦ψ, u : ψ,Γ (♦)R ⇒ v : ♦ψ,Γ

2.1.3 The left premise of (cut) is derived with (IOA).

R, R[0]w0u, ..., R[n]wnu⇒ w : φ,Γ
(IOA)R ⇒ w : φ,Γ R ⇒ w : ¬φ,Γ (cut)R ⇒ Γ

 

R, R[0]w0u, ..., R[n]wnu⇒ w : φ,Γ
R ⇒ w : ¬φ,Γ

Lem. 22R, R[0]w0u, ..., R[n]wnu⇒ w : ¬φ,Γ
IHR, R[0]w0u, ..., R[n]wnu⇒ Γ

(IOA)R ⇒ Γ

2.2 The cut formula w : φ is principal in the left premise of (cut) only. This case is
proven in a similar manner to the previous case 2.1.

2.3 The cut formula w : φ is principal both premises of (cut). We omit the cases where
φ is of the form ψ∨χ, ψ∧χ, [i]ψ, and 〈i〉ψ as these are handled in a similar fashion to the
cut-elimination proof [Neg05, Thm. 4.13] for extensions of the modal logic K. Without
loss of generality, we show the cases where φ is of the form �ψ and ⊗iψ.

2.3.1 The cut formula is of the form �ψ.

R ⇒ v : ψ,Γ (�)R ⇒ w : �ψ,Γ
R ⇒ w : ♦¬ψ, u : ¬ψ,Γ (♦)R ⇒ w : ♦¬ψ,Γ (cut)R ⇒ Γ
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Π

R ⇒ v : ψ,Γ (lsb)
R(u/v)⇒ (v : ψ)(u/v),Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R ⇒ u : ψ,Γ
IHR ⇒ Γ

Π =
{ R ⇒ v : ψ,Γ (wk)R ⇒ v : ψ, u : ¬ψ,Γ (�)R ⇒ w : �ψ, u : ¬ψ,Γ R ⇒ w : ♦¬ψ, u : ¬ψ,∆

IHR ⇒ u : ¬ψ,Γ

2.3.2 The cut formula is of the form ⊗iψ.

R, I⊗iv ⇒ v : φ,Γ
(⊗i)R ⇒ w : ⊗iφ,Γ

R, I⊗iu⇒ w : 	i¬φ, u : ¬φ,Γ
(	i)R, I⊗iu⇒ w : 	i¬φ,Γ (cut)R, I⊗iu⇒ Γ

 

Π

R, I⊗iv ⇒ v : φ,Γ
(lsb)

R(u/v), (I⊗iv)(u/v)⇒ (u : φ)(u/v),Γ(u/v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, I⊗iu⇒ u : φ,Γ

IHR, I⊗iu⇒ Γ

Π =
{ R, I⊗iv ⇒ v : φ,Γ

(wk)R, I⊗iu, I⊗iv ⇒ v : φ, u : ¬φ,Γ
(⊗i)R, I⊗iu⇒ w : ⊗iφ, u : ¬φ,Γ R, I⊗iu⇒ w : 	i¬φ, u : ¬φ,∆

IHR, I⊗iu⇒ u : ¬φ,Γ,∆

As for the calculi Sect. 3.2, we need to show that each calculus G3DSkn is complete relative
to classical propositional logic, that is, all classical propositional tautologies are derivable
in each calculus G3DSkn. This ensures that axioms given via A0 in HDSkn (Def. 26) are
derivable in G3DSkn, which can then be harnessed to show full completeness relative
to DSkn. We state the classical completeness lemma below, and defer the proof to the
appendix (Appendix B on p. 208) to simplify presentation.

Lemma 24 (Classical Completeness). All instances of classical propositional tautologies
in LDSk

n
are derivable in G3DSkn.

Proof. See Appendix B (p. 208) for details.

Theorem 15 (Completeness). If `DSk
n
φ, then `G3DSk

n
w : φ.
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Proof. By Lem. 24, we know that A0 holds. Moreover, the derivations of axioms A1 –
A3 are similar to the derivation of axiom A1 in the proof of Thm. 7, R0 is derived similar
to the derivation of R0 in the proof of Thm. 7, and R1 is derived similar to the derivation
of R1 in the proof of Thm. 7. We therefore show how to derive axioms A4 – A14 below:

Axioms A4 and A5.

Lem. 19
R[i]wu⇒ w : ♦¬φ, u : ¬φ, u : φ

(♦)
R[i]wu⇒ w : ♦¬φ, u : φ

([i])
⇒ w : ♦¬φ,w : [i]φ

(∨r)⇒ w : ♦¬φ ∨ [i]φ. . . . . . . . . . . . . . . . . . . . . . =
⇒ w : �φ→ [i]φ

Lem. 19
I⊗iu⇒ w : ♦¬φ, u : ¬φ, u : φ

(♦)
I⊗iu⇒ w : ♦¬φ, u : φ

(⊗i)⇒ w : ♦¬φ,w : ⊗iφ (∨r)⇒ w : ♦¬φ ∨ ⊗iφ. . . . . . . . . . . . . . . . . . . . . . =
⇒ w : �φ→ ⊗iφ

Axioms A6 and A7.

Lem. 19⇒ w : ♦¬φ,w : ¬φ,w : φ (♦)⇒ w : ♦¬φ,w : φ (∨r)⇒ w : ♦¬φ ∨ φ. . . . . . . . . . . . . . . . . . . =
⇒ w : �φ→ φ

Lem. 19⇒ u : ¬φ, v : ♦φ, u : φ (♦)⇒ u : ¬φ, v : ♦φ (�)× 2⇒ w : �¬φ,w : �♦φ (∨r)⇒ w : �¬φ ∨�♦φ. . . . . . . . . . . . . . . . . . . . . . . . =
⇒ w : ♦φ→ �♦φ

Axiom A8

Lem. 19
R[i]wu⇒ w : 〈i〉¬φ, u : ¬φ, u : φ

(〈i〉)
R[i]wu⇒ w : 〈i〉¬φ,w : φ

(refi)⇒ w : 〈i〉¬φ,w : φ
(∨r)⇒ w : 〈i〉¬φ ∨ φ. . . . . . . . . . . . . . . . . . . . . =

⇒ w : [i]φ→ φ

Axiom A9.

Lem. 19
R[i]wu,R[i]wv,R[i]vu⇒ u : ¬φ, v : 〈i〉φ, u : φ

(〈i〉)
R[i]wu,R[i]wv,R[i]vu⇒ u : ¬φ, v : 〈i〉φ

(euci)
R[i]wu,R[i]wv ⇒ u : ¬φ, v : 〈i〉φ

([i])× 2
⇒ w : [i]¬φ,w : [i]〈i〉φ

(∨r)⇒ w : [i]¬φ ∨ [i]〈i〉φ. . . . . . . . . . . . . . . . . . . . . . . . . =
⇒ w : 〈i〉φ→ [i]〈i〉φ

Axiom A10.
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Lem. 19
I⊗iu⇒ u : φ, u : ¬φ,w : 	i¬φ,w : 	iφ (	i)I⊗iu⇒ u : ¬φ,w : 	i¬φ,w : 	iφ (	i)I⊗iu⇒ w : 	i¬φ,w : 	iφ (Di

2)⇒ w : 	i¬φ,w : 	iφ (∨r)⇒ w : 	i¬φ ∨ 	iφ. . . . . . . . . . . . . . . . . . . . . . . =
⇒ w : ⊗iφ→ 	iφ

Axiom A11.

Lem. 19
I⊗iv ⇒ v : ¬φ, v : φ, u : 	i¬φ, v : ⊗iφ (⊗i)I⊗iv ⇒ v : φ, u : 	i¬φ, v : ⊗iφ (⊗i)⇒ u : 	i¬φ, v : ⊗iφ (�)× 2⇒ w : �	i ¬φ,w : �⊗i φ (∨r)⇒ w : �	i ¬φ ∨�⊗i φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

⇒ w : ♦⊗i φ→ �⊗i φ

Axiom A12.

Lem. 19
R[i]uv, I⊗iu, I⊗iv ⇒ w : 	i¬φ, v : ¬φ, v : φ

(	i)R[i]uv, I⊗iu, I⊗iv ⇒ w : 	i¬φ, v : φ
(Di

3)
R[i]uv, I⊗iu⇒ w : 	i¬φ, v : φ

([i])
I⊗iu⇒ w : 	i¬φ, u : [i]φ

(⊗i)⇒ w : 	i¬φ,w : ⊗i[i]φ (∨r)⇒ w : 	i¬φ ∨ ⊗i[i]φ. . . . . . . . . . . . . . . . . . . . . . . . . . =
⇒ w : ⊗iφ→ ⊗i[i]φ

Axiom A13. Let i ∈ Ag = {0, . . . , n}, R := R[0]u0v, . . . , R[n]unv, and Γ := u0 :
〈0〉¬φ0, . . . , un : 〈n〉¬φn, w : ♦(

∧
i∈Ag[i]φi). Also, we define Ri be equal to R minus

the relational atom R[i]uiv, and Γi be equal to Γ minus the labelled formula ui : ¬φ. The
independence of agents axiom A13 is derived as follows:

Π1 · · · Πn (∧r)× (n− 1)
R ⇒ u0 : 〈0〉¬φ0, . . . , un : 〈n〉¬φn, w : ♦(

∧
i∈Ag[i]φi), v :

∧
i∈Ag[i]φi

(♦)
R ⇒ u0 : 〈0〉¬φ0, . . . , un : 〈n〉¬φn, w : ♦(

∧
i∈Ag[i]φi)

(IOA)
⇒ u0 : 〈0〉¬φ0, . . . , un : 〈n〉¬φn, w : ♦(

∧
i∈Ag[i]φi)

(�)× n
⇒ w : �〈0〉¬φ0, . . . , w : �〈n〉¬φn, w : ♦(

∧
i∈Ag[i]φi)

(∨r)× (n− 1)
⇒ w : �〈0〉¬φ0 ∨ · · · ∨�〈n〉¬φn ∨ ♦(

∧
i∈Ag[i]φi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

⇒ w : ♦[0]φ0 ∧ · · · ∧ ♦[n]φn → ♦(
∧
i∈Ag[i]φi)
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Πi =
{

Lem. 19Ri, R[i]vu,R[i]uiv,R[i]uiu⇒ Γi, ui : 〈i〉¬φi, u : ¬φi, u : φi (〈i〉)
Ri, R[i]vu,R[i]uiv,R[i]uiui,R[i]vui,R[i]uiu⇒ Γi, ui : 〈i〉¬φi, u : φi (euci)Ri, R[i]vu,R[i]uiv,R[i]uiui,R[i]vui ⇒ Γi, ui : 〈i〉¬φi, u : φi (euci)Ri, R[i]vu,R[i]uiv,R[i]uiui ⇒ Γi, ui : 〈i〉¬φi, u : φi (refi)Ri, R[i]vu,R[i]uiv ⇒ Γi, ui : 〈i〉¬φi, u : φi [i]

Ri, R[i]uiv ⇒ Γi, ui : 〈i〉¬φi, v : [i]φi

Axiom A14. For the Π0,j derivations below, we let 1 ≤ j ≤ k, and for the Πm,j derivations,
we let 0 < m ≤ k − 1 and m+ 1 ≤ j ≤ n. We let

Γ := w0 : φ1, . . . , w0 : φk

and Γ0,j be the multiset

w1 : 〈i〉¬φ1, w2 : φ1, w2 : 〈i〉¬φ2, . . . , wk : φ1, . . . , wk : φk−1, wk : 〈i〉¬φk, w0 : φ1, . . . , w0 : φk

minus w0 : φj , wj : 〈i〉¬φj . Last, we let Γm,j be the multiset

w1 : 〈i〉¬φ1, w2 : φ1, w2 : 〈i〉¬φ2, . . . , wk : φ1, . . . , wk : φk−1, wk : 〈i〉¬φk, w0 : φ1, . . . , w0 : φk

minus wk : 〈i〉¬φk, wj : φk and q = k2−k
2 . The axiom is derived as follows:

Π0,j =
{ R[i]w0w0, R[i]w0wj , R[i]wjw0 ⇒ w0 : φj , wj : 〈i〉¬φj , w0 : ¬φj ,Γ0,j

〈i〉
R[i]w0w0, R[i]w0wj , R[i]wjw0, . . . , w0 : φj , wj : 〈i〉¬φj ,Γ0,j (euci)

R[i]w0w0, R[i]w0wj , . . . , w0 : φj , wj : 〈i〉¬φj ,Γ0,j (refi)
R[i]w0wj ⇒ w0 : φj , wj : 〈i〉¬φj ,Γ0,j

Πm,j =
{

R[i]wkwj ⇒ wk : 〈i〉¬φk, wj : ¬φk, wj : φk,Γm,j 〈i〉
R[i]wkwj ⇒ wk : 〈i〉¬φk, wj : φk,Γm,j

{
Πm,j

∣∣∣ 0 ≤ m ≤ k − 1, m+ 1 ≤ j ≤ k
}

(APCki )⇒ w1 : 〈i〉¬φ1, w2 : φ1, w2 : 〈i〉¬φ2, . . . , wk : φ1, . . . , wk : φk−1, wk : 〈i〉¬φk,Γ (�)× k + (∨r)× q⇒ w0 : �〈i〉¬φ1, w0 : �(φ1 ∨ 〈i〉¬φ2), . . . , w0 : �(φ1 ∨ · · ·φk−1 ∨ 〈i〉¬φk),Γ (∨r)× (2k − 1)
⇒ w0 : �〈i〉¬φ1 ∨�(φ1 ∨ 〈i〉¬φ2) ∨ · · · ∨�(φ1 ∨ · · ·φk−1 ∨ 〈i〉¬φk) ∨ φ1 ∨ · · · ∨ φk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
⇒ w : ♦[i]φ1 ∧ ♦(¬φ1 ∧ [i]φ2) ∧ · · · ∧ ♦(¬φ1 ∧ · · · ∧ ¬φk−1 ∧ [i]φk)→ φ1 ∨ · · · ∨ φk

Similar to the previous two sections, we define sequent graphs for our labelled sequents
as well as special types of labelled sequents called labelled forest sequents and labelled
DAG sequents. These reduced structures will naturally emerge in derivations after we
refined our deontic STIT calculi (Ch. 4).
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Definition 55 (Sequent Graphs for Deontic STIT Logics). Let Λ := R ⇒ Γ be a labelled
sequent for deontic STIT logics. We define the sequent graph of Λ, G(Λ) = (V,E, L), as
follows:

I V = Lab(Λ)

I E = {(w, u, [i]) | R[i]wu ∈ R}

I L(w) =
(
{i ∈ Ag | I⊗iw ∈ R}; {φ | w : φ ∈ Γ}

)
Definition 56 (Labelled Forest/DAG sequent). A labelled sequent for deontic STIT
logics Λ is a labelled forest sequent ( labelled DAG sequent) iff G(Λ) = (V,E,L) is a
forest (G(Λ) = (V,E, L) is a DAG, resp.).

To provide additional intuition regarding such labelled sequents, we give an example of a
labelled forest sequent and a labelled DAG sequent below:

Example 3. Below, we give an example of a labelled forest sequent Λ1 along with its
corresponding sequent graph G(Λ1), and an example of a labelled DAG sequent Λ2 along
with its corresponding sequent graph G(Λ2). The labels w and u serve as the roots in Λ1,
and the label w and v serve as the roots in Λ2.

Λ1 := R[1]wx,R[2]wy,R[1]wz,R[1]uv, I⊗1x, I⊗1u, I⊗2u, I⊗1v, I⊗3v ⇒ Γ1

Γ1 := w : p, w : q, x : ¬p, z : p ∧ q, z : ⊗1r, u : q

(∅; {p, q})
w

[1]
yy

[2]
��

[1]
&&

({1, 2}; {q})
u

[3]
��

({1}; {¬p})
x

(∅; ∅)
y

(∅; {p ∧ q,⊗1r})
z

({1, 3}; ∅)
v

Λ2 := R[2]wu,R[2]wz,R[2]uz,R[3]vy,R[1]vx, I⊗1w, I⊗1u, I⊗2u, I⊗3u, I⊗1y ⇒ Γ2

Γ2 := w : q, w : q, u : p, u : ¬p, v : �p ∨ q, x : r

({1}; {q, q})
w

[2]

yy

[2]
��

(∅; {�p ∨ q})
v

[1]

%%

[3]
��

(∅; ∅)
z

({1, 2, 3}; {p,¬p})
u[2]oo

({1}; ∅)
y

(∅; {r})
x
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3.4. Labelled Calculi for Deontic STIT Logics

After refining our class of calculi for deontic STIT logics, we will find that certain
subclasses of calculi utilize derivations of a certain shape. In the refined setting, when
we set n = 0, that is, the number of agents |Ag| = 1, we will find that completeness
is preserved if we restrict ourselves to the use of labelled forest sequents, and if we set
k = 0, meaning that no upper bound is imposed on the number of choices available to our
agents, then we may restrict ourselves to the use of labelled DAG sequents in derivations.
Below, we explicitly define such derivations, and also introduce the rooted property. In
essence, a labelled forest or DAG derivation possesses the rooted property if, reading
the derivation in a bottom-up manner, whenever a label is introduced as a root in the
sequent graph of a labelled sequent, it remains a root in all labelled sequents higher up
in the derivation. The significance of the rooted property is twofold: first, confirming
that the rooted property holds for labelled forest or DAG derivations lets us relate our
refined labelled calculi (derived in the next chapter) to the nested and indexed-nested
sequent formalisms, where proofs effectively have the rooted property. Second, the rooted
property has practical value, as it tells us that information ‘flows’ from certain points
when inference rules are applied to labelled forest or DAG sequents in reverse, i.e. during
proof-search, trees and DAGs ‘grow’ from roots in sequent graphs of labelled sequents.
This observation is useful in establishing termination, and will be seen in Sect. 6.1 on
proof-search and decidability for deontic STIT logics.

Definition 57 (Labelled Forest/DAG Proof, Rooted Property). We say that a proof is a
labelled forest proof ( labelled DAG proof) iff it consists solely of labelled forest sequents
(it consists solely of labelled DAG sequents, resp.).

Also, we say that a labelled forest (DAG) proof Π has the rooted property iff for all
labelled sequents Λ1 and Λ2 occurring in Π, if Λ1 occurs below Λ2 and w1, . . ., wm are
the roots of all connected induced subgraphs in G(Λ1), then they are all roots of connected
induced subgraphs in G(Λ2).

Last, we prove a theorem below showing that each calculus G3DSkn is incomplete relative
to labelled forest and DAG derivations. This theorem is useful in comparing our labelled
and refined labelled calculi. In fact, we will confirm that refinement produces systems
which permit less underlying structure in their labelled sequents, that is to say, refined
labelled systems for certain deontic STIT logics allow for completeness relative to labelled
forest and DAG derivations. This topic will be discussed in Sect. 4.2 on refining labelled
calculi for deontic STIT logics.

Theorem 16. Let n, k ∈ N. The calculus G3DSkn is incomplete relative to labelled forest
and labelled DAG derivations.

Proof. The theorem follows by considering the proof(s) of [i]p → p = 〈i〉¬p ∨ p (an
instance of axiom A11), which requires the use of (refi) as shown below:
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(id)
R[i]ww ⇒ w : 〈i〉¬p, w : ¬p, w : p

(〈i〉)
R[i]ww ⇒ w : 〈i〉¬p, w : p

(refi)
ε⇒ w : 〈i〉¬p, w : p

(∨r)
ε⇒ w : 〈i〉¬p ∨ p. . . . . . . . . . . . . . . . . . . . . . =
ε⇒ w : [i]p→ p

When applied bottom-up, (refi) adds a loop to the sequent graph of a labelled sequent,
which breaks both the labelled tree and labelled DAG property. Moreover, a quick
inspection of the rules of G3DSkn will show that (refi) is necessary to derive the above
theorem, showing the incompleteness of the calculus relative to labelled forest and DAG
derivations.
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CHAPTER 4
The Method of Refinement:
Modal Propositional Logics

We introduce the method of refinement—a means by which labelled calculi may be
simplified through the introduction of propagation rules and the elimination of structural
rules—and apply the method in the context of grammar and deontic STIT logics. The
next chapter will apply the method of refinement in the context of first-order intuitionistic
logics. The central mechanism behind this process is structural rule elimination, whereby
structural rules encoding frame properties—e.g. (pxs ) in G3Km(S) (see Fig. 3.1), (nd)
in G3IntQ (see Fig. 3.3), and (Di

2) in G3DSkn (see Fig. 3.5)—are permuted upward in
a derivation and are either deleted at initial sequents or absorbed into certain logical
rules. In order to carry out the elimination of structural rules, we introduce propagation
rules (see, e.g. [CdCGH97, CLRT20, Fit72, LvB19, Sim94, TIG12]), or a generalization
thereof (which we call, reachability rules), to our calculi. We note that we will refer to
such rules—that allow for the elimination of structural rules to go through—as conducive.

The addition of conducive rules (i.e. propagation and reachability rules in our setting)
and the elimination of structural rules yields refined labelled proof systems that are more
economical in the sense that they consist of less rules, produce shorter proofs (compared
to the original labelled systems from which they were derived), and need only utilize
labelled sequents of a reduced form (e.g. labelled sequents whose sequent graphs are
trees; see Def. 44). We will discuss the consequences of these effects along with additional
practical consequences of refinement below. However, before discussing the advantages
of refinement as well as related work, we give the reader a brief introduction to the
methodology. First, we introduce and provide an example of propagation rules, followed
by an example of structural rule elimination, and last, give an example of the type of
(nested) proof system that is commonly produced via refinement.

Propagation rules have a unique operation with bottom-up applications corresponding to
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4. The Method of Refinement: Modal Propositional Logics

the propagation of a formula along a path within the data structure (or, graph) encoded
by the sequent. For example, we might have a propagation rule such as (Pr1

〈a〉) shown
below left, which makes use of the labelled formula w : 〈a〉φ to bottom-up introduce
the labelled formula w : φ (observe that there is a path of length 0 between the label of
the principal and auxiliary formula, i.e. the labels are identical). Another example of a
propagation rule is (Pr2

〈a〉), which is shown below right, and makes use of the labelled
formula w : 〈a〉φ and the path of relational atoms Rawv,Ravu to bottom-up introduce
the labelled formula u : φ associated with the label u at the end of the relational path of
length 2.

R ⇒ w : 〈a〉φ,w : φ,Γ (Pr1
〈a〉)R ⇒ w : 〈a〉φ,Γ

R, Rawv,Ravu⇒ w : 〈a〉φ, u : φ,Γ (Pr2
〈a〉)R, Rawv,Ravu⇒ w : 〈a〉φ,Γ

The use of propagation rules goes at least as far back as 1972, where Fitting employed
rules of a similar functionality within the context of prefixed tableaux for normal modal
logics [Fit72].1 Such rules have been integrated into numerous proof-theoretic frameworks
for diverse classes of logics, such as in the labelled sequent formalism for intuitionistic
modal logics [Sim94], tense logics [CLRT20], and STIT logics [LvB19]; in the nested
sequent formalism for grammar logics [TIG12]; and in the context of prefixed tableaux for
normal modal logics [CdCGH97, Fit72]. While propagation rules function by propagating
formulae along paths within a sequent (when applied bottom-up), applications of reacha-
bility rules (which will be discussed in Ch. 5) additionally depend on the (non-)existence
of data occurring along paths within a sequent.

To provide the reader with intuition concerning the process of structural rule elimination
and the utility of propagation rules, we consider an example derivation in the labelled
calculus G3Km(S) (see Fig. 3.1) for the grammar logic Km(S) (see Def. 12) where
S := {a −→ ε, a −→ ε} and

∑
:= {a, a} (i.e. the alphabet is the set of characters {a, a}).

The calculus consists of the rules shown below, where we have a (pxε ), (Cx1 ), (〈x〉), and
([x]) rule for each x ∈

∑
. Also, as usual, the label u is an eigenvariable in the ([x]) rule.

(id)R ⇒ w : p, w : ¬p,Γ
R ⇒ w : φ,w : ψ,Γ (∨r)R ⇒ w : φ ∨ ψ,Γ

R, Rxww ⇒ Γ (pxε )R ⇒ Γ

R ⇒ w : φ,Γ R ⇒ w : ψ,Γ (∧r)R ⇒ w : φ ∧ ψ,Γ
R, Rxwu⇒ w : 〈x〉φ, u : φ,Γ

(〈x〉)
R, Rxwu⇒ w : 〈x〉φ,Γ

R, Rxwu⇒ u : φ,Γ ([x])
R ⇒ w : [x]φ,Γ

R, Rxwu,Rxuw ⇒ Γ (Cx1 )R, Rxwu⇒ Γ
1The term propagation rule was not used in Fitting’s paper [Fit72] and seems to have been coined

in [CdCGH97].
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Let us now consider the elimination of the structural rule (paε) from a given derivation.
We assume that we are given the derivation shown top-left below, and make use of the
propagation rule (Pr1

〈a〉), which was introduced above, to permute the (paε) rule upward
at the first step. Thus, the (〈a〉) and (paε) inferences are transformed into a (paε) inference
followed by a (Pr1

〈a〉) inference. Since the conclusion of the (paε) inference in the top-right
derivation below is an instance of (id), we may delete the (paε) instance altogether, giving
the output derivation shown below bottom.

(id)
Raww ⇒ w : 〈a〉p, w : p, w : ¬p

(〈a〉)
Raww ⇒ w : 〈a〉p, w : ¬p

(paε)ε⇒ w : 〈a〉p, w : ¬p
 

(id)
Raww ⇒ w : 〈a〉p, w : p, w : ¬p

(paε)ε⇒ w : 〈a〉p, w : p, w : ¬p (Pr1
〈a〉)ε⇒ w : 〈a〉p, w : ¬p

 
(id)

ε⇒ w : 〈a〉p, w : p, w : ¬p (Pr1
〈a〉)ε⇒ w : 〈a〉p, w : ¬p

Typically, structural rule elimination has the effect of simplifying the data structure
underlying labelled sequents in a proof. This fact can be seen in the example above:
observe that the sequent graphs (Def. 55) of the top two sequents in the input (i.e.
top-left) derivation contain a loop due to the presence of the relational atom Raww,
whereas the sequent graphs of all sequents in the output derivation consist of a single
point. As explained above, introducing propagation or reachability rules to a calculus,
which permits the elimination of structural rules, produces labelled calculi that employ
simpler syntactic structures in their proofs and—interestingly—tend to be notational
variants of nested sequent systems [Bul92, Kas94, Str13, TIG12]. It should be noted that
refinement does not always produce refined labelled calculi that are notational variants
of nested systems, as will be discussed and demonstrated in Sect. 4.2; similar to the
systems in [MS14] for (intuitionistic) modal logics, our calculi for deontic STIT logics
may contain a mixture of propagation rules and structural rules since it is not known if
propagation rules exist which allow for certain structural rules to be eliminated. Still, as
will be discussed in that section as well, the data structures underlying labelled sequents
in a proof are nevertheless reduced after refinement has taken place.

The creation of the nested sequent formalism is often attributed to Bull [Bul92] and
Kashima [Kas94] (and is equivalent to the prefixed tableaux formalism introduced much
earlier by Fitting [Fit72]). The formalism is characterized by the use of generalized
versions of Gentzen-style sequents, which utilize nesting constructors to organize Gentzen-
style sequents (or, multisets of formulae) into trees. To give the reader an idea of nested
sequent systems and an idea of the output of the refinement process, we introduce nested
sequents for the grammar logic Km(S) with S := {a −→ ε, a −→ ε} and

∑
:= {a, a} (just

introduced above), and show the nested calculus that results from refining the labelled
calculus G3Km(S) (which was just introduced above as well).
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4. The Method of Refinement: Modal Propositional Logics

The following grammar in BNF defines nested sequents for the grammar logic Km(S)
considered above:

X ::= ε | φ | X,X | (a){X} | (a){X}

where φ ∈ LKm(
∑

) and ε is the empty sequent. One can readily check that such syntactic
structures encode trees; for example, the sequent graph encoded by the nested sequent
p, (a){¬q}, (a){q ∨ r, (a){ε}} is shown below left and the sequent graph encoded by the
nested sequent q, r, (a){[a]p, (a){ε}, (a){ε}} is shown below right. Both graphs are trees
in the sense of Def. 32.

p
w

a

��

a

��
¬q
v

q ∨ r
u

a

��∅
z

q, r
w

a
��

[a]p
u

a

��

a

��∅
v

∅
z

If we were to eliminate the structural rules (pxε ) and (Cx1 ) for each x ∈
∑

= {a, a}
from the labelled calculus G3Km(S) introduced above (by expanding the calculus with
sufficient propagation rules), then after switching from labelled to nested notation, we
would obtain the nested calculus shown below, where we have a ([x]) and (Pr〈x〉) rule for
each x ∈

∑
. (NB. As will be discussed in Sect. 4.1 below, it is sometimes advantageous

to work with labelled notation as opposed to nested notation. Therefore, translating
refined labelled calculi into nested calculi is an optional last step in the refinement
process.) The notation X[Y ] and X[Y ][Z] is used to represent that Y and/or Z occur at
some level of the nestings in the nested sequent X. For example, if our nested sequent
X is p, (a){q, (a){r ∧ ¬r}}, then X[p], X[q, (a){r ∧ ¬r}], and X[r ∧ ¬r] would all be
correct representations of X in this notation. Last, we note that the propagation rule
(Pr〈x〉) possesses a side condition † stipulating how to use 〈x〉φ to bottom-up propagate
the formula φ to the point witnessing Z in the nested sequent X. We omit the exact
description of this side condition here as it is rather complex, and note that such rules
will be defined in the succeeding section (Sect. 4.1).

(id)
X[p,¬p, Y ]

X[φ, ψ, Y ]
(∨r)

X[φ ∨ ψ, Y ]
X[φ, Y ] X[ψ, Y ]

(∧r)
X[φ ∧ ψ, Y ]

X[Y, (x){φ}]
([x])

X[Y, [x]φ]
X[〈x〉φ, Y ][φ,Z]

(Pr〈x〉)†
X[〈x〉φ, Y ][Z]
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Refining labelled calculi yields a variety of advantages: first, the replacement of structural
rules with propagation or reachability rules leads to a compression in the size of proofs, a
decrease in the total number of inference rules, and a reduction in the complexity of the
data structure underlying labelled sequents in a proof. This can lead to a savings in space
and an increase in efficiency for implementations or automated reasoning algorithms (e.g.
proof-search, counter-model extraction, effective interpolation). Second, the removal of
certain semantic elements and structures—e.g. domain atoms a ∈ Dw (see Def. 46) used
in labelled sequents—from the syntax of sequents, makes the calculi easier to understand
and handle. Third, proving decidability for logics via (unrefined) labelled calculi is often
complicated and/or uses ad hoc methods that are logic dependent [Neg05, Vig00]. By
contrast, if we employ more refined sequents (e.g. trees, forests, DAGs) in our calculi,
then analyzing and demonstrating the termination of proof-search procedures becomes
easier and has proven to be uniform; for example, terminating proof-search with nested
sequent calculi is shown uniformly for a class of grammar logics in [TIG12]. Fourth, the
refinement method has been applied to translate between the labelled paradigm and
non-labelled proof-theoretic formalisms (e.g. [CLRT20]), thus allowing for results to be
transferred between the distinct settings, for formalisms to be changed when one is better
suited for the task at hand, and elucidating the semantic information inherent in syntactic
structures of the non-labelled formalism (which has explanatory value). Last, the calculi
we obtain are modular with respect to their associated classes of logics, that is, by the
alteration of side conditions or the deletion/addition of rules, any refined calculus can be
transformed into another refined calculus with the same properties (e.g. invertibility of
rules, cut-admissibility, etc.), but for another logic in the considered class.

Another benefit of refinement concerns how the method may be composed with methods
and results from the labelled sequent paradigm. Although refinement is intimately tied
to simplification, the method can be seen as part of a more extensive method whereby
the semantics of a logic may be transformed into a proof calculus possessing desirable
properties and which is suited for certain applications. As explained in Ch. 1 and 3, an
advantage of the labelled formalism is that it allows for the straightforward extraction
of (labelled) proof systems from semantics. However, such calculi involve complicated
structures, violate the subformula property to a high degree, and tend to be unwieldy.
By composing the construction process for labelled calculi with the simplification process
obtained from structural rule elimination, we obtain a strategy for transforming the
semantics of a logic into a refined calculus in possession of ‘nice’ properties (e.g. such
systems satisfy the desiderata of [Wan94] to a large extent).2

The idea of refinement is foreshadowed by works studying the relationship between
labelled and alternative proof systems. Such works include [GR12], where translations
between labelled and tree-hypersequent/nested sequent calculi were introduced for Gödel-
Löb provability logic; the papers [CLR18, CLRT20], which provided translations between
labelled, display, and nested calculi for tense logics; and the paper [Pim18], which

2See the introduction (Ch. 1) for a discussion of Wansing’s desiderata, used to characterize ‘nice’
proof systems.
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provided translations between labelled and nested calculi for intuitionistic, normal,
and non-normal modal propositional logics. In each case, the labelled calculi were
shown equivalent to calculi within a reduced proof-theoretic formalism, and made use
of structural rule elimination arguments to obtain the more economical calculi. The
refinement methodology abstracts from such works and gives a more general strategy
for simplifying labelled calculi within a wide range of settings. A significant departure
from the aforementioned works concerns the use of grammar theoretic machinery (viz.
CFCST systems; see Def. 8) in defining propagation and reachability rules. As will be
seen in Sect. 4.1 below and the following chapter (Ch. 5), the use of such machinery
allows for relatively broad classes of propagation and reachability rules to be defined,
thus permitting the elimination of structural rules in a large number of scenarios. This
allows us to provide the first results showing that labelled calculi for grammar, deontic
STIT, and first-order intuitionistic logics can be ‘simplified’ and transformed into nested
calculi in many cases.3

This chapter is based on work from [vBL21, CLR18, CLRT20, LvB19] and is organized
as follows: In the first section (Sect. 4.1), we show that each labelled calculus for a
grammar logic can be algorithmically transformed into a refined labelled calculus with
structural rules replaced by propagation rules (Thm. 17) and where each derivation of
a theorem only makes use of labelled tree sequents (Thm. 18). We additionally prove
that all refined labelled calculi are notational variants of (slight reformulations of) the
nested calculi from [TIG12] (Thm. 20 and 21). The section ends with a discussion on
the relationship between refined labelled calculi and the shallow nested (i.e. display)
calculi from [TIG12]. In the second section (Sect. 4.2), we refine the labelled calculi for
our deontic STIT logics, demonstrating that structural rules may be eliminated in the
presence of certain propagation rules (Thm. 22), begetting systems that are complete
relative to labelled DAG derivations (Thm. 24) or labelled forest derivations (Cor. 8)
depending on the deontic STIT logic considered. In the following chapter (Ch. 5), we
discuss and apply refinement in the first-order setting, which, due to its more complex
nature, will require us to improve upon and expand the refinement methodology. Details
of how the methodology is augmented in a first-order context will be discussed there.

4.1 Refining Labelled Calculi for Grammar Logics

We apply the refinement method to each labelled calculus G3Km(S) for the grammar
logic Km(S) to obtain a new calculus Km(S)L. Before giving formal proofs confirming
the extraction of the latter from the former, we motivate and explain how the conductive
(i.e. propagation) rules (shown in Fig. 4.2) of Km(S)L arise naturally when attempting to
eliminate structural rules—viz. (pxs ) and (Cx1 ) (see Fig. 3.1)—from G3Km(S). The goal,
therefore, is not simply to claim that refinement can be done, but to demonstrate the

3It should be noted that labelled calculi for traditional STIT logics and first-order intuitionistic logics
were refined in [LvB19] and [Lyo20a, Lyo20b], essentially yielding nested systems, so similar results have
been shown in more restricted settings.
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G3Km(S)

Thm. 17
))
Km(S)L

N
Thm. 20

))

Thm. 19

ii
DKm(S)

L
Thm. 21

ii

Figure 4.1: Transformations and translations between grammar logic calculi.

type of analysis sufficient to allow for refinement to be performed. After deriving each
calculus Km(S)L from its parent calculus G3Km(S), we show that each refined calculus
is a notational variant of a nested calculus DKm(S) from [TIG12]. The insight that
refinement generates (slight variants of) known nested calculi (discovered independently
of the method), suggests a naturalness to the method of refinement and of the associated
nested calculi.

Fig. 4.1 summarizes the main transformations and translations between the calculi studied
in this section. We use solid arrows to represent transformations, which preserve the
language of the calculus (e.g. labelled sequents) while algorithmically mapping proofs
between the two systems (as in Thm. 17 and 19), and we use dotted arrows to represent
translations, which not only algorithmically map proofs between the two systems, but
also change the language in the process (as in Thm. 20 and 21). The dotted arrows are
annotated with the symbols N and L, which are the translation functions introduced in
Def. 81 and 82, respectively.

4.1.1 Extracting Km(S)L from G3Km(S)
We begin by analyzing the elimination of a (pxs ) rule in a labelled calculus G3Km(S), and
observe under what conditions (pxs ) cannot be permuted upward in a derivation. Such
situations will motivate and suggest the addition of propagation rules to G3Km(S) that
allow for the permutation to go through. In the labelled setting, such rules propagate
formulae along paths of relational atoms occurring in a labelled sequent (when read
bottom-up). The rules introduced here are based on the propagation rules for nested
and labelled sequents introduced in [CLRT20, LvB19, GPT11, TIG12]. Before defining
our propagation rules (which are provided in Fig. 4.2), we will explain how such rules
arise naturally when considering the elimination of a (pxs ) rule.

For the sake of illustration, let us suppose that we have the following CFCST system
S := {a −→ ab, a −→ ab}. We will attempt to prove the admissibility of the structural
rule (paab) by showing that the rule can always be permuted upward in a derivation. The
reader can verify that the (paab) rule is permutable with every rule in G3Km(S) with
the exception of the (〈x〉) and (Cx1 ) rules. We fix the characters a, b ∈

∑
and focus on

permuting the (paab) rule above the (〈a〉) rule, as analyzing this case will be sufficient to
motivate and explain the definition of propagation rules and their addition to G3Km(S).
Furthermore, we will not consider the permutation of (paab) above any (Cx1 ) structural
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rule for the following reason: since our aim is to prove the (pxs ) and (Cx1 ) rules admissible
via an elimination algorithm, we can consider topmost occurrences of rules in a given
derivation and successively eliminate them via their respective elimination procedures;
therefore, we never need to consider the permutation of one rule above the other. As
stated previously, our analysis will motivate the definition of a propagation rule, and
thus provide the reader with insight into how such rules are discovered and defined via
the process of structural rule elimination.

Let us assume that we have a derivation ending with an (〈a〉) inference followed by a (paab)
inference. We want to show that the rule can always be moved upward in a derivation
and still allow for the same conclusion to be derived.

R, Rawv,Rbvu,Rawu⇒ w : 〈a〉φ, u : φ,Γ
(〈a〉)

R, Rawv,Rbvu,Rawu⇒ w : 〈a〉φ,Γ (paab)R, Rawv,Rbvu⇒ w : 〈a〉φ,Γ

Since our aim is to eliminate the (paab) rule, we will apply the rule directly to the top
sequent shown above with the goal of using other rules in G3Km(S) to derive the same
conclusion. Applying (paab) directly to the top sequent shown above gives us the following:

R, Rawv,Rbvu,Rawu⇒ w : 〈a〉φ, u : φ,Γ (paab)R, Rawv,Rbvu⇒ w : 〈a〉φ, u : φ,Γ

In order to derive the desired conclusion, we need to find a set of rules in G3Km(S) that
lets us delete u : φ; however, a quick glance at the rules of G3Km(S) will demonstrate
that no rules are applicable allowing for u : φ to be deleted. Nevertheless, notice that
if we extend our calculus with the (r1) rule below, then the desired conclusion can be
derived by applying the rule directly to the conclusion of the inference above.

R, Rawv,Rbvu⇒ w : 〈a〉φ, u : φ,Γ
(r1)

R, Rawv,Rbvu⇒ w : 〈a〉φ,Γ

The rule (r1) essentially states that if there is a sequence of relational atoms of the form
Rawv,Rbvu between a label w and a label u in a sequent, with the labelled formulae
w : 〈a〉φ and u : φ also occurring in the sequent, then u : φ may be deleted from premise
to conclusion. If we consider the sequent semantics (Def. 41), we can see that this rule
is sound since if a Km(S)-model satisfies Rawv,Rbvu, then because a −→ ab ∈ S, the
model will also satisfy Rawu as Rab ⊆ Ra. This last fact implies that we can think of the
relational atom Rawu as being implicit in both premise and conclusion of (r1), showing
that the rule is essentially a special instance of the (sound) (〈a〉) rule.

In accordance with what has been said, we can see that if we extend our calculus G3Km(S)
with the rule (r1), then the (paab) rule can be permuted above (〈a〉). Still, this does not
immediately imply that (paab) can be eliminated from any given derivation, as we now
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have to check if the (paab) rule can be permuted above (r1). We will consider this below,
and observe the problematic case:

R, Rawz,Rbzv,Rawv,Rbvu⇒ w : 〈a〉φ, u : φ,Γ
(r1)

R, Rawz,Rbzv,Rawv,Rbvu⇒ w : 〈a〉φ,Γ (paab)R, Rawz,Rbzv,Rbvu⇒ w : 〈a〉φ,Γ

Again, since our goal is to eliminate the (paab) rule, we apply it directly to the top sequent
above (giving the inference below), and then aim to derive the same conclusion using
other rules of G3Km(S) + (r1).

R, Rawz,Rbzv,Rawv,Rbvu⇒ w : 〈a〉φ, u : φ,Γ (paab)R, Rawz,Rbzv,Rbvu⇒ w : 〈a〉φ, u : φ,Γ

As in the case of permuting (paab) above (〈a〉), no rules are present in G3Km(S) + (r1)
that will allow us to derive the desired conclusion. We could, as before, add a new rule
to our calculus that will bring about the desired permutation:

R, Rawz,Rbzv,Rbvu⇒ w : 〈a〉φ, u : φ,Γ
(r2)

R, Rawz,Rbzv,Rbvu⇒ w : 〈a〉φ,Γ

It is easy to see that applying this rule to the conclusion of the former (paab) inference
allows for us to derive the desired conclusion, thus showing that (paab) can be permuted
above (r1) in the calculus G3Km(S) + {(r1), (r2)}. As the reader might have noticed,
although the addition of (r2) to our calculus allows for (paab) to be permuted above (r1),
we now have to check if (paab) can be permuted above (r2). If such a situation is analyzed,
then one would observe that in order for the (paab) rule to be permuted above (r2), a new
rule (r3) would have to be added to our calculus, which would necessitate the addition of
another rule (r4) to allow for (paab) to be permuted above (r3)—this phenomenon would
continue ad infinitum. Although we could add the whole infinite lot of such rules to our
calculus in order to secure the elimination of (paab), there is a more elegant solution to
our problem.

Observe that the active relational atoms in (r1) are of the form Rawv,Rbvu = Rabwu and
the active relational atom in (r2) are of the form Rawz,Rbzv,Rbvu = Rabbwu. Recall
that the production rule a −→ ab is element of our CFCST system S, implying that
a�∗S ab and a�∗S abb. A quick comparison of the strings derived from a and the active
relational atoms of (r1) and (r2) shows that the strings derived from a serve as the indices
in the active relational atoms. In fact, if one observes the infinite set of rules generated by
trying to prove the eliminability of (paab), they would find that the active relational atoms
of all such rules correspond to strings derivable from a in S. In other words, the indices
correspond to strings in the language LS(a). Therefore, instead of adding an infinite
number of rules to G3Km(S) to allow for the elimination of (paab), we could instead add a
single rule of the form:
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R ⇒ w : 〈a〉φ, u : φ,Γ (Pr〈a〉)R ⇒ w : 〈a〉φ,Γ

where we impose a side condition stating that a sequence of relational atoms must exist in
R ‘corresponding to’ strings in the language LS(a). The exact meaning of ‘corresponding
to’ relies on the formulation of a propagation graph and propagation path, which are
formally defined in Def. 58 and Def. 59 below, respectively, and are based on the work
in [CLRT20, GPT11]. The first notion transforms a labelled sequent into a graph, and
the second notion defines a correspondence between paths in the graph and strings in a
language generated by a CFCST system. After giving these definitions, examples of a
propagation graph, path, and rule are provided for clarity, followed by Fig. 4.2 which
defines the propagation rules (Pr〈x〉).

Definition 58 (Propagation Graphs for Km(S)L). Let Λ = R ⇒ Γ be a labelled sequent
for grammar logics. We define the propagation graph PG(Λ) = (V,E) to be the directed
graph such that

I V := Lab(Λ);

I E := {(w, u, a), (u,w, a) | Rawu ∈ R or Rauw ∈ R}.

We will often write w ∈ PG(Λ) to mean w ∈ V, and (w, u, x) ∈ PG(Λ) to mean
(w, u, x) ∈ E, for x ∈

∑
.

Definition 59 (Propagation Path for Km(S)L). Let Λ be a labelled sequent with PG(Λ) =
(V,E). We define a propagation path from w1 to wn in PG(Λ) to be an alternating
sequence of vertices w1, . . . , wn ∈ V and characters x1, . . . , xn−1 ∈

∑
of the form:

π(w1, wn) := w1, x1, w2, x2, . . . , xn−1, wn

such that (w1, w2, x1), (w2, w3, x2), . . . , (wn−1, wn, xn−1) ∈ E. Given a propagation path
π(w1, wn) = w1, x1, w2, x2, . . . , xn−1, wn, we let sπ(w1, wn) = x1x2 · · ·xn−1 denote the
string of the propagation path from w1 to wn.

We define the converse of a propagation path as follows:

π(wn, w1) := wn, xn, wn−1, . . . , w2, x1, w1 iff π(w1, wn) := w1, x1, w2, . . . , wn−1, xn−1, wn.

Also, the converse string of a propagation path as defined follows:

sπ(wn, w1) := xnxn−1 · · ·x1 iff sπ(w1, wn) = x1x2 · · ·xn−1.

Last, we let λ(w,w) := w represent the empty path that holds between any vertex w ∈ V
and itself, with the string of the empty path defined as follows: sλ(w,w) := ε.
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We are now in a position to properly define our propagation rules. Fig. 4.2 defines
a propagation rule (Pr〈x〉) for each x ∈

∑
and gives the side condition dictating its

(in)application. For the moment, let us refer to the premise of the propagation rule
(Pr〈x〉) as Λ and its conclusion as Λ′. The side condition ‘∃π(sπ(w, u) ∈ LS(x))’ should
be read as stating that ‘there exists a propagation path π(w, u) in the propagation graph
PG(Λ) = PG(Λ′) such that sπ(w, u) ∈ LS(x).’ Observe that since the propagation
graph of the premise is identical to the propagation graph of the conclusion, that is
PG(Λ) = PG(Λ′), propagation rules can be just as easily applied bottom-up as they can
be applied top-down. We will use a similar notation to denote the side conditions of
propagation (and reachability) rules in Ch. 5 as well. Last, each refined labelled calculus
Km(S)L for each grammar logic Km(S) is displayed in Fig. 4.2 with the derivability
relation for each calculus defined as follows:

Definition 60. We write `Km(S)L Λ to indicate that a labelled sequent Λ is derivable in
a calculus Km(S)L.

To supply the reader with additional intuition regarding propagation graphs, paths, and
rules, an example unifying all such concepts is provided below:

Example 4. We give a pictorial representation of the propagation graph PG(Λ), where
Λ is the labelled sequent defined below. Although it is not technically an aspect of the
definition of a propagation graph, we also decorate the vertices of the propagation graph
to show which formulae are associated with what vertices.
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Λ := Rawv,Rbuv,Rczv ⇒ w : 〈a〉p, z : p, z : q

Let us suppose that our CFCST system is S := {a −→ abbc, a −→ abbc}. Observe that
the path π(w, z) := w, a, v, b, u, b, v, c, z exists between w and z with 〈a〉p occurring at the
starting vertex w, and p occurring at the terminal vertex z. Since sπ(w, z) = abbc ∈ LS(a)
(due to the first production rule of S), we can apply the propagation rule (Pr〈a〉) to Λ
to delete the labelled formula z : p, giving Rawv,Rbuv,Rczv ⇒ w : 〈a〉p, z : q as the
conclusion.

Lemma 25. For each x ∈
∑
, the rule (〈x〉) is an instance of (Pr〈x〉).
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(id)R ⇒ w : p, w : ¬p,Γ

R ⇒ w : φ,w : ψ,Γ (∨r)R ⇒ w : φ ∨ ψ,Γ
R ⇒ w : φ,Γ R ⇒ w : ψ,Γ (∧r)R ⇒ w : φ ∧ ψ,Γ

R, Rxwu⇒ u : φ,Γ
[x]†1R ⇒ w : [x]φ,Γ

R ⇒ w : 〈x〉φ, u : φ,Γ
(Pr〈x〉)†2R ⇒ w : 〈x〉φ,Γ

Figure 4.2: The refined calculus Km(S)L for the grammar logic Km(S). We have a [x]
and (Pr〈x〉) rule for each x ∈

∑
. The side condition †1 states that the associated rule

can be applied only if the label u is an eigenvariable. The side condition †2 states that
∃π(sπ(w, u) ∈ LS(x)).

Proof. Let x ∈
∑
. The premise of (〈x〉) is of the form R, Rxwu⇒ w : 〈x〉φ, u : φ,Γ and

its propagation graph contains the propagation path w, x, u (due to the occurrence of
Rxwu). Since x ∈ LS(x), the side condition of the propagation rule (Pr〈x〉) is satisfied,
allowing for the conclusion R, Rxwu⇒ w : 〈x〉φ,Γ to be derived.

The above lemma tells us that each propagation rule (Pr〈x〉) subsumes (〈x〉), meaning
that we need only consider the permutation of a (pxs ) rule above (Pr〈x〉) and not (〈x〉).
Therefore, since the only non-trivial case of proving the eliminability of (pxs ) concerns its
permutation with (〈x〉), if we are able to prove that the structural rule (pxs ) can always
be permuted above the propagation rule (Pr〈x〉), then we will have successfully solved the
problem discussed at the onset of this section, namely, the problem of eliminating each
(pxs ) rule from a given derivation. In the following lemma, we show that the propagation
rules are in fact sufficient to allow for the upward mobility of each (pxs ) rule in a derivation;
after showing this result, we give a concrete example showing how to permute a (pxs ) rule
above a (Pr〈x〉) rule for clarity.

Lemma 26. Let S be a CFCST system with x, x0, . . . , xn, y ∈
∑
, and define the following:

I Rswu := Rx0wu1, . . . Rxnunu

I Λ := R, Rswu,Rxwu⇒ v : 〈y〉φ, z : φ,Γ

I Λ′ := R, Rswu⇒ v : 〈y〉φ, z : φ,Γ

Moreover, let π(v, z) be a propagation path between v and z occurring in PG(Λ).

Suppose we are given a derivation in G3Km(S) + {(Pr〈x〉) | x ∈
∑
} ending with the

following inferences:
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R, Rswu,Rxwu⇒ v : 〈y〉φ, z : φ,Γ (Pr〈y〉)R, Rswu,Rxwu⇒ v : 〈y〉φ,Γ
(pxs )

R, Rswu⇒ v : 〈y〉φ,Γ

where sπ(v, z) ∈ LS(y). Then, there exists a path π′(v, z) in PG(Λ′) such that sπ′(v, z) ∈
LS(y), that is to say, the (pxs ) rule may be permuted above the (Pr〈y〉) rule to derive the
same end sequent as shown below:

R, Rswu,Rxwu⇒ v : 〈y〉φ, z : φ,Γ
(pxs )

R, Rswu⇒ v : 〈y〉φ, z : φ,Γ (Pr〈y〉)R, Rswu⇒ v : 〈y〉φ,Γ

Note that (pxs ) may represent a structural rule obtained via the closure condition.

Proof. Let our assumptions be those expressed in the statement of the lemma above.
We consider two cases: either (i) the relational atom Rxwu is not active in the (Pr〈y〉)
inference, or (ii) the relational atom Rxwu is active in the (Pr〈y〉) inference.

(i) Our assumption implies that the propagation path π(v, z) does not depend on the rela-
tional atom Rxwu, but rather, only depends on the relational atoms R, Rswu. Therefore,
we may take the desired propagation path π′(v, z) in PG(Λ′) such that sπ′(v, z) ∈ LS(y)
to be the propagation path π(v, z), thus showing that the two rules are permutable.

(ii) For the second case, suppose that the relational atom Rxwu is active in the (Pr〈y〉)
inference. To prove the claim we need to show the existence of a propagation path
π′(v, z) in PG(Λ′) such that sπ′(v, z) ∈ LS(y). We construct such a propagation path by
simultaneously performing the following replacements on the propagation path π(v, z):

I Replace each occurrence of w, x, u in π(u, z) with w, x0, u1, . . . , un, xn, u, and

I replace each occurrence of u, x, w in π(u, z) with u, xn, un, . . . , u1, x0, w.

We call the resulting path, after the above replacements on π(v, z) have been performed,
π′(v, z). First, observe that the former propagation paths correspond to the edges
(w, u1, x0), . . . , (un, u, xn) ∈ PG(Λ′) obtained from the relational atoms Rswu that occur
in Λ′ (by Def. 58). Second, observe that the latter propagation paths correspond
to the edges (u, un, xn), . . . , (u1, w, x0) ∈ PG(Λ′) which are also obtained from the
relational atoms Rswu that occur in Λ′ (by Def. 58). Therefore, since the only difference
between PG(Λ) and PG(Λ′) is that the former contains the edges (w, u, x) and (u,w, x)
corresponding the relational atom Rxwu, whereas the latter does not, and because π′(v, z)
omits use of paths w, x, u and u, x, w (corresponding to edges (w, u, x) and (u,w, x), resp.),
it follows that π′(v, z) occurs in PG(Λ′).

To finish the proof, we need to show that sπ′(v, z) ∈ LS(y). By assumption, we know
that sπ(v, z) ∈ LS(y), which by Def. 9, implies that y �∗S sπ(v, z). Moreover, since (pxs )
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is in our calculus, as explained in Fig. 3.1, there must exist a corresponding production
rule x −→ s ∈ S. Also, since S is a CFCST system, we know that x −→ s ∈ S by
the closure condition (C2). Now, by the assumption of case (ii), we know that either
x or x occurs in sπ(v, z). Observe that applying x −→ s to each occurrence of x in
sπ(v, z) (obtained from the relational atom Rxwu), and x −→ s to each occurrence of x
in sπ(v, z) (obtained from the relational atom Rxwu), yields the string sπ′(v, z). Hence,
y �∗S sπ′(v, z), which implies that sπ′(v, z) ∈ LS(y) by Def. 9.

Example 5. Let
∑

:= {a, a, b, b, c, c} and s := bca ∈
∑∗. We give an example of

permuting the structural rule (pbs) above a propagation rule (Pr〈a〉). Let our CFCST
system be:

S := {a −→ bb, b −→ bca, a −→ ab, b −→ acb}.

In the derivation below, we assume that (Pr〈a〉) is applied due to the occurrence of
the propagation path π(w, u) = w, b, v, b, u based on the relational atoms Rbvw,Rbvu,
which further implies that sπ(w, u) = bb ∈ LS(a). This holds since the production rule
a −→ bb occurs in S. Concerning the (pbs) rule, we assume that it is obtained from
the production rule b −→ bca ∈ S, and that the relational atom Rbvu is deleted from
premise to conclusion due to the existence of the relational atoms Rbvw,Rcwz,Razu.
The propagation graph of the top sequent of the derivation is shown below right:

(id)
Rbvw,Rcwz,Razu,Rbvu⇒ w : 〈a〉p, u : p, u : ¬p

(Pr〈a〉)
Rbvw,Rcwz,Razu,Rbvu⇒ w : 〈a〉p, u : ¬p

(pbs)Rbvw,Rcwz,Razu⇒ w : 〈a〉p, u : ¬p
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Let us now apply the (pbs) to the top sequent of the derivation above in attempt to
permute the two rules. If we apply (pbs) to the top sequent, then we obtain the derivation
shown below left. Below right, we provide the propagation graph of the conclusion of the
derivation:

(id)
Rbvw,Rcwz,Razu,Rbuv ⇒ w : 〈a〉p, u : p, u : ¬p

(pbs)Rbvw,Rcwz,Razu⇒ w : 〈a〉p, u : p, u : ¬p
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In order to apply the propagation rule (Pr〈a〉), we need to show that there exists a propaga-
tion path π′(w, u) in the propagation graph of the conclusion such that sπ′(w, u) ∈ LS(a).
To show such a propagation path exists, we apply the procedure explained in the proof
of Lem. 26. In the initial derivation, we had the propagation path π(w, u) = w, b, v, b, u.
Applying our procedure, we replace each occurrence of u, b, v with u, a, z, c, w, b, v and
each occurrence of v, b, u with v, b, w, c, z, a, u. Since no path u, b, v exists in π(w, u),
only the latter replacement of v, b, u is applicable, and yields the propagation path
π′(w, u) := w, b, v, b, w, c, z, a, u, which indeed exists in the propagation graph of the
conclusion. Moreover, the derivation

a −→ bb −→ bbca

in S confirms that sπ′(w, u) = bbca ∈ LS(a). Therefore, we may apply (Pr〈a〉) to the
conclusion above to derive the desired sequent and successfully permute the two rules.

We are now in a position to prove two critical lemmata, which respectively claim that each
structural rule (pxs ) and (Cx1 ) is eliminable in G3Km(S) + {(Pr〈x〉) | x ∈

∑
}. Note that

when proving (pxs ) elimination, we need not consider permuting the rule above (Cx1 ), or
vice-versa. As explained previously, given a derivation in G3Km(S) + {(Pr〈x〉) | x ∈

∑
},

we may consider topmost occurrences of either a (pxs ) or (Cx1 ) rule, and successively delete
such topmost occurrences via the elimination algorithms provided in the following two
lemmata. Processing the input derivation in this way has the consequence that a (pxs )
rule will never be permuted above a (Cx1 ) rule, or vice-versa, since topmost occurrences
are eliminated first.

Up until this point, we have primarily focused on securing the elimination of each (pxs )
rule. Coincidentally, although our analysis of (pxs ) elimination gave rise to the definition of
a propagation rule, it just so happens that propagation rules are sufficient for proving the
elimination of each (Cx1 ) rule as well. This is primarily based on the fact that propagation
rules rely on the notion of a propagation graph, which ‘builds in’ the information of each
(Cx1 ) rule; the specifics of how each (Cx1 ) rule is ‘built into’ the definition of a propagation
graph will be explained after the following lemma:

Lemma 27. Let S be a CFCST system. For each x −→ s ∈ S, the rule (pxs ) is eliminable
in the calculus G3Km(S) + {(Pr〈x〉) | x ∈

∑
} − {(Cx1 ) | x ∈

∑
}.

Proof. We prove the result by induction on the height of the given derivation, and assume
that our derivation contains one application of the (pxs ) rule, which is the last inference
of the derivation. The general result follows by successively applying the procedure given
below to delete topmost occurrences of (pxs ) rules until the derivation is free of such
inferences.

Base case. The base case follows from the fact that any application of a (pxs ) rule to an
instance of (id) yields another instance of (id).
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Inductive step. By Lem. 25, we need not consider the (〈x〉) case. Also, with the exception
of the (Pr〈x〉) case, all cases are resolved by invoking IH followed by an application of
the corresponding rule. The (Pr〈x〉) case follows from Lem. 26 above.

Having confirmed that each (pxs ) rule is eliminable, we now focus on showing (Cx1 )
elimination. As mentioned above, the information inherent in the (Cx1 ) rule, namely, that
any relations Rx and Rx in a

∑
-model are converses of one another, is incorporated into

the definition of a propagation graph. If one observes the definition of a propagation
graph PG(Λ) = (V,E) of a labelled sequent Λ (Def. 58), they will notice that the edges
(w, u, x) and (u,w, x) are added to the set of edges E regardless of if the relational atom
Rxwu or the relational atom Rxuw occurs in Λ. Therefore, since the (Cx1 ) rule transforms
a labelled sequent of the form R, Rxwu,Rxuw ⇒ Γ into a labelled sequent of the form
R, Rxwu⇒ Γ, the edges (w, u, x) and (u,w, x) in the propagation graph of the former
will still be present in the propagation graph of the latter because of the continued
presence of Rxwu. To put it another way, the propagation graph of the premise of a
(Cx1 ) rule is identical to the propagation graph of the conclusion of the rule. As shown
below, the fact that propagation graphs are invariant under applications of (Cx1 ) allows
for the permutation of (Cx1 ) above an propagation rule. We will make use of this insight
to prove (Cx1 ) elimination below:

Lemma 28. Let S be a CFCST system with alphabet
∑
. For each x ∈

∑
, the (Cx1 ) rule

is eliminable in G3Km(S) + {(Pr〈x〉) | x ∈
∑
} − {(pxs ) | x −→ s ∈ S}.

Proof. We prove the result by induction on the height of the given derivation, and assume
that only one instance of (Cx1 ) occurs as the last inference of the derivation. The general
result follows by successively deleting topmost occurrences of (Cx1 ) in a derivation, until
it is free of such inferences.

Base case. The base case follows from the fact that any application of (Cx1 ) to an instance
of (id) yields another instance of (id).

Inductive step. By Lem. 25, we need not consider the permutation of (Cx1 ) above (〈x〉).
With the exception of the (Pr〈y〉) rule, all cases trivially follow by invoking IH followed
by the corresponding rule. Let us now consider the case of permuting (Cx1 ) above a
(Pr〈y〉) inference.

Suppose that our derivation ends with a propagation inference (Pr〈y〉) followed by a (Cx1 )
inference as shown below left. Also, let Λ := R, Rxwu,Rxuw ⇒ v : 〈y〉φ, z : φ,Γ with
PG(Λ) = (V,E), and take note that (w, u, x), (u,w, x) ∈ E. Due to the side condition of
the propagation rule, we know there exists a propagation path π(v, z) in PG(Λ) such that
sπ(v, z) ∈ LS(y). If we invoke IH and delete Rxuw from Λ, then since the relational atom
Rxwu is still present, the edges (w, u, x), (u,w, x) are still in E. In fact, the propagation
graph of the conclusion R, Rxwu ⇒ v : 〈y〉φ, z : φ,Γ is identical to PG(Λ). Therefore,
the side condition for (Pr〈y〉) is still satisfied, meaning the rule may be applied.
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R, Rxwu,Rxuw ⇒ v : 〈y〉φ, z : φ,Γ (Pr〈y〉)R, Rxwu,Rxuw ⇒ v : 〈y〉φ,Γ
(Cx1 )

R, Rxwu⇒ v : 〈x〉φ,Γ
 

R, Rxwu,Rxuw ⇒ v : 〈y〉φ, z : φ,Γ
IHR, Rxwu⇒ v : 〈y〉φ, z : φ,Γ (Pr〈y〉)R, Rxwu⇒ v : 〈y〉φ,Γ

The two previous lemmata establish the following theorem:

Theorem 17. Every derivation in G3Km(S) can be algorithmically transformed into a
derivation in Km(S)L.

Proof. The result follows from Lem. 27 and 28 by successively eliminating topmost
occurrences of each (pxs ) and (Cx1 ) rule.

By considering the elimination of structural rules, we have found that each calculus
G3Km(S) can be transformed into a calculus Km(S)L that contains fewer rules overall
and which are purely formula driven rules, i.e. each rule’s (bottom-up) applicability is
solely determined by the occurrence of a complex logical formula (from LKm(

∑
)) in the

conclusion. Each calculus G3Km(S) is different in this regard, since structural rules such
as (pxs ) and (Cx1 ) are not formula driven in the above sense, as bottom-up applications of
the rules introduce relational atoms independent of which labelled formulae occur. In
addition, an analysis of the proofs of Lem. 27 and 28 shows that the proofs of Km(S)L
are linearly compressed versions of the proofs from G3Km(S). Moreover, as the following
theorem establishes, our refined calculi only require the use of labelled tree sequents in
derivations (Def. 44), whereas each G3Km(S) calculus requires the use of more complex
structures (Thm. 8); this is significant as it shows that through structural rule elimination
we have essentially obtained nested calculi for grammar logics (which we discuss in more
detail in Sect. 4.1.2 below). In these respects, each Km(S)L calculus is simpler than the
G3Km(S) calculus it was derived from; of course, the trade-off is that each (〈x〉) rule has
absorbed each (pxs ) and (Cx1 ) rule, thus generating the (Pr〈x〉) rule that possesses a more
complex functionality.

Theorem 18. Let S be a CFCST system. Every derivation in Km(S)L of a labelled
formula w : φ is a labelled tree derivation with the fixed root property.4

Proof. To see that the derivation of w : φ is a labelled tree derivation with the fixed root
property (see Def. 45) observe that applying inference rules of Km(S)L bottom-up either
preserve relational structure or add forward relational structure (with the ([x]) rule),
thus constructing a tree emanating from w.

4The fixed root property is defined in Def. 45 on p. 53.
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Although we have derived Km(S)L from G3Km(S), we have not confirmed whether such
calculi possess similar proof-theoretic properties. One course of action could be to prove
the (hp-)admissibility of the rules Str(Km(S)) as well as the (hp-)invertibility of all rules
in Km(S)L (as we did for each G3Km(S) calculus). However, we opt for another course
of action, and show that every derivation in a Km(S)L calculus can be transformed into
a derivation in the corresponding G3Km(S) calculus. This backward transformation kills
two birds with one stone: First, it demonstrates the deductive correspondence between
G3Km(S) and Km(S)L, and second, it establishes that Km(S)L inherits proof-theoretic
properties from G3Km(S). Regarding the second point, leveraging both transformations
(Thm. 17 and 19), lets us establish the soundness and completeness of Km(S)L (see Cor. 3
below), and shows that the refined calculi possess similar admissibility and invertiblity
properties (detailed in Cor. 1 and 2 below) that are useful in applications; e.g. the
extraction of interpolants (see Sect. 6.2).

Before showing that any derivation in a calculus Km(S)L can be transformed into a
derivation in G3Km(S), we first need to show a lemma relating derivations in a CFCST
system to what is provable in G3Km(S).

Lemma 29. Let Λ := R ⇒ Γ. Suppose R, Rxwu ⇒ Γ is derivable in G3Km(S), and
that π(w, u) is a propagation path (potentially empty) in PG(Λ) such that x�∗S sπ(w, u).
Then, Λ = R ⇒ Γ is derivable in G3Km(S).

Proof. We prove the result by induction on the length (Def. 9) of the derivation x�∗S
sπ(w, u).

Base case. For the base case, we consider (i) a derivation of length 0, meaning that
x�∗S x, and (ii) a derivation of length 1, meaning that x −→ sπ(w, u) ∈ S. Both cases
are respectively shown below, where R := R′, Rxwu in the first case, and R := R′, Rswu
with s := sπ(w, u) in the second case.

Π1
R′, Rxwu,Rxwu⇒ Γ

 
Π1

R′, Rxwu,Rxwu⇒ Γ (ctrR)
R′, Rxwu⇒ Γ

Π2
R′, Rswu,Rxwu⇒ Γ

 
Π2

R′, Rswu,Rxwu⇒ Γ (psx)
R′, Rswu⇒ Γ

Inductive step. Let Λ := R ⇒ Γ and assume that we have a proof Π of R, Rxwu⇒ Γ.
Suppose our derivation x�∗S sπ(w, u) is of length n+1, that is, it consists of a derivation
x�∗S t of length n followed by a one-step derivation t�S sπ(w, u). Hence, there exist
strings r0, r1 ∈

∑∗ and a production rule y −→ r ∈ S such that t = r0yr1 and r0rr1 =
sπ(w, u). This implies the existence of a propagation path πr0(w, v), πr(v, z), πr1(z, u) in
PG(Λ), where v, z ∈ Lab(Λ). We give a proof below showing how to derive the desired
result.
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4.1. Refining Labelled Calculi for Grammar Logics

First, we apply hp-admissibility of (wk) (Lem. 10) to the proof Π of R, Rxwu ⇒ Γ,
introducing the relational atom Ryvz and giving a proof of the labelled sequent Λ′ :=
R, Ryvz,Rxwu ⇒ Γ. Observe that the propagation path πr0(w, v), πy(v, z), πr1(z, u)
exists in PG(Λ′). Also, by assumption, we know that x�∗S t = r0yr1 with a derivation
of length n. Thus, we may invoke IH to derive the sequent Λ′′ := R, Ryvz ⇒ Γ. Last, by
our assumption that y −→ r ∈ S, and the fact that πr(v, z) occurs in PG(Λ′′), we know
that there exists a structural rule (pys) in G3Km(S) that is applicable to Λ′′. Applying
this rule lets us derive the desired conclusion.

Π
R, Rxwu⇒ Γ (wk)R, Ryvz,Rxwu⇒ Γ

IHR, Ryvz ⇒ Γ
(pys)R ⇒ Γ

Theorem 19. Every derivation in Km(S)L + Str(Km(S)) can be algorithmically trans-
formed into a derivation in G3Km(S).

Proof. We prove the result by induction on the height of the given derivation.

Base case. Any instance of (id) in Km(S)L + Str(Km(S)) is an instance of (id) in
G3Km(S).

Inductive step. As usual, we prove the inductive step by a case-distinction on the last rule
applied in the given derivation. If the last rule applied is a rule in the set Str(Km(S)),
then we invoke the (hp-)admissibility result of the corresponding rule (Lem. 10 and
Thm. 6). With the exception of (Pr〈x〉), all other cases are handled by invoking IH and
then applying the same rule. We show how to resolve the case when the last inference is
(Pr〈x〉).

R ⇒ w : 〈x〉φ, u : φ,Γ (Pr〈x〉)R ⇒ w : 〈x〉φ,Γ
 

IHR ⇒ w : 〈x〉φ, u : φ,Γ
(wk)

R, Rxwu⇒ w : 〈x〉φ, u : φ,Γ
(〈x〉)

R, Rxwu⇒ w : 〈x〉φ,Γ
Lem. 29R ⇒ w : 〈x〉φ,Γ

By the side condition imposed on the (Pr〈x〉) rule, we know that there exists a propagation
path π(w, u) in PG(R ⇒ w : 〈x〉φ, u : φ,Γ) such that sπ(w, u) ∈ LS(x). The applicability
of Lem. 29 follows from the fact that PG(R ⇒ w : 〈x〉φ, u : φ,Γ) = PG(R ⇒ w : 〈x〉φ,Γ),
implying that π(w, u) exists in PG(R ⇒ w : 〈x〉φ,Γ).

We may now utilize our translations between G3Km(S) and Km(S)L (Thm. 17 and 19) to
show that our refined calculi inherit proof-theoretic properties from their parent labelled
calculi.
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Corollary 1. The rules in Str(Km(S)) are admissible in Km(S)L.

Proof. Follows from the (hp-)admissibility of the rules Str(Km(S)) in G3Km(S) (Lem. 10
and Thm. 6), as well as Thm. 17 and 19.

Corollary 2. All rules of Km(S)L are invertible.

Proof. The invertibility of (Pr〈x〉) follows from the admissibility of (wk) (Cor. 1 above).
The invertibility of (∨r), (∧r), and ([x]) is argued as follows: Let Λ be an instance of
a conclusion of (∨r), (∧r), or ([x]), and assume Λ is derivable in Km(S)L. Then, by
Thm. 19 we know that Λ is derivable in G3Km(S), and so, by the (hp-)invertibility of
the rules in G3Km(S) (Lem. 11), we know that the corresponding premise(s) Λ′ (and
Λ′′) of the rule is (are) derivable. Hence, by Thm. 17 Λ′ (and Λ′′) is (are) derivable in
Km(S)L.

Corollary 3 (Soundness and Completeness of Km(S)L). Let S be a CFCST system.

(i) If `Km(S)L Λ, then |=Km(S) Λ.

(ii) If `Km(S) φ, then `Km(S)L ε⇒ w : φ.

Proof. Follows from the soundness of G3Km(S) (Thm. 5), the completeness of G3Km(S)
(Thm. 7), as well as Thm. 17 and 19.

4.1.2 Relationship to Nested Sequent Formalism

In this section, we prove that each refined labelled calculus Km(S)L is a notational variant
of a deep nested calculus DKm(S) (displayed in Fig. 4.3 below). It should be noted that
the deep nested calculi presented here are slight reformulations of the nested calculi for
grammar logics introduced in [TIG12]. Therefore, due to the minute differences between
the nested calculi introduced here and those given in [TIG12], we assign our calculi the
same names and refer to each calculus (for a CFCST system S) as DKm(S).

The observation that refinement yields variants of known nested systems (as will be
shown for first-order intuitionistic logics as well), suggests that the discovery of such
systems was—in some sense—not accidental, and that refinement is a natural procedure
connecting the relational semantics of a logic to a nested calculus for the logic. In order
to establish the equivalence between refined labelled and nested systems, we will first
introduce the DKm(S) nested calculi below, and then define translations permitting us
to switch between labelled and nested notation. Ultimately, these translations will be
used to construct (relatively simple) algorithms that allow for proofs to be translated
between the refined labelled and nested calculi.
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4.1. Refining Labelled Calculi for Grammar Logics

Let us now define the building blocks for our DKm(S) calculi: nested sequents for grammar
logics [TIG12].5

Definition 61 (Nested Sequents for Grammar Logics [TIG12]). Nested sequents for
grammar logics are syntactic objects X defined via the following grammar in BNF:

X ::= ε | φ | X,X | (x){X}

where x ∈
∑

and φ ∈ LKm(
∑

).

We use X, Y , Z, . . . (possibly annotated) to denote nested sequents, and we let ε represent
the empty string (i.e. empty nested sequent). As with labelled sequents, ε is an identity
element for comma, and comma associates and commutes. We use the notation X[Y ]
(and X[Y ][Z]) to mean that Y (Y and Z, resp.) occurs (occur, resp.) at some depth
in the nestings of X. For example, if the nested sequent X is p, (a){q, (b){¬p, r}}, then
X[p], X[q, (b){¬p, r}], X[q][¬p, r], etc. are all valid representations of X.

The Value of Switching Notation.

Before we proceed, it is interesting to wonder if switching from labelled to nested notation
possesses any utility in its own right, that is, does the option of converting notation
offer any advantage? Two reasons come to mind which justify a positive answer. First,
switching from labelled to nested notation ensures that the language of our calculi enjoys
a degree of parsimony, that is, the language does not allow for syntactic structures that go
too far beyond what is needed for completeness. Second, switching to a more restrictive
notation has practical value as it provides a priori knowledge about the structure of
proofs; e.g. one can be certain that all sequents within a given proof encode trees prior to
observing any proof within the associated system. To ground this second point further,
we consider a concrete case: in [LvB19] the first proof-search procedures for STIT logics
were introduced using refined labelled calculi, and to ensure the correctness of each
proof-search algorithm, it was necessary to prove that all labelled sequents generated
throughout the course of proof-search were labelled forest sequents (see Def. 56). Had the
notation of the refined labelled calculi been translated to a rigid notation only allowing
for sequents of a forest shape (e.g. like how nested sequents only allow for sequents of a
tree shape) prior to the writing of the proof-search procedure, then confirming that all
sequents generated throughout the course of proof-search were of a forest shape would
have been rendered unnecessary. Due to the rigidity of the notation used, which—by
its very definition—only allows for certain structures, it would have been known in
advance that all sequents possessed the desired shape. Therefore, rigidifying notation (i.e.
switching from a more liberal notation like that of labelled sequents to a more restrictive
notation like that of nested sequents) appears to be of value.

5Note that the notation used for nested sequents in [TIG12] was obtained from the notation put forth
in Kashima’s paper [Kas94] and uses brackets of the form { and } as opposed to brackets of the form [
and ] for nesting data. This is the reverse of the notation used by many writers who opt to nest data
with the latter brackets; e.g. [Brü09, Bul92, Fit14, Str13].
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Furthermore, translating in the opposite direction—from nested to labelled notation—
appears to be worthwhile as well. For instance, in [LTGC20] a purely syntactic method
of proving interpolation for logics via their nested sequent calculi was introduced. In that
paper, the nested sequent calculi were translated into labelled notation as the notation
was easier to work with and allowed for simpler definitions. Hence, translations provide
one with the freedom to switch proof-theoretic formalisms when one is better suited for
a particular task.

In order to translate between labelled and nested sequents, we introduce sequent graphs
for nested sequents, which are objects intermediary in the translation.

Definition 62 (Sequent Graph of a Nested Sequent for Km(S)). We define the sequent
graph of a nested sequent X inductively on the depth of the nestings of X as shown below.
Notice that we make use of sequences of natural numbers

σ ∈
⋃
n∈N

Nn

to represent our vertices similar to the prefixes used in prefixed tableaux (cf. [Fit72]). We
represent sequences as n1.n2. . . . .nk−1.nk and use σ (possible annotated) to denote them.
Our inductive definition of G(X) := G0(X) is as follows:

I If X = φ1, . . . , φk, then Gσ(X) := (Vσ, Eσ, Lσ), where

(i) Vσ := {σ} (ii) Eσ := ∅ (iii) Lσ := {(σ, {φ1, . . . , φk})}

I Let X := φ1, . . . , φk, (x1){Z1}, . . . , (xn){Zn} and suppose that each Gσ.i(Zi) =
(Vσ.i, Eσ.i, Lσ.i) (with i ∈ {1, . . . n} and n ∈ N) is already defined. We define
Gσ(X) := (Vσ, Eσ, Lσ) as shown below:

I Vσ := {σ} ∪
⋃

1≤i≤n
Vσ.i

I Eσ := {(σ, σ.i, xi) | 1 ≤ i ≤ n} ∪
⋃

1≤i≤n
Eσ.i

I Lσ := {(σ, {φ1, . . . , φk})} ∪
⋃

1≤i≤n
Lσ.i

Note that when k = 0, the multiset φ1, . . . , φk is taken to be the empty string ε. Also,
we will often use w, u, v, . . . to represent vertices as opposed to sequences of natural
numbers.

Even though we may use the notation X[Y ] or X[Y ][Z] to denote a nested sequent X,
we also allow for the notation X[Y ]w and X[Y ]w[Z]u to denote that Y is associated with
the vertex w (meaning that L(w) = Y in G(X) = (V,E, L)), and to denote that Y and
Z are associated with the vertices w and u (meaning that L(w) = Y and L(u) = Z in
G(X) = (V,E, L)), respectively.
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Since each calculus DKm(S) is a notational variant of a refined labelled calculus Km(S)L,
each nested calculus likewise employs a set of propagation rules. Therefore, it is necessary
to define propagation graphs for nested sequents. Still, the definition of a propagation
path and the string of a propagation path, along with their converses, remains the same in
the nested setting and are as given in Def. 59. This follows from the fact that propagation
graphs for nested sequents are identical to propagation graphs for labelled (tree) sequents.

Definition 63 (Propagation Graphs for DKm(S)). Let X be a nested sequent for grammar
logics with sequent graph G(X) = (V,E, L). We define the propagation graph PG(X) =
(V′,E′) to be the directed graph such that

I V′ := V ;

I E′ := {(w, u, x), (u,w, x) | (w, u, x) ∈ E or (u,w, x) ∈ E}.

We will often write w ∈ PG(X) to mean w ∈ V′, and (w, u, x) ∈ PG(X) to mean
(w, u, x) ∈ E′, for x ∈

∑
.

Each nested calculus DKm(S) for a given CFCST system S is displayed in Fig. 4.3. The
derivability relation for each calculus is defined as follows:

Definition 64. We write `DKm(S) X to indicate that the nested sequent X is derivable
in DKm(S).

With the exception of each propagation rule (Pr〈x〉) (for x ∈
∑
), all rules are identical

to those given in [TIG12]. The distinguishing feature between the propagation rules
presented here and the propagation rules presented in [TIG12] concerns the side condition
imposed. The side condition of a (Pr〈x〉) rule states that ∃π(sπ(w, u) ∈ LS(x)) must hold
if the rule is applied, i.e. there must exist a propagation path π(w, u) in the propagation
graph of the premise (or, equivalently, the conclusion) such that sπ(w, u) ∈ LS(x). By
contrast, the side condition of a propagation rule from [TIG12] checks if a certain string
is both accepted by a certain automaton and within a certain language [TIG12, p. 523].
Nevertheless, due to the equivalence between formal grammars and automata, it turns
out that both side conditions are equivalent.

Nested sequents encode a tree structure by definition, with the nestings representing
edges occurring within the tree. In this regard, nested sequents differ from labelled
sequents, which encode edges via their relational atoms. In addition, the nested notation
is more rigid than the labelled notation, since it only allows for trees to be represented,
whereas labelled sequents can represent arbitrary graphs. To provide more intuition
regarding the tree that corresponds to a nested sequent, we give an example of a nested
sequent and the tree it encodes below; an example of the propagation graph of the nested
sequent is also provided.
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(id)
X[p,¬p, Y ]

X[φ, ψ, Y ]
(∨r)

X[φ ∨ ψ, Y ]
X[φ, Y ] X[ψ, Y ]

(∧r)
X[φ ∧ ψ, Y ]

X[Y, (x){φ}]
([x])

X[Y, [x]φ]
X[〈x〉φ, Y ]w[φ,Z]u (Pr〈x〉)†
X[〈x〉φ, Y ]w[Z]u

Figure 4.3: The nested calculus DKm(S), which is a variant of a calculus from [TIG12]
of the same name. The calculus has a ([x]) and (Pr〈x〉) rule for each x ∈

∑
. The side

condition † states that the rule is applicable only if ∃π(sπ(w, u) ∈ LS(x)).

Example 6. The nested sequent X := q, r, (b){¬q}, (b){q ∨ r, (a){ε}, (d){ε}} encodes the
tree G(X) shown below left and has the propagation graph PG(X) shown below right:
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Perhaps the reader will find the above sequent graph G(X) familiar, and in fact it is.
The graph is identical to the sequent graph G(Λ) of the labelled tree sequent Λ given in
Ex. 1 of Sect. 3.2. This demonstrates a natural correspondence between labelled tree
sequents and nested sequents. We now define the translation N mapping labelled tree
sequents to nested sequents, and the translation L mapping nested sequents to labelled
tree sequents—both of which rely on the notion of a sequent graph. After defining
these two translations, we introduce an algorithm that converts derivations in Km(S)L
to derivations in DKm(S) (Thm. 20), and an algorithm that translates derivations in
DKm(S) to derivations in Km(S)L (Thm. 21).

Definition 65 (Downward Closure). Let X be a nested sequent and Λ be a labelled
tree sequent. Also, let G(X) := (V,E,L) and G(Λ) := (V,E,L) with w ∈ V . (NB. The
ambiguity in notation is of no consequence and simplifies presentation.) We define the
w-downward closure Gw(X) = (V ′, E′, L′) and Gw(Λ) = (V ′, E′, L′) to be the smallest
induced subgraph (Def. 31) of G(X) and G(Λ), respectively, such that w ∈ V ′ and

I if v ∈ V ′ and (v, u) ∈ E, then u ∈ V ′;
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I E′ = E � V ′

I L′ = L � V ′

Remark 3. If X is a nested sequent and Λ is a labelled tree sequent with w the root of
the sequent graph G(X) and G(Λ), then Gw(X) = G(X) and Gw(Λ) = G(Λ), respectively.

Definition 66 (The Translation N). Let Λ := R ⇒ Γ be the a labelled tree sequent with
G(Λ) = (V,E, L) and w ∈ V the root. We define the translation N(Λ) := N(Gw(Λ))
inductively as follows:

I If G(Λ) = (V,E, L) with V = {w}, E = ∅, and L = {(w, {φ1, . . . , φk})}, then

N(Gw(Λ)) := φ1, . . . , φk

I If G(Λ) = (V,E, L) with w, u1, . . . , un ∈ V , (w, ui, xi) ∈ E (for i ∈ {1, . . . , n}),
then

N(Gw(Λ)) := L(w), (x1){N(Gu1(Λ))}, . . . , (xn){N(Gun(Λ))}

We demonstrate the operation of the translation function N with an example:

Example 7. We show how to translate the labelled tree sequent

Λ := Rawu,Rauv,Rbwz ⇒ w : q, w : 〈b〉q, u : p ∧ ¬p, v : q, v : r, z : c, z : p

into a nested sequent via the computation below:

N(Λ) := N(Gw(Λ))
= q, 〈b〉q, (a){N(Gu(Λ))}, (b){N(Gz(Λ))}
= q, 〈b〉q, (a){p ∧ ¬p, (a){N(Gv(Λ))}}, (b){c, p}
= q, 〈b〉q, (a){p ∧ ¬p, (a){q, r}}, (b){c, p}

In order to define the reverse translation from nested to labelled notation, it is helpful
to introduce the notion of a sequent composition. Since this concept will be used in the
sequel, we define the notion for labelled sequents in general.

Definition 67 (Labelled Sequent Composition). Given two labelled sequents Λ1 :=
R1,Γ1 ⇒ ∆1 and Λ2 := R2,Γ2 ⇒ ∆2, we define the sequent composition as follows:

Λ1 ◦ Λ2 := R1,R2,Γ1,Γ2 ⇒ ∆1,∆2

Definition 68 (The Translation L). Let X be the a nested sequent. We define the
translation L(X) := L(G0(X)) inductively as follows:
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I If Gσ(X) = (V,E,L) with V = {σ}, E = ∅, and L = {(σ, Y )}, then

L(Gσ(X)) := ε⇒ wσ : Y

I If Gσ(X) = (V,E,L) with σ, σ.1, . . . , σ.n ∈ V , (σ, σ.1, x1), . . . , (σ, σ.n, xn) ∈ E, and
(σ, Y ) ∈ L, then

L(Gσ(X)) := (Rx1wσwσ.1, . . . , Rxmwσwσ.n ⇒ wσ : Y ) ◦ L(Gσ.1(X)) ◦ · · · ◦ L(Gσ.n(X))

In practice, we will often use labels such as w, u, v, . . . as opposed to labels indexed with
sequences of natural numbers for simplicity.

Similar to before, we demonstrate how the translation function works with an example:

Example 8. Below, we show how to translate the nested sequent

X := q, 〈b〉q, (a){p ∧ ¬p, (a){q, r}}, (b){c, p}

into a labelled (tree) sequent:

L(X) := L(G0(X))
= (Rawu,Rbwz ⇒ w : q, w : 〈b〉q) ◦ L(Gu(X)) ◦ L(Gz(X))
= (Rawu,Rbwz ⇒ w : q, w : 〈b〉q) ◦ (Rauv ⇒ u : p ∧ ¬p) ◦
=L(Gv(X)) ◦ (ε⇒ z : c, z : p)
= (Rawu,Rbwz ⇒ w : q, w : 〈b〉q) ◦ (Rauv ⇒ u : p ∧ ¬p) ◦
=(ε⇒ v : q, v : r) ◦ (ε⇒ z : c, z : p)
= Rawu,Rawz,Rbuv ⇒ w : q, w : 〈b〉q, u : p ∧ ¬p, v : q, v : r, z : c, z : p

Based on the above definitions, it is not hard to see that the sequent graph of a labelled
tree sequent Λ is isomorphic to the sequent graph of N(Λ) or that the sequent graph of
a nested sequent X is isomorphic to the sequent graph of L(X). (NB. The relation of
being isomorphic is defined in Def. 36 in Ch. 3.) Thus, we have the following lemma:

Lemma 30. Let Λ be a labelled tree sequent and X be a nested sequent (for grammar
logics). Then,

(i) G(Λ) ∼= G(N(Λ))

(ii) G(X) ∼= G(L(X))

Let us now leverage our translation functions to show that for any CFCST system S, the
calculi Km(S)L and DKm(S) are notational variants of one another. Translating proofs
between refined labelled and nested systems for grammar logics is straightforward and
merely consists of changing notation.
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Theorem 20. Let S be a CFCST system. Every derivation in Km(S)L is algorithmically
translatable to a derivation in DKm(S).

Proof. We prove the result by induction on the height of the given derivation.

Base case. The base case is straightforward as the principal formulae w : p, w : ¬p will
be included together in the output nested sequent, thus ensuring that it is initial. We let
Y := Γ � w in the nested sequent X below.

(id)R ⇒ w : p, w : ¬p,Γ  
(id)

N(R ⇒ w : p, w : ¬p,Γ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
X[p,¬p, Y ]w

Inductive step. Each case of the inductive step is straightforward and is resolved as
shown below. In all cases, we let Y := Γ � w, and in the (Pr〈x〉) case we let Z := Γ � u.
Also, note that the side condition in the (Pr〈x〉) case holds due to Lem. 30 above, which
ensures that PG(R ⇒ w : 〈x〉φ, u : φ,Γ) ∼= PG(X[〈x〉φ, Y ]w[φ,Z]u).

R ⇒ w : φ,w : ψ,Γ (∨r)R ⇒ w : φ ∨ ψ,Γ
 

N(R ⇒ w : φ,w : ψ,Γ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
X[φ, ψ, Y ]w (∨r)
X[φ ∨ ψ, Y ]w. . . . . . . . . . . . . . . . . . . . . . . . . . =

N(R ⇒ w : φ ∨ ψ,Γ)

R ⇒ w : φ,Γ R ⇒ w : ψ,Γ (∧r)  R ⇒ w : φ ∧ ψ,Γ

N(R ⇒ w : φ,Γ). . . . . . . . . . . . . . . . . . . . . =
X[φ, Y ]w

N(R ⇒ w : ψ,Γ). . . . . . . . . . . . . . . . . . . . . . =
X[ψ, Y ]w (∧r)

X[φ ∧ ψ, Y ]w. . . . . . . . . . . . . . . . . . . . . . . . . . =
N(R ⇒ w : φ ∧ ψ,Γ)

R, Rxuw ⇒ u : φ,Γ ([x])
R ⇒ w : [x]φ,Γ

 

N(R, Rxuw ⇒ u : φ,Γ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
X[Y, (x){φ}]w ([x])
X[Y, [x]φ]w. . . . . . . . . . . . . . . . . . . . . . . . =

N(R ⇒ w : [x]φ,Γ)

R ⇒ w : 〈x〉φ, u : φ,Γ (Pr〈x〉)R ⇒ w : 〈x〉φ,Γ
 

N(R ⇒ w : 〈x〉φ, u : φ,Γ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
X[〈x〉φ, Y ]w[φ,Z]u (Pr〈x〉)
X[〈x〉φ, Y ]w[Z]u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

N(R ⇒ w : 〈x〉φ, u : φ,Γ)

Theorem 21. Let S be a CFCST system. Every derivation in DKm(S) is algorithmically
translatable to a derivation in Km(S)L.
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Proof. The theorem is proven by induction on the height of the given derivation and is
similar to the proof of the previous theorem (Thm. 20). In essence, the proof puts forth
a simple algorithm showing that one can switch the notation of a given derivation from
nested to labelled through applications of the L function.

An example is provided below that demonstrates the correspondence between proofs in a
refined labelled calculus Km(S)L and nested calculus DKm(S).

Example 9. The derivation on the left translates via N to the derivation on the right,
and the derivation on the right translates via L to the derivation on the left (up to a
change of labels).

(id)
Rxwu⇒ w : ¬p, w : p, u : 〈x〉p (Pr〈x〉)
Rxwu⇒ w : ¬p, u : 〈x〉p

([x])
⇒ w : ¬p, w : [x]〈x〉p

(∨r)⇒ w : ¬p ∨ [x]〈x〉p

(id)
¬p, p, (x){〈x〉p} (Pr〈x〉)¬p, (x){〈x〉p}

([x])
¬p, [x]〈x〉p

(∨r)¬p ∨ [x]〈x〉p

4.1.3 A Note on the Relationship between Refined Labelled and
Display Calculi

Before concluding this section, we mention an interesting property that holds for each
Km(S)L calculus, and is largely reminiscent of the display/residuation rules employed in
display/shallow nested calculi [Bel82, GPT11, Kas94, LIEG17, TIG12, Wan02].6 Display
calculi were introduced by Belnap in [Bel82], and their one-sided variants were introduced
by Kashima in [Kas94]. Such calculi generalize Gentzen’s sequent calculus formalism
by extending the formalism with additional structural connectives that go beyond
the comma utilized in Gentzen-style sequents. Moreover, a significant feature of the
display calculus/shallow-nested sequent calculus formalism is that it admits a general
cut-elimination theorem stating that any calculus built within the formalism, which also
satisfies eight easily verifiable syntactic conditions, allows for cut-elimination [Bel82].
This property has proven the formalism useful in uniformly providing cut-free calculi for
large classes of logics, independent of the logical connectives or semantics employed.

The paper [TIG12] not only introduced (slight reformulations of) the DKm(S) calculi
presented above, but also introduced shallow nested calculi SKm(S) for context-free
grammar logics with converse. Such calculi make use of the same nested sequents, but
restrict applications of logical rules (viz. (∨r), (∧r), ([x])) to the root, or top-level, of a
nested sequent. Furthermore, propagation rules are replaced by two sets of rules: rules
that introduce 〈x〉 formulae, much like the (〈x〉) rules, and structural rules, much like the
(pxs ) rules. We do not introduce such rules here since they are unneeded in our analysis
of Km(S)L. The interested reader is referred to [TIG12, p. 521] for a formal introduction

6The shallow nested calculi of [GPT11, Kas94, TIG12] can be seen as one-sided versions of display
calculi (cf. [Bel82, Wan02]).
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4.1. Refining Labelled Calculi for Grammar Logics

of shallow nested calculi SKm(S) for context-free grammar logics with converse. The
essential characteristic of shallow nested calculi however, is the incorporation of the
following residuation rule in each calculus:

X, (x){Y }
(r)

(x){X}, Y

The residuation rule (r) allows for a nesting to be ‘flipped’ (much like turning the page
of a book) from one structure Y within the nested sequent to another structure X, so
long as the index is changed from x to x in the process. Keeping this in mind, we will
prove the following proposition concerning Km(S)L, which verifies the validity of ‘flipping’
relational atoms, and afterwards, will briefly discuss the relevance of this property with
respect to shallow nested calculi and ‘display-style reasoning’.

Proposition 2. Let S be a CFCST system. Every proof of a sequent R, Rxwu⇒ Γ in
Km(S)L is algorithmically transformable to a proof of R, Rxuw ⇒ Γ with the same height
or less, and vice-versa.

Proof. We prove the result by induction on the height of the given derivation.

Base case. The base case is resolved as shown below:

(id)R, Rxwu⇒ v : p, v : ¬p,Γ  (id)R, Rxuw ⇒ v : p, v : ¬p,Γ

Inductive step. We show how to resolve the case when the last rule is a (Pr〈y〉) inference,
as all other cases are resolved by applying IH and then the corresponding rule. We solve
and explain the (Pr〈y〉) case below:

R, Rxwu⇒ v : 〈y〉φ, z : φ,Γ (Pr〈y〉)R, Rxwu⇒ v : 〈y〉φ,Γ
 

R, Rxwu⇒ v : 〈y〉φ, z : φ,Γ (Pr〈y〉)R, Rxwu⇒ v : 〈y〉φ,Γ

Let Λ := R, Rxwu⇒ v : 〈y〉φ, z : φ,Γ and Λ′ := R, Rxwu⇒ v : 〈y〉φ, z : φ,Γ. The side
condition of the (Pr〈y〉) inference on the left implies that there exists a path π(v, z) in
PG(Λ) such that sπ(v, z) ∈ LS(x). By Def. 58, PG(Λ) = PG(Λ′), implying that the
path π(v, z) exists in PG(Λ′). Therefore, the derivation on the left may be transformed
into the derivation on the right.

The above proposition is interesting in that it implies the hp-admissibility of a labelled
version of the residuation rule (r), namely:

R, Rxwu⇒ Γ (l)R, Rxuw ⇒ Γ
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The hp-admissibility of the above rule suggests that our refined labelled calculi are
capable of simulating the display-style reasoning inherent in the shallow nested calculi
of [TIG12]. In fact, by the work done in this section, and the work in [TIG12], we
know that for any CFCST system S, every derivation in Km(S)L can be algorithmically
transformed into a derivation in the shallow nested calculus SKm(S), and vice-versa.
This conclusion is justified by the fact that each calculus Km(S)L is a notational variant
of a nested calculus DKm(S), and in [TIG12] it is shown that (a slight variant of) each
nested calculus DKm(S) can be algorithmically transformed into a shallow nested calculus
SKm(S).

What is more noteworthy perhaps, is the interplay between the more liberal notation
of labelled sequents and the display-style reasoning engendered by the hp-admissible (l)
rule. The residuation rule (r) transforms one nested sequent into another nested sequent,
effectively transforming an object encoding a tree into a new object encoding a tree. By
contrast, the flexibility of labelled notation allows for (l) to not only transform a labelled
tree sequent into another labelled tree sequent (thus simulating the behavior of (r) in the
nested setting), but applications of (l) allow for the production of intermediate labelled
sequents outside the class of labelled tree sequents as well (which do not correspond to
nested sequents via the translation N). That is to say, the labelled notation coupled with
the labelled residuation rule (l) allows for a more unrestrained version of display-style
reasoning. To make this point concrete, an example comparing applications of (l) to (r)
is provided below.

Example 10. In the first part of the example, we consider a derivation of a labelled tree
sequent Λ2 (defined below) that consists of two applications of the (l) rule to a labelled
tree sequent Λ1 (also defined below). This derivation translates (in its entirety) to a
derivation of N(Λ2) from N(Λ1) consisting of two applications of the (r) rule. In addition,
we display the sequent graphs of the labelled tree and nested sequents to illustrate how
applications of (l) and (r) manipulate the underlying data structure of the associated
sequents. In the second part of the example, we give a derivation of Λ2 from Λ1 that
uses alternative instances of the (l) rule and does not translate via N (in its entirety)
to a derivation in the nested setting since it includes a labelled sequent Λ which is not
a labelled tree sequent. This observation demonstrates the additional methods of proof
offered in the labelled setting.

Λ1 :=
Ra

Λ2 :=

Rauw,Rbwv,Rcwz ⇒ u : q ∨ r, w : p, w : ¬p, z : ¬q (l)
Rauw,Rbwv,Rczw ⇒ u : q ∨ r, w : p, w : ¬p, z : ¬q (l)
Rawu,Rbwv,Rczw ⇒ u : q ∨ r, w : p, w : ¬p, z : ¬q

N(Rauw,Rbwv,Rcwz ⇒ u : q ∨ r, w : p, w : ¬p, z : ¬q).................................................................. =
q ∨ r, (a){p,¬p, (b){ε}, (c){¬q}}

(r)
(a){q ∨ r}, p,¬p, (b){ε}, (c){¬q}

(r)
(c){(a){q ∨ r}, p,¬p, (b){ε}},¬q.................................................................. =

N(Rawu,Rbwv,Rczw ⇒ u : q ∨ r, w : p, w : ¬p, z : ¬q)
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In the above derivation the root of Λ1 (and N(Λ1)) switches from u to w, and then from
w to z. This behavior is not exhibited in the alternative proof of Λ2 from Λ1, which
includes an intermediary labelled sequent Λ whose sequent graph is not a tree, but rather,
is a polytree (Def. 33). This derivation and the corresponding sequent graphs are shown
below:

Λ1 :=
Λ2 :=
Λ2 :=

Rauw,Rbwv,Rcwz ⇒ u : q ∨ r, w : p, w : ¬p, z : ¬q (l)
Rawu,Rbwv,Rcwz ⇒ u : q ∨ r, w : p, w : ¬p, z : ¬q (l)
Rawu,Rbwv,Rczw ⇒ u : q ∨ r, w : p, w : ¬p, z : ¬q
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(l)

66

(l)

66

The above example demonstrates the added flexibility embedded within labelled notation,
which not only explains why labelled systems can simulate other systems (e.g. nested
and display) with relative ease [CLR18, CLRT20, GR12, Pim18, Res06], but perhaps
explains why labelled systems possess stronger proof-theoretic properties in relation to
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other systems (which use a more rigid or restrictive notation). For example, certain
linear nested sequent systems (e.g. [KL18, Lyo20c]) only allow for the admissibility of
contractions as opposed to the height-preserving admissibility of contractions, which
seems to be due to the fact that the manipulation of data must occur within a linear
structure.

Last, the paper [CLRT20] discusses the relationship between labelled, refined labelled,
nested, and shallow nested (i.e. display) calculi for a class of tense logics. The logics
considered in that paper can be seen as a restricted class of grammar logics that use
an alphabet of the form

∑
= {a, a}. The translations in [CLRT20] may be generalized

to define mutual translations between (refined) labelled and shallow nested calculi for
context-free grammar logics with converse.

4.2 Refining Labelled Calculi for Deontic STIT Logics
In this section, we will refine each deontic STIT calculus G3DSkn (see Fig. 3.5 in Sect. 3.4).
Unlike in the previous section, we forgo a detailed analysis of structural rule elimination
as such an analysis would proceed along the same lines—observe which permutations
of structural rules in G3DSkn cannot be performed, and extract propagation rules that
allow for the permutations to go through. Instead, we simply state which propagation
rules were obtained from such an analysis. After defining such rules, we show that each
calculus G3DSkn can be refined, yielding a deductively equivalent calculus DSknL that
inherits the properties of G3DSkn. Last, we show that derivations in DSknL need only use
labelled forest or DAG sequents (see Def. 56), depending on the values of n, k ∈ N, thus
demonstrating that the refined calculi employ simpler structures in deriving theorems
relative to the labelled calculi G3DSkn.

One of the more interesting observations made in this section concerns the conditions
under which refinement can be performed. It will be shown that the structural rules
(refi), (euci), (Di

2), and (Di
3) (see Fig. 3.5 in Sect. 3.4) are eliminable from any derivation

in a calculus G3DSkn, given that the calculus is extended with certain conducive rules.
However, we will not achieve complete structural rule elimination as we did with the
grammar logic calculi since the rules (IOA) and (APCki ) will still be present in our
refined labelled calculi, showing that refinement may still be performed in the presence
of certain structural rules. In our situation, this holds true because both the (IOA) and
(APCki ) rules lack active relational atoms in their conclusion, and so, any structural rule
may be permuted above them. This observation suggests that other rules of such a shape
would allow for refinement as well.

Due to the presence of (IOA) and (APCki ) in our refined labelled systems DSknL (shown
in Fig. 4.4), such systems will not be notational variants of nested systems in general.
Even so, if we unbound the number of choices available to an agent (i.e. k = 0), or
limit ourselves to the use of a single agent (i.e. n = 0), then the refined labelled calculi
DS0

nL and DSk0L only require labelled DAG proofs and labelled forest proofs (Def. 56),
respectively, showing that behind the scenes a reduction in structure is still present. The
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former class of deontic STIT calculi (viz. DS0
nL) can be seen as close relatives of indexed

nested sequent calculi [Fit15, MS17], which generalize the nested sequent notation to
encode directed acyclic graphs, while the latter class of calculi (viz. DSk0L) can be viewed
as proper nested calculi.

Another distinguishing feature of our refined calculi for deontic STIT logics is that we
replace the use of CFCST systems in our propagation rules with the use of undirected
paths (cf. [Lyo20b]). Intuitively, an undirected path within a labelled sequent is a sequence
of relational atoms of the form R[i]vz connecting two labels w and u, but where we
ignore the ‘orientation’ of the relational atoms. For example, the path R[i]wv,R[i]vu
moves forward from w to v and then forward from v to u, yielding in path from w to
u, but R[i]vw,R[i]vu gives an (undirected) path from w to u as well, since we first move
backward from w to v, and then forward from v to u. We make use of such structures
and forgo the use of our grammar theoretic machinery as it simplifies the presentation
and application of our propagation rules. Still, such simplicity comes at a cost since we
can no longer ‘plug in’ a new CFCST system to obtain a refined labelled calculus for
a new logic (as was done in the previous section). Although this is a shortcoming in a
sense, it is actually not a drawback in the current setting since deontic STIT logics were
specifically designed to possess certain properties with the goal of modeling multi-agent
normative reasoning. Hence, we do not desire to change the properties of our deontic
STIT logics, as this would damage their correspondence with the underlying philosophical
reasons for having imposed such properties in the first place. Therefore, we are justified
in trading modularity for simplicity in the current setting.

Let us now define undirected paths, and afterward, we will discuss and define our
propagation rules that make use of such objects.

Definition 69 (Undirected i-Path). Let w ∼i u ∈ {R[i]wu,R[i]uw} and Λ = R ⇒ Γ.
An undirected i-path of relational atoms from a label w to u occurs in R (and therefore,
in Λ), written w ∼Ri u, iff w = u, w ∼i u, or there exist labels vj ∈ Lab(Λ) (with
j ∈ {1, . . . ,m}) such that w ∼i v1, . . . , vm ∼i u occurs in R.

Lemma 31. Let Λ := R ⇒ Γ be a labelled sequent. The undirected i-path relation ∼Ri is
an equivalence relation over the set of labels Lab(Λ).

Proof. Follows from Def. 69 above.

Our refined labelled calculi are displayed in Fig. 4.4 and employ three new rules: (Pr〈i〉),
(Pr1

	i
), and (Pr2

	i
). The propagation rule (Pr〈i〉) is obtained from the (〈i〉), (refi), and

(euci) rules, the (Pr1
	i

) rule is obtained from the (	i), (refi), (euci), and (Di
3) rules,

and last, the (Pr2
	i

) rule is obtained from (Pr1
	i

) and (Di
2). The (Pr〈i〉) and (Pr1

	i
)

rules make use of undirected i-paths in their side conditions, which arise naturally when
analyzing the permutation of (refi) and (euci) upwards in a G3DSkn derivation. Moreover,
undirected i-paths can be seen as syntactic encodings of the (S1) condition imposed on
DSkn-frames (Def. 24), which forces the relations {R[i] | i ∈ Ag} to be equivalence classes,
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(id)R ⇒ w : p, w : ¬p,Γ
R ⇒ w : φ,Γ R ⇒ w : ψ,Γ (∧r)R ⇒ w : φ ∧ ψ,Γ

R, I⊗iu⇒ u : φ,Γ
(⊗i)†1R ⇒ w : ⊗iφ,Γ

R, R[0]w0u, ..., R[n]wnu⇒ Γ
(IOA)†1R ⇒ Γ

R ⇒ w : φ,w : ψ,Γ (∨r)R ⇒ w : φ ∨ ψ,Γ
R ⇒ w : ♦φ, u : φ,Γ (♦)R ⇒ w : ♦φ,Γ

R, R[i]wu⇒ u : φ,Γ
([i])†1R ⇒ w : [i]φ,Γ

R ⇒ u : 〈i〉φ, v : φ,Γ
(Pr〈i〉)†2R ⇒ u : 〈i〉φ,Γ

R, I⊗iu⇒ w : 	iφ, v : φ,Γ
(Pr1

	i
)†2R, I⊗iu⇒ w : 	iφ,Γ

R ⇒ u : φ,Γ
(�)†1R ⇒ w : �φ,Γ

R, I⊗iu⇒ w : 	iφ, u : φ,Γ
(Pr2

	i
)†1R ⇒ w : 	iφ,Γ{

R, R[i]wmwj ⇒ Γ
∣∣∣ 0 ≤ m ≤ k − 1, m+ 1 ≤ j ≤ k

}
(APCki )R ⇒ Γ

Figure 4.4: The calculi DSknL (with |Ag| = n + 1 and n, k ∈ N). The side condition †1
on (�), ([i]), (⊗i), (IOA), and (Pr2

	i
) indicates that u is a eigenvariable, and the side

condition †2 states that u ∼Ri v. Last, we have ([i]), (Pr〈i〉), (⊗i), (Pr1
	i

), (Pr2
	i

), and
(APCki ) rules for each i ∈ Ag. We stipulate that if k = 0, then (APCki ) is omitted from
the calculus.

or (equivalently) to satisfy the properties of reflexivity and Euclideanity. Since we will
repeatedly make reference to the (Pr〈i〉), (Pr1

	i
), and (Pr2

	i
) rules while refining our

calculi, we collect them into a set defined as follows:

Definition 70 (The Set Pr(DSkn)). Let Ag = {0, . . . , n} ⊆ N be our set of agents. We
define our set of conducive rules as follows:

Pr(DSkn) := {(Pr〈i〉), (Pr1
	i

), (Pr2
	i

) | i ∈ Ag}

As with the propagation rules we saw in the previous section, the side condition imposed
on (Pr〈i〉) and (Pr1

	i
) can be determined whether we are applying the rules top-down or

bottom-up. Regarding the (Pr〈i〉) rule, this follows from the fact that the side condition
only requires data fromR and the principal formula u : 〈i〉φ (see Fig. 4.4) to determine the
rules (in)applicability, and all such data occurs in both the premise and conclusion—the
same holds for the (Pr1

	i
) rule. This feature renders our propagation rules suitable for

proof-search methods which apply inference rules in reverse. To provide more intuition
regarding the functionality of (Pr〈i〉) and (Pr1

	i
) we provide an example below, showing

how the rules may be applied bottom-up as would be done during proof-search.
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Example 11. We examine applications of propagation rules to the labelled sequent:

Λ := I⊗1u, I⊗2v,R[2]wv,R[2]uv,R[1]uz ⇒ w : 	1q, u : 〈2〉p

whose sequent graph G(Λ) (Def. 55) is shown below:

(∅; {	1q})
w

[2]

$$

({1}; {〈2〉p})
u

[2]

yy
[1]

$$({2}; ∅)
v

(∅; ∅)
z

Due to the undirected 2-path R[2]uv, the (Pr〈2〉) rule may be applied (bottom-up) to
propagate the propositional variable p to v, effectively adding v : p to our labelled sequent
Λ. In addition, we may make use of the undirected 2 path R[2]uv,R[2]wv from u to w to
(bottom-up) apply (Pr〈2〉) another time and propagate the propositional atom p to w, i.e.
adding w : p to our labelled sequent Λ. Due to the occurrence of I⊗1u and w : 	1q in
Λ, and because there is an undirected 1-path from u to itself, and an undirected 1-path
R[1]uz from u to z, we may apply (Pr1

	1) (bottom-up) two times to add a q at u and a q
at z, effectively adding u : q, z : q to Λ. After performing these four inferences, we obtain
the following labelled sequent:

Λ′ := I⊗1u, I⊗2v,R[2]wv,R[2]uv,R[1]uz ⇒ w : 	1q, u : 〈2〉p, w : p, v : p, u : q, z : q

whose sequent graph G(Λ′) is as follows:

(∅; {	1q, p})
w

[2]
%%

({1}; {〈2〉p, q})
u

[2]

xx
[1]

%%({2}; {p})
v

(∅; {q})
z

We now move on to showing that (refi), (euci), (Di
2), and (Di

3) are eliminable in
G3DSkn + Pr(DSkn). As in the last section, when proving a rule eliminable, we need
not consider its permutation above the other structural rules we aim to eliminate; e.g.
when considering (refi) elimination, we do not consider permuting the rule above (euci),
(Di

2), or (Di
3). The reason being, if we consider any derivation in G3DSkn + Pr(DSkn), we

can always successively eliminate topmost occurrences of (refi), (trai), (Di
2), and (Di

3),
yielding a proof free of such inferences and without any of the rules ever being permuted
above each other in the process. We first show that our new rules (Pr〈i〉) and (Pr1

	i
)

subsume (〈i〉) and (	i), respectively, as this will let us simplify proofs of subsequent
results:
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Lemma 32. The (〈i〉) and (	i) rules are instances of the (Pr〈i〉) and (Pr1
	i

) rules,
respectively.

Proof. Observe that the premise of the (Pr〈i〉) inference below contains the relational
atom R[i]wu. Hence, there exists an undirected i-path from w to u, meaning that the
side condition of (Pr〈i〉) holds. Regarding the (Pr1

	i
) inference, let R′ := R, I⊗iu. The

application of the rule is valid as well since u ∼R′i u by Def. 69, that is, the side condition
holds.

R, R[i]wu⇒ w : 〈i〉φ, u : φ,Γ
(Pr〈i〉)R, R[i]wu⇒ w : 〈i〉φ,Γ

R, I⊗iu⇒ w : 	iφ, u : φ,Γ
(Pr1

	i
)R, I⊗iu⇒ w : 	iφ,Γ

Lemma 33. For all i ∈ Ag, the (refi) rule is eliminable in the calculus G3DSkn +
Pr(DSkn)− {(euci), (Di

2), (Di
3) | i ∈ Ag}.

Proof. We prove the claim by induction on the height of the given derivation.

Base case. Suppose that we have an instance of (id) followed by an instance of (refi) as
shown below left. Then, the conclusion is an instance of (id) as shown below right. Also,
note that w may or may not be identical to the label u.

(id)R, R[i]uu⇒ w : p, w : ¬p,Γ
(refi)R,⇒ w : p, w : ¬p,Γ

 (id)R ⇒ w : p, w : ¬p,Γ

Inductive step. By Lem. 32, we need not consider permutations above the (〈i〉) or (	i)
rules. With the exception of (Pr〈i〉) and (Pr1

	i
), the rule (refi) freely permutes above

all other rules in our calculus. Below, we consider the (Pr〈i〉) case as the (Pr1
	i

) case is
similar, and suppose our derivation ends with the following:

R, R[i]vv ⇒ w : 〈i〉φ, u : φ,Γ
(Pr〈i〉)R, R[i]vv ⇒ w : 〈i〉φ,Γ

(refi)R ⇒ w : 〈i〉φ,Γ

Let R′ := R, R[i]vv. Since the (Pr〈i〉) rule was applied, we know that there exists an
undirected i-path w ∼R′i u. We have two cases to consider: either R[i]vv occurs in the
undirected i-path, or it does not. In the latter case, we may freely permute the two rules,
so we focus on the former case.

Suppose that R[i]vv occurs in w ∼R′i u. Observe that by deleting each occurrence of
R[i]vv in w ∼R′i u, we obtain an alternative undirected i-path w ∼Ri u that does not rely
on R[i]vv. Therefore, we may apply (refi) to the top sequent above, and use this path to
satisfy the side condition, thus allowing for the two rules to be permuted.
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Lemma 34. For all i ∈ Ag, the (euci) rule is eliminable in the calculus G3DSkn +
Pr(DSkn)− {(refi), (Di

2), (Di
3) | i ∈ Ag}.

Proof. We prove the claim by induction on the height of the given derivation.

Base case. Any application of (euci) to an instance of (id) yields another instance of (id),
which resolves the base case.

Inductive step. By Lem. 32, we need not consider permutations above the (〈i〉) or (	i)
rules. With the exception of (Pr〈i〉) and (Pr1

	i
), the (euci) rule freely permutes above all

other rules in our calculus. We consider only the (Pr1
	i

) case below as the (Pr〈i〉) case is
similar, and assume our derivation ends with the following:

R, R[i]wu,R[i]wv,R[i]uv, I⊗iy ⇒ z : 	iφ, x : φ,Γ
(Pr1

	i
)R, R[i]wu,R[i]wv,R[i]uv, I⊗iy ⇒ z : 	iφ,Γ (euci)R, R[i]wu,R[i]wv, I⊗iy ⇒ z : 	iφ,Γ

Let R′ := R, R[i]wu,R[i]wv,R[i]uv, I⊗iy. Since (Pr1
	i

) was applied, we know that the side
condition holds, implying that there exists an undirected i-path y ∼R′i x in the premise
of the inference. There are two possible cases, either R[i]uv occurs in the aforementioned
i-path, or it does not. In the latter case, the two rules may be freely permuted, so
we focus on the former case. We replace each occurrence of R[i]uv in y ∼R′i x with
R[i]wu,R[i]wv. Observe that this yields an undirected i-path from y to x that does not
rely on R[i]uv. Using this path, we may apply (euci) first, and then (Pr1

	i
), since the

side condition will be satisfied.

Lemma 35. For all i ∈ Ag, the (Di
2) rule is eliminable in the calculus G3DSkn+Pr(DSkn)−

{(refi), (euci), (Di
3) | i ∈ Ag}.

Proof. We prove the result by induction on the height of the given derivation.

Base case. The base case follows from the fact that any application of (Di
2) to an instance

of (id) begets another instance of (id).

Inductive step. By Lem. 32, we need not consider permutations above the (〈i〉) or (	i)
rules. With the exception of the (Pr1

	i
) rule, (Di

2) permutes above all other rules in our
calculus. We show how to resolve the non-trivial case of permuting (Di

2) above (Pr1
	i

)
below:

R, I⊗iu⇒ w : 	iφ, u : φ,Γ
(Pr1

	i
)R, I⊗iu⇒ w : 	iφ,Γ (Di

2)R ⇒ w : 	iφ,Γ
 

R, I⊗iu⇒ w : 	iφ, u : φ,Γ
(Pr2

	i
)R ⇒ w : 	iφ,Γ

Lemma 36. For all i ∈ Ag, the (Di
3) rule is eliminable in the calculus G3DSkn+Pr(DSkn)−

{(refi), (euci), (Di
2) | i ∈ Ag}.
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Proof. We prove the result by induction on the height of the given derivation.

Base case. The base case is resolved by observing that any application of (Di
3) to (id)

gives another instance of (id).

Inductive step. By Lem. 32, we need not consider permutations above the (〈i〉) or (	i)
rules. With the exception of (Pr1

	i
), the (Di

3) rule permutes above all other rules in our
calculus. We show how to resolve the case of permuting (Di

3) above (Pr1
	i

), and assume
our derivation ends with the derivation shown top left.

R, R[i]wu, I⊗iw, I⊗iu⇒ v : 	iφ, z : φ,Γ
(Pr1

	i
)R, R[i]wu, I⊗iw, I⊗iu⇒ v : 	iφ,Γ

(Di
3)R, R[i]wu, I⊗iw ⇒ v : 	iφ,Γ

 

R, R[i]wu, I⊗iw, I⊗iu⇒ v : 	iφ, z : φ,Γ
(Di

3)R, R[i]wu, I⊗iw ⇒ v : 	iφ, z : φ,Γ
(Pr1

	i
)R, R[i]wu, I⊗iw ⇒ v : 	iφ,Γ

Let R′ := R, R[i]wu. We have two cases to consider: either I⊗iu is active in the (Pr1
	i

)
inference, or it is not. In the latter case, the two rules may be freely permuted. In
the former case, if I⊗iu is active in the (Pr1

	i
) inference (in the above left derivation),

then we know that there is an undirected i-path u ∼R′i z due to the side condition of
(Pr1

	i
). Observe that the side condition of (Pr1

	i
) continues to hold after (Di

3) is applied
since I⊗iw occurs in the multiset of relational atoms (as can be seen in the lower right
derivation above) and by combining R[i]wu with the undirected i-path u ∼R′i z, we obtain
an undirected i-path w ∼R′i z.

Theorem 22. Every derivation in G3DSkn can be algorithmically transformed into a
derivation in DSknL.

Proof. The result follows from Lem. 32 – 36 above.

At this stage, we could opt to show that our refined labelled calculi possess proof-theoretic
properties (e.g. hp-admissibility of (ctrr), hp-invertibility of rules, or syntactic (cut)
elimination) by carrying out proofs as we did for all G3DSkn calculi. We opt for a
different method of proof however, and instead, establish a correspondence between
each DSknL and G3DSkn calculus as this uncovers the relationship between derivations
in the different settings. We have already shown that every derivation in a calculus
G3DSkn can be transformed into a derivation in DSknL (Thm. 22 above), so to establish our
correspondence, we show that proof transformations can be performed in the opposite
direction as well. We will then leverage these proof transformations to show that each
DSknL calculus inherits favorable proof-theoretic properties from its associated G3DSkn
calculus (Cor. 4–6). We first prove a valuable lemma (Lem. 37 below), which states
that if an undirected i-path w ∼Ri u occurs in the relational atoms R of a derivable
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labelled sequent R, R[i]wu⇒ Γ, then the relational atom R[i]wu is superfluous, and so,
the labelled sequent R ⇒ Γ may be derived on its own. After proving this lemma, we
provide an algorithm showing that proofs in DSknL can be transformed into proofs in
G3DSkn.

Lemma 37. If R, R[i]wu ⇒ Γ is derivable in G3DSkn and w ∼Ri u, then R ⇒ Γ is
derivable in G3DSkn.

Proof. We prove the claim by induction on the length of the undirected i-path between
w and u in R, and let Π be the derivation of R, R[i]wu⇒ Γ in G3DSkn.

Base case. If the undirected i-path between w and u is of length 0, then w = u, and the
case is resolved as shown below left. If the undirected i-path between w and u is of length
1, then the case is resolved as shown below right and makes use of the hp-admissibility of
(ctrR) (Lem. 23). Note that in the second case, R = R′, R[i]wu.

Π
R, R[i]ww ⇒ Γ

(refi)R ⇒ Γ

Π
R, R[i]wu⇒ Γ

=
R′, R[i]wu,R[i]wu⇒ Γ

(ctrR)
R′, R[i]wu⇒ Γ. . . . . . . . . . . . . . . . . . . =
R ⇒ Γ

Inductive step. We assume that the undirected i-path w ∼Ri u between w and u is of
length m+ 1. Therefore, there exists a v such that there is an undirected i-path w ∼Ri v
between w and v of length m and an undirected i-path between v and u of length 1.
Since the length of the undirected i-path w ∼Ri v between w and v is m, we may invoke
IH (in both cases) below to delete the relational atom R[i]wv. Additionally, since there is
an undirected i-path between v and u of length 1, either R = R′, R[i]uv or R = R′, R[i]vu
by Def. 69. The first case is resolved as shown below top, and the second case is resolved
as shown below bottom. Also, we indicate active relational atoms in the premise of a
(euci) inference with an asterisk ∗ to improve comprehensibility.

Π
R′, R[i]uv,R[i]wu,⇒ Γ

(wk)
R′, R[i]uv,R[i]wv,R[i]ww,R

∗
[i]uu,R[i]vv,R[i]vw,R[i]vu,R

∗
[i]uw,R

∗
[i]wu⇒ Γ

(euci)R′, R[i]uv,R[i]wv,R[i]ww,R[i]uu,R[i]vv,R
∗
[i]vw,R

∗
[i]vu,R

∗
[i]uw ⇒ Γ

(euci)R′, R∗[i]uv,R[i]wv,R[i]ww,R
∗
[i]uu,R[i]vv,R[i]vw,R

∗
[i]vu⇒ Γ

(euci)R′, R[i]uv,R
∗
[i]wv,R

∗
[i]ww,R[i]uu,R[i]vv,R

∗
[i]vw ⇒ Γ

(euci)R′, R[i]uv,R[i]wv,R[i]ww,R[i]uu,R[i]vv ⇒ Γ
(refi)× 3

R′, R[i]uv,R[i]wv ⇒ Γ
IHR′, R[i]uv ⇒ Γ. . . . . . . . . . . . . . . . . . . =

R ⇒ Γ
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Π
R′, R[i]vu,R[i]wu⇒ Γ

(wk)
R′, R∗[i]vu,R

∗
[i]vw,R

∗
[i]wu,R[i]wv,R[i]ww ⇒ Γ

(euci)R′, R[i]vu,R
∗
[i]vw,R

∗
[i]wv,R

∗
[i]ww ⇒ Γ

(euci)R′, R[i]vu,R[i]wv,R[i]ww ⇒ Γ
(refi)R′, R[i]vu,R[i]wv ⇒ Γ

IHR′, R[i]vu⇒ Γ. . . . . . . . . . . . . . . . . . . =
R ⇒ Γ

Theorem 23. Every derivation in DSknL + Str(DSkn) can be algorithmically transformed
into a derivation in G3DSkn.

Proof. We prove the result by induction on the height of the given derivation in DSknL +
Str(DSkn).

Base case. Any instance of (id) in DSknL + Str(DSkn) is an instance of (id) in G3DSkn,
which resolves the base case.

Inductive step. We prove the inductive step by considering the last rule applied in
DSknL + Str(DSkn). All rules in Str(DSkn) are handled by applying IH followed by the
hp-admissibility or eliminability of the rule (Lem. 20, 21, 23, and Thm. 14). With the
exception of the (Pr〈i〉), (Pr1

	i
), and (Pr2

	i
) rules, all other cases are easily resolved since

each is a rule in G3DSkn. We show the (Pr〈i〉), (Pr1
	i

), and (Pr2
	i

) cases below, and note
that in the (Pr〈i〉) case the side condition w ∼Ri u holds, and in the (Pr1

	i
) case the side

condition u ∼Ri v holds, which allows for the invocation of Lem. 37.

R ⇒ w : 〈i〉φ, u : φ,Γ (Pr〈i〉)R ⇒ w : 〈i〉φ,Γ
 

IHR ⇒ w : 〈i〉φ, u : φ,Γ
(wk)

R, R[i]wu⇒ w : 〈i〉φ, u : φ,Γ
(〈i〉)

R, R[i]wu⇒ w : 〈i〉φ,Γ
Lem. 37R ⇒ w : 〈i〉φ,Γ

R, I⊗iu⇒ w : 	iφ, v : φ,Γ
(Pr1

	i
)R, I⊗iu⇒ w : 	iφ,Γ
 

IHR, I⊗iu⇒ w : 	iφ, v : φ,Γ
(wk)R, R[i]uv, I⊗iu, I⊗iv ⇒ w : 	iφ, v : φ,Γ
(	i)R, R[i]uv, I⊗iu, I⊗iv ⇒ w : 	iφ,Γ

(Di
3)R, R[i]uv, I⊗iu⇒ w : 	iφ,Γ

Lem. 37R, I⊗iu⇒ w : 	iφ,Γ
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R, I⊗iu⇒ w : 	iφ, u : φ,Γ
(Pr2

	i
)R ⇒ w : 	iφ,Γ
 

IHR, I⊗iu⇒ w : 	iφ, u : φ,Γ
(	i)R, I⊗iu⇒ w : 	iφ,Γ (Di
2)R ⇒ w : 	iφ,Γ

Example 12. The top derivation below is in DSknL and the bottom derivation below is
in G3DSkn. The first (Pr〈i〉) instance in the top derivation translates to the first (〈i〉)
instance and (euci) instance in the bottom derivation, the second (Pr〈i〉) inference in the
top derivation translates to the second (〈i〉) inference along with the (refi) instance in
the bottom derivation, and the (Pr2

	i
) instance translates to the (	i) and (Di

2) instances
in the bottom derivation. To transform the bottom derivation into the top derivation, the
(euci), (refi), and (Di

2) inferences are eliminated as explained in Lem. 34, 33, and 35,
respectively. Last, we let φ := [i]¬p ∨ [i]〈i〉〈i〉p to save space.

(id)
I⊗iw,R[i]wu,R[i]wv ⇒ z : 	iφ, v : 〈i〉〈i〉p, v : 〈i〉p, u : p, u : ¬p

(Pr〈i〉)
I⊗iw,R[i]wu,R[i]wv ⇒ z : 	iφ, v : 〈i〉〈i〉p, v : 〈i〉p, u : ¬p

(Pr〈i〉)
I⊗iw,R[i]wu,R[i]wv ⇒ z : 	iφ, v : 〈i〉〈i〉p, u : ¬p

([i])× 2
I⊗iw ⇒ z : 	iφ,w : [i]¬p, w : [i]〈i〉〈i〉p

(∨r)
I⊗iw ⇒ z : 	iφ,w : [i]¬p ∨ [i]〈i〉〈i〉p............................................................... =

I⊗iw ⇒ z : 	i([i]¬p ∨ [i]〈i〉〈i〉p), w : [i]¬p ∨ [i]〈i〉〈i〉p
(Pr2

	i
)

ε⇒ z : 	i([i]¬p ∨ [i]〈i〉〈i〉p)

(id)
I⊗iw,R[i]wu,R[i]wv,R[i]vu,R[i]vv ⇒ z : 	iφ, v : 〈i〉〈i〉p, v : 〈i〉p, u : p, u : ¬p

(〈i〉)
I⊗iw,R[i]wu,R[i]wv,R[i]vu,R[i]vv ⇒ z : 	iφ, v : 〈i〉〈i〉p, v : 〈i〉p, u : ¬p

(euci)
I⊗iw,R[i]wu,R[i]wv,R[i]vv ⇒ z : 	iφ, v : 〈i〉〈i〉p, v : 〈i〉p, u : ¬p

(〈i〉)
I⊗iw,R[i]wu,R[i]wv,R[i]vv ⇒ z : 	iφ, v : 〈i〉〈i〉p, u : ¬p

(refi)
I⊗iw,R[i]wu,R[i]wv ⇒ z : 	iφ, v : 〈i〉〈i〉p, u : ¬p

([i])× 2
I⊗iw ⇒ z : 	iφ,w : [i]¬p, w : [i]〈i〉〈i〉p

(∨r)
I⊗iw ⇒ z : 	iφ,w : [i]¬p ∨ [i]〈i〉〈i〉p............................................................... =

I⊗iw ⇒ z : 	i([i]¬p ∨ [i]〈i〉〈i〉p), w : [i]¬p ∨ [i]〈i〉〈i〉p
(	i)

I⊗iw ⇒ z : 	i([i]¬p ∨ [i]〈i〉〈i〉p)
(Di

2)
ε⇒ z : 	i([i]¬p ∨ [i]〈i〉〈i〉p)

We may now leverage our proof-theoretic transformations to show that our refined labelled
calculi possess admissibility and invertibility properties, and in addition, are sound and
complete.

Corollary 4. The rules in Str(DSkn) are admissible in DSknL.
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Proof. Follows from Thm. 23 and Thm. 22.

Corollary 5. All rules of DSknL are invertible.

Proof. Follows from Thm. 23 and Thm. 22, as well as Lem. 22.

Corollary 6 (Soundness and Completeness of DSknL). Let n, k ∈ N. Then,
(i) If `DSk

nL Λ, then |=DSk
n

Λ.
(ii) If `DSk

n
φ, then `DSk

nL ε⇒ w : φ.

Proof. Follows from Thm. 13, 15, 22, and Thm. 23.

Before concluding the section, we discuss the reduction in sequential structure that
arises through refinement, and recall that each G3DSkn calculus is incomplete relative to
labelled DAG and forest derivations (Thm. 16). If we consider the calculi in the class
{DS0

nL | n ∈ N}, where the maximum number of choices is unrestricted (i.e. k = 0), then
it is relatively straightforward to show that any derivation of a labelled theorem w : φ in
such a calculus is a labelled DAG derivation. The reason why derivations for such calculi
require labelled DAG sequents, as opposed to more minimalistic structures (e.g. labelled
forest sequents), is due to the presence of the (IOA) rule, which introduces relational
atoms that ‘converge’ to the same point when applied bottom-up. This is illustrated in
the graphic below, which shows the kind of structure that would appear in the sequent
graph of a labelled sequent if (IOA) was applied in reverse, introducing the relational
atoms R[0]w0u,R[1]w1u, . . . , R[n−1]wn−1u,R[n]wnu.

w0

[0]
**

w1

[1]
""

· · · wn−1

[n−1]
{{

wn

[n]
ttu

Therefore, as it currently stands, each refined labelled calculus DS0
nL (with n > 0) appears

to require labelled DAG derivations as the (IOA) rule is vital for completeness.

Theorem 24. Let n ∈ N and k = 0. Every derivation in DS0
nL of a labelled formula

w : φ is a labelled DAG derivation with the rooted property.

Proof. First, we recall that if k = 0, then (APCki ) is omitted from the calculus for
each i ∈ Ag (see Fig. 4.4). To prove the result, let us consider a derivation in DS0

nL of
the labelled sequent ε ⇒ w : φ in a bottom-up manner. The only rules that add new
labels (i.e. eigenvariables)—and therefore, change the set of vertices or edges in the
sequent graph of a labelled sequent—are the ([i]), (⊗i), (Pr2

	i
), and (IOA) rules. If the

([i]) rule is applied bottom-up to a labelled sequent Λ, then it will introduce a forward
edge to the sequent graph of Λ. If the (⊗i) or (Pr2

	i
) rule is applied bottom-up to a
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labelled sequent Λ, then it will introduce a new, disconnected vertex. If the (IOA) rule
is applied bottom-up to a labelled sequent Λ, then it introduces |Ag| = n+ 1 new edges
all converging to a fresh vertex in the sequent graph of Λ. Therefore, one can see that
applying rules in reverse to the labelled sequent ε⇒ w : φ cannot introduce a cycle since
new edges always connect to fresh vertices in sequent graphs. Furthermore, when new
labels are introduced via bottom-up applications of ([i]), (⊗i), (Pr2

	i
), or (IOA), either

forward edges are added to sequent graphs, or new disconnected vertices are added; this
shows that if a label serves as a root, then no edges can be introduced pointing to that
label, and hence, the labelled derivation possesses the rooted property.

Last, we note that in the single-agent setting, i.e. for the class of calculi {DSk0L | k ∈ N},
completeness only requires labelled forest derivations. This minimalism is partly due
to the fact that the (IOA) rule is redundant when |Ag| = 1, implying that convergent
structures—such as the example presented above—need not be introduced. Still, the
(APCki ) rule could break the property of being a labelled forest sequent when applied
bottom-up, but it turns out that applications of (APCki ) can be restricted to ensure that
the forest structure of a labelled sequent is preserved. We do not prove that each DSk0L
calculus only requires labelled forest derivations (with the rooted property) here, as the
proof requires more sophisticated methods, which will be introduced in Sect. 6.1, and
follows as a corollary from our work on proof-search for deontic STIT logics.
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CHAPTER 5
The Method of Refinement:

First-Order Intuitionistic Logics

We demonstrate how refining the labelled calculi G3IntQ and G3IntQC (see Fig. 3.3) for
the first-order intuitionistic logics IntQ and IntQC (see Def. 20) yields new nested calculi
for the logics (which we refer to as DIntQ and DIntQC, respectively; see Fig. 5.8 on
p. 167). The characteristic feature of these nested calculi is the employment of nested
sequents in deriving theorems, which—in the current context—are formulae encoding
trees of two-sided Gentzen-style sequents. For example, the nested sequent:

p,⊥ ⇒ p, {q ⊃ q, q ⊃ q ⇒ ε}, {q ∨ r ⇒ q ∧ p, {ε⇒ p}, {ε⇒ ε}}

encodes the following tree of sequents:

p,⊥ ⇒ p
0

xx %%
q ⊃ q, q ⊃ q ⇒ ε

0.0
q ∨ r ⇒ q ∧ p

0.1

yy $$ε⇒ p
0.1.0

ε⇒ ε
0.1.1

The nested calculi we obtain via the method of refinement are distinct from the existing
nested calculi for IntQ and IntQC provided by Fitting in [Fit14], which have been included
in Appendix A (see p. 207). As will be argued below, the new nested systems DIntQ and
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DIntQC obtained via refinement possess certain qualities that improve upon Fitting’s
nested calculi in a number of ways. Perhaps the most significant and advantageous
distinction concerns the theoretical apparatus underpinning inference rules in DIntQ and
DIntQC; we make use of CFCST systems (see Def. 8) to define inference rules for ⊃, ∃,
and ∀ and in the definition of initial sequents. Therefore, such rules are parameterized
by formal grammars dictating (in)applications of each rule—just as was done with
propagation rules in Sect. 4.1. To provide the reader with intuition concerning how
formal grammars play a role in our nested systems, we give a concrete example of how
an initial sequent is determined in DIntQ and DIntQC:

X := r(b, c)⇒ ε, {∀xq(x)⇒ ε, {q(b), p⇒ r(b, c)}}

Determining that X is an initial sequent consists of two steps: first, we transform the
nested sequent into a propagation graph (much like the propagation graphs introduced in
the previous chapter; see Def. 63), which is analogous to a finite deterministic automaton.1
A pictorial representation of the propagation graph of X is shown below:

r(b, c)⇒ ε
w

a ++ ∀xq(x)⇒ ε
u

a

gg

a ,,
q(b), p⇒ r(b, c)

v

a

hh

For the propagation graph of a nested sequent, we make use of the character a to encode
a forward move, that is, a transition to a (two-sided) Gentzen-style sequent that is
deeper in the nestings, and make use of its converse a to encode a backward move to
a shallower Gentzen-style sequent. Labeling the edges of the propagation graph with
characters is useful because sequences of edges can be thought of as strings generated by
a CFCST system encoding how formulae should be correctly positioned (or, correctly
propagated—in the case of inference rules for ⊃, ∃, and ∀) throughout the graph of
the given nested sequent; this brings us to our second step in determining that X is
initial, which relies on matching strings generated by a CFCST system to paths in the
propagation graph of X.

For reasons that will be made clear in the subsequent section (Sect. 5.1), a nested sequent
is considered initial in DIntQ and DIntQC so long as there is a sequence of edges in its
propagation graph from a Gentzen-style sequent of the form Y1, p(~a)⇒ Z1 to another of
the form Y2 ⇒ p(~a), Z2 spelling a string from the set {ε, a, aa, aaa, . . .}, where Y1, Y2, Z1,
and Z2 are multisets of formulae from LInt (see Def. 13) and p(~a) is an atomic formula.
We can re-phrase this condition in grammar-theoretic terms by stating that a nested
sequent is initial so long as there is a sequence of edges in its propagation graph from a
Gentzen-style sequent Y1, p(~a)⇒ Z1 to another of the form Y2 ⇒ p(~a), Z2 that spells a
string generated by a with the following CFCST system:

S := {a −→ ε, a −→ aa, a −→ ε, a −→ aa},
1See [Sip12, Ch. 1] for an introduction to finite deterministic automata.
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that is, the string is in the language LS(a) (see Def. 9). Note that LS(a) = {ε, a, aa, aaa, . . .}
and that strings within the language can be seen as encoding a notion of reachability
in the propagation graph of a nested sequent with ε meaning that there is a forward
path of length 0 between Y1, p(~a)⇒ Z1 and Y2 ⇒ p(~a), Z2, with a meaning that there is
a forward path of length 1 between Y1, p(~a)⇒ Z1 and Y2 ⇒ p(~a), Z2, with aa meaning
that there is a forward path of length 2 between Y1, p(~a)⇒ Z1 and Y2 ⇒ p(~a), Z2, and
so on. In terms of the semantics of IntQ and IntQC, this condition on initial sequents
is equivalent to the monotonicity condition (M) (see Def. 16) imposed on IntQ- and
IntQC-models, which states that if an atomic formula p(~a) is true at a world, then it is
true at all future worlds. One can easily verify that the nested sequent X is initial via
this condition since there is a sequence of (two) forward edges from w to v spelling the
string aa—which can also be generated by a with the second production rule in S—where
the initial node w is associated with r(b, c) ⇒ ε and the terminal node v is associated
with q(b), p⇒ r(b, c).

The method of defining rules that make reference to formal grammars produces interesting
and beneficial consequences. First, it allows us to recognize a class of rules that generalize
the behavior of propagation rules, which we dub reachability rules. While propagation
rules function by propagating a formula to the terminal node of a path, reachability rules
function by (additionally) checking if data exists at the end of a (potentially separate) path.
It is easy to imagine this behavior being generalized even further with reachability rules
propagating formulae along an arbitrary number of paths conditional on the existence of
data found along some number of paths, albeit we will only consider rather simple versions
of such rules here. A second outcome of our grammar/language theoretical approach to
defining rules is a substantial increase in the modularity of our nested systems compared
to the systems put forth by Fitting. Fitting employs a rule—referred to as lift (see
Appendix A on p. 207)—which encodes the transitivity and monotonicity properties of
intuitionistic logics. We note that the lift rule is a reformulation of the propagation rules
introduced by Postniece in [Pos09, Pos10], which were used to provide a deep-inference
nested sequent system for bi-intuitionistic logic amenable to proof-search. In the approach
presented here, monotonicity is encoded into an initial, reachability rule, and transitivity
is encoded in a propagation rule for the ⊃ connective and a reachability rule for the ∀
connective. By comparison then, our approach is more fine-grained than Fitting’s as it
distinguishes the monotonicity and transitivity properties as opposed to unifying them
in a single rule. Consequently, this appears to bring about an increase in modularity as
transforming our systems into systems for sub-intuitionistic logics [Cor87, Res94] should
follow by the modification of our reachability and/or propagation rules. In fact, by
‘plugging-in’ alternative formal grammars and/or adding certain rules for new logical
connectives, it appears that we can uniformly obtain proof calculi for a sizable class
of propositional and first-order (sub-)(bi-)intuitionistic logics (such as those discussed
in [Cor87, IK07, PU18, Rau80, Res94]), though such investigations are left to future work
as they go beyond the logics considered in this thesis. Last, connecting our proof systems
(and therefore, our logics) to formal grammars opens up the possibility of transferring
results (e.g. (un)decidability results) between formal language theory and logic.
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5. The Method of Refinement: First-Order Intuitionistic Logics

As mentioned at the onset, the primary goal of this chapter is to show how (new) nested
calculi can be obtained for IntQ and IntQC via the method of refinement. In contrast
to the propositional setting where refinement primarily proceeds via structural rule
elimination, in the first-order setting we must also consider the removal of domain atoms
(e.g. a ∈ Dw) from labelled syntax. Thus, structural rule elimination will beget the
quasi-refined labelled calculi IntQL∗ and IntQCL∗ containing rules whose applicability
still depends on the occurrence of domain atoms. After obtaining these calculi, we then
redefine our rules so that their applicability is independent of the occurrence of domain
atoms, producing our (fully) refined labelled calculi IntQL and IntQCL, from which the
nested calculi DIntQ and DIntQC may be obtained. To make our strategy for deriving
DIntQ and DIntQC via refinement explicit, we clearly list the steps involved in the process,
which also explains the main content of each of the following four sections:

1. Sect. 5.1: Discover through analyzing the elimination of structural rules, what
conducive rules (i.e propagation and reachability rules) permit the elimination of all
structural rules from the labelled calculi G3IntQ and G3IntQC (defined in Fig. 3.3).2

2. Sect. 5.2: Derive the quasi-refined labelled calculi IntQL∗ and IntQCL∗ (defined in
Def. 74) from the labelled calculi G3IntQ and G3IntQC via structural rule elimination.

3. Sect. 5.3 (Part 1): Remove the domain atoms from the syntax of IntQL∗ and
IntQCL∗ and re-define relevant inference rules so that applications of the rules are
independent of the existence of domain atoms to obtain the (fully) refined labelled
calculi IntQL and IntQCL (defined in Fig. 5.6).

4. Sect. 5.3 (Part 2): Show that the refined labelled calculi IntQL and IntQCL possess
favorable proof-theoretic properties.

5. Sect. 5.4: Show that the nested calculi DIntQ and DIntQC (defined in Fig. 5.8) can
be obtained from, and inherit the properties of, the refined labelled calculi IntQL
and IntQCL.

The relationships established between the various proof calculi considered are displayed
in Fig. 5.1. Solid arrows indicate that proofs in one calculus may be transformed into
proofs in another calculus (which preserves the language of the calculus) and dotted
arrows signify that proofs in one calculus may be translated into proofs in another
calculus (which changes the language of the calculus). The symbol ⊂ is used to indicate
that one calculus is a restricted version of another; e.g. G3IntQ is a restricted version
of G3IntQC as the former omits the (cd) rule and the latter includes it. Furthermore,
arrows are annotated with the name of the result that establishes the transformation or
translation, and the dotted arrows are additionally annotated with the N and L symbols,
indicating the functions that translate from labelled to nested notation and the opposite,
respectively, which are introduced in Sect. 5.4.

2Recall that conducive rules are rules that permit the elimination of structural rules when added to
our calculi.
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5.1. Refinement Part I: Analysis

G3IntQ

Thm. 25
''

⋂
IntQL∗

Thm. 26

ff

⋂
IntQL

N
Thm. 33

&&

Lem. 45
oo

⋂
DIntQ

L
Thm. 34

ee

⋂
G3IntQC

Thm. 25
''

IntQCL∗

Thm. 26

ff IntQCL
N

Thm. 33
&&

Lem. 45
oo DIntQC

L
Thm. 34

ee

Figure 5.1: Transformations and translations between the intuitionistic calculi considered.

5.1 Refinement Part I: Analysis

We analyze the issues that arise when attempting to perform structural rule elimination
in G3IntQ and G3IntQC (see Fig. 3.3). This analysis will lead to the discovery of (and
motivate the definition of) conducive rules that permit the elimination of (ref), (tra),
(nd), (cd), and (ned) (see Fig. 3.3) from our labelled calculi. Our analysis of structural
rule elimination will consist of three parts: (i) Considering the permutation of (ref) and
(tra) above the (id) and (⊃l) rules, (ii) Considering the permutation of (nd) above the
(id) and (∃r) rules, and (iii) Considering the permutation of (ned) above the (∀l) rule.
Despite the fact that the case of permuting (ref) and (tra) above (∀l), permuting (cd)
(with (nd)) above (id), (∃r), and (∀l), and permuting (ned) above (∃r) are all interesting
cases, the understanding forged from considering the cases in (i) – (iii) above will be
sufficient to motivate the definition of our reachability and propagation rules. Before
going through our analysis, we introduce some helpful terminology:

Definition 71 (Principal, Auxiliary Label). We refer to the label of the principal formula
in a labelled inference rule as the principal label. Also, the label(s) of the auxiliary
formula(e) in a labelled inference rule is (are) referred to as the auxiliary label(s).
Principal and auxiliary labels are referred to as active labels, more generally.

Let us begin part (i) of our analysis. We first consider the problematic cases that arise
when attempting to permute (ref) above (id) and (⊃l), and after, look at the problematic
cases that arise when attempting to permute (tra) above the two rules. The (ref) cases
we consider are as follows:

(id)
R, w ≤ w,~a ∈ Dw,Γ, w : p(~a)⇒ w : p(~a),∆

(ref)
R,~a ∈ Dw,Γ, w : p(~a)⇒ w : p(~a),∆
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5. The Method of Refinement: First-Order Intuitionistic Logics

R, w ≤ w,Γ, w : φ ⊃ ψ ⇒ ∆, w : φ R, w ≤ w,Γ, w : φ ⊃ ψ,w : ψ ⇒ ∆ (⊃l)R, w ≤ w,Γ, w : φ ⊃ ψ ⇒ ∆ (ref)R,Γ, w : φ ⊃ ψ ⇒ ∆

In order to successfully eliminate (ref) in the above (id) case, the end sequent must be
derivable without the use of (ref). However, by inspection of G3IntQ and G3IntQC, it is
apparent that none of the rules can be used to derive the end sequent without the use of
(ref). A similar issue arises when attempting to permute the (ref) rule upwards in the
(⊃l) derivation, as shown below:

R, w ≤ w,Γ, w : φ ⊃ ψ ⇒ ∆, w : φ (ref)R,Γ, w : φ ⊃ ψ ⇒ ∆, w : φ
R, w ≤ w,Γ, w : φ ⊃ ψ,w : ψ ⇒ ∆ (ref)R,Γ, w : φ ⊃ ψ,w : ψ ⇒ ∆

In the above cases, no rule exists within G3IntQ or G3IntQC permitting us to derive the
desired conclusion of the original proof. Nevertheless, if we add the following (sound)
rules to our calculi, then the permutations with (ref) may be accomplished:

(id0)
R,~a ∈ Dw,Γ, w : p(~a)⇒ w : p(~a),∆

R,Γ, w : φ ⊃ ψ ⇒ ∆, w : φ R,Γ, w : φ ⊃ ψ,w : ψ ⇒ ∆ (⊃0
l )R,Γ, w : φ ⊃ ψ ⇒ ∆

Notice that both of the above rules share a common characteristic. In the (id0) rule,
what was the (principal) labelled formula u : p(~a) on the right of the sequent arrow ⇒
has now become the labelled formula w : p(~a), thus matching the principal formula on the
left. By comparison, in the (⊃0

l ) rule, the auxiliary formulae u : φ (in the left premise)
and u : ψ (in the right premise) have also propagated backward and are associated with
the label w with which the principal formula w : φ ⊃ ψ is associated. This observation
suggests that for the elimination of (ref), we require new versions of the (id), (⊃l), and
(∀l) rules (notice that all such rules include a relational atom of the form w ≤ u in their
conclusion, which causes them to ‘interact’ with (ref)) where the auxiliary labels are
reachable with a path of length zero from the principal label.3 We will keep this fact in
mind as we continue our analysis and observe the problematic case of permuting (tra)
above (id) and (⊃l). These cases are as follows:

(id)
R, w ≤ v, v ≤ u,w ≤ u,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

(tra)
R, w ≤ v, v ≤ u,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

3Recall that we are omitting consideration of certain cases (e.g. (∀l)) in our analysis to keep it concise.
In spite of this fact, for the curious reader, the new version of the (∀l) rule would be as follows:

R, a ∈ Dw,Γ, w : φ(a/x), w : ∀xφ⇒ ∆
(∀0

l )R, a ∈ Dw,Γ, w : ∀xφ⇒ ∆
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5.1. Refinement Part I: Analysis

Λ1 := R, w ≤ v, v ≤ u,w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ

Λ2 := R, w ≤ v, v ≤ u,w ≤ u,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆

Λ1 Λ2 (⊃l)R, w ≤ v, v ≤ u,w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆ (tra)R, w ≤ v, v ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆

As before, the end sequent of the first proof is not derivable without the use of (tra)
in G3IntQ and G3IntQC, suggesting that the end sequent should be taken as an initial
sequent in its own right. Also, permuting the (tra) rule upwards in the (⊃l) proof yields
proofs ending with the following two inferences:

R, w ≤ v, v ≤ u,w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ (tra)R, w ≤ v, v ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ

R, w ≤ v, v ≤ u,w ≤ u,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆ (tra)R, w ≤ v, v ≤ u,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆

Since no rule is applicable to the conclusions above that would allow us to derive the desired
conclusion, the (⊃l) case also suggests the need of a new (⊃l) rule. The new versions of
(id) and (⊃l) suggested by our analysis are as shown below, with R2 := R, w ≤ v, v ≤ u.
It is crucial to observe that a directed path of length two (due to the w ≤ v, v ≤ u
relational atoms) occurs between the principal and auxiliary labels in the rules below:

(id2)
R2,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

R2,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ R2,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆ (⊃2
l )R2,Γ, w : φ ⊃ ψ ⇒ ∆

Adding the above rules to our calculi would permit the permutation of (tra) above (id)
and (⊃l), yet, if such rules are added to our calculi, then we must consider permuting (tra)
above them as well. Let us examine the problematic cases that arise when attempting
to permute (tra) above (id2) and (⊃2

l ), and after, we will summarize and discuss the
conducive rules suggested by part (i) of our analysis.

(id2)
R, w ≤ v, v ≤ z, z ≤ u,w ≤ u,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

(tra)
R, w ≤ v, v ≤ z, z ≤ u,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

Λ1 := R, w ≤ v, v ≤ z, z ≤ u,w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ

Λ2 := R, w ≤ v, v ≤ z, z ≤ u,w ≤ u,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆
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5. The Method of Refinement: First-Order Intuitionistic Logics

Λ1 Λ2 (⊃l)R, w ≤ v, v ≤ z, z ≤ u,w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆ (tra)R, w ≤ v, v ≤ z, z ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆

At this point, the reader might have guessed that the above cases cannot be resolved
within our calculi, unless new versions of the (id2) and (⊃2

l ) rules are added. Such rules
would have the following form, with R3 := R, w ≤ v, v ≤ z, z ≤ u, thus requiring the
existence of a (directed) relational path of length three between principal and auxiliary
labels.

(id3)
R3,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

R3,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ R3,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆ (⊃3
l )R3,Γ, w : φ ⊃ ψ ⇒ ∆

Of course, extending our calculi with the above rules would require considering their
permutability with (tra), thus necessitating the addition of new rules (id4) and (⊃4

l )
(having relational paths of length four between their auxiliary labels and principal labels),
which would further require the addition of new rules to permit their permutation with
(tra), ad infinitum.

A pattern has emerged from our analysis: The rules (id0) and (⊃0
l ) require relational

paths of length zero between auxiliary labels and principal labels, the original rules (id)
and (⊃l) require relational paths of length one (i.e. a single relational atom) between
auxiliary labels and principal labels, the (id2) and (⊃2

l ) rules require relational paths of
length two (i.e. there are two relational atoms w ≤ v, v ≤ u) between auxiliary labels and
principal labels, etc. Similar to Sect. 4.1, it appears that what is needed to allow for the
elimination of (ref) and (tra) is the addition of propagation rules to our calculi, where,
the side condition permits an application of the rule given that the auxiliary labels are
reachable (with a directed path) from the principal label. There are a variety of ways in
which we could define such rules, but since we have CFCST systems at our disposal, we
will make use of such objects to define our propagation rules, analogous to what was done
in Sect. 4.1 for grammar logics. (NB. This approach differs from the author’s approach
in [Lyo20a, Lyo20b] where applications of rules rely on the notion of a path.)

Recall that propagation rules view labelled sequents as propagation graphs, and allow
for formulae to be introduced at terminal nodes of propagation paths corresponding to
strings generated by a CFCST system. By part (i) of our analysis, we found that we
should employ rules that propagate formulae to reachable labels. Hence, the question
arises; how do we encode a notion of reachability in a CFCST system? Answering this
question will tell us what side conditions to impose on our propagation rules and will
dictate the definition of a propagation graph (given below).

As previously implied, a label u in a labelled sequent is reachable from another label w
iff there exists a sequence of relational atoms w ≤ v1, . . . , vn ≤ u of length zero or greater
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5.1. Refinement Part I: Analysis

from w to u in the labelled sequent. Let us fix the minimal alphabet
∑

:= {a, a} for the
remainder of the next four sections (Sect. 5.1 – 5.4), i.e. any reference to

∑
will be a

reference to the alphabet {a, a} in Sect. 5.1 – 5.4. If we think of the character a as encoding
a single relational atom of the form w ≤ u, then all of the strings ε, a, aa, aaa, . . . ∈ (

∑+)∗
can be thought of as encoding sequences of relational atoms. Note that all such sequences
are generated by the following CFCST system:4

S4 := {a −→ ε, a −→ aa, a −→ ε, a −→ aa}

Observe that the above CFCST system is sufficient to encode a notion of reachability as
LS4(a) = (

∑+)∗. Furthermore, since we are thinking of the character a as encoding a
relational atom of the form w ≤ u, we will use a to index forward edges in our propagation
graphs, and a to index backward edges, as described in the definition below:

Definition 72 (Propagation Graphs for IntQL and IntQCL). Let Λ = R,Γ ⇒ ∆ be a
labelled sequent for first-order intuitionistic logics. We define the propagation graph
PG(Λ) = (V,E) to be the directed graph such that

I V := Lab(Λ);

I E := {(w, u, a), (u,w, a) | w ≤ u ∈ R}.

We will often write w ∈ PG(Λ) to mean w ∈ V, and (w, u, x) ∈ PG(Λ) to mean
(w, u, x) ∈ E, for x ∈

∑
.

Propagation paths, strings of propagation paths, and their converses are defined as in
Def. 59, so we need not repeat the definitions here. However, we provide an example of
all such concepts below for review, as well an an example of a propagation graph of a
labelled sequent for first-order intuitionistic logics.

Example 13. Let our labelled sequent be the following:

Λ := w ≤ u,w ≤ v, v ≤ z, a ∈ Dw, w : p(a), u : ∀xp(x), z : ¬r ⇒ w : q, u : q ⊃ q, v : q

The propagation graph PG(Λ) is shown below:

p(a)⇒ q
w

a

��

a

��

¬r ⇒ ε
z

a

tt
∀xp⇒ q

u

a

II

ε⇒ q ⊃ q
v

a

VV
a

22

4The name of the CFCST system S4 arises because the first two production rules correspond to the
properties of reflexivity and transitivity, respectively, as shown in Fig. 2.1. Since the modal logic S4 is
the minimal normal modal logic that is sound and complete relative to reflexive and transitive Kripke
frames, the name S4 for the above CFCST systems is apt.
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5. The Method of Refinement: First-Order Intuitionistic Logics

(idX)†1(X)
R, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆

R, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃X
r1)†2(X)

R, a ∈ Du,Γ⇒ ∆, w : ∃xφ

R, a ∈ Du,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(∃X
r2)†3(X)

R,Γ⇒ w : ∃xφ,∆

R, a ∈ Du, w : ∀xφ, v : φ(a/x),Γ⇒ ∆
(∀X
l1)†4(X)

R, a ∈ Du, w : ∀xφ,Γ⇒ ∆

R, a ∈ Du,Γ, w : ∀xφ, v : φ(a/x)⇒ ∆
(∀X
l2)†5(X)

R,Γ, w : ∀xφ⇒ ∆

R, w : φ ⊃ ψ,Γ⇒ ∆, u : φ R, w : φ ⊃ ψ, u : ψ,Γ⇒ ∆
(Pr⊃)†6(X)

R, w : φ ⊃ ψ,Γ⇒ ∆

Figure 5.2: Reachability and propagation rules. The rules when X = Q will be added to
G3IntQ to refine the calculus, and the rules when X = QC will be added to G3IntQC to
refine the calculus. The side conditions †1(Q) – †6(Q) are defined in Fig. 5.3 and the side
conditions †1(QC) – †6(QC) are defined in Fig. 5.4.

Examples of propagation paths include the propagation path π(w, z) = w, a, v, a, z and
the propagation path π′(v, v) := v, a, w, a, v, with converses π(z, w) = z, a, v, a, w and
π′(v, v) := v, a, w, a, v, respectively. The string of each propagation path is sπ(w, z) =
aa and sπ′(v, w) = aa with the converse strings sπ(z, w) = aa and sπ′(w, v) = aa,
respectively.

We are now in a position to put forth the propagation rules resulting from part (i) of our
analysis. The propagation rule (Pr⊃) which replaces the (⊃l) rule in our (quasi-)refined
calculi is shown in Fig. 5.2. The propagation rule (Prid) for (id) resulting from part (i)
of our analysis is as follows:

(Prid)†R,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

where the side condition † states that ∃π(sπ(w, u) ∈ LS4(a)), that is, there must exist
a propagation path π(w, u) in the propagation graph of the labelled sequent such that
sπ(w, u) ∈ LS4(a). It should be noted however, that the above rule will not occur in our
quasi-refined labelled calculi for IntQ and IntQC. The reason being, the occurrence of the
domain atoms ~a ∈ Dw cause the rule to interact with the (nd) and (cd) rules, and so, via
step (ii) of our analysis the (Prid) rule will be generalized to a proper reachability rule,
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Name Side Condition

†1(Q) ∃πi(sπi(ui, w) ∈ LS4(a)) for each

i ∈ {1, . . . , n}, and ∃π(sπ(w, u) ∈ LS4(a))

†2(Q) ∃π(sπ(u,w) ∈ LS4(a))

†3(Q) a is an eigenvariable

and ∃π(sπ(u,w) ∈ LS4(a))

†4(Q) ∃π(sπ(u, v) ∈ LS4(a)) and ∃π(sπ(w, v) ∈ LS4(a))

†5(Q) a is an eigenvariable, ∃π(sπ(u, v) ∈ LS4(a))

and ∃π(sπ(w, v) ∈ LS4(a))

†6(Q) ∃π(sπ(w, u) ∈ LS4(a))

Figure 5.3: Side conditions for the reachability and propagation rules used to refine
G3IntQ.

yielding the final version of the rule that will occur in our quasi-refined labelled calculi.
With that being said, let us begin part (ii) of our analysis.

In part (ii) of our analysis, we consider the permutation of (nd) above the (id) and (∃r)
rules. Notwithstanding, since we discovered in part (i) that our quasi-refined systems
require the propagation rule (Prid) instead of (id) (which is subsumed by (Prid) as shown
in Lem. 38 below), we will analyze permutations of (nd) above (Prid) rather than above
(id). To ease our analysis, we assume the existence of a single principal domain atom in
(Prid). Below, we show the non-trivial cases of applying (nd) to (Prid) and (∃r), along
with the result of attempting to permute (nd) above (∃r) by applying (nd) to the premise
of (∃r).

(Prid)R, v ≤ w, a ∈ Dv, a ∈ Dw,Γ, w : p(a)⇒ u : p(a),∆
(nd)

R, v ≤ w, a ∈ Dv,Γ, w : p(a)⇒ u : p(a),∆

R, v ≤ w, a ∈ Dv, a ∈ Dw,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(∃r)R, v ≤ w, a ∈ Dv, a ∈ Dw,Γ⇒ w : ∃xφ,∆ (nd)R, v ≤ w, a ∈ Dv,Γ⇒ w : ∃xφ,∆

 

R, v ≤ w, a ∈ Dv, a ∈ Dw,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(nd)

R, v ≤ w, a ∈ Dv,Γ⇒ w : φ(a/x), w : ∃xφ,∆
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By inspecting the rules of our calculi, one can confirm that the end sequent of the (Prid)
proof cannot be derived by other means. The issue is that the domain atom a ∈ Dv is
associated with a label v that is one step in the past of the label w (due to the v ≤ w
relational atom) from where it needs to occur. Similarly, no rule is applicable in the (∃r)
case to allow for the permutation to go through, and the domain atom has also shifted
one step into the past (after applying (nd) to the premise of (∃r)). As we have typically
done, we can add new rules to our calculi to allow for the permutation of (nd) above
(Prid) and (∃r) to go through. The (sound) rules suggested by the above analysis are the
following:

(Pr−1
id )R, v ≤ w, a ∈ Dv,Γ, w : p(a)⇒ u : p(a),∆

R, v ≤ w, a ∈ Dv,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(∃−1
r )R, v ≤ w, a ∈ Dv,Γ⇒ w : ∃xφ,∆

Adding the above rules to our labelled calculi will allow for the permutation of (nd) above
(Prid) and (∃r) to go through, however, their addition implies that we must consider their
permutability with (nd). The non-trivial cases of applying (nd) to (Pr−1

id ) and (∃−1
r ) are

shown below, along with the application of (nd) to the premise of (∃−1
r ) in attempt to

permute the two rules.

(Pr−1
id )R, z ≤ v, v ≤ w, a ∈ Dz, a ∈ Dv,Γ, w : p(a)⇒ u : p(a),∆

(nd)
R, z ≤ v, v ≤ w, a ∈ Dz,Γ, w : p(a)⇒ u : p(a),∆

R, z ≤ v, v ≤ w, a ∈ Dz, a ∈ Dv,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(∃−1
r )R, z ≤ v, v ≤ w, a ∈ Dz, a ∈ Dv,Γ⇒ w : ∃xφ,∆ (nd)R, z ≤ v, v ≤ w, a ∈ Dz,Γ⇒ w : ∃xφ,∆

 

R, z ≤ v, v ≤ w, a ∈ Dz, a ∈ Dv,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(nd)

R, z ≤ v, v ≤ w, a ∈ Dz,Γ⇒ w : φ(a/x), w : ∃xφ,∆

Yet again, inspecting the rules of our labelled calculi will prove that the end sequent of
the (Pr−1

id ) inference cannot be derived by other means, and that no rules permit the
permutation of (nd) above (∃−1

r ). Nonetheless, what is interesting is that both the end
sequent of the (Pr−1

id ) derivation and the concluding sequent obtained from applying (nd)
to the premise of (∃−1

r ) contain domain atoms a ∈ Dz associated with a label z that is
two steps in the past of the principal label w (due to the relational atoms z ≤ v, v ≤ w).
Therefore, similar to how permutations of the (tra) rule caused formulae to be propagated
forward, we have found that permutations of the (nd) rule propagate domain atoms
backward. Likewise, an analysis of permuting the (cd) rule above (Prid) and (∃r) would
have us conclude the forward propagation of active domain atoms. In the constant
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Name Side Condition

†1(QC) ∃πi(sπi(ui, w) ∈ LS5(a)) for each

i ∈ {1, . . . , n}, and ∃π(sπ(w, u) ∈ LS4(a))

†2(QC) ∃π(sπ(u,w) ∈ LS5(a))

†3(QC) a is an eigenvariable

and ∃π(sπ(u,w) ∈ LS5(a))

†4(QC) ∃π(sπ(u, v) ∈ LS5(a)) and ∃π(sπ(w, v) ∈ LS4(a))

†5(QC) a is an eigenvariable, ∃π(sπ(u, v) ∈ LS5(a))

and ∃π(sπ(w, v) ∈ LS4(a))

†6(QC) ∃π(sπ(w, u) ∈ LS4(a))

Figure 5.4: Side conditions for the reachability and propagation rules used to refine
G3IntQC.

domain setting then (where both (nd) and (cd) are present), successive permutations of
(nd) and (cd) could cause the active domain atom(s) to propagate to any label within
the labelled sequent (via a sequence of forward and backward ‘shifts’ along relational
atoms of the form w ≤ u).

Such findings suggest that in the non-constant domain setting, we ought to impose a
side condition on (Prid) and (∃r) stating that the principal label w is reachable from
the label(s) associated with the active domain atom(s) (via a directed path of relational
atoms). Alternatively, in the constant domain setting, we ought to impose the side
condition that the principal label w is reachable from the label(s) associated with the
active domain atom(s), but not necessarily with a directed path. Imposing these side
conditions yields the reachability rules (idX) and (∃X

r1) shown in Fig. 5.2. The reachability
rule (∀X

l1) is also displayed in that figure; the form of the rule and side conditions imposed
were discovered through an analysis of permuting (ref), (tra), (nd) and (cd) above the
(∀l) rule, similar to what was done for (id), (⊃l), and (∃r) above.

By what was said in part (i) of our analysis, we found that the CFCST system S4 encodes
a notion of directed reachability. To encode a notion of undirected reachability—used to
formulate side conditions of rules in the constant domain setting—we make use of the
following CFCST system:5

S5 := {a −→ ε, a −→ aa, a −→ ε, a −→ aa}
5The name of S5 was chosen because the first two production rules correspond to the properties of

reflexivity and Euclideanity, respectively, as shown in Fig. 2.1. The name alludes to the logic S5, which is
the minimal normal modal logic sound and complete on all reflexive and Euclidean frames.
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Recall that in the propagation graph of a labelled sequent (Def. 72) the character a is
used to encode a forward movement along a relational atom of the form w ≤ u, and
the converse character a is used to encode a reverse movement. Hence, two labels are
reachable (in an undirected sense) iff there is a propagation path whose string lies within
the set

∑∗ = {a, a}∗. Since
∑∗ = LS5(a), we know that the above CFCST system

properly encodes the notion of undirected reachability. Before moving onto step (iii)
of our analysis, we consider an example of a concrete application of the (∀Q

l1) rule to
demonstrate the functionality of a reachability rule in the current setting.

Example 14. Let us consider the labelled sequent Λ below, which has the propagation
graph PG(Λ) shown below bottom. Note that the vertices of the propagation graph have
been decorated to make the corresponding formulae explicit.

Λ := u ≤ w,w ≤ v, a ∈ Du, u : q(b), w : ∀vp(x), v : p(a)⇒ v : r

q(b)⇒ ε
u

a **
∀xp(x)⇒ ε

w

a ))

a

gg

p(a)⇒ r
v

a

gg

Since there exists a propagation path π(u, v) := u, a, w, a, v such that sπ(u, v) = aa ∈
LS4(a) and a propagation path π′(w, v) := w, a, v such that sπ(w, v) = a ∈ LS4(a), we
can apply the (∀Q

l1) rule to delete the labelled formula v : p(a) and derive the following
labelled sequent:

Λ′ := u ≤ w,w ≤ v, a ∈ Du, u : q(b), w : ∀vp(x)⇒ v : r

A useful feature of our propagation and reachability rules (shown in Fig. 5.2) is that the
propagation graph of the premise of the rule is identical to the propagation graph of
the conclusion, meaning that the side condition can be checked regardless of if we are
applying the rule top-down or bottom-up (the latter fact being useful for proof-search).
Also, it should be noted that the side conditions are read in a similar manner to the
side conditions of propagation rules for grammar logics introduced in Sect. 4.1. For
instance, the side condition ‘∃π(sπ(u, v) ∈ LS5(a))’ states there exists a propagation path
π(u, v) in the propagation graph of the premise or conclusion (depending on if the rule is
being applied top-down or bottom-up) such that sπ(u, v) ∈ LS5(a). Often times when
discussing the side conditions of propagation or reachability rules we will omit mention
of the propagation graph and take it for the granted that the propagation path exists in
the propagation graph of the premise and/or conclusion of the rule being discussed.

Let us now move onto step (iii) of our analysis. We have determined that instead of
employing the (∃r) and (∀l) rules, we ought to make use of the reachability rules (∃X

r1)
and (∀X

l1), which subsume (∃r) and (∀l), respectively (see Lem. 38 below). It so happens
that permuting (ned) above (∃X

r1) and (∀X
l1) are the only non-trivial cases that occur

when analyzing (ned) elimination. We analyze the non-trivial case that occurs when
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Name Set of Rules

R(Q) := {(idQ), (∃Q
r1), (∃Q

r2), (∀Q
l1), (∀Q

l2), (Pr⊃)}

R(QC) := {(idQC), (∃QC
r1 ), (∃QC

r2 ), (∀QC
l1 ), (∀QC

l2 ), (Pr⊃)}

Figure 5.5: Sets of reachability and propagation rules.

attempting to permute (ned) above (∀X
l1), which will motivate how both (∃X

r1) and (∀X
l1)

ought to be reformulated to allow for (ned) elimination.

R, a ∈ Du, w : ∀xφ, v : φ(a/x),Γ⇒ ∆
(∀X
l1)R, a ∈ Du, w : ∀xφ,Γ⇒ ∆ (ned)R, w : ∀xφ,Γ⇒ ∆

The issue in the above derivation is that due to the existence of v : φ(a/x), which contains
the parameter a, (ned) is inapplicable to the top sequent. The solution to our problem
then, is to absorb the (ned) inference, yielding a new rule of the form:

R, a ∈ Du, w : ∀xφ, v : φ(a/x),Γ⇒ ∆
(∀X
l2)R, w : ∀xφ,Γ⇒ ∆

We obtain the (∃X
r2) rule in a similar fashion. Both of the reachability rules (∃X

r2) and
(∀X
l2) are shown in Fig. 5.2.

At this stage, we have completed our analysis, and move on to proving that the conducive
rules shown in Fig. 5.2 allow for the elimination of (ref), (tra), (nd), (cd), and (ned) in
G3IntQ and G3IntQC. To simplify notation, the conducive rules are organized into two
sets R(Q) and R(QC), shown in Fig. 5.5, with the former collecting the conducive rules
for G3IntQ and the latter collecting the conducive rules for G3IntQC. Moreover, we use
the symbol Q to index rules and side conditions that are relevant to refining the calculus
G3IntQ and use the symbol QC to index rules and side conditions that are relevant to
refining the calculus G3IntQC. When reference is made to a rule or side condition indexed
with X, it is taken to represent both the rule or side condition indexed with Q and the
rule or side condition indexed with QC (e.g. (idX) ∈ {(idQ), (idQC)}. Last, we present a
formal definition for the CFCST systems S4 and S5 for reference.

Definition 73 (The CFCST Systems S4 and S5). We define the CFCST systems S4
and S5 as follows:

S4 := {a −→ ε, a −→ aa, a −→ ε, a −→ aa}

S5 := {a −→ ε, a −→ aa, a −→ ε, a −→ aa}
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5.2 Refinement Part II: Structural Rule Elimination

In this section, we formally prove that the conducive rules shown in Fig. 5.2 allow for
the refinement of G3IntQ and G3IntQC, and ultimately, allow for the extraction of the
nested calculi DIntQ and DIntQC for IntQ and IntQC, respectively (discussed in Sect. 5.4).
Our first step is to show that the reachability and propagation rules (idX), (Pr⊃), (∃X

r1),
and (∀X

l1) subsume the rules (id), (⊃l), (∃r), and (∀l). Afterward, we show that the
structural rules (viz. (ref), (tra), (nd), (cd), and (ned); see Fig. 3.3) are eliminable in
the labelled calculi G3IntQ and G3IntQC when extended with the proper reachability and
propagation rules (see Thm. 25 below), yielding the quasi-refined labelled calculi IntQL∗
and IntQCL∗ (defined in Def. 74 below). Last, we show that the quasi-refined labelled
calculi IntQL∗ and IntQCL∗ are deductively equivalent to the labelled calculi G3IntQ and
G3IntQC (see Thm. 26 below), and therefore inherit proof-theoretic properties from their
parental labelled calculi (see Thm. 27 below). In the following section, we show how
to rewrite the rules of the quasi-refined calculi IntQL∗ and IntQCL∗, rendering domain
atoms expendable, and producing the fully refined labelled calculi IntQL and IntQCL
from which the nested calculi DIntQ and DIntQC may be easily extracted.

Lemma 38.

(i) The rule (id) is an instance of (idQ) and (idQC).

(ii) The (⊃l) rule is an instance of the (Pr⊃) rule.

(iii) The (∃r) rule is an instance of the rules (∃Q
r1) and (∃QC

r1 ).

(iv) The (∀l) rule is an instance of the rules (∀Q
l1) and (∀QC

l1 ).

Proof. We prove claim (i) below and defer the proofs of (ii)–(iv) to Appendix C (p. 211).

(i) We show that (id) is an instance of (idQC) since showing that (id) is an instance of
(idQ) is similar. By Def. 73, we know that ε ∈ LS5(a) (due to the first production rule
in S5). Moreover, by Def. 59, we know that the empty path λ(w,w) = w always holds
between a label and itself, and has the string sλ(w,w) = ε. Therefore, sλ(w,w) ∈ LS5(a).

In the inference below, observe that the relational atom w ≤ u implies the existence of
a propagation path π(w, u) := w, a, u, where sπ(w, u) = a. Since a ∈ LS4(a), it follows
that sπ(w, u) ∈ LS4(a). Therefore, by all that has been argued, we know that the side
condition †1(QC) of (idQC) from Fig. 5.4 is indeed satisfied, and the following inference is
an instance of (idQC):

(idQC)R, w ≤ u, a1 ∈ Dw, . . . , an ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, w ≤ u,~a ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆
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The above lemma confirms that our reachability and propagation rules are strengthened
versions of the rules (id), (⊃l), (∃r), and (∀l) from which they were extracted. Additionally,
the above lemma will assist us in proving the elimination of structural rules from G3IntQ
and G3IntQC as less cases will need to be considered. We now show that all structural
rules in our labelled calculi for first-order intuitionistic logics can be eliminated.

Lemma 39.

(i) The rule (ref) is eliminable in G3IntQ + R(Q)− {(tra), (nd), (ned)}.

(ii) The rule (ref) is eliminable in G3IntQC + R(QC)− {(tra), (nd), (cd), (ned)}.

Proof. We prove the result by induction on the height of the given derivation and show
claim (ii) as it subsumes claim (i).

Base case. The (⊥l) case is simple to verify, and we need not consider the (id) case due
to Lem. 38. Hence, we consider the (idQC) case, which is resolved as shown below:

(idQC)R, v ≤ v, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆
(ref)

R, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆
 

(idQC)R, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆

If the relational atom v ≤ v that is active in (ref) occurs along one or more propagation
paths πi(ui, w) or along the propagation path π(w, u), then by replacing each occurrence
of the path v, a, v and v, a, v with the empty path λ(v, v) = v in each such πi(ui, w) and
in π(w, u), we obtain propagation paths π′i(ui, w) and a propagation path π′(w, u) that do
not rely on the relational atom v ≤ v. By assumption, we know that sπi(ui, w) ∈ LS5(a)
and sπ(w, u) ∈ LS4(a). By applying the production rules a −→ ε, a −→ ε ∈ S5 and a −→
ε, a −→ ε ∈ S4 to each a and a obtained from the path v, a, v and v, a, v (respectively) in
sπi(ui, w) and sπ(w, u), we obtain the strings sπ′i(ui, w) and sπ′(w, u), which, by the fact
that they are derived from sπi(ui, w) and sπ(w, u) using the production rules a −→ ε
and a −→ ε ensures that they are elements of LS5(a) and LS4(a), respectively.

Inductive step. With the exception of the (Pr⊃), (∃QC
r1 ), and (∀QC

l1 ) rules, all cases are
handled by invoking IH and then applying the corresponding rule. (NB. By Lem. 38, we
may omit consideration of the (⊃l), (∃r), and (∀l) rules.) We consider the (Pr⊃), (∃QC

r1 ),
and (∀QC

l1 ) cases.

(Pr⊃). Let π(w, u) be a propagation path in the premises of the top derivation below
such that sπ(w, u) ∈ LS4(a). If the relational atom v ≤ v that is active in (ref) occurs
along the propagation path π(w, u), then by replacing each occurrence of v, a, v and v, a, v
(obtained from the relational atom v ≤ v) in π(w, u) with the empty path λ(v, v) = v, we
obtain a new propagation path π′(w, u) that does not rely on the relational atom v ≤ v.
Since a −→ ε, a −→ ε ∈ S4, we may apply the production rules to each a and a in sπ(w, u)
that was obtained from the path v, a, v and the path v, a, v (respectively), yielding the
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string sπ′(w, u). Due to the fact that sπ(w, u) ∈ LS4(a) and sπ(w, u)�∗S4 sπ′(w, u), we
know that sπ′(w, u) ∈ LS4(a), thus showing that the side condition of the (Pr⊃) inference
in the second derivation holds, allowing for the permutation to go through.

R, v ≤ v, w : φ ⊃ ψ,Γ⇒ ∆, u : φ R, v ≤ v, w : φ ⊃ ψ, u : ψ,Γ⇒ ∆ (Pr⊃)R, v ≤ v, w : φ ⊃ ψ,Γ⇒ ∆ (ref)R,Γ, w : φ ⊃ ψ ⇒ ∆
 

R, v ≤ v, ,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ (ref)R,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ
R, v ≤ v, ,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆ (ref)R,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆ (Pr⊃)R,Γ, w : φ ⊃ ψ ⇒ ∆

(∃QC
r1 ). Let π(u,w) be a propagation path in the premise of the top left derivation below

such that sπ(u,w) ∈ LS5(a). If the relational atom v ≤ v that is active in the (ref)
inference occurs along the propagation path π(u,w), then by replacing each occurrence
of the path v, a, v and v, a, v (obtained from the relational atom v ≤ v and where x ∈

∑
)

with the empty path λ(v, v) = v, we obtain a new propagation path π′(u,w) that does
not rely on the relational atom v ≤ v. Because a −→ ε, a −→ ε ∈ LS5(a), we can derive
sπ′(u,w) from sπ(u,w) by applying the production rules to each a and a in sπ(u,w)
obtained from the paths v, a, v and v, a, v, respectively. It follows that sπ′(u,w) ∈ LS5(a),
implying that we may apply (∃QC

r1 ) after applying (ref).

R, v ≤ v, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r1 )R, v ≤ v, a ∈ Du,Γ⇒ ∆, w : ∃xφ (ref)R, a ∈ Du,Γ⇒ ∆, w : ∃xφ

 

R, v ≤ v, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(ref)

R, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r1 )R, a ∈ Du,Γ⇒ ∆, w : ∃xφ

(∀QC
l1 ). Let π1(u, v) be the propagation path in the premise of the top left derivation

below such that sπ1(u, v) ∈ LS5(a) and π2(w, v) be the propagation path in the premise
of the top left derivation below such that sπ2(w, v) ∈ LS4(a). If the relational atom
z ≤ z that is active in the (ref) inference occurs along the propagation path π1(u, v) or
π2(w, v), then by replacing each path z, a, z and z, a, z with the empty path λ(z, z) = z,
we obtain new propagation paths π′1(u, v) and π′2(w, v) that do not rely on the relational
atom z ≤ z. Since a −→ ε, a −→ ε ∈ S5 and a −→ ε, a −→ ε ∈ S4 (Def. 73), we may
apply the production rules to each a and a in sπ1(u, v) and sπ2(w, v) obtained from the
paths z, a, z and z, a, z (respectively), letting us derive the strings sπ′1(u, v) and sπ′2(w, v).
It follows that sπ′1(u, v) ∈ LS5(a) and sπ′2(w, v) ∈ LS4(a), implying that we may apply
(ref) prior to (∀QC

l1 ).
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R, z ≤ z, a ∈ Du, w : ∀xφ, v : φ(a/x),Γ⇒ ∆
(∀QC
l1 )R, z ≤ z, a ∈ Du, w : ∀xφ,Γ⇒ ∆ (ref)R, a ∈ Du, w : ∀xφ,Γ⇒ ∆

 

R, z ≤ z, a ∈ Du, w : ∀xφ, v : φ(a/x),Γ⇒ ∆
(ref)

R, a ∈ Du, w : ∀xφ, v : φ(a/x),Γ⇒ ∆
(∀QC
l1 )R, a ∈ Du, w : ∀xφ,Γ⇒ ∆

Lemma 40.

(i) The rule (tra) is eliminable in G3IntQ + R(Q)− {(ref), (nd), (ned)}.

(ii) The rule (tra) is eliminable in G3IntQC + R(QC)− {(ref), (nd), (cd), (ned)}.

Proof. We defer the proof to Appendix C (p. 211).

Lemma 41.

(i) The rule (nd) is eliminable in G3IntQ + R(Q)− {(ref), (tra), (ned)}.

(ii) The rule (nd) is eliminable in G3IntQC + R(QC)− {(ref), (tra), (cd), (ned)}.

Proof. We prove the result by induction on the height of the given derivation and only
show claim (ii) as it subsumes claim (i).

Base case. The (⊥l) case is straightforward and we need not consider the (id) case by
Lem. 38. If we apply the (nd) rule to (idQC), and none of the principal domain atoms of
(idQC) are active in the application of (nd), then the conclusion is an instance of (idQC).
Let us suppose then that one of the principal domain atoms of (idQC) is active in the
application of (nd). We assume w.l.o.g. that the domain atom is a1 ∈ Du1 , and argue
how the case is resolved below:

(idQC)R, v ≤ ui, a1 ∈ Dv, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆
(nd)

R, v ≤ ui, a1 ∈ Dv, . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆
 

(idQC)R, v ≤ ui, a1 ∈ Dv, . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆

By the side condition of (idQC), we know that there exists a propagation path π(u1, w)
in the premise of the top left derivation such that sπ(u1, w) ∈ LS5(a). By prefixing
the propagation path π(u1, w) with v, a, ui (obtained from the relational atom v ≤ ui),
we obtain a propagation path π′(v, w). If sπ(u1, w) 6= ε, then π(u1, w) is either of
the form u1, a, π0(z, w) or u1, a, π0(z, w) for some label z occurring in the premise of
the top derivation above. As explained in Lem. 40 above, a �∗S5 aa, and by Def. 73,
a −→ aa ∈ S5. If the leading character of sπ(u1, w) is a, then applying the former
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derivation to this occurrence of a gives the string sπ′(v, w), and if the leading character
of sπ(u1, w) is a, then applying the aforementioned production rule gives the string
sπ′(v, w). In either case, sπ(v, w) ∈ LS5(a). If sπ(u1, w) = ε, then sπ′(v, w) = a, and
since a ∈ LS5(a), it follows that sπ′(v, w) ∈ LS5(a). Hence, the conclusion of the top left
derivation is an instance of (idQC) in its own right.

Inductive step. By Lem. 38, we need not consider the (⊃l), (∃r), or (∀l) cases. With the
exception of the (∃QC

r1 ) and (∀QC
l1 ) cases, all remaining cases are resolved by invoking IH

and then applying the corresponding rule. We consider the (∃QC
r1 ) case as the (∀QC

l1 ) case
is similar.

(∃QC
r1 ). If the domain atom a ∈ Du deleted via the (nd) inference in the top left proof

below is not active in the (∃QC
r1 ) inference, then the two rules freely permute. Let us

suppose then that the domain atom a ∈ Du deleted via the (nd) inference is active
in the (∃QC

r1 ) inference. By the side condition on (∃QC
r1 ), we know that there exists a

propagation path π(u,w) such that sπ(u,w) ∈ LS5(a). By prefixing the propagation path
π(u,w) with the path v, a, u obtained from the relational atom v ≤ u, we obtain a new
propagation path π′(v, w). If sπ(u,w) 6= ε, then π(u,w) is either of the form u, a, π0(z, w)
or u, a, π0(z, w) for some label z occurring in the premise of the top derivation below. In
Lem. 40 above, we found that a�∗S5 aa, and by Def. 73, a −→ aa ∈ S5. If the leading
character of sπ(u,w) is a, then applying the former derivation to this occurrence of a
gives the string sπ′(v, w), and if the leading character of sπ(u,w) is a, then applying the
former production rule gives the string sπ′(v, w). Hence, regardless of which case holds
sπ′(v, w) ∈ LS5(a). If, on the other hand, sπ(u,w) = ε, then sπ′(v, w) = a, and since
a ∈ LS5(a), we have that sπ′(v, w) ∈ LS5(a). Hence, the (nd) rule may be applied before
the (∃QC

r1 ) rule, showing that the two rules may be permuted.

R, v ≤ u, a ∈ Dv, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r1 )R, v ≤ u, a ∈ Dv, a ∈ Du,Γ⇒ ∆, w : ∃xφ (nd)R, v ≤ u, a ∈ Dv,Γ⇒ ∆, w : ∃xφ

 

R, v ≤ u, a ∈ Dv, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(nd)

R, v ≤ u, a ∈ Dv,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r1 )R, v ≤ u, a ∈ Dv,Γ⇒ ∆, w : φ(a/x)

Lemma 42.

(i) The rule (ned) is eliminable in G3IntQ + R(Q)− {(ref), (tra), (nd)}.

(ii) The rule (ned) is eliminable in G3IntQC + R(QC)− {(ref), (tra), (nd), (cd)}.

Proof. We prove the result by induction on the height of the given derivation and show
(ii) as it subsumes (i).
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Base case. Any application of (ned) to (⊥l), (id), or (idQC) yields another instance of
rule.

Inductive step. By Lem. 38, we need not consider the (⊃l), (∃r), or (∀l) cases. With the
exception of the (∃QC

r1 ) and (∀QC
l1 ) cases, all remaining cases are resolved by applying IH

and then the corresponding rule. We show the non-trivial (∃QC
r1 ) and (∀QC

l1 ) cases below:

R, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r1 )R, a ∈ Du,Γ⇒ ∆, w : ∃xφ (ned)R,Γ⇒ ∆, w : ∃xφ

 

R, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r2 )R,Γ⇒ ∆, w : ∃xφ

R, a ∈ Du, w : φ(a/x), w : ∀xφ,Γ⇒ ∆
(∀QC
l1 )R, a ∈ Du, w : ∀xφ,Γ⇒ ∆ (ned)R, w : ∀xφ,Γ⇒ ∆

 

R, a ∈ Du, w : φ(a/x), w : ∀xφ,Γ⇒ ∆
(∀QC
l1 )R, w : ∀xφ,Γ⇒ ∆

Lemma 43. The rule (cd) is eliminable in G3IntQC+R(QC)−{(ref), (tra), (nd), (ned)}.

Proof. The proof is similar to the proof of Lem. 41.

Theorem 25.

(i) The rules {(id), (⊃l), (∃r), (∀l), (ref), (tra), (nd), (ned)} are admissible in the calculus
G3IntQ + R(Q).

(ii) The rules {(id), (⊃l), (∃r), (∀l), (ref), (tra), (nd), (ned), (cd)} are admissible in the
calculus G3IntQC + R(QC).

Proof. Follows from Lem. 38 – 43.

We have formally confirmed that our conducive rules R(Q) and R(QC) are sufficient to
allow for structural rule elimination in G3IntQ and G3IntQC, respectively. Removing all
structural rules, along with all unnecessary rules (e.g. (⊃l) which is subsumed by (Pr⊃)),
from G3IntQ and G3IntQC gives us our quasi-refined labelled calculi, defined below:

Definition 74. We define the quasi-refined labelled calculi IntQL∗ and IntQCL∗ as follows:

IntQL∗ := {(idQ), (⊥l), (∨l), (∨r), (∧l), (∧r), (Pr⊃), (⊃r), (∃Q
r1), (∃Q

r2), (∀Q
l1), (∀Q

l2)}

IntQCL∗ := {(idQC), (⊥l), (∨l), (∨r), (∧l), (∧r), (Pr⊃), (⊃r), (∃QC
r1 ), (∃QC

r2 ), (∀QC
l1 ), (∀QC

l2 )}
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We could, at this stage, directly prove that our quasi-refined labelled calculi IntQL∗ and
IntQCL∗ possess desirable proof-theoretic properties, as we did for G3IntQ and G3IntQC
in Sect. 3.3 (i.e. without relying on proof transformations). However, we will take a
separate route—similar to what was done in Sect. 4.1 for grammar logics—and show that
proofs in our quasi-refined labelled calculi IntQL∗ and IntQCL∗ can be algorithmically
transformed into proofs in G3IntQ and G3IntQC (resp.), and vice-versa. This approach
shows that our quasi-refined labelled calculi inherit proof-theoretic properties from their
parental labelled calculi, and also establishes a relationship between proofs within the
different settings. To accomplish this aim, we first show the following lemma:

Lemma 44. Let Λ := R,Γ⇒ ∆. Suppose R, w ≤ u,Γ⇒ ∆ is derivable in G3IntQ or
G3IntQC, and that π(w, u) is a propagation path (potentially empty) in PG(Λ) such that
sπ(w, u) ∈ LS4(a). Then, R,Γ⇒ ∆ is derivable in G3IntQ or G3IntQC, respectively.

Proof. We prove the result for G3IntQ as the proof for G3IntQC is similar. Since sπ(w, u) ∈
LS4(a), we know that a�∗S4 sπ(w, u). The lemma is shown by induction on the length
(Def. 9) of the derivation a�∗S4 sπ(w, u).

Base case. For the base case, we consider (i) a derivation of length 0, meaning that
a�∗S a, and (ii) a derivation of length 1, meaning that a −→ sπ(w, u) ∈ S4, and therefore,
either (ii.1) a −→ sπ(w, u) = a −→ ε, or (ii.2) a −→ sπ(w, u) = a −→ aa. (NB. It cannot
be the case that a −→ sπ(w, u) ∈ S4 is the production rule a −→ ε or a −→ aa since
both have the character a as their head.) Cases (i), (ii.1), and (ii.2) are respectively
shown below, where R := R′, w ≤ u in case (i) and R := R′, w ≤ u, u ≤ v in case (ii.2).

Π1
R′, w ≤ u,w ≤ u,Γ⇒ ∆

 
Π1

R′, w ≤ u,w ≤ u,Γ⇒ ∆ (ctrR)
R′, w ≤ u,Γ⇒ ∆

Π2
R, w ≤ w,Γ⇒ ∆

 
Π2

R, w ≤ w,Γ⇒ ∆ (ref)R,Γ⇒ ∆

Π3
R′, w ≤ u, u ≤ v, w ≤ v,Γ⇒ ∆

 
Π2

R′, w ≤ u, u ≤ v, w ≤ v,Γ⇒ ∆ (tra)
R′, w ≤ u, u ≤ v,Γ⇒ ∆

Inductive step. Let Λ := R,Γ⇒ ∆ and assume that we have a proof Π ofR, w ≤ u,Γ⇒ ∆.
Suppose our derivation a �∗S4 sπ(w, u) is of length n + 1. Recall that the length of a
derivation is the minimal number of one-step derivations necessary to derive the output
string from the input string in the CFCST system (Def. 9). Since we are making use of
the CFCST system S4, it must be the case that our derivation consists of a sequence
of production rules of the form a −→ aa starting with the forward character a ∈

∑+.
Also, because our derivation is of length n+ 1, we know that it consists of a derivation
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a �∗S4 t of length n followed by a one-step derivation t �S4 sπ(w, u). Hence, there
exist strings r0, r1 ∈ (

∑+)∗ such that t = r0ar1 and r0aar1 = sπ(w, u). This implies the
existence of a propagation path of the form πr0(w, v1), a, z, a, πr1(v2, u) in PG(Λ), where
v1, v2, z ∈ Lab(Λ). It follows that R must be of the form R′, v1 ≤ z, z ≤ v2. Using this
fact, we derive the desired conclusion as follows:

Π
R′, v1 ≤ z, z ≤ v2, w ≤ u,Γ⇒ ∆ (wk)

R′, v1 ≤ z, z ≤ v2, v1 ≤ v2, w ≤ u,Γ⇒ ∆
IHR′, v1 ≤ z, z ≤ v2, v1 ≤ v2,Γ⇒ ∆ (tra)

R′, v1 ≤ z, z ≤ v2,Γ⇒ ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R,Γ⇒ ∆

We know that a propagation path of the form πr0(w, v1), a, z, a, πr1(v2, u) exists in R, so
after applying (wk) to introduce the relational atom v1 ≤ v2, we know that a propagation
path of the form π′(w, u) := πr0(w, v1), a, πr1(v2, u) exists in R, v1 ≤ v2 (since we can
take a detour through the path v1, a, vw instead of v1, a, z, a, v2). Observe that the string
sπ′(w, u) = t has a derivation of length n, which means that we may invoke IH to delete
the relational atom w ≤ u. The remaining steps of the proof are self-explanatory, and
thus, we have resolved the inductive step.

Theorem 26. Let X ∈ {Q,QC}. Every proof of a labelled sequent Λ in IntXL∗ can be
algorithmically transformed into a proof in G3IntX.

Proof. We prove the result for IntQCL∗ and G3IntQC as the proof for IntQL∗ and G3IntQ
is similar. All rules common to both IntQCL and G3IntQC straightforwardly translate, so
we only show how to translate each rule from R(QC), and consider each in turn below.

(idQC). Let us consider an instance of (idQC):

(idQC)R, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆

By the side condition imposed on (idQC), we know that there exist propagation paths
πi(ui, w) for i ∈ {1, . . . , n} such that sπi(ui, w) ∈ LS5(a) and a propagation path π(w, u)
such that sπ(w, u) ∈ LS4(a). We may assume w.l.o.g. that the propagation paths
πi(ui, w) are minimal, that is, no propagation paths π′i(ui, w) exist such that |sπ′i(ui, w)| <
|sπi(ui, w)|. Since each propagation path πi(ui, w) is minimal, we know that no label
occurs more than once in each propagation path, which is important in applying the
(nd) and (cd) rules below. For i ∈ {1, . . . , n}, we let ai ∈ Dπi := ai ∈ Dui , ai ∈
Dvi

1
, . . . , ai ∈ Dvi

ki

, where πi(ui, w) := ui, x
i
0, v

i
1, . . . , v

i
ki
, xiki

, w and xij ∈
∑

= {a, a} with
j ∈ {1, . . . , ki}. Let ni(a) and ni(a) be the respective number of occurrences of a and a
in the string sπi(ui, w).

To prove (idQC) admissible in G3IntQC, we first weaken in the domain atoms ai ∈ Dπi for
each i ∈ {1, . . . , n} as shown in the derivation below. Then, we perform a domain atom
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deletion procedure and successively delete domain atoms along the propagation paths
πi(ui, w) by first deleting the domain atom ai ∈ Dw at w and working our way backward
toward the initial node of the path ui through applications of (nd) and (cd). We let
(di) := (nd)× ni(a) + (cd)× ni(a) represent this sequence of (nd) and (cd) applications;
note that by the definition of ni(a) and ni(a), there will be ni(a) applications of (nd)
and ni(a) applications of (cd). Also, the minimality of each propagation path πi(ui, w)
is significant here as it implies the non-existence of repetitions of labels in πi(ui, w),
which, if present, could potentially block the deletion of domain atoms within the domain
atom deletion procedure described above, thus causing the procedure to halt prematurely
without outputting the desired result.6 Last, we invoke Lem. 44 to delete the relational
atom w ≤ u, which is permitted due to the side condition of (idQC).

(id)
R, w ≤ u, a1 ∈ Dw, . . . , an ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

(wk)
R, w ≤ u, a1 ∈ Dπ1 , . . . , an ∈ Dπn , a1 ∈ Dw, . . . , an ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

(d1)
R, w ≤ u, a1 ∈ Du1 , . . . , an ∈ Dπn , a2 ∈ Dw, . . . , an ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

...
R, w ≤ u, a1 ∈ Du1 , . . . , an ∈ Dπn , an ∈ Dw,Γ, w : p(~a)⇒ u : p(~a),∆

(dn)
R, w ≤ u, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆

Lem. 44R, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆

(Pr⊃). Suppose that the side condition of a (Pr⊃) instance holds, i.e. a propagation
path π(w, u) exists such that sπ(w, u) ∈ LS4(a). Using this fact, we may invoke Lem. 44
below, allowing us to obtain our desired conclusion:

R, w : φ ⊃ ψ,Γ⇒ ∆, u : φ (wk)R, w ≤ u,w : φ ⊃ ψ,Γ⇒ ∆, u : φ
R, w : φ ⊃ ψ, u : ψ,Γ⇒ ∆ (wk)R, w ≤ u,w : φ ⊃ ψ, u : ψ,Γ⇒ ∆ (⊃l)R, w ≤ u,w : φ ⊃ ψ,Γ⇒ ∆

Lem. 44R, w : φ ⊃ ψ,Γ⇒ ∆

(∃QC
r1 ). Suppose that the side condition of an (∃QC

r1 ) inference holds, that is, there exists a
propagation path π(u,w) such that sπ(u,w) ∈ LS5(a). We assume w.l.o.g. that π(u,w) is

6To demonstrate the significance of minimality, suppose for the sake of argument that a path
v, a, v′, a, v (with a repetition of v) occurs within a propagation path πi(ui, w). Then, at some stage of
the domain atom deletion procedure, we will have derived a labelled sequent of the form Λ := R′, v ≤
v′, v′ ≤ v, ai ∈ Dv′ , ai ∈ Dv,Γ′ ⇒ ∆′. Since we delete domain atoms in reverse from the end node w
toward the initial node ui of the propagation path πi(ui, w), the rule (nd) will be applied to Λ deleting the
domain atom ai ∈ Dv, and yielding the labelled sequent Λ′ := R′, v ≤ v′, v′ ≤ v, ai ∈ Dv′ ,Γ′ ⇒ ∆′ due
to the path v′, a, v occurring in πi(ui, w). At this point, following the domain atom deletion procedure,
we should apply (nd) to delete the domain atom ai ∈ Dv′ from Λ′ (as the path v′, a, v of v, a, v′, a, v in
πi(ui, w) was just processed, and so, we must process the path v, a, v′ of v, a, v′, a, v in πi(ui, w)), but
since we are not guaranteed the existence of a domain atom ai ∈ Dv in Λ′ (as the only domain atom of
such a shape and that was guaranteed to exist was just deleted), we are not necessarily permitted to
apply the (nd) rule. Hence, the procedure halts without the desired result being obtained.
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minimal (as in the base case), let π(u,w) := u, x0, v1, . . . vn, xn, w (with xi ∈
∑

= {a, a}
for i ∈ {1, . . . , n}), and let n(a) and n(a) be the number of occurrences of a and a
in sπ(u,w), respectively. To prove the rule admissible in G3IntQC, we first apply hp-
admissibility of (wk) to the premise of the rule (as shown below) and add domain atoms
along the path π(u,w). Then, we apply (∃r) a single time, and last apply the (nd) and
(cd) rules to delete the weakened in domain atoms by starting at w and working backward
toward u in π(u,w). The (nd) rule will be applied n(a) times and the (cd) rule will be
applied n(a) times, and we use (d) := (nd)×n(a) + (cd)×n(a) to denote these inferences.

R, a ∈ Du,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(wk)

R, a ∈ Du, a ∈ Dv1 , . . . , a ∈ Dvn , a ∈ Dw,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃r)R, a ∈ Du, a ∈ Dv1 , . . . , a ∈ Dvn , a ∈ Dw,Γ⇒ ∆, w : ∃xφ

(d)R, a ∈ Du,Γ⇒ ∆, w : ∃xφ

(∀QC
l1 ). Similar to the proof of (∃QC

r1 ) above.

(∃QC
r2 ). Suppose that the side condition holds, i.e. there exists a propagation path π(u,w)

such that sπ(u,w) ∈ LS5(a). We assume w.l.o.g. that π(u,w) is minimal (as in the base
case), let π(u,w) := u, x0, v1, . . . , vn, xn, w (with xi ∈

∑
= {a, a} for i ∈ {1, . . . , n}), and

let n(a) and n(a) be the number of occurrences of a and a in sπ(u,w), respectively. To
prove (∃QC

r2 ) admissible, we first apply hp-admissibility of (wk) to add in domain atoms
along the propagation path π(u,w), and use the domain atom a ∈ Dw to apply (∃r).
After this, we successively delete each of the weakened in domain atoms by applying
(nd) and (cd) starting at w and working our way backward toward the label u in the
propagation path π(u,w). The rule (nd) will be applied n(a) times and (cd) will be
applied n(a) times; we let (d) := (nd) × n(a) + (cd) × n(a) represent the successive
applications of (nd) and (cd) that are applied to delete the weakened in domain atoms.
Last, we apply (ned) to derive the desired conclusion, thus showing the rule admissible
in G3IntQC.

R, a ∈ Du,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(wk)

R, a ∈ Du, a ∈ Dv1 , . . . , a ∈ Dvn , a ∈ Dw,Γ⇒ ∆, w : A(a/x), w : ∃xA
(∃r)R, a ∈ Du, a ∈ Dv1 , . . . , a ∈ Dvn , a ∈ Dw,Γ⇒ ∆, w : ∃xA

(d)R, a ∈ Du,Γ⇒ ∆, w : ∃xA (ned)R,Γ⇒ w : ∃xφ,∆

(∀QC
l2 ). Similar to the proof of (∃QC

r2 ) above.

We may now leverage Thm. 25 and 26 to show that our quasi-refined labelled calculi
inherit proof-theoretic properties from their parental labelled calculi:
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Theorem 27 (Proof-theoretic Properties of IntQL∗ and IntQCL∗). Let X ∈ {Q,QC}.

(i) All rules from Str(Int) are admissible in IntXL∗.

(ii) All rules in IntXL∗ are invertible.

(iii) If `IntXL∗ Λ, |=IntX Λ.

(iv) If `IntX φ, then `IntXL∗ ε⇒ w : φ.

Proof. Claims (i) – (iv) follow from Thm. 9, 10, 11, 25, 26, and Lem. 14, 15, 16, 17, and
18.

Before moving on to the next section on domain atom removal, we show that our quasi-
refined labelled calculi are sound and complete relative to labelled tree derivations with
the fixed root property. The proof of this result is stated below, and although the proof
is sufficient to confirm that our quasi-refined labelled calculi are ‘simpler’ than their
parental labelled calculi—as the latter are incomplete relative to labelled tree derivations
(Thm. 12)—it does not explain why structural rule elimination yields calculi that only
require labelled tree sequents.

To answer such a question, we recognize observations made in [CLR18, Lyo20a, Lyo20b]:
The rules (ref) and (tra) allow for labelled sequents to occur in derivations which are
not labelled tree sequents. To demonstrate this fact, observe the following derivation:

w ≤ v, v ≤ v, v : p⇒ v : p (ref)
w ≤ v, v : p⇒ v : p (⊃r)⇒ w : p ⊃ p

As we can see in the example above, the initial sequent is not a labelled tree sequent due
to the existence of the relational atom v ≤ v (one can check its sequent graph via Def. 50).
Once (ref) is applied however, a labelled tree sequent results. Most importantly, we
can see that the derivation consists of two fragments: a top fragment that does not use
labelled tree sequents (i.e. the initial sequent), and a bottom fragment that does use
labelled tree sequents (i.e. the bottom two sequents).

It turns out that the above observation—i.e. that a labelled derivation in IntQL∗ or
IntQCL∗ can be partitioned into a ‘treelike’ and ‘non-treelike’ fragment—always holds, if
we consider derivations that derive a labelled formula w : φ. Due to the fact that the
end sequent of such a derivation is of the form ε ⇒ w : φ, there will necessarily be a
bottom fragment containing labelled tree sequents. If we consider the derivation in a
bottom-up manner, then all rules—with the exception of (ref) and (tra)—will either
preserve relational atoms or add new ones (e.g. (⊃r) and (∀r)), which constructs a tree
emanating from w : φ due to the eigenvariable condition. Yet, once an application of
(ref) or (tra) is applied (bottom-up) either a loop or undirected cycle will be added,
breaking the ‘treelike’ structure and beginning the ‘non-treelike’ fragment of the proof.
Therefore, if one imagines permuting instances of (ref) and (tra) upward in a IntQL∗
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or IntQCL∗ derivation (making use of the elimination algorithms explained in Lem. 39
and 40), then one can see that the bottom ‘treelike’ fragment grows and the top ‘non-
treelike’ fragment diminishes. Once all (ref) and (tra) inferences have been removed, the
derivation becomes a labelled tree derivation, explaining how we transition to a setting
where only labelled tree derivations are required for completeness.

Theorem 28. Every derivation in IntQL∗ and IntQCL∗ of a labelled formula w : φ is a
labelled tree derivation with the fixed root property.

Proof. Consider a proof of ε⇒ w : φ in IntQL∗ or IntQCL∗ in a bottom-up manner. The
only rules that introduce relational atoms of the form u ≤ v are the (⊃r) and (∀r). Hence,
bottom-up applications of rules will either preserve relational structure or will construct
a tree emanating from (the root) w.

5.3 Refinement Part III: Removal of Domain Atoms

We introduce our refined labelled calculi IntQL and IntQCL (shown in Fig. 5.6 below)
which are obtained from the quasi-refined calculi IntQL∗ and IntQCL∗ derived in the
previous section. The extraction of IntQL and IntQCL from IntQL∗ and IntQCL∗ (resp.)
results from two modifications made to the quasi-refined labelled calculi: (i) principal
and auxiliary domain atoms are removed from all relevant inference rules, and (ii) the
(∃X
r1) and (∃X

r2) rules, and the (∀X
l1) and (∀X

l2) rules, are combined to make the single rules
(∃X
r ) and (∀X

l ) (given in Fig. 5.6 below) with a more complex side condition (expressed
in Fig. 5.7). This section will be devoted to showing that the refined labelled calculi
IntQL and IntQCL possess fundamental proof-theoretic properties, and in the subsequent
section, we will show that the systems are notational variants of nested systems.

The removal of principal and auxiliary domain atoms from (idX), (∃l), (∃X
r1), (∃X

r2), (∀r),
(∀X
l1), and (∀X

l2) (yielding the rules (id∗), (∃X
l ), (∃X

r ), (∀X
r ), and (∀X

l ) in Fig. 5.6 below,
resp.) is the central difference between our quasi-refined and refined labelled calculi.
The rules (id∗), (∃X

l ), and (∀X
r ) are straightforwardly obtained from (idX), (∃l), and (∀r),

respectively, by simply omitting the principal and auxiliary domain atoms. By contrast,
since applications of the (∃X

r1), (∃X
r2), (∀X

l1), and (∀X
l2) rules depend on side conditions

that further depend on the existence of domain atoms, the extraction of (∃X
r ) and (∀X

l )
requires more insight. The key to transforming the (∃X

r1) and (∃X
r2) rules into (∃X

r ), and
the (∀X

l1) and (∀X
l2) rules into (∀X

l ), is to re-write the side condition so that it no longer
relies on the existence of a domain atom a ∈ Du, but rather, relies on the existence of a
labelled formula u : ψ(~a) with a occurring in ~a. Breaking the dependence of the rules on
the existence of domain atoms effectively renders such syntactic structures expendable—a
fact which is formally established later on (Prop. 3).

Recognizing that the reliance on domain atoms can be replaced by a reliance on labelled
formulae, came about by comparing the side conditions of the (∃X

r1), (∃X
r2), (∀X

l1), and
(∀X
l2) rules with the side conditions imposed by Fitting on his R∃ and L∀ rules employed
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in his nested calculus for first-order intuitionistic logic proper [Fit14, p. 59]. Whereas
applications of our (∃X

r1) and (∀X
l1) rules rely on the existence of a propagation path

connecting the label u of the active domain atom to the auxiliary label (see Fig. 5.3
and 5.4), Fitting’s R∃ and L∀ rules rely (in part) on the existence of a path connecting
a formula with a parameter a to the auxiliary formula of the inference—when such a
state of affairs holds, Fitting calls the parameter a available. We impose similar side
conditions in our refined labelled calculi, where a rule’s applicability is dictated by a
parameter being S4-available or S5-available:

Definition 75 (S4-available, S5-available). Let Λ := R,Γ⇒ ∆. We say that a parameter
a is S4-available (S5-available) in Λ for a label w iff there exists a labelled formula
u : φ(~a) ∈ Γ,∆ with a in ~a such that ∃π(sπ(u,w) ∈ LS4(a)) (∃π(sπ(u,w) ∈ LS5(a)),
resp.).

When making use of the fact that a parameter a is S4-available or S5-available, we will
abuse notation and often denote the labelled formula u : φ(~a) ∈ Γ,∆ with a in ~a—which
gives rise to the S4-availability or S5-availability of a—as u : φ(a). This will simplify
discussions and proofs that concern the side conditions of reachability rules.

Example 15. We give an example of S4- and S5-available labels in the labelled sequent
Λ shown below. Since such labels are determined by considering a labelled sequent’s
propagation graph, we also include a pictorial representation of PG(Λ).

Λ := w ≤ v, v ≤ u, u ≤ z, v : ∃xq(x), u : p ∨ r, z : q, z : q ⇒ w : p(a), u : r(b), z : p

ε⇒ p(a)
w

a ++ ∃xq(x)⇒ ε
v

a

gg

a ++
p ∨ r ⇒ r(b)

u

a

gg

a )) q, q ⇒ p
z

a

gg

In the above example, the parameter a is both S4- and S5-available for w, v, and u since
there exist propagation paths λ(w,w) = w, π1(w, v) := w, a, v, and π2(w, u) := w, a, v, a, u
such that sλ(w,w) ∈ LS4(a), sλ(w,w) ∈ LS5(a), sπ1(w, v) ∈ LS4(a), sπ1(w, v) ∈ LS5(a),
sπ2(w, u) ∈ LS4(a), and sπ2(w, u) ∈ LS5(a). However, note that a is not S4-available
for z since none of the strings in LS4(a) contain the converse character a, and any
propagation path from w to z must contain such a character. On the other hand, the
label z is S5-available since there exists a propagation path π3(w, z) := w, a, v, a, u, a, z
such that sπ3(w, z) ∈ LS5(a).

Our refined labelled calculi IntQL and IntQCL are given in Fig. 5.6 with the side conditions
of the reachability and propagation rules given in Fig. 5.7. As explained previously, the
calculi are obtained from IntQL∗ and IntQCL∗ by deleting principal and auxiliary domain
atoms from rules as well as combining (∃X

r1) and (∃X
r2), and (∀X

l1) and (∀X
l2), yielding the

rules (∃X
r ) and (∀X

l ), respectively. Furthermore, the side conditions of the (∃X
r ) and (∀X

l )
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(id∗)†1(X)
R,Γ, w : p(~a)⇒ u : p(~a),∆ (⊥l)R,Γ, w : ⊥ ⇒ ∆

R,Γ, w : φ,w : ψ ⇒ ∆ (∧l)R,Γ, w : φ ∧ ψ ⇒ ∆
R,Γ⇒ w : φ,∆ R,Γ⇒ w : ψ,∆ (∧r)R,Γ⇒ w : φ ∧ ψ,∆

R,Γ, w : φ⇒ ∆ R,Γ, w : ψ ⇒ ∆ (∨l)R,Γ, w : φ ∨ ψ ⇒ ∆

R, w ≤ u,Γ, u : φ⇒ u : ψ,∆
(⊃r)†2(X)

R,Γ⇒ w : φ ⊃ ψ,∆
R,Γ⇒ w : φ,w : ψ,∆ (∨r)R,Γ⇒ w : φ ∨ ψ,∆

R, w : φ ⊃ ψ,Γ⇒ ∆, u : φ R, w : φ ⊃ ψ, u : ψ,Γ⇒ ∆
(Pr⊃)†1(X)

R, w : φ ⊃ ψ,Γ⇒ ∆

R,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃X
r )†3(X)

R,Γ⇒ ∆, w : ∃xφ
R, w : ∀xφ, v : φ(a/x),Γ⇒ ∆

(∀X
l )†4(X)

R, w : ∀xφ,Γ⇒ ∆

R, w ≤ u,Γ⇒ u : φ(a/x),∆
(∀X
r )†5(X)

R,Γ⇒ w : ∀xφ,∆
R,Γ, w : φ(a/x)⇒ ∆

(∃X
l )†6(X)

R,Γ, w : ∃xφ⇒ ∆

Figure 5.6: The refined labelled calculus IntQL consists of all rules with X = Q, and the
refined labelled calculus IntQCL consists of all rules with X = QC. The side conditions
†1(X) – †6(X) are given in Fig. 5.7.

rules make use of the notion of S4- and S5-availability depending on if X = Q or X = QC.
As can be witnessed, none of the rules make reference to domain atoms, implying their
superfluity. We formally establish this fact with the following proposition:

Proposition 3. If R, a ∈ Dw,Γ⇒ ∆ is derivable in IntQL or IntQCL, then R,Γ⇒ ∆
is derivable in IntQL or IntQCL, respectively.

Proof. We prove the result by induction on the height of the given derivation and show
the result for IntQCL as the proof for IntQL is similar.

Base case. The base case follows from the fact that removing any domain atoms from an
instance of (id∗) or (⊥l) yields another instance of (id∗) or (⊥l), respectively.

Inductive step. All cases follow by invoking IH and then applying the corresponding
rule.

Let us now establish the soundness of our refined labelled calculi. Although we could
attempt to prove soundness by supplying a semantics for our calculi and then showing
that each rule of IntQL and IntQCL preserves validity, we opt for another strategy and
show that each derivation in IntQL and IntQCL can be transformed into a derivation in
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Name Side Condition Name Side Condition
†1(Q) ∃π(sπ(w, u) ∈ LS4(a)) †1(QC) ∃π(sπ(w, u) ∈ LS4(a))
†2(Q) u is an eigenvariable †2(QC) u is an eigenvariable
†3(Q) a is S4-available for w †3(QC) a S5-available for w

or a is an eigenvariable or a is an eigenvariable
†4(Q) a is S4-available for v †4(QC) a S5-available for v

or a is an eigenvariable, and or a is an eigenvariable, and
∃π(sπ(w, v) ∈ LS4(a)) ∃π(sπ(w, v) ∈ LS4(a))

†5(Q) a and u are eigenvariables †5(QC) a and u are eigenvariables
†6(Q) a is an eigenvariable †6(QC) a is an eigenvariable

Figure 5.7: Side conditions for rules in IntQL and IntQCL.

IntQL∗ and IntQCL∗, respectively. In order to transform derivations of the former systems
into derivations in the latter systems, we introduce the domain closure function DomCL,
which ensures that each parameter a occurring in any labelled formula w : φ(~a) of a
labelled sequent Λ is accompanied by a corresponding domain atom a ∈ Dw (specifying
the domain in which the parameter is included). We define the domain closure function
below, followed by an example to demonstrate its functionality.

Definition 76 (The Function DomCL)). Let Λ := R,Γ ⇒ ∆ be a labelled sequent and
define

Par(Λ, w) := {a | there exists a w : φ(~a) ∈ Γ,∆ with a in ~a}.
We define DomCL(Λ) := R,R′,Γ⇒ ∆, where

R′ := {a ∈ Dw | w ∈ Lab(Λ) and a ∈ Par(Λ, w)}.

Example 16. Suppose we are given the following labelled sequent:

Λ := w ≤ u,w ≤ v, v : p(c) ⊃ q(c), w : r(a)⇒ w : ∀xp(x)

An application of DomCL(·) to Λ would output the following:

DomCL(Λ) := w ≤ u,w ≤ v, a ∈ Dw, c ∈ Dv, v : p(c) ⊃ q(c), w : r(a)⇒ w : ∀xp(x)

As discussed above, certain inference rules in IntQL∗ and IntQCL∗ depend on the existence
of domain atoms, whereas all inference rules in IntQL and IntQCL are independent of
domain atoms (see Prop. 3). Therefore, the significance of the domain closure function
DomCL is that it adds a sufficient number of domain atoms to inferences within an IntQL
or IntQCL proof to ensure that the proof is a valid derivation in IntQL∗ or IntQCL∗,
respectively. The following lemma demonstrates that the domain closure function permits
the desired proof transformation (thus securing soundness, as will be subsequently proven).
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Lemma 45.

(i) Every proof of a labelled sequent Λ in IntQL can be algorithmically transformed into a
proof of DomCL(Λ) in IntQL∗.

(ii) Every proof of a labelled sequent Λ in IntQCL can be algorithmically transformed into
a proof of DomCL(Λ) in IntQCL∗.

Proof. We defer the proof to Appendix C (p. 211).

Theorem 29 (Soundness of IntQL and IntQCL).

(i) If `IntQL ε⇒ w : φ, then IntQ φ.

(ii) If `IntQCL ε⇒ w : φ, then IntQC φ.

Proof. Follows from Thm. 27, Lem. 45, and Def. 48.

We now show that IntQL and IntQCL possess desirable proof-theoretic properties such as
hp-admissibility of structural rules (e.g. (wk) and (ctrr)), hp-invertibility of all rules, and
syntactic cut-elimination. After establishing these results, we harness the proof-theoretic
properties of IntQL and IntQCL to prove completeness. The completeness result also
relies on the following lemma, which essentially states that generalized instances of (id∗)
are always derivable.

Lemma 46. Let XL ∈ {IntQL, IntQCL} and Λ := R,Γ, w : φ(~a)⇒ u : φ(~a),∆. If there
exists a propagation path π(w, u) in PG(Λ) such that sπ(w, u) ∈ LS4(a), then `XL Λ.

Proof. We prove the result by induction on the complexity of φ(~a). The base cases are
trivial, so we only consider the inductive step.

Inductive step. We only show the cases where φ(~a) is of the form ∃xψ(~a) and ∀xψ(~a).
Both cases are resolved as follows:

IHR,Γ, w : ψ(~a)(b/x)⇒ u : ψ(~a)(b/x), u : ∃xψ(~a),∆
(∃X
r )R,Γ, w : ψ(~a)(b/x)⇒ u : ∃xψ(~a),∆

(∃X
l )R,Γ, w : ∃xψ(~a)⇒ u : ∃xψ(~a),∆

IHR, u ≤ v,Γ, w : ∀xψ(~a), w : ψ(~a)(b/x)⇒ v : ψ(~a)(b/x),∆
(∀X
l )R, u ≤ v,Γ, w : ∀xψ(~a)⇒ v : ψ(~a)(b/x),∆

(∀X
r )R,Γ, w : ∀xψ(~a)⇒ u : ∀xψ(~a),∆
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Next, we confirm the hp-admissibility of the substitution rules (lsb) and (psb), which serves
as a foundation for all remaining results. Recall that label and parameter substitutions
were defined in Def. 49. Additionally, we note that all structural rules shown hp-admissible
in this section are the same as those found in Fig. 3.4. Also, most of the remaining
proofs of this section will be deferred to the Appendix C (starting on p. 211) to improve
readability and because such results are similar to the hp-admissibility, hp-invertibility,
and elimination results proven in Ch. 3. Unless stated otherwise, all omitted proofs
(i.e. proofs deferred to Appendix C) are shown by induction on the height of the given
derivation.

Lemma 47. The rule (lsb) is hp-admissible in IntQL and IntQCL.

Lemma 48. The rule (psb) is hp-admissible in IntQL and IntQCL.

Lemma 49. The rule (wk) is hp-admissible in IntQL and IntQCL.

Lemma 50. The (∧l), (∧r), (∨l), and (∨r) rules are hp-invertible in IntQL and IntQCL.

Lemma 51. The (Pr⊃) and (⊃r) rules are hp-invertible in IntQL and IntQCL.

Lemma 52.

(i) The (∃Q
l ), (∃Q

r ), (∀Q
l ), and (∀Q

r ) rules are hp-invertible in IntQL.

(ii) The (∃QC
l ), (∃QC

r ), (∀QC
l ), and (∀QC

r ) rules are hp-invertible in IntQCL.

Lemma 53. All rules are hp-invertible in IntQL and IntQCL.

Proof. Follows from Lem. 50 – 52 above.

Lemma 54. The rule (ctrR) is hp-admissible in IntQL and IntQCL.

Proof. We proceed by induction on the height of the given derivation.

Base case. Any application of (ctrR) to (id∗) or (⊥l) yields another instance of the rule,
which confirms the base case.

Inductive step. All cases are resolved by applying IH followed by the corresponding
rule.

Lemma 55. The rule (ctrl) is hp-admissible in IntQL and IntQCL.

Lemma 56. The rule (ctrr) is hp-admissible in IntQL and IntQCL.

Proof. The result is shown by induction on the height of the given derivation and is
similar to the proof of Lem. 55 above.

Lemma 57. The (ref) and (tra) rules are elimimable in IntQL and IntQCL.
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Proof. The lemma is proven similarly to Lem. 39 and 40.

Lemma 58. Let Λ := R,Γ ⇒ ∆. Suppose R, w ≤ u,Γ ⇒ ∆ is derivable in IntQL or
IntQCL, and that π(w, u) is a propagation path (potentially empty) in PG(Λ) such that
sπ(w, u) ∈ LS4(a). Then, R,Γ⇒ ∆ is derivable in IntQL or IntQCL, respectively.

Proof. Similar to the proof of Lem. 44, but relies on Lem. 57 above.

Theorem 30. The rule (cut) is eliminable in IntQL and IntQCL.

Proof. The result is proven by induction on the lexicographic ordering of pairs (|φ|, h1+h2),
where |φ| is the complexity of the cut formula φ, h1 is the height of the derivation of the
left premise of (cut), and h2 is the height of the derivation of the right premise of (cut).
We defer the proof to Appendix C (starting on p. 211).

We are now in a position to prove the completeness of our refined labelled calculi IntQL
and IntQCL. The proof is as follows:

Theorem 31 (Completeness).

(i) If `IntQ φ, then `IntQL ε⇒ w : φ.

(ii) If `IntQC φ, then `IntQCL ε⇒ w : φ.

Proof. We show that our calculi IntQL and IntQCL can derive axioms A9 – A12 and A9 –
A13, respectively, as well as simulate the inference rules R0 and R1 (see Def. 20 for the
axioms of IntQ and IntQC). Proofs of axioms A0 – A8, i.e. the axioms for propositional
intuitionistic logic (cf. Def. 20 and [GSS09, p. 6]), are straightforward.

We provide derivations for axioms A9 – A13 below, and note that the proof of axiom A13
(the constant domain axiom) requires the rule (∀QC

l ), i.e. the proof does not go through
with the weaker rule (∀Q

l ). For all other cases we let X ∈ {Q,QC} to prove the results
uniformly.

Axiom A9.

Lem. 46
w ≤ u, u : ∀xφ, u : φ(a/x)⇒ u : φ(a/x)

(∀X
l )

w ≤ u, u : ∀xφ⇒ u : φ(a/x)
(⊃r)

ε⇒ w : ∀xφ ⊃ φ(a/x)

Axiom A10.

Lem. 46
w ≤ u, u : φ(a/x)⇒ u : ∃xφ, u : φ(a/x)

(∃X
r )

w ≤ u, u : φ(a/x)⇒ u : ∃xφ
(⊃r)

ε⇒ w : φ(a/x) ⊃ ∃xφ
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Axiom A11. To save space and improve readability, we let R := w ≤ u, u ≤ v, v ≤ z.
Also, by assumption we know that x does not occur in ψ (see Def. 20).

Π1 =
{

Lem. 46R, u : ∀x(ψ ⊃ φ), v : ψ, z : ψ ⊃ φ(a/x)⇒ z : ψ, z : φ(a/x)

Π2 =
{

Lem. 46R, u : ∀x(ψ ⊃ φ), v : ψ, z : ψ ⊃ φ(a/x), z : φ(a/x)⇒ z : φ(a/x)

Π1 Π2 (Pr⊃)
w ≤ u, u ≤ v, v ≤ z, u : ∀x(ψ ⊃ φ), v : ψ, z : ψ ⊃ φ(a/x)⇒ z : φ(a/x)

(∀X
l )

w ≤ u, u ≤ v, v ≤ z, u : ∀x(ψ ⊃ φ), v : ψ ⇒ z : φ(a/x)
(∀X
r )

w ≤ u, u ≤ v, u : ∀x(ψ ⊃ φ), v : ψ ⇒ v : ∀xφ
(⊃r)

w ≤ u, u : ∀x(ψ ⊃ φ)⇒ u : ψ ⊃ ∀xφ
(⊃r)

ε⇒ w : ∀x(ψ ⊃ φ) ⊃ (ψ ⊃ ∀xφ)

Axiom A12. To save space and improve readability, we let R := w ≤ u, u ≤ v. Also, by
assumption we know that x does not occur in φ (see Def. 20).

Π1 =
{

Lem. 46R, u : ∀x(ψ ⊃ φ), v : ψ(a/x), v : ψ(a/x) ⊃ φ⇒ v : ψ(a/x), v : φ

Π2 =
{

Lem. 46R, u : ∀x(ψ ⊃ φ), v : ψ(a/x), v : ψ(a/x) ⊃ φ, v : φ⇒ v : φ

Π1 Π2 (Pr⊃)
w ≤ u, u ≤ v, u : ∀x(ψ ⊃ φ), v : ψ(a/x), v : ψ(a/x) ⊃ φ⇒ v : φ

(∀X
l )

w ≤ u, u ≤ v, u : ∀x(ψ ⊃ φ), v : ψ(a/x)⇒ v : φ
(∃X
l )

w ≤ u, u ≤ v, u : ∀x(ψ ⊃ φ), v : ∃xψ ⇒ v : φ
(⊃r)

w ≤ u, u : ∀x(ψ ⊃ φ)⇒ u : ∃xψ ⊃ φ
(⊃r)

ε⇒ w : ∀x(ψ ⊃ φ) ⊃ (∃xψ ⊃ φ)

Axiom A13.

Π1 =
{

Lem. 46
w ≤ u, u ≤ v, u : ∀x(φ ∨ ψ), u : ψ ⇒ v : φ(a/x), u : ψ

Π2 =
{

Lem. 46
w ≤ u, u ≤ v, u : ∀x(φ ∨ ψ), u : φ(a/x)⇒ v : φ(a/x), u : ψ
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Π1 Π2 (∨l)
w ≤ u, u ≤ v, u : ∀x(φ ∨ ψ), u : φ(a/x) ∨ ψ ⇒ v : φ(a/x), u : ψ

(∀QC
l )

w ≤ u, u ≤ v, u : ∀x(φ ∨ ψ)⇒ v : φ(a/x), u : ψ
(∀QC
r )

w ≤ u, u : ∀x(φ ∨ ψ)⇒ u : ∀xφ, u : ψ
(∨r)

w ≤ u, u : ∀x(φ ∨ ψ)⇒ u : ∀xφ ∨ ψ
(⊃r)

ε⇒ w : ∀x(φ ∨ ψ) ⊃ ∀xφ ∨ ψ

Rule R0. We invoke Lem. 57 and Thm. 30 below to apply the admissible rules (ref) and
(cut).

ε⇒ w : φ

ε⇒ w : φ ⊃ ψ
Lem. 51

w ≤ u, u : φ⇒ u : ψ (lsb)
(w ≤ u)(w/u), (u : φ)(w/u)⇒ (u : ψ)(w/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

w ≤ w,w : φ⇒ w : ψ (ref)
w : φ⇒ w : ψ (cut)

ε⇒ w : ψ

Rule R1.

ε⇒ w : φ(a/x)
(wk)

u ≤ w ⇒ w : φ(a/x)
(∀X
r )

ε⇒ u : ∀xφ (lsb)
ε⇒ w : ∀xφ

Due to the similarity of the refined labelled calculi IntQL and IntQCL, and the quasi-
refined labelled calculi IntQL∗ and IntQCL∗, it should not be surprising that IntQL and
IntQCL are complete relative to labelled tree derivations with the fixed root property.
The following theorem confirms this fact. Yet, since we have removed all dependencies on
domain atoms within our refined labelled calculi, such systems can be proven notational
variants of nested sequent systems, which we demonstrate in the following section.

Theorem 32. Every derivation in IntQL and IntQCL of a labelled formula w : φ is a
labelled tree derivation with the fixed root property.

Proof. Similar to the proof of Thm. 28.
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5.4 Relationship to Nested Sequent Formalism

We show that our refined labelled calculi IntQL and IntQCL can be viewed as nested
systems. The systems we put forth are distinct from Fitting’s nested calculi for IntQ and
IntQC (which have been provided in Appendix A on p. 207), as we employ reachability and
propagation rules such as (id∗), (Pr⊃), (∃X

r ), and (∀X
l ) (shown in Fig. 5.8 below), whereas

Fitting’s calculi utilize different versions of these rules and adds a rule called lift (which
is a reformulation of the propagation rules introduced by Postniece in [Pos09, Pos10]).
As discussed previously, making use of reachability and propagation rules (which take a
CFCST system as a parameter) is advantageous, as it lets us easily transform our calculi
into systems for new logics by taking alternative CFCST systems as parameters. We
first define nested sequents, and afterward, define their sequent graphs, which facilitate
translations between labelled and nested notation.

Definition 77 (Nested Sequents for First-Order Intuitionistic Logics). We define a
nested sequent for first-order intuitionistic logics to be a syntactic object X defined via
the grammars in BNF shown below:

X ::= Y ⇒ Y | Y ⇒ Y, {X}, . . . , {X} Y ::= ε | φ | Y, Y

where φ ∈ LInt.

We denote nested sequents with X, Y , Z, . . . (possibly annotated), and as usual, ε
represents the empty string, which is an identity element for comma, where comma
associates and commutes. As before, we use the notationX[Y ] (andX[Y ][Z]) to mean that
the nested sequent Y (Y and Z, resp.) occurs (occur, resp.) at some depth in the nestings
of X. For example, if the nested sequent X is p(a) ⇒ q, {∀xp(x) ⇒ q ⊃ q}, {ε ⇒ q},
then X[p(a)⇒ q], X[p(a)⇒ q, {∀xp(x)⇒ q ⊃ q}], and X[p(a)⇒ q][ε⇒ q] are all valid
representations of X.

Definition 78 (Sequent Graph of a Nested Sequent for IntQ and IntQC). We define the
sequent graph of a nested sequent X inductively on the depth of the nestings of X as
shown below. As in Def. 62, we make use of sequences of natural numbers, and represent
such sequences as n1.n2. . . . .nk−1.nk, using σ (possible annotated) to denote them. Our
inductive definition of G(X) := G0(X) is as follows:

I If X = φ1, . . . , φn ⇒ ψ1, . . . , ψk, then Gσ(X) := (Vσ, Eσ, Lσ), where

(i) Vσ := {σ} (ii) Eσ := ∅ (iii) Lσ := {(σ, φ1, . . . , φn ⇒ ψ1, . . . , ψk)}

I Let X := φ1, . . . , φn ⇒ ψ1, . . . , ψk, {Y1}, . . . , {Ym} and suppose that each Gσ.i(Yi) :=
(Vσ.i, Eσ.i, Lσ.i) (with i ∈ {1, . . .m} and m ∈ N) is already defined. We define
Gσ(X) := (Vσ, Eσ, Lσ) as shown below:
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(id∗)†1(X)
X[Y1, p(~a)⇒ Z1]w[Y2 ⇒ p(~a), Z2]u

(⊥l)
X[Y,⊥ ⇒ Z]

X[Y, φ, ψ ⇒ Z]
(∧l)

X[Y, φ ∧ ψ ⇒ Z]
X[Y ⇒ φ, ψ, Z]

(∨r)
X[Y ⇒ φ ∨ ψ,Z]

X[Y ⇒ Z, {φ⇒ ψ}]
(⊃r)

X[Y ⇒ φ ⊃ ψ,Z]

X[Y, φ⇒ Z] X[Y, ψ ⇒ Z]
(∨l)

X[Y, φ ∨ ψ ⇒ Z]
X[Y ⇒ φ,Z] X[Y ⇒ ψ,Z]

(∧r)
X[Y ⇒ φ ∧ ψ,Z]

X[Y1, φ ⊃ ψ ⇒ Z1]w[Y2 ⇒ φ,Z2]u X[Y1, φ ⊃ ψ ⇒ Z1]w[Y2, ψ ⇒ Z2]u (Pr⊃)†1(X)
X[Y1, φ ⊃ ψ ⇒ Z1]w[Y2 ⇒ Z2]u

X[Y, φ(a/x)⇒ Z]
(∃X
l )†2(X)

X[Y,∃xφ⇒ Z]
X[Y1,∀xφ⇒ Z1]w[Y2, φ(a/x)⇒ Z2]v (∀X

l )†4(X)
X[Y1,∀xφ⇒ Z1]w[Y2 ⇒ Z2]v

X[Y ⇒ φ(a/x), ∃xφ, Z]w (∃X
r )†3(X)

X[Y ⇒ ∃xφ, Z]w
X[Y ⇒ Z, {ε⇒ φ(a/x)}]

(∀X
r )†2(X)

X[Y ⇒ ∀xφ,Z]

Figure 5.8: The nested calculus DIntQ consists of all rules with X = Q. The nested
calculus DIntQC consists of all rules with X = QC. The side conditions of the propagation
and reachability rules are given in Fig. 5.9 below.

I Vσ := {σ} ∪
⋃

1≤i≤m
Vσ.i

I Eσ := {(σ, σ.i, a) | 1 ≤ i ≤ m} ∪
⋃

1≤i≤m
Eσ.i

I Lσ := {(σ, φ1, . . . , φn ⇒ ψ1, . . . , ψk)} ∪
⋃

1≤i≤m
Lσ.i

Note that when n = 0 or k = 0, the multiset φ1, . . . , φn and ψ1, . . . , ψk is taken to be
the empty string ε. We will often use w, u, v, . . . to represent vertices as opposed to
sequences of natural numbers.

For a nested sequent X[Y ⇒ Z] or X[Y1 ⇒ Z1][Y2 ⇒ Z2] , we also use the notation
X[Y ⇒ Z]w and X[Y1 ⇒ Z1]w[Y2 ⇒ Z2]u to denote that Y ⇒ Z is associated with the
vertex w (meaning that L(w) = Y ⇒ Z in G(X) = (V,E,L)), and to denote that Y1 ⇒ Z1
and Y2 ⇒ Z2 are associated with the vertices w and u (meaning that L(w) = Y1 ⇒ Z1
and L(u) = Y2 ⇒ Z2 in G(X) = (V,E, L)), respectively.

As with our refined labelled calculi, applications of the reachability and propagation rules
depend on the notion of a propagation graph, S4-availability, and S5-availability. We
define these concepts below, and subsequently provide an example of a sequent graph
and propagation graph for a nested sequent, as well as give an example of a parameter
which is S4-available and S5-available.
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5. The Method of Refinement: First-Order Intuitionistic Logics

Definition 79 (Propagation Graphs for DIntQ and DIntQC). Let X be a nested sequent
for IntQ and IntQC with the sequent graph G(X) = (V,E, L). We define the propagation
graph PG(X) = (V′,E′) to be the directed graph such that

I V′ := V ;

I E′ := {(w, u, a), (u,w, a) | (w, u, a) ∈ E}.

We will often write w ∈ PG(X) to mean w ∈ V′, and (w, u, x) ∈ PG(X) to mean
(w, u, x) ∈ E′, for x ∈

∑
= {a, a}.

Definition 80 (S4-available, S5-available). Let X := X[Y1 ⇒ Z1]u[Y2 ⇒ Z2]w be a
nested sequent. We say that a parameter a is S4-available (S5-available) in X for w
iff there exists a formula ψ(~a) ∈ Y1, Z1 with a in ~a and a propagation path π(u,w) in
PG(X) such that sπ(u,w) ∈ LS4(a) (sπ(u,w) ∈ LS5(a), resp.).

Propagation paths and strings of propagation paths (along with their converses) are
defined as in Def. 59, so we do not repeat these definitions here. However, we do provide
examples of these objects below along with our example:

Example 17. Let our nested sequent be the following:

X := p(a)⇒ q, {∀xp(x)⇒ q ⊃ q}, {ε⇒ q}

The sequent graph G(X) is obtained by deleting the dotted edges in the graph below, and
the propagation graph PG(X) is obtained by deleting the solid edges.

p(a)⇒ q
w

a

$$
a

zz

a

��

a

��

∀xp⇒ q
u

a

II

ε⇒ q ⊃ q
v

a

VV

Examples of propagation paths include the propagation path π(w, u) = w, a, u and the
propagation path π′(u,w) := u, a, w, a, v, a, w. The string of each propagation path is
sπ(w, u) = a and sπ′(u,w) = aaa, respectively. Also, since p(a) occurs in the antecedent at
w and there exists a propagation path π(w, u) := w, a, u with a ∈ LS4(a) and a ∈ LS5(a),
we know that a is both S4- and S5-available for u.

Making use of the above notions, we define our nested calculi DIntQ and DIntQC for
the first-order intuitionistic logics IntQ and IntQC, respectively, which are presented in
Fig. 5.8 with the side conditions of reachability and propagation rules given in Fig. 5.9.
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Name Side Condition Name Side Condition
†1(Q) ∃π(sπ(w, u) ∈ LS4(a)) †1(QC) ∃π(sπ(w, u) ∈ LS4(a))
†2(Q) a is an eigenvariable †2(QC) a is an eigenvariable
†3(Q) a is S4-available for w †3(QC) a S5-available for w

or a is an eigenvariable or a is an eigenvariable
†4(Q) a is S4-available for v †4(QC) a S5-available for v

or a is an eigenvariable, and or a is an eigenvariable, and
∃π(sπ(w, v) ∈ LS4(a)) ∃π(sπ(w, v) ∈ LS4(a))

Figure 5.9: Side conditions for rules in IntQL and IntQCL.

We now define our translations functions N and L, which translate from labelled to nested
notation, and from nested to labelled notation, respectively. The definition depends
on the notation of the downward closure of a sequent graph, defined in Def. 65. After
presenting these definitions, we prove that IntQL and IntQCL are the respective notational
variants of the calculi DIntQ and DIntQC, and give an example of translating derivations
between the calculi.

Definition 81 (The Translation N). Let Λ := R,Γ⇒ ∆ be the a labelled tree sequent
with G(Λ) = (V,E,L) and w ∈ V the root. We define the translation N(Λ) := N(Gw(Λ))
inductively as follows:

I If G(Λ) = (V,E, L) with V = {w}, E = ∅, and L = {(w,Γ � w ⇒ ∆ � w)}, then

N(Gw(Λ)) := Γ � w ⇒ ∆ � w

I If G(Λ) = (V,E, L) with w, u1, . . . , un ∈ V , (w, ui) ∈ E (for i ∈ {1, . . . , n}), then

N(Gw(Λ)) := L(w), {N(Gu1(Λ))}, . . . , {N(Gun(Λ))}

Example 18. We show how to translate the labelled tree sequent

Λ := w ≤ u, u ≤ v, w ≤ z, w : q, v : p ⊃ q, v : r ⇒, w : ∀xq, u : p ∨ p, z : c, z : p

into a nested sequent via the computation below:

N(Λ) := N(Gw(Λ))
= q ⇒ ∀xq, {N(Gu(Λ))}, {N(Gz(Λ))}
= q ⇒ ∀xq, {ε⇒ p ∨ p, {N(Gv(Λ))}}, {ε⇒ c, p}
= q ⇒ ∀xq, {ε⇒ p ∨ p, {p ⊃ q, r ⇒ ε}}, {ε⇒ c, p}
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5. The Method of Refinement: First-Order Intuitionistic Logics

Definition 82 (The Translation L). Let X be the a nested sequent. We define the
translation L(X) := L(G0(X)) inductively as follows:

I If Gσ(X) = (V,E,L) with V = {σ}, E = ∅, and L = {(σ, Y ⇒ Z)}, then

L(Gσ(X)) := wσ : Y ⇒ wσ : Z

I If Gσ(X) = (V,E,L) with σ, σ.1, . . . , σ.n ∈ V , (σ, σ.1), . . . , (σ, σ.n) ∈ E, and
(σ, Y ⇒ Z) ∈ L, then

L(Gσ(X)) := (wσ ≤ wσ.1, . . . , wσ ≤ wσ.n, wσ : Y ⇒ wσ : Z)◦L(Gσ.1(X))◦· · ·◦L(Gσ.n(X))

In practice, we will often use labels such as w, u, v, . . . as opposed to labels indexed with
sequences of natural numbers for simplicity.

Example 19. Below, we show how to translate the nested sequent

X := q ⇒ ∀xq, {ε⇒ p ∨ p, {p ⊃ q, r ⇒ ε}}, {ε⇒ c, p}

into a labelled (tree) sequent:

L(X) := L(G0(X))
= (w ≤ u,w ≤ z, w : q ⇒ w : ∀xq) ◦ L(Gu(X)) ◦ L(Gz(X))
= (w ≤ u,w ≤ z, w : q ⇒ w : ∀xq) ◦ (u ≤ v ⇒ u : p ∨ p) ◦
=L(Gv(X)) ◦ (ε⇒ z : c, z : p)
= (w ≤ u,w ≤ z, w : q ⇒ w : ∀xq) ◦ (u ≤ v ⇒ u : p ∨ p) ◦
=(v : p ⊃ q, v : r ⇒ ε) ◦ (ε⇒ z : c, z : p)
= w ≤ u, u ≤ v, w ≤ z, w : q, v : p ⊃ q, v : r ⇒, w : ∀xq, u : p ∨ p, z : c, z : p

As with our translations for grammar logics, it is not difficult to confirm that the sequent
graph of a labelled tree sequent or nested sequent is isomorphic to the sequent graph of
its translatee under N and L, respectively. This fact is expressed in the following lemma:

Lemma 59. Let Λ be a labelled tree sequent and X be a nested sequent (for first-order
intuitionistic logics). Then,

(i) G(Λ) ∼= G(N(Λ))

(ii) G(X) ∼= G(L(X))

Theorem 33. Let X ∈ {Q,QC}. Every derivation in IntXL is algorithmically translatable
to a derivation in DIntX.
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Proof. We prove the result by induction on the height of the given derivation and show
the claim for IntQCL and DIntQC, as translating from IntQL to DIntQ is similar.

Base case. Let the initial sequent shown below left be Λ, and assume that the nested
sequent shown below right is N(Λ). Due to the application of (id∗) (bottom left), we
know that there exists a propagation path π(w, u) in PG(Λ) such that sπ(w, u) ∈ LS4(a).
By Lem. 59 above, the same propagation path will exist in PG(N(Λ)), and hence, the
application of the (id∗) rule (bottom-right) deriving N(Λ) is valid.

(id∗)R,Γ, w : p(~a)⇒ u : p(~a),∆  (id∗)
X[Y1, p(~a)⇒ Z1]w[Y2 ⇒ p(~a), Z2]u

Inductive step. We consider the (Pr⊃), (∃QC
l ), and (∃QC

r ) cases; all other cases are
straightforward or similar.

(Pr⊃). Let the left premise of the (Pr⊃) inference shown below top be Λ1 and the right
premise be Λ2. We assume that the left premise of the (Pr⊃) inference shown below
bottom is N(Λ1) and the right premise is N(Λ2). Due to the application of (Pr⊃) shown
below top, we know that there exists a propagation path π(w, u) in PG(Λ1) and PG(Λ2)
such that sπ(w, u) ∈ LS4(a). By Lem. 59, we know that the propagation path exists in
PG(N(Λ1)) and PG(N(Λ2)) as well, and so, (Pr⊃) may be applied to N(Λ1) and N(Λ2)
as shown below bottom.

R, w : φ ⊃ ψ,Γ⇒ ∆, u : φ R, w : φ ⊃ ψ, u : ψ,Γ⇒ ∆ (Pr⊃)R, w : φ ⊃ ψ,Γ⇒ ∆
 

X[Y1, φ ⊃ ψ ⇒ Z1]w[Y2 ⇒ φ,Z2]u X[Y1, φ ⊃ ψ ⇒ Z1]w[Y2, ψ ⇒ Z2]u (Pr⊃)
X[Y1, φ ⊃ ψ ⇒ Z1]w[Y2 ⇒ Z2]u

(∃QC
l ). Let Λ be the premise of the left inference below, and N(Λ) be the premise of

the right inference. By assumption, we know that a is an eigenvariable in Λ, and so, by
Def. 81, a is an eigenvariable in N(Λ). Hence, we may apply the (∃QC

l ) rule to N(Λ),
giving the desired conclusion as shown below right.

R,Γ, w : φ(a/x)⇒ ∆
(∃QC
l )R,Γ, w : ∃xφ⇒ ∆

 
X[Y, φ(a/x)⇒ Z]

(∃QC
l )

X[Y,∃xφ⇒ Z]

(∃QC
r ). Let the premise of the left inference be Λ and the premise of the right inference

be N(Λ). By the side condition on the left (∃QC
l ) inference, we know that either a is an

eigenvariable, or a is S5-available for w. In the first case, by the definition of N (Def. 81),
we know that a will be an eigenvariable in N(Λ) as well. In the second case, by Lem. 59,
a will be S5-available. Regardless of the case then, the side condition holds, and we may
apply the rule (∃QC

l ) to N(Λ) as shown below right, giving the desired conclusion.
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R,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r )R,Γ⇒ ∆, w : ∃xφ

 
X[Y ⇒ φ(a/x),∃xφ,Z]w (∃QC

r )
X[Y ⇒ ∃xφ,Z]w

Theorem 34. Let X ∈ {Q,QC}. Every derivation in DIntX is algorithmically translatable
to a derivation in IntXL.

Proof. The theorem is proven in a similar fashion as Thm. 33 above. One proves by
induction on the height of the given derivation that each rule in DIntQ and DIntQC can
be translated into an instance of the corresponding rule in IntQL and IntQCL, respectively.
Similar to the proof of Thm. 33, each rule straightforwardly translates (under the L
function).

Example 20. If the top derivation below (in IntQCL) is input into the translation
algorithm of Thm. 33, then we obtain the derivation shown below bottom. On the other
hand, the derivation below bottom (in DIntQC) translates via Thm. 34 to the derivation
shown below top.

Also, obverse that the (∀QC
l ) rule may be applied in the top derivation because a is S5-

available for u, that is, we have the labelled formula v : p(a) and the propagation path
π(v, u) := v, a, u such that a ∈ LS5(a). Similarly, the side condition holds in the DIntQC
derivation, so the (∀QC

l ) rule may be applied there as well. It should be pointed out that
in the non-constant domain setting, the theorem shown below (which is an instance of
the constant domain axiom A13) is not derivable because the instance of (∀QC

l ) cannot
be replaced by an instance of (∀Q

l ). The inability to substitute (∀Q
l ) for (∀QC

l ) is due to
the fact that the string of every propagation path from v to u must contain at least one
occurrence of the character a, and so, the string will never be in LS4(a).

Λ1 := w ≤ u, u ≤ v, u : ∀x(p(x) ∨ q), u : p(a)⇒ v : p(a), u : q

Λ2 := w ≤ u, u ≤ v, u : ∀x(p(x) ∨ q), u : q ⇒ v : p(a), u : q

(id∗)Λ1
(id∗)Λ2 (∨l)

w ≤ u, u ≤ v, u : ∀x(p(x) ∨ q), u : p(a) ∨ q ⇒ v : p(a), u : q
(∀QC
l )

w ≤ u, u ≤ v, u : ∀x(p(x) ∨ q)⇒ v : p(a), u : q
(∀QC
r )

w ≤ u, u : ∀x(p(x) ∨ q)⇒ u : ∀xp(x), u : q
(∨r)

w ≤ u, u : ∀x(p(x) ∨ q)⇒ u : ∀xp(x) ∨ q
(⊃r)

ε⇒ w : ∀x(p(x) ∨ q) ⊃ ∀xp(x) ∨ q

X1 := ε⇒ ε, {∀x(p(x) ∨ q), p(a)⇒ q, {ε⇒ p(a)}}

X2 := ε⇒ ε, {∀x(p(x) ∨ q), q ⇒ q, {ε⇒ p(a)}}
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(id∗)X1
(id∗)X2 (∨l)

ε⇒ ε, {∀x(p(x) ∨ q), p(a) ∨ q ⇒ q, {ε⇒ p(a)}}
(∀QC
l )

ε⇒ ε, {∀x(p(x) ∨ q)⇒ q, {ε⇒ p(a)}}
(∀QC
r )

ε⇒ ε, {∀x(p(x) ∨ q)⇒ ∀xp(x), q}
(∨r)

ε⇒ ε, {∀x(p(x) ∨ q)⇒ ∀xp(x) ∨ q}
(⊃r)

ε⇒ ∀x(p(x) ∨ q) ⊃ ∀xp(x) ∨ q
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CHAPTER 6
Applications: Decidability and

Interpolation

In this chapter, we put our refined labelled calculi for deontic STIT logics and grammar
logics to work. In Sect. 6.1, we build off of the author’s work in [LvB19] and show
how each calculus DSk0L for the single-agent deontic STIT logic DSk0 (with n = 0, i.e.
Ag = {0}) can be utilized in a proof-search procedure to decide the validity of formulae.
As is typical when proving decidability via proof-search, we write an algorithm that
applies the rules of DSk0L in reverse, attempting to construct a proof of the input formula.
As a corollary, we will not only obtain decidability for each logic DSk0, but will also confirm
that each logic DSk0 is in possession of the finite model property, i.e. any formula that is
satisfiable, is satisfiable on a finite model. We note that we do not provide proof-search
procedures for first-order intuitionistic logics since they are undecidable and do not
provide proof-search algorithms for grammar logics either since such algorithms were
already provided for a decidable sub-class of such logics in [TIG12]. (NB. Context-free
grammar logics with converse are undecidable in general.)

In Sect. 6.2, the syntactic method of interpolation for nested sequent systems introduced
in [LTGC20] is presented and applied to show that each context-free grammar logic
with converse possesses the effective Lyndon interpolation property. At the beginning
of Sect. 6.2, we define (Lyndon) interpolation, discuss the importance of the property,
and also describe the state of the art in the proof-theoretic approach to confirming the
property. Last, we note that the new results of the second section (i.e. Sect. 6.2) generalize
those of [GN05] from the class of regular grammar logics to the class of context-free
grammar logics with converse (and from effective Craig interpolation to effective Lyndon
interpolation).
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6.1 Proof-Search and Decidability for Deontic STIT
Logics

Proof-search algorithms are special procedures defined relative to proof systems that
construct or find the proof of an input formula (or, sequent) by applying the rules of the
proof system in reverse. Such algorithms are often used to prove logics decidable, but are
also indispensable in the domain of automated reasoning—having been used to decide
knowledge representation languages [Rad12], to provide complexity-optimal decision
procedures [LP15, Vig00], and to automate the extraction of counter-models [LvB19,
TIG12], among other things.

The proof-search algorithms we introduce in this section leverage refined labelled calculi
from the class {DSk0L | k ∈ N} (see Fig. 4.4). The algorithms operate by taking a labelled
sequent Λ as input, and check (i) if a labelled formula w : φ and its negation w : ¬φ
occur in Λ, and if not, then check (ii) if a complex formula exists in Λ that has not yet
been analyzed. Regarding point (i), if a labelled formula and its negation occur in the
input labelled sequent, then by Lem. 19 and Thm. 22, we know the sequent is provable,
meaning that the algorithm no longer needs to search for a proof. Regarding point (ii), if a
complex formula has yet to be analyzed, then this leaves open the possibility that a proof
of the labelled sequent may be found by applying the appropriate rule (bottom-up) to
the input labelled sequent which analyzes the complex formula into the simpler auxiliary
formulae from which it may be formed. It is important to point out that in our setting,
our proof-search algorithms are performing two tasks simultaneously—searching for a
proof of the input labelled sequent and constructing a counter-model of the input labelled
sequent in case a proof is not found. To demonstrate this dualistic functionality of our
proof-search procedure, we consider a concrete example of proof-search using a refined
labelled calculus for a deontic STIT logic.

Let us suppose for the sake of the example that we have a single-agent (i.e. n = 0 and
Ag := {0}) and that the agent’s choices are not bounded (that is, k = 0). We want to
search for a proof or counter-model of the labelled sequent ε⇒ w : [0]⊗0 (p ∨ ¬q) using
the calculus DS0

0L. In attempt to construct a proof, we apply relevant rules to the sequent
in reverse, yielding the derivation shown below. Also, note that when applying rules in
reverse we preserve the analyzed (principal) formula of the inference into the premise
forcing us to invoke the admissibility of (ctrr) (Cor. 4) before each inference. The reason
for doing this is that if a counter-model is to be constructed from failed proof-search,
then having the formula present simplifies the proof confirming that the counter-model
of the end sequent is indeed a counter-model; this will become apparent when showing
the correctness of our proof-search procedures in Thm. 35 later on.
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R[0]wu, I⊗0v ⇒ w : [0]⊗0 (p ∨ ¬q), u : ⊗0(p ∨ ¬q), v : p ∨ ¬q, v : p, v : ¬q
(∨r)

R[0]wu, I⊗0v ⇒ w : [0]⊗0 (p ∨ ¬q), u : ⊗0(p ∨ ¬q), v : p ∨ ¬q, v : p ∨ ¬q
(ctrr)

R[0]wu, I⊗0v ⇒ w : [0]⊗0 (p ∨ ¬q), u : ⊗0(p ∨ ¬q), v : p ∨ ¬q
(⊗0)

R[0]wu⇒ w : [0]⊗0 (p ∨ ¬q), u : ⊗0(p ∨ ¬q), u : ⊗0(p ∨ ¬q)
(ctrr)

R[0]wu⇒ w : [0]⊗0 (p ∨ ¬q), u : ⊗0(p ∨ ¬q)
([0])

ε⇒ w : [0]⊗0 (p ∨ ¬q), w : [0]⊗0 (p ∨ ¬q)
(ctrr)

ε⇒ w : [0]⊗0 (p ∨ ¬q)

Despite the fact that each principal formula is preserved upward, it happens to be
sufficient (for building a proof or counter-model of the end sequent) to analyze (i.e. apply
an inference rule bottom-up to) each complex labelled formula only once. By this fact,
our proof-search example will terminate with the derivation above since each complex
labelled formula occurring in the top sequent was analyzed at some point lower in the
derivation. Since the above ‘derivation’ is not a valid derivation in DS0

0L, as the top
sequent is not an initial sequent, we can extract a counter-model for the end sequent
from the top seqeunt, which we now explain.

A nice feature of the (refined) labelled formalism is that its close association with the
semantics of the logic allows labelled sequents to be readily converted into models. In the
current example then, our aim is to transform the top sequent of the derivation above into a
DS0

0-modelM = (W,R[0], I⊗0 , V ). We defineW to be the set of labels, i.e. W := {w, u, v}.
To define R[0], we make use of the relational atom R[0]wu and the set of worldsW , forming
a set {(w,w), (u, u), (v, v), (w, u)} that contains a reflexive pair for each world in W (i.e.
each label in the top sequent), and a pair from each relevant relational atom, which in
this case just provides (w, u) due to the occurrence of R[0]wu. We then take the transitive
and symmetric closure of the set, thus giving R[0] := {(w,w), (w, u), (u,w), (u, u), (v, v)},
which ensures that the relation is an equivalence relation that partitions W as dictated by
condition (S1) (Def. 24). We define I⊗0 to be all labels in the choice-cell (from R[0]) of an
‘ideal label’; since the only ‘ideal label’ is v due to the I⊗0v occurring in the top sequent,
and because the only label in the choice-cell of v is v, we have that I⊗0 := {v}. Last, we
define the valuation function V so that it invalidates each literal at the world (i.e. label)
that prefixes it; thus, we have V (p) := {w, u} and V (q) := {v}. It is straightforward to
verify that M is a DS0

0-model and satisfies conditions (S1)–(S3) and (D1)–(D3).

We can see that M is a counter-model for [0]⊗0 (p ∨ ¬q) via the following calculation:
Since v 6∈ V (p) and v ∈ V (q), it follows that M,v 6 p and M,v 6 ¬q, which further
implies that M, v 6 p ∨ ¬q. This fact, in conjunction with the fact that v ∈ I⊗0 , implies
that M,u 6 ⊗0(p ∨ ¬q), which entails that M,w 6 [0]⊗0 (p ∨ ¬q), when one takes into
account that u ∈ R[0](w). Through failed proof-search then, we have shown that the top
sequent of the above derivation can be used to construct a counter-model of the end
sequent. Let us now move on to show that such operations can be performed generally.
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6.1.1 The Proof-Search Algorithm ProveDSk and its Corollaries

We provide a correct and terminating proof-search procedure ProveDSk (Alg. 6.1 below),
which harnesses each refined labelled calculus DSk0L to decide its associated logic DSk0.
We only consider the single-agent setting where n = 0 (i.e. Ag = {0}) and use 0 to
denote the single-agent throughout the course of the section. Despite this restriction,
we still allow for choice limitation, and therefore the proof-search algorithm ProveDSk

takes a parameter k limiting the number of choices of the agent 0 to a maximum of k
(when k > 0), and imposes no limitation when k = 0 (that is, the agent 0 may have
an arbitrary number of choices available when k = 0). The single-agent setting greatly
simplifies proof-search as the independence of agents rule (IOA) becomes redundant and
no longer needs to be considered during proof-search as demonstrated by the following
lemma:1

Lemma 60. For each k ∈ N, the (IOA) rule is eliminable in DSk0.

Proof. Let Π be a derivation in DSk0L containing some number of (IOA) inferences. We
show how to eliminate topmost occurrences of the (IOA) rule, which, through repeated
application yields a proof free of such inferences. Therefore, let us consider a topmost
occurrence of (IOA) as shown below left. We invoke admissibility of (lsb) (Cor. 4)
as shown below right to replace the eigenvariable u with the label w, followed by the
eliminability of (ref0) (Lem. 33) to obtain a derivation without the (IOA) inference. It
is important to note two things: (i) the admissibility of (lsb) and the eliminability of
(ref0) do not introduce instances of (IOA), and (ii) although the resulting derivation may
increase in size, since the number of (IOA) inferences has decreased, through repeated
application of the explained procedure we still obtain a proof free of (IOA) inferences.

R, R[0]wu⇒ Γ
(IOA)R ⇒ Γ

 

R, R[0]wu⇒ Γ
(lsb)R, R[0]ww ⇒ Γ
(ref0)R ⇒ Γ

As discussed at the end of Sect. 4.2, bottom-up applications of the (IOA) rule introduce
edges in the sequent graph of a labelled sequent that all meet at a fresh vertex, ensuring
that the resulting labelled sequent is not a labelled forest sequent. In the single-agent
setting, such structures do not appear, and furthermore, the redundancy of the (IOA)
rule implies that we need not consider the rule whatsoever during proof-search. As we
will see (in Lem. 61 below), this has the desirable consequence that we are permitted to
restrict ourselves to considering only labelled forest derivations during proof-search—an
insight which proves advantageous in designing our proof-search procedure. Since labelled

1We note that proof-search algorithms can be given for the multi-agent case as well, but require more
sophisticated methods. We only consider the single-agent case here as it simplifies our work and is closely
related to the published results in [LvB19] on proof-search for single-agent (non-deontic) STIT logics.
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forest sequents (which compose labelled forest derivations) play a crucial role in our
proof-search methodology, we introduce the relevant concept of a choice-tree and explain
the semantic meaning of such an object in Rmk. 4 below.

Definition 83 (Choice-Tree). Let Λ be a labelled forest sequent with sequent graph
G(Λ) = (V,E, L). We refer to each tree in G(Λ) (which is a forest since Λ is a labelled
forest sequent) as a choice-tree and if w ∈ V , we let CT(w) denote the choice-tree to
which w belongs. Last, we use Lab(CT(w)) to represent the set of all vertices (i.e. labels)
occurring in the choice-tree CT(w).

Example 21. We provide an example of a labelled forest sequent Λ below along with a
pictorial representation of its sequent graph G(Λ).

Λ := I⊗0w2, I⊗0u, I⊗0u1, I⊗0v,R[0]ww1, R[0]ww2, R[0]uu1, R[0]vv1 ⇒

w : �r, w1 : p, u1 : q ∨ 〈0〉q, v : p, v : ¬q, v1 : ⊗0q

(
∅, {�r}

)
w

[0]

{{

[0]
��

(
{0}, ∅

)
u

[0]
��

(
{0}, {p,¬q}

)
v

[0]
��(

∅, {p}
)

w1

(
{0}, ∅

)
w2

(
{0}, {q ∨ 〈0〉q}

)
u1

(
∅, {⊗0q}

)
v1

The labels w, u, and v are the roots of their respective choice-trees that make up the forest.
The choice-tree above left is equally denoted by CT(w), CT(w1), and CT(w2), the choice-
tree above middle is equally denoted by CT(u) and CT(u1), and the choice-tree above
right is equally denoted by CT(v) and CT(v1). Furthermore, we have Lab(CT(w)) =
Lab(CT(w1)) = Lab(CT(w2)) = {w,w1, w2}, Lab(CT(u)) = Lab(CT(u1)) = {u, u1},
and Lab(CT(v)) = Lab(CT(v1)) = {v, v1}.

Remark 4. Each choice-tree that occurs in the sequent graph of a labelled forest sequent is
a syntactic representation of a choice-cell for agent 0, that is, it represents an equivalence
class in R[0] in DSk0-model. This insight tells us that if agent 0 is restricted to a maximum
of k > 0 choices and there are m > k choice-trees in the sequent graph of a labelled
forest sequent, then at least two choice-trees must correspond to the same choice-cell. We
use this observation to specify how (APCk0 ) is (bottom-up) applied in our proof-search
algorithm.

We now introduce blocking conditions (similar to those used in [TIG12]), which will be
employed in our proof-search procedure. A naïve approach to proof-search would simply
apply inference rules in reverse on an input formula in attempt to construct a proof. Yet,
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such a strategy often leads to a non-terminating proof-search algorithm, suggesting that
our algorithm must be properly equipped to determine when a rule should and should
not be applied; for example, the (〈0〉) rule can be bottom-up applied an infinite number
of times to the labelled sequent R[0]wu ⇒ w : 〈0〉p. Blocking conditions are essential
in this regard, as such conditions allow for a (bottom-up) rule application when false,
and prohibit such an application when true. Since each blocking condition is associated
with the application of a single rule, once all such conditions are true, it becomes clear
that none of the inference rules are bottom-up applicable, and proof-search may safely
terminate.

We introduce four sets of blocking conditions in Def. 84 – 87 below. The first set of
blocking conditions are the saturation conditions, which determine if a derivable sequent
has been reached during proof-search and if the (∨r) and (∧r) rules are bottom-up
applicable. The second set of blocking conditions—the realization conditions—dictate
the applicability of the (�), ([0]), and (⊗0) rules, while the third set of propagation
conditions dictate the applicability of the (♦), (Pr〈0〉), and (Pr1

	0) rules. Last, the notion
of being (D2)-satisfied and the notion of being (S3)-satisfied (composing the fourth set
of blocking conditions below) govern bottom-up applications of the (Pr2

	0) and (APCk0 )
rules, respectively. Last, we note that the terminology and blocking conditions used here
are based on and motivated by the terminology and blocking conditions of [TIG12].

Definition 84 (Saturation). Let Λ := R ⇒ Γ be a labelled forest sequent with w ∈ Lab(Λ).
The label w is saturated iff (i) for all w : φ ∈ Γ, w : ¬φ 6∈ Γ, (ii) for all w : φ ∨ ψ ∈ Γ,
both w : φ ∈ Γ and w : ψ ∈ Γ, (iii) for all w : φ ∧ ψ ∈ Γ, either w : φ ∈ Γ or w : ψ ∈ Γ.

Definition 85 (�-, [0], ⊗0-realization). Let Λ := R ⇒ Γ be a labelled forest sequent with
w ∈ Lab(Λ).

I The label w is �-realized iff for every w : �φ ∈ Γ, there exists a label u ∈ Lab(Λ)
such that u : φ ∈ Γ.

I The label w is [0]-realized iff for every w : [0]φ ∈ Γ, there exists a label u ∈ Lab(Λ)
such that u ∈ CT(w) and u : φ ∈ Γ.

I The label w is ⊗0-realized iff for every w : ⊗0φ ∈ Λ, there exists a label u ∈ Lab(Λ)
such that I⊗0u ∈ R and u : φ ∈ Γ.

Definition 86 (♦-, 〈0〉-, 	0-propagated). Let Λ be a labelled forest sequent with w ∈
Lab(Λ).

I The label w is ♦-propagated iff for every w : ♦φ ∈ Γ, we have u : φ ∈ Γ for all
u ∈ Lab(Λ).

I The label w is 〈0〉-propagated iff for every w : 〈0〉φ ∈ Γ, we have u : φ ∈ Γ for all
labels u ∈ Lab(Λ) such that w ∼R0 u.
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I The label w is 	0-propagated iff for every w : 	0φ ∈ Γ, we have v : φ ∈ Γ for
all labels v ∈ Lab(Λ) such that there exists a label u ∈ Lab(Λ) with I⊗0u ∈ R and
u ∼R0 v.

Definition 87 ((D2)-satisfied, (S3)-satisfied). Let Λ := R ⇒ Γ be a labelled forest
sequent with n > 0. We say that Λ is (D2)-satisfied iff for all w : 	0φ ∈ Γ , there exists a
label u ∈ Lab(Λ) such that I⊗0u, u : φ ∈ R,Γ. We say that Λ is (S3)-satisfied iff G(Λ)
contains at most n-many choice-trees.

As mentioned above, if a labelled sequent satisfies all blocking conditions, then the proof-
search algorithm no longer needs to continue building a proof above that sequent and
can terminate on that branch of the computation. When a sequent generated during the
course of proof-search enters such a state we say that the sequent is stable (cf. [TIG12]).
The formal definition of stability is as follows:

Definition 88 (Stability). A forestlike labelled sequent Λ is stable iff (i) all labels w
in Λ are saturated, (ii) all labels are �-, [0]-, ⊗0-realized, (iii) all labels are ♦-, 〈0〉-,
	0-propagated, and (iv) Λ is (D2)-satisfied, (v) Λ is (S3)-satisfied.

We have now laid the necessary groundwork to write our proof-search algorithm ProveDSk,
i.e. Alg. 6.1 below. Due to the length of the algorithm, its instructions have been split
into two parts occurring on different pages. The algorithm works by sequentially checking
if an input labelled sequent satisfies each blocking condition, and if so, then the sequent
will be stable by Def. 88 above, and the procedure will return False for that input
labelled sequent. If, on the other hand, the input labelled sequent does not satisfy
some blocking condition, then the labelled sequent contains a complex labelled formula
that has not yet been analyzed, leaving open the possibility that a proof of the initial
input formula may still be found; in such a situation, ProveDSk effectively applies the
relevant rule (bottom-up) yielding a new labelled sequent (or, new labelled sequents)
that is (are) recursively input back into the proof-search algorithm. Note that due to
instructions 10–20 and 49–57, more than one recursive call may be made, corresponding
to the branching rules (∧r) and (APCk0 ), and which attempts to build proofs for the
premises of each rule instance. If all branches of the computation return True, then
a proof of the input labelled sequent has been found, but if a single branch returns
False, then the input labelled sequent is not provable as is shown in the correctness
theorem (Thm. 35) below. The reader should also take note of the following remark,
which explains how to modify ProveDSk when k = 0.

Remark 5. If k = 0, meaning that the agent 0’s choices are unbounded, then we omit
instructions 49–57 from the proof-search algorithm. Recall from Fig. 4.4 (introducing
each refined labelled calculus DSknL) that the choice-limitation rule (APCki ) is omitted
when k = 0. Since instructions 49–57 govern bottom-up applications of (APCk0 ) during
proof-search, the instructions are unnecessary when k = 0, justifying their exclusion in
this case.
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It is significant how ProveDSk handles the (APCk0 ) rule (see instructions 49–57 in Alg. 6.1).
As explained in Rmk. 4 above, each choice-tree in the sequent graph of a labelled forest
sequent is a syntactic representation of a choice-cell. If at some step of the computation
ProveDSk generates a labelled forest sequent whose sequent graph contains m > k
choice-trees, then we know that at least two of the choice-trees must represent the
same choice-cell. The means by which we syntactically encode that two choice-trees
represent the same choice-cell is by connecting them with an edge, and in fact, this is
the operation performed by instructions 49–57. However, since we do not know which
two choice-trees represent the same choice-cell we must try all possible connections as
dictated by the (APCk0 ) rule when applied bottom-up. It is important to point out
that in order to preserve the forest structure of a labelled sequent, we cannot simply
allow for two choice-trees to be arbitrarily connected in ProveDSk. Rather, to preserve
the forest structure of labelled sequents throughout the computation of ProveDSk, we
connect two choice-trees by introducing an edge from the root of one to the root of the
other, which begets a new tree combining the previous two. To provide more intuition
regarding bottom-up applications of the (APCk0 ) rule (corresponding to instructions
49–57 in ProveDSk), we present an example below showing how (APC2

0) is bottom-up
applied to a labelled forest sequent.

Example 22. Let us consider the labelled forest sequent Λ from Ex. 21 above. To
improve readability and focus only on essential details, we omit the decoration of the
vertices in our sequent graphs. The sequent graph G(Λ) (without decorated vertices) is
shown below top-left. If we were to apply the (APC2

0 ) rule bottom-up to Λ (as dicatated
by instructions 49–57 in ProveDSk), then the other three labelled forest sequents (whose
non-decorated sequent graphs are shown below) will result. Notice that the sequent graphs
of the newly generated labelled forest sequents have two choice-trees instead of three, and
that by connecting the root of one choice-tree to the root of another, we preserve the forest
structure in the output.

w

[0]
||

[0]
��

u
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v
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Since bottom-up applications of (APCk0 ) rely on our input labelled sequent being a
labelled forest sequent, it is necessary to confirm that all labelled sequents generated
throughout the course of the computation of ProveDSk are labelled forest sequents (since
otherwise, instructions 49–57 will be nonsensical). We argue this result in Lem. 61 below.
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Furthermore, this fact, in conjunction with the correctness and termination theorems
below (Thm. 35 and 36, resp.), has the interesting consequence that each calculus DSk0L
is complete relative to labelled forest derivations with the rooted property (Cor. 8). This
result tells us that refinement has brought about a reduction in the underlying data
structure employed in labelled sequents occurring in derivations (cf. Thm. 16), though,
this fact is observed and confirmed via our proof-search algorithm.

Lemma 61. Let φ ∈ LDSk
n
. Every labelled sequent generated throughout the course of

computing ProveDSk(ε⇒ w : φ) is a labelled forest sequent.

Proof. By Def. 56, we know that w : φ is a labelled forest sequent since it’s graph is of
the form G(ε⇒ w : φ) = ({w}, ∅, {(w, {φ}}), which is a single point. Observe that only
conditional statements in ProveDSk that add new nodes or edges (when the condition
holds true) to the sequent graph of the input labelled sequent are those given on lines
21–24, 25–28, 29–32, and 45–48 in the algorithm corresponding to bottom-up applications
of the (�), ([0]), (	0), and (Pr2

	0) rules, respectively; with the exception of the instruction
block 49–57, all other instructions preserve the forest structure inherent in the input
labelled forest sequent because they only change the labeling function L of the sequent
graph of the input labelled sequent (i.e. such rules only redecorate vertices). Instructions
21–24, 29–32, and 45–48 add new disconnected vertices to the sequent graph of the input
labelled sequent, which serve as new roots of new choice-trees, thus preserving the forest
structure. The instructions 25–28 add a new edge to a fresh vertex in a choice-tree of the
sequent graph of the input labelled sequent, which preserves the forest structure because
only an additional branch is added to some choice-tree. The instructions 49–57 connect
the root of one choice-tree to the root of another choice-tree (as explained in Ex. 22
above), thus yielding a new choice-tree (that subsumes the original two from which it
was formed) in the sequent graph of the input labelled sequent. Therefore, every labelled
sequent generated throughout the course of ProveDSk(ε⇒ w : φ) will be a labelled forest
sequent since all instructions preserve the forest structure of any input labelled forest
sequent.

We are now in a position to prove the correctness and termination of our proof-search
algorithm ProveDSk. Before showing each of these results, we prove a useful lemma
relating choice-trees to undirected 0-paths:

Lemma 62. Let Λ := R ⇒ Γ be a labelled forest sequent with w, u ∈ Lab(Λ), then
u ∈ CT(w) iff w ∼R0 u.

Proof. The forward direction is trivial since if u ∈ CT(w), then w and u occur in the
same choice-tree, implying that there is some undirected 0-path between the two labels.
The backward direction is simple as well: if Λ is a labelled forest sequent, then the only
way there can be an undirected 0-path between two labels w and u is if they occur in the
same choice-tree.
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Algorithm 6.1: ProveDSk

Input: A Labelled Sequent: R ⇒ Γ
Output: A Boolean: True, False

1 if w : φ,w : ¬φ ∈ Γ then
2 return True;
3 end
4 if R ⇒ Γ is stable then
5 return False;
6 end
7 if there exists a w : φ ∨ ψ ∈ Γ , but either w : φ 6∈ Γ or w : ψ 6∈ Γ then
8 Let Γ ′ := w : φ,w : ψ, Γ ;
9 return ProveDSk(R ⇒ Γ ′);

10 end
11 if there exists a w : φ ∧ ψ ∈ Γ , but w : φ,w : ψ 6∈ Γ then
12 Let Γ1 := w : φ, Γ ;
13 Let Γ2 := w : ψ, Γ ;
14 if ProveDSk(R ⇒ Γi) = False for some i ∈ {1, 2} then
15 return False;
16 end
17 else
18 return True;
19 end
20 end

Theorem 35 (Correctness). Let φ ∈ LDSk
n
and k ∈ N.

(i) If ProveDSk(ε⇒ w : φ) returns True, then ε⇒ w : φ is DSk0L-provable.

(ii) If ProveDSk(ε⇒ w : φ) returns False, then ε⇒ w : φ is not DSk0L-provable and this
is witnessed by a finite counter-model.

Proof. (i) Every recursive call in ProveDSk is a bottom-up application of a rule from
DSk0L, and so, if ProveDSk(ε⇒ w : φ) returns True, then we obtain a proof of ε⇒ w : φ
where all top sequents are of the form R ⇒ u : ψ, u : ¬ψ,Γ. By Lem. 19 and Thm. 22,
we know that all such labelled sequents have a derivation in DSk0L. Also, it should be
noted that because the principal formula of a bottom-up inference (corresponding to a
recursive call) is preserved upwards, it may be necessary to apply hp-admissibility of
(ctrr) (Lem. 23) to obtain the final proof.

(ii) Suppose that ProveDSk(ε⇒ w : φ) returns False. This implies that a stable labelled
forest sequent Λ := R ⇒ Γ was generated. Let G(Λ) := (V,E,L). We use Λ to define
two counter-models M = (W,R[0], I⊗0 , V ) and M ′ = (W ′, R′[0], I

′
⊗0 , V

′) for φ, depending
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21 if some w ∈ Lab(R ⇒ Γ) is not �-realized then
22 For a labelled formula w : �φ ∈ Γ such that u : φ 6∈ Γ for all u ∈ Lab(R ⇒ Γ),

let Γ ′ := v : φ, Γ with v fresh;
23 return ProveDSk(R ⇒ Γ ′);
24 end
25 if some w ∈ Lab(R ⇒ Γ) is not [0]-realized then
26 For a labelled formula w : [0]φ ∈ Γ such that R[0]wu, u : φ 6∈ R, Γ for all

u ∈ Lab(R ⇒ Γ), let R′ := R[0]wv and Γ ′ := v : φ, Γ with v fresh;
27 return ProveDSk(R′ ⇒ Γ ′);
28 end
29 if some w ∈ Lab(R ⇒ Γ) is not ⊗0-realized then
30 For a labelled formula w : ⊗0φ ∈ Γ such that I⊗0u, u : φ 6∈ R, Γ for all

u ∈ Lab(R ⇒ Γ), let R′ := I⊗0v,R and Γ ′ := v : φ, Γ with v fresh;
31 return ProveDSk(R′ ⇒ Γ ′);
32 end
33 if some w ∈ Lab(R ⇒ Γ) is not ♦-propagated then
34 Pick a label u ∈ Lab(R ⇒ Γ) such that w : ♦φ ∈ Γ and u : φ 6∈ Γ , and let

Γ ′ := u : φ, Γ ;
35 return ProveDSk(R ⇒ Γ ′);
36 end
37 if some w ∈ Lab(R ⇒ Γ) is not 〈0〉-propagated then
38 Pick a label u ∈ Lab(R ⇒ Γ) such that w : 〈0〉φ ∈ Γ , w ∼R0 u, u : φ 6∈ Γ , and

let Γ ′ := u : φ, Γ ;
39 return ProveDSk(R ⇒ Γ ′);
40 end
41 if some w ∈ Lab(R ⇒ Γ) is not 	0-propagated then
42 Pick labels u, v ∈ Lab(R ⇒ Γ) such that w : 	0φ ∈ Γ , I⊗0u ∈ R, u ∼R0 v, and

v : φ 6∈ Γ , and let Γ ′ := v : φ, Γ ;
43 return ProveDSk(R ⇒ Γ ′);
44 end
45 if R ⇒ Γ is not (D2)-satisfied then
46 Pick a label w ∈ Lab(R ⇒ Γ) such that w : 	0φ ∈ Γ , and for all

u ∈ Lab(R ⇒ Γ), I⊗0u, u : φ 6∈ R, Γ , and let R′ := I⊗0v,R and Γ ′ := v : φ, Γ
with v fresh;

47 return ProveDSk(R′ ⇒ Γ ′);
48 end
49 if R ⇒ Γ is not (S3)-satisfied then
50 Let Rm,j ,R := R[0]wmwj (with 0 ≤ m ≤ k − 1 and m+ 1 ≤ j ≤ k) where wm

and wj are distinct roots of choice-trees in R ⇒ Γ;
51 if ProveDSk(Rm,j ⇒ Γ) = False for some m and j then
52 return False;
53 end
54 else
55 return True;
56 end
57 end
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on if Λ contains a labelled formula of the form u : 	0ψ, or it does not, respectively. The
DSk0-model M is defined as follows:

I W := Lab(Λ)

I For all u, v ∈ Lab(Λ), v ∈ R[0](u) iff u ∼R0 v

I I⊗0 := {v | exists u ∈ Lab(Λ), I⊗0u ∈ R and u ∼R0 v}

I V (u) := {p | u : ¬p ∈ Γ}, for all u ∈ Lab(Λ)

For the DSk0-model M ′, we let W ′ := W , R′[0] := R[0], I ′⊗0 = {u | w ∼R0 u}, and V ′ = V ,
that is, the only difference is that I⊗0 is set equal to the choice-cell of w, which must
be non-empty (as it must contain w at the very least). The reason for this is that we
need to ensure that I⊗0 6= ∅, i.e. the model M ′ satisfies the condition (D2) (and is a
DSk0-model). We let M ∈ {M,M ′}, W ∈ {W,W ′}, R[0] ∈ {R[0], R

′
[0]}, I⊗0 ∈ {I⊗0 , I

′
⊗0},

and V ∈ {V, V ′} to prove our results uniformly, and only distinguish between M , M ′,
and their components when needed.

To complete the proof of claim (ii), we prove two things: (ii.1) M is a DSk0-model with
Ag = {0}, and (ii.2) M, w 6 φ, i.e. M is a counter-model for φ. Showing these two cases
proves that ε⇒ w : φ is not DSk0L-provable by soundness (Thm. 13).

(ii.1) We prove that M is a DSk0-model by showing that it satisfies conditions (S1)–(S3)
and (D1)–(D3).

(S1) Follows from the definition of R[0] and the fact that ∼0 is an equivalence relation
(Lem. 31).

(S2) The (S2) condition is trivially satisfied in the single-agent setting.

(S3) Since the labelled sequent Λ is stable, we know that it is (S3)-satisfied, meaning
that G(Λ) contains at most k many choice-trees. By Lem. 62, we know that u ∼0 v iff
v ∈ CT(u). This fact, in conjunction with the definition of R[0] above, and the fact that
∼0 is an equivalence relation (Lem. 31), implies that each choice-tree corresponds to a
choice-cell in R[0]. Hence, there will be at most k many choice cells.

(D1) Follows from the definition of I⊗0 above.

(D2) There are two possible cases depending on if M = M or M = M ′, i.e. depending of
if Λ contains a labelled formula of the form u : 	0ψ, or if it does not. For the first case,
since Λ is (D2)-satisfied and contains a labelled formula of the form u : 	0ψ, we know
that there exists a label u ∈ Lab(Λ) such that I⊗0u ∈ R by instructions 45–48. For the
second case, the non-emptiness of I ′⊗0 follows by the definition of I ′⊗0 . Hence, I⊗0 and
I ′⊗0 will be non-empty, that is, I⊗0 6= ∅.

(D3) There are two possible cases depending on if M = M or M = M ′, i.e. depending
of if Λ contains a labelled formula of the form u : 	0ψ, or if it does not. The second
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case is trivial, as I ′⊗0 satisfies (D3) by definition, so we focus on the first case. Suppose
that u ∈ I⊗0 and v ∈ R[i](u). Then, there exists a label z ∈ Lab(Λ) such that I⊗0z and
z ∼R0 u holds by the definition of I⊗0 above. By the definition of R[0] above, we also
know that u ∼R0 v holds, which implies that z ∼R0 v by Lem. 31; therefore, v ∈ I⊗0 by
the definition of I⊗0 above.

(ii.2) We prove that if u : ψ ∈ Γ, then M, u 6 ψ by induction on the complexity of ψ.
The desired conclusion that M, w 6 φ follows from this claim since w : φ ∈ Γ.

Base case. Suppose that u : ψ is of the form u : p or u : ¬p. In the former case, since Λ
is stable, we know that it is saturated, implying that u : ¬p 6∈ Γ because u : p ∈ Γ. By
the definition of V above, p 6∈ V(u), which lets us conclude that M, u 6 p. In the latter
case, by the definition of V, we know that p ∈ V(u), entailing that M, u 6 ¬p.

Inductive step. We consider the main connective of ψ below and show that in each case
the desired result follows.

∨. Assume that ψ := χ ∨ θ and u : χ ∨ θ ∈ Γ. Then, since Λ is saturated, we know that
u : χ, u : θ ∈ Γ, which implies that M, u 6 χ and M, u 6 θ by the inductive hypothesis.
Hence, M, u 6 χ ∨ θ.

∧. Assume that ψ := χ ∧ θ and u : χ ∧ θ ∈ Γ. Then, since Λ is saturated, we know that
either u : χ ∈ Γ or u : θ ∈ Γ, which implies that either M, u 6 χ or M, u 6 θ by the
inductive hypothesis. Regardless of the case, M, u 6 χ ∧ θ.

♦. Assume that ψ := ♦χ and u : ♦χ ∈ Γ. Then, since Λ is saturated, we know that Λ is
♦-propagated. Hence, v : χ ∈ Γ for all v ∈ Lab(Λ). By IH and the definition of W then,
M, v 6 χ for all v ∈W. Therefore, M, u 6 ♦χ.

〈0〉. Assume that ψ := 〈0〉χ and u : 〈0〉χ ∈ Γ. Then, since Λ is saturated, we know that
Λ is 〈0〉-propagated. Hence, v : χ ∈ Γ for all v ∈ Lab(Λ) such that u ∼R0 v. By IH and
the definition of R[0] then, M, v 6 χ for all v ∈ R[0](u). Therefore, M, u 6 〈0〉χ.

	0. If Λ does not contain a labelled formula of the form u : 	0χ, then the case holds
vacuously. Let us suppose then that Λ contains such a labelled formula, meaning that
M = M . Assume that ψ := 	0χ and u : 	0χ ∈ Γ. Then, since Λ is saturated, we
know that Λ is 	0-propagated. Hence, v : χ ∈ Γ for all v ∈ Lab(Λ) such that for some
z ∈ Lab(Λ) with I⊗0z ∈ R and z ∼R0 v. By IH and the definition of I⊗0 then, we know
that M,v 6 χ for all v ∈ I⊗0 , implying that M,u 6 	0χ.

�. Assume that ψ := �χ and u : �χ ∈ Γ. Then, since Λ is saturated, we know that Λ is
�-realized, meaning there exists a label v ∈ Lab(Λ) such that v : χ ∈ Γ. By the definition
of W we know that v ∈W and by IH we have that M, v 6 χ. Therefore, M, u 6 �χ.

[0]. Assume that ψ := [0]χ and u : [0]χ ∈ Γ. Then, since Λ is saturated, we know that Λ
is [0]-realized, meaning there exists a label v ∈ Lab(Λ) such that R[0]uv and v : χ ∈ Γ.
By the definition of R[0] we know that v ∈ R[0](u) and by IH we have that M, v 6 χ.
Therefore, M, u 6 [0]χ.
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⊗0. Assume that ψ := ⊗0χ and u : ⊗0χ ∈ Γ. Then, since Λ is saturated, we know
that Λ is ⊗0-realized, meaning there exists a label v ∈ Lab(Λ) such that I⊗0v ∈ R and
v : χ ∈ Γ. By the definition of I⊗0 we know that v ∈ I⊗0 and by IH we have that
M, v 6 χ. Therefore, M, u 6 ⊗0χ.

Theorem 36 (Termination). For each φ ∈ LDSk
0
, ProveDSk(ε⇒ w : φ) terminates.

Proof. Consider a run of ProveDSk(ε⇒ w : φ). The only rules that add new vertices in
the sequent graphs of labelled forest sequents generated throughout the course of the
computation are instructions 21–24, 25–28, 29–32, 45–48, which correspond to bottom-up
applications of the rules (�), ([0]), (⊗0), and (Pr2

	0), respectively. The number of
bottom-up applications of (�), ([0]), (⊗0), and (Pr2

	0) rules is restricted by the number
of �, [0], ⊗0, and 	0 subformulae of φ, and hence can only be applied a finite number of
times. Since the aforementioned instructions/rules are the only ones that introduce new
vertices in the sequent graphs of labelled forest sequents, only a finite number of vertices
(i.e. labels) can be introduced throughout the computation of ProveDSk(ε⇒ w : φ).

Instructions 7–10 and 11–20 correspond to bottom-up applications of the (∨r) and (∧r)
rules, and once such instructions are applied to a disjunctive or conjunctive subformula of
φ, only formulae of a smaller complexity are introduced and the considered disjunctive or
conjunctive subformula need not be considered again. Instructions 33–36, 37–40, 41–44
correspond to bottom-up applications of the (♦), (〈0〉), and (	0) rules, and ensure that
for each ♦ψ, 〈0〉ψ, and 	0ψ subformula of φ, u : ψ (which is a formula of less complexity)
is added only once with some label u. Since only a finite number of labels (i.e. vertices)
can be introduced throughout the course of the computation (by what was said above),
this implies that the (♦), (〈0〉), and (	0) rules can only be applied a finite number of
times.

Last, instructions 49–57 (corresponding to a bottom-up application of (APCk0 )) take a
labelled forest sequent whose sequent graph has m > k choice-trees as input and returns
a new labelled forest sequent whose sequent graph contains m− 1 ≥ k choice-trees. Since
only a finite number of labels (and relational atoms) can be introduced throughout the
computation, only a finite number of choice-trees can be introduced throughout the
computation; hence, a point will always be reached where the (APCk0 ) rule need not be
applied.

Corollary 7 (Decidability and FMP). For each k ∈ N, the logic DSk0 is decidable and
has the finite model property.

Proof. Follows from Thm. 35 and 36.

Corollary 8. Let k ∈ N and n = 0. If a labelled formula w : φ is provable in DSk0L, then
it has a labelled forest derivation with the rooted property.
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Proof. Follows from Lem. 61, Thm. 35, Thm. 36, and that fact that in the sequent graph
of a labelled forest sequent, none of the instructions of ProveDSk ever add an edge that
points to the root of a choice-tree, ensuring that roots are preserved throughout the
course of the computation, and hence, the output derivation has the rooted property.

6.2 Interpolation for Context-free Grammar Logics with
Converse

The Lyndon interpolation property for a logic L states that if φ → ψ ∈ L, then there
exists a formula χ (called an interpolant) such that φ → χ, χ → ψ ∈ L and χ is built
from logical connectives and propositional variables common to both φ and ψ that
have the same polarity. A weaker version of Lyndon interpolation—referred to as Craig
interpolation—only requires an interpolant to be built using propositional variables
common to both φ and ψ, thus dropping the added condition that the propositional
variables used in χ share the same polarity in φ and ψ (therefore, Lyndon interpolation
implies Craig interpolation). Interpolation has found a variety of applications in logic
and computer science; e.g. interpolation is used in computer-aided verification to
divide a problem involving an implication φ → ψ into smaller problems involving
φ → χ and χ → ψ [McM18], to establish Beth definability [KO10], and is used in
knowledge representation to conceal or forget superfluous or private information in
ontology querying [LW11]. Hence, interpolation is of practical consequence.

Both semantic or syntactic arguments may be and have been used to establish that a
logic L possesses the Lyndon or Craig interpolation property. As one might expect, the
semantic approach requires a semantics for the logic L, whereas the syntactic approach
requires a proof calculus for the logic. The latter, syntactic approach—initiated by
Maehara [Mae60], who utilized Gentzen-style sequent systems—constructs an interpolant
χ for an implication φ→ ψ ∈ L and has the advantage that the method transforms a proof
of φ→ ψ into proofs of φ→ χ and χ→ ψ witnessing that χ is an interpolant. To provide
intuition regarding Maehara’s interpolation methodology, which motivates the more
general methodology we will employ for grammar logics, we explain the method below in
the context of classical propositional logic. Afterward, we describe how Maehara’s method
for Gentzen-style sequent systems can be generalized and extended to nested/refined
labelled systems.

As explained in Appendix B (p. 208), the rules (id), (∨r), and (∧r) (from G3Km(S))
serve as a sound and complete calculus for classical propositional logic. Consequently, we
use these three rules as our calculus to demonstrate Maehara’s method, and note that by
the work in the Appendix B (p. 208), our calculus only needs sequents of the form ε⇒ Γ
where every labelled formula in Γ has the same label w. Since every labelled formula has
the same label w, it is permissible to omit labels; hence, we omit the use of labels in the
sequents of our example, meaning that we will utilize (one-sided) Gentzen-style sequents
while demonstrating Maehara’s method.
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If showing Lyndon interpolation, then Maehara’s method is a means of transforming
a proof of a sequent ε ⇒ Γ1,Γ2 into proofs of ε ⇒ Γ1, χ and ε ⇒ ¬χ,Γ2, where χ
only contains propositional variables common to both ¬Γ1 and Γ2 that have the same
polarity.2 If such a transformation can be performed for each derivable sequent of
the form ε ⇒ Γ1,Γ2, then it can be performed for any derivable sequent of the form
ε ⇒ ¬φ, ψ, which is equivalent to ε ⇒ φ → ψ. It follows that the proof of ε ⇒ ¬φ, ψ
can be transformed into proofs of ε ⇒ ¬φ, χ and ε ⇒ ¬χ, ψ, which are equivalent to
ε⇒ φ→ χ and ε⇒ χ→ ψ, respectively—yielding an interpolant χ for the implication
φ→ ψ.

The method works by constructing an interpolant χ by induction on the proof of the
derivable sequent ε ⇒ Γ1,Γ2 we wish to interpolate. This inductive construction is
encoded within inference rules that employ more expressive sequents, specifying how
the context of the sequent is partitioned (with the left component of the partition
representing the antecedent that implies the interpolant, and the right component of
the partition representing the consequent that is implied by the interpolant) and the
interpolant constructed thus far. The more expressive sequents we employ are of the form
ε⇒ Γ1 | Γ2 ‖ χ denoting that the sequent ε⇒ Γ1,Γ2 can be partitioned into ε⇒ Γ1, χ
and ε⇒ ¬χ,Γ2 with interpolant χ. The inference rules we make use of are variants of
the (id), (∨r), and (∧r) rules where we consider all possible ‘partitions’ of the context
and assign interpolants based on how the context is split. We first introduce the initial
rules, and then introduce the variants of (∨r) and (∧r).

(id1)
ε⇒ Γ1, p,¬p | Γ2 ‖ ⊥

(id2)
ε⇒ Γ1, p | ¬p,Γ2 ‖ ¬p

(id3)
ε⇒ Γ1,¬p | p,Γ2 ‖ p

(id4)
ε⇒ Γ1 | p,¬p,Γ2 ‖ >

As shown above, there are four possible interpolants, depending on how the context
of an initial sequent is partitioned. The (id1) rule tells us that the derivable sequent
ε⇒ Γ1, p,¬p,Γ2 can be split into the derivable sequents ε⇒ Γ1, p,¬p,⊥ and ε⇒ ¬⊥,Γ2
with interpolant ⊥. The other three initial rules are read in a similar fashion. Our
disjunction and conjunction rules are as follows:

ε⇒ Γ1, φ, ψ | Γ2 ‖ χ (∨r1)
ε⇒ Γ1, φ ∨ ψ | Γ2 ‖ χ

ε⇒ Γ1, φ | Γ2 ‖ χ ε⇒ Γ1, ψ | Γ2 ‖ θ (∧r1)
ε⇒ Γ1, φ ∧ ψ | Γ2 ‖ χ ∨ θ

ε⇒ Γ1 | φ, ψ,Γ2 ‖ χ (∨r2)
ε⇒ Γ1 | φ ∨ ψ,Γ2 ‖ χ

ε⇒ Γ1 | φ,Γ2 ‖ χ ε⇒ Γ1 | ψ,Γ2 ‖ θ (∧r2)
ε⇒ Γ1 | φ ∧ ψ,Γ2 ‖ χ ∧ θ

Notice how each of the rules above constructs an interpolant of the conclusion by
making use of the interpolant(s) of the premise(s). Maehara’s method therefore works by

2If Γ1 := φ1, . . . , φn, we let ¬Γ1 := ¬φ1, . . . ,¬φn.
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assigning interpolants to all initial sequents in the given derivation, and then inductively
constructing the interpolant of the end sequent via the above rules. We demonstrate
this process with an example, and consider a derivation of an implication p ∧ q → p ∧ q,
which is represented as (¬p ∨ ¬q) ∨ (p ∧ q) since we are working with formulae negation
normal form.

(id)ε⇒ ¬p,¬q, p (id)ε⇒ ¬p,¬q, q (∧r)ε⇒ ¬p,¬q, p ∧ q (∨r)ε⇒ ¬p ∨ ¬q, p ∧ q (∨r)
ε⇒ (¬p ∨ ¬q) ∨ (p ∧ q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
ε⇒ p ∧ q → p ∧ q

We transform the above derivation into a new derivation that makes use of the (relevant)
inference rules introduced previously. In doing so, we only make use of the top portion
of the above derivation down to the sequent ε⇒ ¬p ∨ ¬q, p ∧ q since Maehara’s method
demands the antecedent formula ¬p ∨ ¬q and consequent formula p ∧ q be split from one
another:

(id3)
ε⇒ ¬p,¬q | p ‖ p

(id3)
ε⇒ ¬p,¬q | q ‖ q

(∧r2)
ε⇒ ¬p,¬q | p ∧ q ‖ p ∧ q

(∨r1)
ε⇒ ¬p ∨ ¬q | p ∧ q ‖ p ∧ q

The derivation above may now be split into two derivations in the original calculus
witnessing that p ∧ q is the interpolant of p ∧ q → p ∧ q := (¬p ∨ ¬q) ∨ (p ∧ q). The
derivation below left is obtained by taking the data from the left components of the
partitioned sequents together with the initial interpolants, and the derivation below
right is obtained by taking the right components together with the negation of the
initial interpolants. Observe that the use of (∧r) in the derivation below left builds the
interpolant p ∧ q, and the (∨r) rule in the derivation below right builds the interpolant
¬p∨¬q. Also, note that it may be necessary to invoke the (hp-)admissibility of structural
rules such as (wk) (as shown in the derivation below right) to obtain the desired result.

(id)ε⇒ ¬p,¬q, p (id)ε⇒ ¬p,¬q, q (∧r)ε⇒ ¬p,¬q, p ∧ q (∨r)ε⇒ ¬p ∨ ¬q, p ∧ q

(id)ε⇒ ¬p, p (wk)ε⇒ ¬q,¬p, p
(id)ε⇒ ¬q, q (wk)ε⇒ ¬p,¬q, q (∧r)ε⇒ ¬p,¬q, p ∧ q (∨r)ε⇒ ¬p ∨ ¬q, p ∧ q

By applying (∨r) to both end sequents, we obtain two derivations of the valid formula
(¬p∨¬q)∨(p∧q) := p∧q → p∧q, which witness that p∧q is the interpolant p∧q → p∧q.
Note that although the implication p ∧ q → p ∧ q is rather simple to interpolate, the
above example was chosen for its simplicity and because of the fact that it still gives a
concrete demonstration of Maehara’s method.
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In Maehara’s seminal paper [Mae60], the above method was provided for Gentzen-
style sequent calculi. However, if our aim is to proof-theoretically (and syntactically)
demonstrate that our class of grammar logics possesses the Lyndon interpolation property,
then we must figure out how to generalize Maehara’s method to nested (or, refined labelled)
sequent calculi, since we have such calculi at our disposal for grammar logics.3 Such a
generalization was presented in [LTGC20], where Craig interpolation was established
for tense logics and bi-intuitionistic logic.4 Also, it should be noted that although the
method of [LTGC20] was introduced for nested systems, refined labelled systems were
leveraged in the methodology; as explained there, the labelled notation tends to be easier
to work with and allows one to avoid the introduction of certain auxiliary concepts. We
therefore follow the same strategy, and utilize our refined labelled calculi Km(S)L as
opposed to the nested calculi DKm(S) while proving Lyndon interpolation for grammar
logics.

Extending Maehara’s method to the framework of refined labelled (i.e. nested) sequents
calls for generalizing two of the notions inherent in Maehara’s method: (i) the notion of
an interpolant, and (ii) the negation of an interpolant. We first motivate how interpolants
ought to be extended in the refined labeled (i.e. nested) setting by considering a simple
example, and then discuss (ii) afterward.

For our simple example, let us consider the following instance of the (id) rule (recall that
we are now working in the calculus Km(S)L):

(id)
Rawu⇒ u : p, u : ¬p

As we saw in the example of Maehara’s method above, each rule of the given calculus
is transformed into a set of rules employing more expressive sequents that partition
the contexts and assign interpolants accordingly—where interpolants are proper logical
formulae. For the sake of the example, let us suppose that we partition the above initial
sequent as follows: Rawu⇒ u : p | u : ¬p ‖ I, with I denoting the interpolant we aim to
discover. In the current context, it is nonsensical to make use of proper logical formulae
as interpolants because such formulae omit labels, which encode essential information in
the refined labelled setting. At the very least then, our interpolant ought to make use of
labels. If we pick the interpolant u : ¬p as our interpolant I, then the aforementioned
split sequent becomes Rawu⇒ u : p | u : ¬p ‖ u : ¬p. If we read this sequent in a manner
analogous to how we read partitioned sequents in the context of Maehara’s method, then
the partitioned sequent states that Rawu ⇒ u : p, u : ¬p and Rawu ⇒ u : ¬¬p, u : ¬p
are both derivable in Km(S)L with interpolant u : ¬p. Since ¬¬p := p, this happens to

3Recall that in the context of grammar logics, nested sequent and refined labelled sequent calculi are
notational variants of one another (see Sect. 4.1). Therefore, in the current context, we may use the two
terms interchangeably.

4Although the method of [LTGC20] establishes Craig interpolation, strengthening the method to yield
Lyndon interpolation is almost trivial, and follows from also considering the polarities of propositional
variables.
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be true. We may conclude that the generalized interpolants used in the refined labelled
setting must make use of labelled formulae at the very least.

Drawing an analogy with Maehara’s method, we must introduce inference rules to
calculate interpolants for each inference rule of Km(S)L, which includes the two premise
rule (∧r). In the context of classical propositional logic, we saw that the (∧r1) and (∧r2)
rules constructed the interpolants χ ∨ θ and χ ∧ θ, respectively, from the interpolants of
the premises. In the refined labelled setting with Km(S)L, where we have already agreed
that interpolants ought to include labels, what would happen if we had a conjunction
inference where the interpolant of one premise was of the form w : χ and the interpolant
in the second premise was of the form u : θ? To resolve this issue, it happens to be
sufficient to define interpolants to be sets of labelled sequents, and when a rule such as
(∧r) is applied, we union to the two sets to construct the new interpolant.

The discussion thus far has led us to confirm that interpolants ought to be sets of
labelled sequents when generalizing Maehara’s method to the refined labelled setting.
Nevertheless, recall that Maehara’s method takes a derivable sequent ε ⇒ Γ1,Γ2 and
returns a proof of ε⇒ Γ1, χ and ε⇒ ¬χ,Γ2, where χ is the interpolant. By analogy, to
show our grammar logics interpolate via Km(S)L, we aim to show that given a derivable
labelled sequent R ⇒ Γ1,Γ2, we can transform its proof into proofs of R ⇒ Γ1, I and
R ⇒ ¬I,Γ2, where I is the interpolant. Yet, if I is a set of labelled sequents, what
should the negation ¬I represent?

At this point, it behooves us to recognize a general pattern underlying the relationship
between an interpolant and its negation in Maehara’s method, namely, the empty sequent
can be derived from an interpolant and its negation by making use of (cut) (we will
also allow for structural rules such as (wk) and (ctrr) to be used in our more general
setting); we say that an interpolant and its negation are orthogonal if such a relationship
holds. In the context of classical propositional logic and Gentzen-style sequent calculi,
this relationship is easy to verify; if χ is an interpolant, then a single application of (cut)
between ε⇒ χ and ε⇒ ¬χ yields the empty sequent ε⇒ ε. Nonetheless, in the refined
labelled setting, phrasing the relationship between an interpolant and its negation in
such a general manner permits us to define the negation ¬I of an interpolant I as a set
of labelled sequents orthogonal to I. By this definition, the negation of an interpolant
is not necessarily unique, though we will strengthen the definition in our interpolation
work below to ensure a unique negation, since it simplifies matters. To demonstrate the
concept of orthogonality, observe that the interpolant I given below is orthogonal to the
interpolant I ′ as the empty sequent ε⇒ ε can be derived with applications of (cut) and
(wk) between the labelled sequents (which have been placed in between parentheses to
improve readability) of the interpolants:

I := {(ε⇒ w : p), (ε⇒ u : ¬q)} I ′ := {(ε⇒ w : ¬p, u : q)}

Before moving on to prove the main results of the section, we remark on the relationship
between the syntactic method of interpolation from [LTGC20] presented here and the
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closely related semantic (yet, still proof-theoretic) method of interpolation by Kuznets
et al. [FK15, Kuz16b, Kuz16a, Kuz18, KL18] applied to modal and intermediate logics
equipped with a Kripke semantics.5 One notable difference is that the semantic method
introduces meta-connectives ? and > expressing meta-level conjunction and disjunction,
respectively, and which are used to construct interpolants. This contrasts with the
syntactic approach that uses sets of labelled (or, nested) sequents as explained above.
Moreover, in the semantic method, the meta-connectives ? and > are interpreted in a
semantics extending the semantics of the logic under consideration. In this regard, the
syntactic method can be seen as possessing a higher degree of parsimony, as the semantics
of the considered logic need not be generalized to a meta-language. Additionally, the
interpolants of the syntactic method are justified on purely syntactic and proof-theoretic
grounds, whereas the interpolants of the semantic method are justified via semantic
arguments. As pointed out in [LTGC20], defining and justifying interpolants and their
negations in a purely syntactic fashion independent of the underlying logic’s semantics,
appears to have the advantageous consequence that the method is applicable to logics
for which no Kripke semantics is known (e.g. bi-intuitionistic linear logic [CDGT13]),
something which the semantic method does not appear immediately capable.

6.2.1 Lyndon Interpolation via Proof-Theoretic Methods

We leverage the syntactic method of interpolation from [LTGC20] to prove (the new
result) that all context-free grammar logics with converse possess the effective Lyndon
interpolation property, meaning that our proof not only shows the existence of a Lyndon
interpolant for each valid implication, but also shows how to construct it (cf. [GN05]).
We first define a set of concepts necessary to apply the syntactic method, and then prove
the main results.

As mentioned previously, in our more general setting, an interpolant is a set of labelled
sequents. In defining our interpolants however, the multiset of relational atoms R is left
empty since R can be recovered from the sequents with which the interpolants are used.
This gives rise to the following definitions:

Definition 89 (Flat Labelled Sequent, Interpolant). A flat labelled sequent is a labelled
sequent of the form ε⇒ Γ. An interpolant I is defined to be a set of flat sequents, i.e.

I := {(ε⇒ Γ1), . . . , (ε⇒ Γn)}

We use I, I ′, . . . (occasionally annotated) to denote interpolants.

The relation of being orthogonal was informally defined above, and intuitively holds
between interpolants I1 and I2 iff the empty sequent is derivable from the labelled
sequents in I1 and I2 using (cut) and possibly (wk) and/or (ctrr). This relationship is

5This method may be qualified as both proof-theoretic and semantic since the method inductively
constructs interpolants of formulae based on the structure of a given derivation, but proves the correctness
of the inductive construction via semantic arguments.
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used to establish a generalized notion of negation, that is to say, if I1 is orthogonal to
I2, then the two interpolants are negations of one another. For example, suppose that
we are given the interpolant I1 := {(ε⇒ w : φ, u : ψ), (ε⇒ v : χ)}. Then, the following
interpolants are orthogonal to I1 and can be considered negations:

I2 := {(ε⇒ w : ¬φ), (ε⇒ u : ¬ψ, v : ¬χ)}
I3 := {(ε⇒ w : ¬φ, v : ¬χ), (ε⇒ u : ¬ψ, u : ¬ψ)}
I4 := {(ε⇒ w : ¬φ, v : ¬χ), (ε⇒ u : ¬ψ, v : ¬χ)}

In each case, one can derive the empty sequent from I1 ∪ Ii using (cut), (wk), and
(ctrr) for each i ∈ {2, 3, 4}. Despite this fact, to make the negation of an interpolant
deterministic, our definition below will choose I4 to be the negation, as it straightforward
to calculate such an interpolant as a function of I1. Instead of using the general notion
of negation presented above, we opt for a more specific notion, which we refer to as the
orthogonal:

Definition 90 (Orthogonal). For an interpolant I := {(ε ⇒ Γ1), . . . , (ε ⇒ Γn)}, its
orthogonal (I)⊥ is defined as:

(I)⊥ ::= {(ε⇒ w1 : ¬φ1, . . . , wn : ¬φ1) | for all i ∈ {1, . . . , n}, wi : φi ∈ Γi}

When constructing an interpolant by induction on the height of the input derivation, the
processing of ([x]) rules requires a special interpolant to be produced. The necessity of
such interpolants will become apparent in the proof of Lem. 66 below. Such interpolants
are defined as follows:

Definition 91. Suppose we have an interpolant of the following form:

I := {(ε⇒ Γ1, u : φ1,1, . . . , u : φ1,k1), . . . , (ε⇒ Γn, u : φn,1, . . . , u : φn,kn)}

where u does not occur in Γ1, . . . ,Γn. Let x ∈
∑
, that is, let x be a character in our

alphabet
∑
, and define

[x]Iwu := {(ε⇒ Γ1, w : [x]
k1∨
i=1

φ1,i), . . . , (ε⇒ Γn, w : [x]
kn∨
i=1

φn,i)}

Let us now define the types of sequents that will be used in confirming the effective
Lyndon interpolation property:

Definition 92 (Interpolation Sequent). An interpolation sequent is defined to be a
syntactic object of the form R ⇒ Γ | ∆ ‖ I, where R is a set of relational atoms, Γ and
∆ are labelled formulae, and I is an interpolant.

The vertical bar ‘ | ’ occurring in an interpolation sequent partitions the sequent into
a left part serving as the antecedent in the interpolation statement, and a right part
serving as the consequent in the interpolation statement. To illustrate this point, the
interpolation sequent shown below top partitions into the two labelled sequents shown
below bottom:
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R ⇒ Γ1 | w : p, w : ¬p,Γ2 ‖ {(ε⇒ w : >)}

Λ1 := (R ⇒ Γ1, w : >) Λ2 := (R ⇒ w : ¬>, w : p, w : ¬p,Γ2)

In the above example, the left component Γ1 of the partition is placed in Λ1, and the
right component w : p, w : ¬p,Γ2 is placed in Λ2. We think of the interpolant w : > as
being implied by the left component of the partition, and so, we place it in Λ1, and we
think of the interpolant as implying the right component of the partition, so we place
the negation of the interpolant in Λ2. Observe that we can derive the labelled sequent
R ⇒ Γ1, w : p, w : ¬p,Γ2 by applying (cut) (possibly with (wk)) to Λ1 and Λ2, which
syntactically establishes that the interpolant is indeed an interpolant (given that the
interpolant satisfies certain other properties; see Lem. 65 below).

Each interpolation calculus Km(S)LI, for each grammar logic Km(S), is given in Fig. 6.1.
The derivability relation is defined as follows:

Definition 93. We write `Km(S)LI R ⇒ Γ | ∆ ‖ I to indicate that an interpolation
sequent R ⇒ Γ | ∆ ‖ I is derivable in the interpolation calculus Km(S)LI.

Since each interpolation calculus is obtained from a corresponding refined labelled calculus
Km(S)L, each propagation rule (Pr〈x〉) relies on the notion of a propagation graph, which
we define for interpolation sequents below. The notion of a propagation path, the string
of a propagation path, and their converses are defined as in Def. 59, so we do not repeat
them here.

Definition 94 (Propagation Graph of Interpolation Sequent). Let Λ := R ⇒ Γ | ∆ ‖ I
and Λ′ := R ⇒ Γ,∆. We define the propagation graph of an interpolation sequent Λ as
follows: PG(Λ) := PG(Λ′).

Perhaps the most unique feature of each interpolation calculus Km(S)LI is the (orth)
rule. The rule lets us cut the number of rules needed in our calculus in half by permitting
the components of the partition in an interpolation sequent to be ‘flipped’. The key to
the correctness of the rule, is given in the lemma below, which shows that applying the
orthogonal operation twice to an interpolant always retains the sequents of the original
interpolant.

Lemma 63. If (ε⇒ Γ) ∈ ((I)⊥)⊥, then there exists a (ε⇒ ∆) ∈ I such that ∆ ⊆ Γ.

Proof. We prove the lemma by contradiction, and assume that there exists a (ε⇒ Γ) ∈
((I)⊥)⊥ such that for all (ε⇒ ∆) ∈ I, ∆ 6⊆ Γ. Let I := {(ε⇒ Γ1), . . . , (ε⇒ Γn)}. By our
assumption, we know that for each i ∈ {1, . . . , n}, there exists a formula wi : φi ∈ Γi such
that wi : φi 6∈ Γ. Let Γ′ := w1 : φ1, . . . , wn : φn and observe that by construction Γ∩Γ′ = ∅.
However, by Def. 90, we know that (ε ⇒ Γ′) ∈ (I)⊥, and since (ε ⇒ Γ) ∈ ((I)⊥)⊥, it
follows that Γ ∩ Γ′ 6= ∅, giving a contradiction.
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(id1)
R ⇒ Γ, w : ¬p | w : p,∆ ‖ {(⇒ w : p)}

R ⇒ Γ | ∆ ‖ I
(orth)

R ⇒ ∆ | Γ ‖ (I)⊥

(id2)
R ⇒ Γ | w : ¬p, w : p,∆ ‖ {(⇒ w : >)}

R ⇒ Γ | w : φ,w : ψ,∆ ‖ I
(∨r)R ⇒ Γ | w : φ ∨ ψ,∆ ‖ I

R ⇒ Γ | w : φ,∆ ‖ I1 R ⇒ Γ | w : ψ,∆ ‖ I2 (∧r)R ⇒ Γ | w : φ ∧ ψ,∆ ‖ I1 ∪ I2

R, Rxwu⇒ Γ | u : φ,∆ ‖ I
([x])†1R ⇒ Γ | w : [x]φ,∆ ‖ [x]Iwu

R ⇒ Γ | w : 〈x〉φ, u : φ,∆ ‖ I
(Pr〈x〉)†2R ⇒ Γ | w : 〈x〉φ,∆ ‖ I

Figure 6.1: The calculus Km(S)LI for constructing interpolants for the grammar logic
Km(S), for a CFCST system S. The calculus contains a ([x]) and (Pr〈x〉) rule for each
x ∈

∑
, i.e. for each character in our alphabet. The side condition †1 states that the rule

is applicable only if u is an eigenvariable, and †2 states that the rule is applicable only if
sπ(w, u) ∈ LS(x).

Enough groundwork has been laid for us to prove our main results, though before we do
so, we formally define the literal function Lit(·) and the Lyndon interpolation property:

Definition 95 (Literal Function). For a formula φ ∈ LKm(S), we define Lit(φ) to be
the set of all literals occurring in φ. If the multiset Γ := w1 : φ1, . . . , wn : φn and the
interpolant I := {(ε⇒ Γ1), . . . , (ε⇒ Γn)}, then we respectively let

Lit(Γ) :=
⋃

1≤i≤n
Lit(φi) Lit(I) :=

⋃
1≤i≤n

Lit(Γi)

Definition 96 (Lyndon Interpolation Property). A grammar logic Km(S) has the Lyndon
interpolation property iff for every implication φ→ ψ ∈ LKm(S) such that `Km(S) φ→ ψ,
there exists a formula χ such that (i) Lit(χ) ⊆ Lit(φ) ∩ Lit(ψ) and (ii) `Km(S) φ → χ
and `Km(S) χ→ ψ.

Lemma 64. If `Km(S)L R ⇒ Γ,∆, then `Km(S)LI R ⇒ Γ | ∆ ‖ I, for some interpolant
I.

Proof. Straightforward, by induction on the height of the proof of R ⇒ Γ,∆.

Lemma 65. If `Km(S)LI R ⇒ Γ | ∆ ‖ I, then Lit(I) ⊆ Lit(¬Γ) ∩ Lit(∆), and all labels
occurring in I also occur in R,Γ or ∆.

Proof. By induction on the height of the given derivation.

Base case. The base case can be confirmed by observing the (id1) and (id2) rules.
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Inductive step. We consider the (orth) and (∧r) rules, as the (∨r), ([x]), and (Pr〈x〉)
cases follow directly from the inductive hypothesis. In all cases, it is straightforward to
verify that all labels occurring in I also occur in R,Γ or ∆.

(orth). Let l ∈ Lit(I). By IH, we know that l ∈ Lit(¬Γ) ∩ Lit(∆). By Def. 90, it follows
that ¬l ∈ Lit((I)⊥), which implies that ¬l ∈ Lit(¬∆) ∩ Lit(Γ) by the fact expressed in
the previous sentence.

(∧r). Let l ∈ Lit(I1 ∪ I2). Then, either l ∈ Lit(I1) or l ∈ Lit(I2). Without loss of
generality, we assume the former case holds. This entails that l ∈ Lit(¬Γ)∩Lit(w : φ,∆),
and since Lit(w : φ,∆) ⊆ Lit(w : φ ∧ ψ,∆), we have that l ∈ Lit(¬Γ) ∩ Lit(w :
φ ∧ ψ,∆).

The following lemma establishes that each interpolation calculus Km(S)LI correctly
constructs interpolants, and is vital in proving our main theorem below (Thm. 37).

Lemma 66. For all R, Γ, ∆, and I, if `Km(S)LI R ⇒ Γ | ∆ ‖ I, then

(i) for all (ε⇒ Ξ) ∈ I, we have `Km(S)L R ⇒ Γ,Ξ and

(ii) for all (ε⇒ Θ) ∈ (I)⊥, we have `Km(S)L R ⇒ Θ,∆.

Proof. By induction on the height of the given derivation of R ⇒ Γ | ∆ ‖ I.

Base case. If the interpolation sequent was derived by an instance of (id1), then both (i)
and (ii) follow by using the (id) rule of Km(S)L. If the interpolation sequent was derived
by an instance of (id2), then (i) and (ii) are resolved as shown below, and make use of
the definitions > := q ∨ ¬q and ⊥ := q ∧ ¬q.

(id)R ⇒ Γ, w : q, w : ¬q (∨r)R ⇒ Γ, w : q ∨ ¬q. . . . . . . . . . . . . . . . . . . . . . . =
R ⇒ Γ, w : >

(id)R ⇒ w : q ∧ ¬q, w : p, w : ¬p,∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R ⇒ w : ⊥, w : p, w : ¬p,∆

Inductive step. We consider the (non-trivial) (orth), (∧r), and ([x]) cases; the (∨r) and
(Pr〈x〉) cases are straightforward.

(orth). Suppose our derivation ends with and (orth) inference of the following form:

R ⇒ Γ | ∆ ‖ I
(orth)

R ⇒ ∆ | Γ ‖ (I)⊥

(i) Let (ε ⇒ Ξ) ∈ (I)⊥. To resolve the case, we need to show that `Km(S)L R ⇒ Ξ,∆;
however, this follows immediately from IH.

(ii) Let (ε⇒ Θ) ∈ ((I)⊥)⊥. We need to show that `Km(S)L R ⇒ Γ,Θ. By Lem. 63, we
know there exists a (ε⇒ Θ′) ∈ I such that Θ′ ⊆ Θ. By IH, `Km(S)L R ⇒ Γ,Θ′, and by
the admissibility of (wk) (Cor. 1), it follows that `Km(S)L R ⇒ Γ,Θ.

(∧r). Suppose our derivation ends with the following (∧r) inference:
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R ⇒ Γ | w : φ,∆ ‖ I1 R ⇒ Γ | w : ψ,∆ ‖ I2 (∧r)R ⇒ Γ | w : φ ∧ ψ,∆ ‖ I1 ∪ I2

(i) Let (ε⇒ Ξ) ∈ I1 ∪ I2. By IH, we have that for any (ε⇒ Ξ1) ∈ I1 and (ε⇒ Ξ2) ∈ I2,
`Km(S)L R ⇒ Γ,Ξ1 and `Km(S)L R ⇒ Γ,Ξ2. Therefore, the conclusion follows regardless
of if (ε⇒ Ξ1) ∈ I1 or (ε⇒ Ξ2) ∈ I2.

(ii) Let (ε ⇒ Θ) ∈ (I1 ∪ I2)⊥. By IH, for all (ε ⇒ Θ1) ∈ (I1)⊥ and (ε ⇒ Θ2) ∈ (I2)⊥,
`Km(S)L R ⇒ Θ1, w : φ,∆ and `Km(S)L R ⇒ Θ2, w : ψ,∆. By Def. 90, there exists a
(ε⇒ Θ1) ∈ (I1)⊥ and a (ε⇒ Θ2) ∈ (I2)⊥ such that (ε⇒ Θ) = (ε⇒ Θ1,Θ2). Therefore,
by the admissibility of (wk) (Cor. 1), we can derive `Km(S)L R ⇒ Θ1,Θ2, w : φ,∆ and
`Km(S)L R ⇒ Θ1,Θ2, w : ψ,∆. A single application of (∧r) gives the desired conclusion.

([x]). Suppose our derivation ends with an inference of the following form:

R, Rxwu⇒ Γ | u : φ,∆ ‖ I
([x])

R ⇒ Γ | w : [x]φ,∆ ‖ [x]Iwu

(i) Let (ε ⇒ Ξ) ∈ [x]Iwu . By Def. 91, we know that Ξ = Ξ′, w : [x](φ1 ∨ · · · ∨ φn) with
(ε⇒,Ξ′, u : φ1, . . . , u : φn) ∈ I. We derive the desired conclusion as follows:

IHR, Rxwu⇒ Γ,Ξ′, u : φ1, . . . , u : φn (∨r)× (n− 1)
R, Rxwu⇒ Γ,Ξ′, u : φ1 ∨ · · · ∨ φn ([x])
R ⇒ Γ,Ξ′, u : [x](φ1 ∨ · · · ∨ φn)

(ii) Let (ε ⇒ Θ) ∈ ([x]Iwu )⊥. We need to establish that `Km(S)L R ⇒ Θ, w : [x]φ,∆.
By Def. 90, Θ may contain zero or more formulae of the form w : ¬[x](ψ1 ∨ · · · ∨ ψn)
such that there exists a (ε ⇒ Θ′) ∈ I with {u : ψ1, . . . , u : ψn} ⊆ Θ′. We refer to
such formulae as modal-interpolant formluae, and for the sake of simplicity we assume
that one modal-interpolant formula exists in Θ with n = 2, that is, w : ¬[x](ψ1 ∨ ψ2);
we prove the result for this simplifies case as the general case is analogous. We let
Θ := Θ′, w : ¬[x](ψ1 ∨ ψ2).

By assumption, we know that there exists a (ε⇒ Ξ) ∈ I such that {u : ψ1, u : ψ2} ⊆ Ξ,
which implies that there exist (ε ⇒ Ξ1), (ε ⇒ Ξ2) ∈ (I)⊥ of the form Ξ1 = u : ¬ψ1,Θ′
and Ξ2 = u : ¬ψ2,Θ′. By IH , we have:

`Km(S)L R, Rxwu⇒ u : ¬ψ1,Θ′, u : φ,∆

`Km(S)L R, Rxwu⇒ u : ¬ψ2,Θ′, u : φ,∆

By invoking the admissibility of (wk) (Cor. 1), we obtain:

`Km(S)L R, Rxwu⇒ w : 〈x〉(¬ψ1 ∧ ¬ψ2), u : ¬ψ1,Θ′, u : φ,∆

`Km(S)L R, Rxwu⇒ w : 〈x〉(¬ψ1 ∧ ¬ψ2), u : ¬ψ2,Θ′, u : φ,∆
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Applying the (∧r) rule between the above to labelled sequents gives:

`Km(S)L R, Rxwu⇒ w : 〈x〉(¬ψ1 ∧ ¬ψ2), u : ¬ψ1 ∧ ¬ψ2,Θ′, u : φ,∆

Last, the desired conclusion is derived as follows:

R, Rxwu⇒ w : 〈x〉(¬ψ1 ∧ ¬ψ2), u : ¬ψ1 ∧ ¬ψ2,Θ′, u : φ,∆ (Pr〈x〉)R, Rxwu⇒ w : 〈x〉(¬ψ1 ∧ ¬ψ2),Θ′, u : φ,∆
([x])

R ⇒ w : 〈x〉(¬ψ1 ∧ ¬ψ2),Θ′, w : [x]φ,∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R ⇒ w : ¬[x](ψ1 ∨ ψ2),Θ′, w : [x]φ,∆

To prove (effective) Lyndon interpolation, we need to be able to construct interpolants
that are formulae from our more general notion of an interpolant. This construction is
possible if all labelled formulae in the interpolant share the same label. In such a case,
the interpolant is of the form I := {(ε⇒ Ξ1), . . . , (ε⇒ Ξn)} with Ξi := {w : φi,1, . . . , w :
φi,ki
} for each 1 ≤ i ≤ n, and its corresponding formula is

∧n
i=1

∨ki
j=1 φi,j . Given such

an interpolant I, we write
∧∨
I to mean its corresponding formula. The following two

lemmata show how to construct the corresponding formula of an interpolant (in the
form just described) proof-theoretically, which will inevitably let us construct Lyndon
interpolants effectively:

Lemma 67. Let I := {(ε ⇒ Ξ1), . . . , (ε ⇒ Ξn)} with Ξi := {w : φi,1, . . . , w : φi,ki
} for

each 1 ≤ i ≤ n. For any multiset of relational atoms R and multiset of labelled formulae
Γ, if `Km(S)L R ⇒ Γ,Ξ for all (ε⇒ Ξ) ∈ I, then `Km(S)L R ⇒ Γ, w :

∧∨
I.

Proof. Assume that `Km(S)L R ⇒ Γ,Ξi, for all Ξi ∈ I. By repeated application of the
(∨r) rule, we obtain

`Km(S)L R ⇒ Γ, w :
ki∨
j=1

φi,j

for each i ∈ {1, . . . , n}. Repeated application of the (∧r) rule gives us

`Km(S)L R ⇒ Γ, w :
n∧
i=1

ki∨
j=1

φi,j

which is the desired conclusion since
∧∨
I =

∧n
i=1

∨ki
j=1 φi,j .

Lemma 68. Let I := {(ε ⇒ Ξ1), . . . , (ε ⇒ Ξn)} be an interpolant with Ξi := {w :
φi,1, . . . , w : φi,ki

} for each 1 ≤ i ≤ n. For any multiset of relational atoms R and
multiset of labelled formulae ∆, if `Km(S)L R ⇒ Θ,∆ for all (ε ⇒ Θ) ∈ (I)⊥, then
`Km(S)L R ⇒ w : ¬

∧∨
I,∆.
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Proof. We prove that `Km(S)LI Rw : ¬
∧∨
I,∆ by induction on the cardinality of I.

Base case. If I is a singleton, then by assumption `Km(S)L R ⇒ w : ¬φ1,j ,∆ is derivable
for all j ∈ {1, . . . , k1}. The conclusion follows by k1 − 1 applications of the (∧r) rule.

Inductive step. Suppose that I := {(ε⇒ Θ1), . . . , (ε⇒ Θn+1)} contains n+ 1 elements
and assume that `Km(S)L R ⇒ Θ,∆ for all (ε⇒ Θ) ∈ (I)⊥. It follows that for each j ∈
{1, . . . , kn+1}, `Km(S)L R ⇒ Θ′, w : ¬φn+1,j ,∆ for all (ε⇒ Θ′) ∈ (I − {(ε⇒ Θn+1)})⊥,
which implies that

`Km(S)L R ⇒ w :
∨∧

¬(I − {(ε⇒ Θn+1)}), w : ¬φn+1,j ,∆

for each j ∈ {1, . . . , kn+1}. By applying the (∧r) rule between each of the kn+1 − 1
labelled sequents above, followed by a single application of the (∨r) rule, we obtain

`Km(S)L R ⇒ w :
∨∧

¬(I − {(ε⇒ Θn+1)}) ∨
∧

1≤j≤kn+1

¬φn+1,j ,∆

which gives our desired conclusion since

¬
∧∨

I =
∨∧

¬(I − {(ε⇒ Θn+1)}) ∨
∧

1≤j≤kn+1

¬φn+1,j .

Let us now state and prove our main theorem, which entails that each grammar logic in
our class possesses the effective Lyndon interpolation property.

Theorem 37. If `Km(S)L w : φ → ψ, then there exists a χ such that (i) Lit(χ) ⊆
Lit(φ) ∩ Lit(ψ), and (ii) `Km(S)L ε⇒ w : φ→ χ and `Km(S)L ε⇒ w : χ→ ψ.

Proof. Suppose that `Km(S)L ε ⇒ w : φ → ψ, that is, `Km(S)L ε ⇒ w : ¬φ ∨ ψ. By
the invertibility of (∨r) (Cor. 2), we have `Km(S)L ε ⇒ w : ¬φ,w : ψ. Therefore,
by Lem. 64 and 65, there exists an interpolant I := {(ε ⇒ Ξ1), . . . , (ε ⇒ Ξn)} with
Ξi = {w : χi,1, . . . , w : χi,ki

} for i ∈ {1, . . . , n} such that `Km(S)LI ε⇒ w : ¬φ | w : ψ ‖ I
and Lit(I) ⊆ Lit(w : ¬¬φ) ∩ Lit(w : ψ) = Lit(φ) ∩ Lit(ψ). By Lem. 66, we know that:

(a) For all (ε⇒ Ξ) ∈ I, `Km(S)L ε⇒ w : ¬φ,Ξ, and

(b) for all (ε⇒ Θ) ∈ (I)⊥, `Km(S)L ε⇒ Θ, w : ψ.

By Lem. 67, claim (a) implies that `kmsl ε⇒ w : ¬φ,
∧∨
I, and by Lem. 68, claim (b)

implies that `kmsl ε ⇒ w : ¬
∧∨
I, w : ψ. The truth of claim (ii) is confirmed by the

following derivations in Km(S)L:

ε⇒ w : ¬φ,
∧∨
I (∨r)

ε⇒ w : ¬φ ∨
∧∨
I. . . . . . . . . . . . . . . . . . . . . . . . =

ε⇒ w : φ→
∧∨
I

ε⇒ w : ¬
∧∨
I, w : ψ (∨r)

ε⇒ w : ¬
∧∨
I ∨ ψ. . . . . . . . . . . . . . . . . . . . . . . . . =

ε⇒ w :
∧∨
I → ψ
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The truth of claim (i) follows from the fact that Lit(
∧∨
I) = Lit(I).

Corollary 9. Every context-free grammar logic with converse has the effective Lyndon
interpolation property.

Proof. Follows from the soundness and completeness of Km(S)L (Cor. 3) and Thm. 37
above. Also, the property is effective because Thm. 37 gives a procedure showing how to
construct the interpolant of any valid implication.

202



CHAPTER 7
Conclusion and Future Work

This thesis began by introducing labelled sequent calculi for a diverse class of logics, and
then presented the method of refinement as a means of ‘simplifying’ the systems. Since
labelled calculi are straightforwardly obtainable from a logic’s semantics, the method
of refinement can be seen as a strategy for transforming the relational (i.e. Kripke)
semantics of a modal or constructive logic into a proof system with an economical amount
of sequential structure and which encodes semantic information within the functionality
of logical rules. The method leverages results from the labelled paradigm to obtain
labelled sequent calculi for modal and constructive logics via their semantics, and then
performs structural rule elimination to reduce the syntactic structures utilized in the
proof systems. As was seen, nested calculi regularly result as the output of this method
suggesting that the method serves as a theoretical basis underpinning a variety of nested
sequent systems. Nevertheless, the work in Sect. 4.2 on refining labelled systems for
deontic STIT logics showed that refinement can still be performed in the presence of
certain structural rules which do not appear immediately eliminable via the method. The
last technical chapter of the thesis (Ch. 6) harnessed refined labelled calculi for deontic
STIT logics to provide proof-search algorithms and made use of the refined labelled
calculi for context-free grammar logics with converse (along with the syntactic method of
interpolation from [LTGC20]) to show that all such grammar logics possess the effective
Lyndon interpolation property.

A promising avenue of future research concerns the development of a general theory of
nested sequent systems for large classes of logics characterized by relational semantics.
Not only would such a theory be useful in generating nested systems on demand for
modal, constructive, and related logics—which have found significant applications in
philosophy [BP90, vBL21], legal theory [Bro11b, LS15], artificial intelligence [MH81],
verification [CES86, SBA20], and distributed computing [HM90]—but would allow for
automated reasoning techniques to be applied to these logics by harnessing their nested
systems (e.g. [FK15, LvB19, LTGC20, TIG12]). Also, although refined calculi are often
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notational variants of nested systems, it seems plausible that through the implementation
of additional methods, one can potentially simplify the refined systems even further to
obtain calculi within the paradigm of hypersequents [Avr96], linear nested sequents [Lel15],
or Gentzen-style sequents [PRL19].

Moreover, we would like to apply the refinement method to modal and constructive logics
outside the classes discussed. As was hinted at and briefly discussed in Ch. 5, the use of
grammar theoretic machinery in the refined labelled systems for first-order intuitionistic
logics should allow for the systems to be straightforwardly transformed into systems
for a diverse class of propositional and first-order (sub-)(bi-)intuitionistic logics—given
that logical rules for the exclusion connective −< (the dual of intuitionistic implication)
are added in the bi-intuitionistic cases. (NB. See [Cor87, Res94] for information on
sub-intuitionistic logics and [GPT08, PU18, Rau80] for information on bi-intuitionistic
logic.) Other fruitful candidates for applying refinement concern modal intuitionistic
logics and bi-intuitionistic tense logics. Logics within both classes possess known nested
sequent calculi (e.g. see [Str13] for modal intuitionistic nested systems and [GPT08]
for a bi-intuitionistic tense nested system), and since such calculi are typically the
output of refinement, it is reasonable to conjecture that labelled sequent systems for
the logics are refinable. Moreover, Simpson [Sim94] defined labelled sequent systems for
modal intuitionistic logics and defined propagation rules for such systems, which further
strengthens the possibility that such systems can be refined due to the central role played
by propagation rules. We are also interested in applying refinement to hybrid logics
(e.g. [BdRV01, Sect. 7.3]) and relevance logics (e.g. [Vig00, Ch. 3]).

Another promising direction for future research regards refinement in the presence of
structural rules that do not appear eliminable. In Sect. 4.2, where the refinement of
labelled systems for deontic STIT logics was discussed, the (IOA) and (APCki ) rules were
not eliminated, but allowed for the elimination of the other structural rules. Both rules
had the property that the conclusion was free of active relational atoms. This suggests
that rules of a similar shape ought to allow for other structural rules to be eliminated in
a labelled sequent system, allowing for the calculus to be refined to a degree. We aim
to investigate what sets of rules allow for refinement to be performed and the degree to
which structural rules can be eliminated and replaced by propagation or reachability rules.
Furthermore, as was seen in Sect. 4.2, the class {DS0

nL | n ∈ N} of refined labelled calculi
for deontic STIT logics only required labelled DAG derivations, showing that such calculi
are close relatives of indexed-nested sequent systems (cf. [Fit15, MS17]). Therefore,
the question arises: can refinement serve as a foundation for producing large classes
of indexed-nested sequent calculi as well? As explained in [MS17], it seems that some
logics cannot be given a cut-free treatment in the nested sequent formalism (e.g. modal
logics extended with Scott-Lemmon axioms [LS77]), and so, indexed-nested sequents
were introduced as a slight extension of nested sequents to capture such logics in a
cut-free manner [Fit15]. Such systems employ sequents whose underlying data structure
is a directed acyclic graph, demonstrating that such systems exhibit a higher degree of
parsimony than their labelled counterparts (which use general graphs). As with nested
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sequent systems, this reduction in structure could compress the size of proofs (relative to
labelled proofs of the same theorems), and lead to a savings in space as well as ease the
confirmation of termination for associated proof-search algorithms.

Last, it seems worthwhile to investigate if labelled sequent systems can be bypassed
altogether and if refined labelled systems using propagation and reachability rules can
be straightforwardly obtained from the semantics of a logic. If so, then perhaps general
results could be obtained for modal, constructive, and related logics demonstrating that
(indexed-)nested sequent calculi are immediately obtainable from a logic’s relational
semantics. It is conceivable that such results could yield algorithms which transform
frame conditions or axioms into propagation and reachability rules, thus allowing for
refined labelled, nested, or indexed-nested systems to be obtained in an automated
fashion. Such work is reminiscent of the algorithms in [CGT08, CMS13, CST09, Lah13],
which transform axioms into structural rules, rather than propagation and reachability
rules, in order to obtain classes of cut-free calculi for sizable classes of logics.
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Appendix

A Fitting’s Nested Calculi for First-Order Intuitionistic
Logics
In this section of the appendix we introduce Fitting’s nested calculi for the first-order
intuitionistic logics IntQ and IntQC (see Def. 20). We first define Fitting’s notion of an
available parameter, which serves as a side condition on the (∃r) and (∀l) rule in the
nested calculus for first-order intuitionistic logic with non-constant domains; afterward,
we define his nested calculi.

Definition 97 (Available Parameter [Fit14]). Let X[Y ⇒ Z, {X1}, . . . , {Xn}] be a nested
sequent. If there exists a formula A(a) ∈ Y,Z, then the parameter a is available in Y ⇒ Z
and in all boxed subsequents Xi (with i ∈ {1, . . . , n}).

Definition 98 (Fitting’s Nested Calculi for IntQ and IntQC [Fit14]). The rules for
Fitting’s nested calculi are shown below. We define the nested calculus for IntQ and IntQC,
and note that the side condition †1 states that the parameter a is either available or is an
eigenvariable, and †2 states that a is an eigenvariable.

1. The nested calculus for first-order intuitionistic logic with non-constant domains
(IntQ) consists of (id), (∧l), (∧r), (∨r), (∨l), (¬l), (¬r), (⊃r), (⊃l), (lift), (∃l),
(∃r), (∀l), and (∀Q

r ).

2. The nested calculus first-order intuitionistic logic with constant domains (IntQC)
consists of (id), (∧l), (∧r), (∨r), (∨l), (¬l), (¬r), (⊃r), (⊃l), (lift), (∃l), (∃r), (∀l),
and (∀QC

r ) and omits the side condition †1 on the (∃r) and (∀l) rules.

(id)
X[Y, p(~a)⇒ p(~a), Z]

X[Y,A,B ⇒ Z]
(∧l)

X[Y,A ∧B ⇒ Z]
X[Y,A(a/x)⇒ Z]

(∀l)†1X[Y,∀xA⇒ Z]

X[Y,A⇒ Z] X[Y,B ⇒ Z]
(∨l)

X[Y,A ∨B ⇒ Z]
X[Y ⇒ A,Z] X[Y ⇒ B,Z]

(∧r)
X[Y ⇒ A ∧B,Z]

X[Y ⇒ Z, {A⇒ ε}]
(¬r)

X[Y ⇒ Z,¬A]
X[Y ⇒ A,Z]

(¬l)
X[Y,¬A⇒ Z]

X[Y ⇒ A,B,Z]
(∨r)

X[Y ⇒ A ∨B,Z]
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X[Y ⇒ Z, {A⇒ B}]
(⊃r)

X[Y ⇒ A ⊃ B,Z]
X[Y ⇒ A,Z] X[Y,B ⇒ Z]

(⊃l)
X[Y,A ⊃ B ⇒ Z]

X[Y ⇒ A(a/x), Z]
(∃r)†1X[Y ⇒ ∃xA,Z]

X[Y,A(a/x)⇒ Z]
(∃l)†2X[Y,∃xA⇒ Z]

X[Y ⇒ A(a/x), Z]
(∀QC
r )†2

X[Y ⇒ ∀xA,Z]

X[Y ⇒ Z, {ε⇒ A(a/x)}]
(∀Q
r )†2

X[Y ⇒ ∀xA,Z]
X[Y ⇒ Z, {Y ′, A⇒ Z ′}]

(lift)
X[Y,A⇒ Z, {Y ′ ⇒ Z ′}]

B Classical Completeness of G3Km(S) and G3DSkn
In this appendix, we show that all instances of classical propositional tautologies in
LKm(

∑
) and LDSk

n
are derivable in G3Km(S) and G3DSkn, respectively. To prove this, we

first show that the rules {(id), (∨r), (∧r)}—all of which are contained in G3Km(S) and
G3DSkn—are complete relative to classical propositional logic. Second, we show how a
proof of a classical propositional tautology can be proof-theoretically transformed into a
proof of any instance of the tautology in LKm(

∑
) and LDSk

n
.

Definition 99 (The Language L). We define the classical propositional language L as
follows:

φ ::= p | ¬p | (φ ∨ φ) | (φ ∧ φ)

where p ∈ Prop.

Definition 100 (Valuation, Tautology). We say that a function V : L 7→ {0, 1} mapping
formulae of L to the truth values in {0, 1} is a valuation iff the following hold:

I V(p) ∈ {0, 1}, for each p ∈ Prop

I V(¬p) = 1− V(p), for each p ∈ Prop

I V(φ ∨ ψ) = max{V(φ),V(ψ)}

I V(φ ∧ ψ) = min{V(φ),V(ψ)}

We say that a formula φ ∈ L is a classical propositional tautology iff V(φ) = 1 for all
valuations V.

Definition 101 (Saturation). Let Λ := ε⇒ Γ be a labelled sequent. We say that Λ is
saturated iff

I If w : φ ∈ Γ, then w : ¬φ 6∈ Γ;

I If w : φ ∨ ψ ∈ Γ, then w : φ,w : ψ ∈ Γ;
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Algorithm 7.1: ProveCPL
Input: A Labelled Sequent: ε⇒ Γ

Output: A Boolean: True, False
1 if w : p, w : ¬p ∈ Γ then
2 return True;
3 end
4 if ε⇒ Γ is saturated then
5 return False;
6 end
7 if w : φ ∨ ψ ∈ Γ , but either w : φ 6∈ Γ or w : ψ 6∈ Γ then
8 Let Γ ′ := w : φ,w : ψ, Γ ;
9 return ProveCPL(ε⇒ Γ ′);

10 end
11 if w : φ ∧ ψ ∈ Γ , but w : φ,w : ψ 6∈ Γ then
12 Let Γ1 := w : φ, Γ ;
13 Let Γ2 := w : ψ, Γ ;
14 if ProveCPL(R ⇒ Γi) = False for some i ∈ {1, 2} then
15 return False;
16 end
17 else
18 return True;
19 end
20 end

I If w : φ ∧ ψ ∈ Γ, then either w : φ ∈ Γ or w : ψ ∈ Γ.

Lemma 69 (Termination of ProveCPL). Let φ ∈ L. Then, ProveCPL(w : φ) terminates.

Proof. Let Λ := ε⇒ Γ. We first define what it means for a labelled formula to be active
in ε⇒ Γ below:

I For all p ∈ Prop, neither w : p nor w : ¬p are active in ε⇒ Γ;

I Consider a formula ψ of the form χ∨ ξ. Then, w : ψ is active in ε⇒ Γ iff w : ψ ∈ Γ,
and either w : χ 6∈ Γ or w : ξ 6∈ Γ;

I Consider a formula ψ of the form χ∧ ξ. Then, w : ψ is active in ε⇒ Γ iff w : ψ ∈ Γ,
and w : χ,w : ξ 6∈ Γ.

Next, we define the complexity of a labelled sequent Λ = ε⇒ Γ (written |Λ| = |ε⇒ Γ|)
as follows:

|Λ| :=
∑
ψ∈X
|ψ|
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with
X := {ψ | w : ψ ∈ Γ and w : ψ is active in ε⇒ Γ.}

The recursive call of line 7 “deactivates” a formula of the form ψ ∨ χ, and introduces
ψ and χ into the sequent, while the recursive call of line 11 “deactivates” a formula
of the form ψ ∧ χ and either introduces ψ or χ to a sequent. In the former case,
|ψ|+ |χ| < |ψ ∨ χ|, and in the latter case |ψ|, |χ| < |ψ ∧ χ|, meaning that the complexity
continually decreases—implying termination.

Lemma 70 (Correctness of ProveCPL). Let S be a CFCST system with alphabet
∑
, and

n, k ∈ N

(i) If ProveCPL(w : φ) = True, then w : φ is provable in G3Km(S) and G3DSkn.

(ii) If ProveCPL(w : φ) = False, then there exists a valuation V such that V(φ) = 0.

Proof. Claim (i) follows from the fact that each recursive call (lines 7 and 11) to ProveCPL
corresponds to a bottom-up application of (ctrr), followed by an instance of (∨r) or (∧r).
Since (ctrr) is hp-admissible in both G3Km(S) and G3DSkn (Lem. 10 and Lem. 23, resp.),
we know that if ProveCPL(w : φ) = True, then a proof of w : φ was constructed in both
G3Km(S) and G3DSkn.

Let us now prove claim (ii). Since ProveCPL(ε ⇒ w : φ) = False, we know that a
saturated sequent ε ⇒ Γ was generated. We will make use of ε ⇒ Γ to construct a
valuation V such that V(φ) = 0. We define V as follows: V(p) = 1 iff w : ¬p ∈ Γ. Let us
now prove the following claim by induction on the complexity of ψ: if w : ψ ∈ Γ, then
V(ψ) = 0.

Base case. Let p ∈ Prop. Suppose that ψ is of the form p, and assume that w : p ∈ Γ.
Since Γ is saturated, it follows that w : ¬p 6∈ Γ. Hence, by the definition of V, we know
that V(p) = 0. If ψ is of the form ¬p, then the claim follows directly from the assumption
that w : ¬p ∈ Γ and the definition of V.

Inductive step. We consider the case where ψ is of the form χ ∨ ξ and the case were ψ is
of the form χ ∧ ξ.

∨. Suppose that w : ψ = w : χ ∨ ξ ∈ Γ. Since ε ⇒ Γ is saturated, we know that
w : χ,w : ξ ∈ Γ by the recursive call on line 7. By IH it follows that V(χ) = V(ξ) = 0,
implying that V(ψ) = 0.

∧. Suppose that w : ψ = w : χ ∧ ξ ∈ Γ. Since ε⇒ Γ is saturated, we know that either
w : χ ∈ Γ or w : ξ ∈ Γ by the recursive call on line 11. By IH it follows that either
V(χ) = 0 or V(ξ) = 0, implying that V(ψ) = 0.

Lemma 12. All instances of classical propositional tautologies in LKm(
∑

) are derivable
in G3Km(S).

Proof. Let φ be a classical propositional tautology. Then, V(φ) = 1 for all valuations V,
implying that ProveCPL(w : φ) 6= False by Lem. 70 above. By Lem. 69, this implies
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that ProveCPL(w : φ) = True, which implies that ε⇒ w : φ has a proof in G3Km(S) by
Lem. 70. Let us call this proof Π. Observe that Π is of the following form:

Π =
{ (id)⇒ w : p0, w : ¬p0,Γ0 · · · (id)⇒ w : pn, w : ¬pn,Γn

...
ε⇒ w : φ

In order to show that all instances of classical propositional tautologies in LKm(
∑

) are
derivable, we have to show that for any substitution σ = (ψ0/p0, . . . , ψn/pn) of formulae
ψi ∈ LKm(

∑
) for the propositional variables pi (with 0 ≤ i ≤ n), w : φσ is derivable in

G3Km(S). To show this, we first apply the substitution σ to the entire derivation Π, i.e.
to every labelled formula of every sequent in Π, yielding the following derivation Πσ:

Πσ =
{ (id)⇒ w : ψ0, w : ¬ψ0,Γ0σ · · · (id)⇒ w : ψn, w : ¬ψn,Γnσ

...
⇒ w : φσ

Next, we think of each instance of (id) as an interface, and employ Lem. 9, which implies
that every sequent of the form ⇒ w : ψi, w : ¬ψi,Γiσ (for 0 ≤ i ≤ n) is derivable
in G3Km(S). Let us call the derivation of each such sequent Πi. By attaching these
derivations to the leaves, as shown below, we obtain a proof Π′ of the desired conclusion:

Π′ =
{ Π1

⇒ w : ψ0, w : ¬ψ0,Γ0σ · · ·
Πn

⇒ w : ψn, w : ¬ψn,Γnσ
...

⇒ w : φσ

Lemma 24. All instances of classical propositional tautologies in LDSk
n
are derivable in

G3DSkn.

Proof. Similar to the proof of Lem. 12.

C Additional Proofs
Lemma 38.

(i) The rule (id) is an instance of (idQ) and (idQC).

(ii) The (⊃l) rule is an instance of the (Pr⊃) rule.

(iii) The (∃r) rule is an instance of the rules (∃Q
r1) and (∃QC

r1 ).

(iv) The (∀l) rule is an instance of the rules (∀Q
l1) and (∀QC

l1 ).
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Proof. We prove claims (ii)–(iv) below:

(ii) In the (Pr⊃) inference below, observe that due to the w ≤ u relational atom occurring
in the premises, we know that the propagation path π(w, u) := w, a, u occurs in the
propagation graphs of both premises. Since a ∈ LS4(a), and because sπ(w, u) = a, it
follows that sπ(w, u) ∈ LS4(a) showing that the side condition is satisfied, and therefore,
the (Pr⊃) rule may be applied to the premises to derive the desired conclusion.

R, w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆, u : φ R, w ≤ u,Γ, w : φ ⊃ ψ, u : ψ ⇒ ∆ (Pr⊃)R, w ≤ u,Γ, w : φ ⊃ ψ ⇒ ∆

(iii) We prove that (∃r) is an instance of (∃QC
r1 ) since showing that (∃r) is an instance of

(∃Q
r1) is similar. By Def. 73, we know that ε ∈ LS5(a). We also know that sλ(w,w) = ε

by Def. 59, implying that sλ(w,w) ∈ LS5(a). Consequently, the side condition of (∃QC
r1 )

is satisfied, and the following inference may be performed:

R, a ∈ Dw,Γ⇒ w : φ(a/x), w : ∃xφ,∆
(∃QC
r1 )R, a ∈ Dw,Γ⇒ w : ∃xφ,∆

(iv) We show that the (∀l) rule is an instance of (∀QC
l1 ) since the proof for (∀Q

l1) is similar.
By Def. 73, we know that ε ∈ LS5(a), and since there is a propagation path λ(u, u) = u
from u to itself with sλ(u, u) = ε, it follows that sλ(u, u) ∈ LS5(a). Furthermore,
by Def. 9, we know that a �∗S5 a holds, implying that a ∈ LS4(a). Since there is a
propagation path π(w, u) = w, a, u and sπ(w, u) = a, we have that sπ(w, u) ∈ LS4(a).
Therefore, the side condition of (∀QC

l1 ) holds and the rule can simulate (∀l) as shown
below.

R, w ≤ u, a ∈ Du,Γ, u : φ(a/x), w : ∀xφ⇒ ∆
(∀QC
l1 )R, w ≤ u, a ∈ Du,Γ, w : ∀xφ⇒ ∆

Lemma 40.

(i) The rule (tra) is eliminable in G3IntQ + R(Q)− {(ref), (nd), (ned)}.

(ii) The rule (tra) is eliminable in G3IntQC + R(QC)− {(ref), (nd), (cd), (ned)}.

Proof. We prove the result by induction on the height of the given derivation and only
show claim (ii) as it subsumes claim (i).

Base case. The (⊥l) case is simple to verify and due to Lem. 38, we do not need to
consider the (id) case, so we only consider the (idQC) case below:

(idQC)R, w ≤ u, u ≤ v, w ≤ v, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆
(tra)

R, w ≤ u, u ≤ v, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆
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(idQC)R, w ≤ u, u ≤ v, a1 ∈ Du1 , . . . , an ∈ Dun ,Γ, w : p(~a)⇒ u : p(~a),∆

By the side condition on (idQC), we know that there exist propagation paths πi(ui, w) for
each i ∈ {1, . . . , n} and a propagation path π(w, u) in the premise of the top derivation
such that sπi(ui, w) ∈ LS5(a) and sπ(w, u) ∈ LS4(a). If the relational atom w ≤ v active
in the (tra) inference occurs along a propagation path πi(ui, w) or along the propagation
path π(w, u), then by replacing each occurrence of w, a, v and v, a, w in πi(ui, w) and
π(w, u) with w, a, u, a, v and v, a, u, a, w (respectively), we obtain new propagation paths
π′i(ui, w) and π′(w, u) that do not go rely on the relational atom w ≤ v. We now
argue that sπ′i(ui, w) ∈ LS5(a) and sπ′(w, u) ∈ LS4(a). The derivations below show that
a�∗S5 aa and a�∗S5 aa, and we note that a −→ aa, a −→ aa ∈ S4 (by Def. 73).

a −→ aa −→ aaa −→ aa a −→ aa −→ aaa −→ aa

Since sπi(ui, w) ∈ LS5(a), sπ(w, u) ∈ LS4(a), a�∗S5 aa, a�∗S5 aa, and a −→ aa, a −→
aa ∈ S4, by applying a�∗S5 aa and a�∗S5 aa to sπi(ui, w), and a −→ aa and a −→ aa
to sπ(w, u) for each occurrence of a and a obtained from the path w, a, v and v, a, w
(respectively), we obtain sπ′i(ui, w) and sπ′(w, u), respectively; the former of which is
in LS5(a) and the latter of which is in LS4(a). The confirms that the side condition of
(idQC) holds, showing that the second inference above is allowed.

Inductive step. By Lem. 38 we need not consider the (⊃l), (∃r), or (∀l) cases. With the
exception of (Pr⊃), (∃QC

r1 ), and (∀QC
l1 ) cases, all remaining cases are resolved by invoking

IH and then applying the corresponding rule. We consider the (Pr⊃) and (∀QC
l1 ) cases;

the (∃QC
r1 ) case is similar.

(Pr⊃). Due to the application of (Pr⊃), we know that a propagation path π(w1, w2)
exists in the premises Λ1 and Λ2 (shown below) such that sπ(w1, w2) ∈ LS4(a). If
the active relational atom w ≤ v occurs along the propagation path π(w1, w2), then
by replacing each occurrence of w, a, v and v, a, w (obtained from the relational atom
w ≤ v) in π(w1, w2) with w, a, u, a, v and v, a, u, a, w (respectively), we obtain a new
propagation path π′(w1, w2) that does not rely on w ≤ v (but instead, on w ≤ u, u ≤ v).
Recall that a −→ aa, a −→ aa ∈ S4, and since sπ(w1, w2) ∈ LS4(a), we have that
sπ′(w1, w2) ∈ LS4(a) as we can replace each occurrence of a that corresponds to the path
w, a, v and a that corresponds to the path v, a, w in sπ(w1, w2) with aa and aa by means
of the production rules a −→ aa and a −→ aa, respectively. This shows that the side
condition continues to hold if (tra) is applied first, and so, the rules may be permuted.

Λ1 := R, w ≤ u, u ≤ v, w ≤ v,Γ, w1 : φ ⊃ ψ ⇒ ∆, w2 : φ

Λ2 := R, w ≤ u, u ≤ v, w ≤ v,Γ, w1 : φ ⊃ ψ,w2 : ψ ⇒ ∆

Λ1 Λ2 (Pr⊃)R, w ≤ u, u ≤ v, w ≤ v,Γ, w1 : φ ⊃ ψ ⇒ ∆ (tra)R, w ≤ u, u ≤ v,Γ, w1 : φ ⊃ ψ ⇒ ∆
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Λ1 (tra)
Λ′1

Λ2 (tra)
Λ′2 (Pr⊃)R, w ≤ u, u ≤ v,Γ, w1 : φ ⊃ ψ ⇒ ∆

Λ′1 := R, w ≤ u, u ≤ v,Γ, w1 : φ ⊃ ψ ⇒ ∆, w2 : φ

Λ′2 := R, w ≤ u, u ≤ v,Γ, w1 : φ ⊃ ψ,w2 : ψ ⇒ ∆

(∀QC
l1 ). By the application of (∀QC

l1 ), we know that propagation paths π1(w1, w3) and
π1(w2, w3) exist in the premise of the top left derivation below such that sπ1(w1, w3) ∈
LS5(a) and sπ2(w2, w3) ∈ LS4(a). If the relational atom w ≤ v occurs along the
propagation path π1(w1, w3) or π2(w2, w3), then by replacing each path w, a, v and
v, a, w (obtained from the relational atom w ≤ v) with w, a, u, a, v and v, a, u, a, w
(respectively) in π1(w1, w3) and π2(w2, w3), we obtain new propagation paths π′1(w1, w3)
and π′2(w2, w3) that do not rely on the relational atom w ≤ v. Since sπ1(w1, w3) ∈ LS5(a),
sπ2(w2, w3) ∈ LS4(a), a �∗S5 aa and a �∗S5 aa (as explained in the base case), and
a −→ aa, a −→ aa ∈ S4, we know that sπ′1(w1, w3) ∈ LS5(a) and sπ′2(w2, w3) ∈ LS4(a),
as we can replace each occurrence of a arising from the path w, a, u with aa and each
occurrence of a arising from the path u, a, w with aa in π1(w1, w3) and π2(w2, w3).
Therefore, if we apply the (tra) rule first, the side condition of (∀QC

l1 ) still holds, and so,
we may permute the two rules as shown below.

R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw1 , w3 : φ(a/x), w2 : ∀xφ,Γ⇒ ∆
(∀QC
l1 )R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw1 , w2 : ∀xφ,Γ⇒ ∆

(tra)R, w ≤ u, u ≤ v, a ∈ Dw1 , w2 : ∀xφ,Γ⇒ ∆
 

R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw1 , w3 : φ(a/x), w2 : ∀xφ,Γ⇒ ∆
(tra)

R, w ≤ u, u ≤ v, a ∈ Dw1 , w3 : φ(a/x), w2 : ∀xφ,Γ⇒ ∆
(∀QC
l1 )R, w ≤ u, u ≤ v, a ∈ Dw1 , w2 : ∀xφ,Γ⇒ ∆

Lemma 45.

(i) Every proof of a labelled sequent Λ in IntQL can be algorithmically transformed into a
proof of DomCL(Λ) in IntQL∗.

(ii) Every proof of a labelled sequent Λ in IntQCL can be algorithmically transformed into
a proof of DomCL(Λ) in IntQCL∗.

Proof. We prove the result by induction on the height of the given derivation and consider
(ii) as (i) is similar.

Base case. The (⊥l) case is easy to verify. For the (id∗) inference, due to the application
of DomCL, we know that domain atoms ~a ∈ Dw exist in the output labelled sequent,
ensuring that it is in fact an instance of (idQC).
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(id∗)R,Γ, w : p(~a)⇒ u : p(~a),∆  (idQC)
DomCL(R,Γ, w : p(~a)⇒ u : p(~a),∆)

Inductive step. We show the (∧r), (⊃r), (∃QC
r ), (∃QC

l ), (∀QC
l ), and (∀QC

r ) cases as all other
cases are simple or similar. We consider each of the aforementioned cases below.

(∧r). Let our given (∧r) inference be as shown below top-left. Also, let ~a := a1, . . . , an
be all free parameters in φ,Γ � w,∆ � w not occurring in ψ,Γ � w,∆ � w, and let
~b := b1, . . . , bk be all free parameters in ψ,Γ � w,∆ � w not occurring in φ,Γ � w,∆ � w.
To obtain the desired conclusion, we first apply the admissibility of (wk) (Thm. 27) in
order to ensure that the contexts of the premises match, followed by an application of
the (∧r) rule.

R,Γ⇒ w : φ,∆ R,Γ⇒ w : ψ,∆ (∧r)R,Γ⇒ w : φ ∧ ψ,∆
 

IH
DomCL(R,Γ⇒ w : φ,∆). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R′,~a ∈ Dw,Γ⇒ w : φ,∆ (wk)

R′,~a ∈ Dw,~b ∈ Dw,Γ⇒ w : φ,∆

IH
DomCL(R,Γ⇒ w : ψ,∆). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R′,~b ∈ Dw,Γ⇒ w : ψ,∆ (wk)

R′,~a ∈ Dw,~b ∈ Dw,Γ⇒ w : ψ,∆ (∧r)
R′,~a ∈ Dw,~b ∈ Dw,Γ⇒ w : φ ∧ ψ,∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

DomCL(R,Γ⇒ w : φ ∧ ψ,∆)

(⊃r). There are two cases to consider: either (i) the auxiliary formulae u : φ and u : ψ
contain free occurrences of parameters ~a = a1, . . . , an, or (ii) they do not. Case (ii) is
easily resolved by applying IH and then the (⊃r) rule, so we focus on case (i) which is
shown below. Let R′,~a ∈ Du be the multiset of relational atoms occurring within the
premise of the bottom right inference below (that is, the multiset of relational atoms
occurring in the labelled sequent obtained by applying DomCL to the premise of the top
left inference). To derive the desired conclusion, we first apply admissibility of (wk)
(Lem. 27) to add in the domain atoms ~a′ ∈ Dw := ai1 ∈ Dw, . . . , aik ∈ Dw such that
aij ∈ Dw 6∈ R′ for ij ∈ {1, . . . , n} and j ∈ {1, . . . , k}, i.e. for each parameter aij in ~a we
add a new domain atom aij ∈ Dw given that it does not already occur in R′. After (wk)
is applied, we apply the admissible (nd) rule (Thm. 25) n times to delete all domain
atoms ~a ∈ Du, thus making u an eigenvarible, and allowing for (⊃r) to be applied, giving
the desired result.

R, w ≤ u,Γ, u : φ⇒ u : ψ,∆ (⊃r)R,Γ⇒ w : φ ⊃ ψ,∆
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IH
DomCL(R, w ≤ u,Γ, u : φ⇒ u : ψ,∆). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R′,~a ∈ Du, w ≤ u,Γ, u : φ⇒ u : ψ,∆ (wk)

R′,~a′ ∈ Dw,~a ∈ Du, w ≤ u,Γ, u : φ⇒ u : ψ,∆ (nd)× n
R′,~a′ ∈ Dw, w ≤ u,Γ, u : φ⇒ u : ψ,∆ (⊃r)R′,~a′ ∈ Dw,Γ⇒ w : φ ⊃ ψ,∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

DomCL(R,Γ⇒ w : φ ⊃ ψ,∆)

(∃QC
r )-(i). In case (i), we assume that a is not an eigenvariable. By the side condition

imposed on (∃QC
r ) then, we know there exists a labelled formula u : ψ(a) ∈ Γ,∆ and

propagation path π(u,w) such that sπ(u,w) ∈ LS5(a). Therefore, after applying IH
which applies DomCL, there will be a domain atom of the form a ∈ Du occurring in the
output labelled sequent. We may then apply the (∃QC

r1 ) rule since the side condition is
satisfied, giving the desired conclusion.

R,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r )R,Γ⇒ ∆, w : ∃xφ

 

IH
DomCL(R,Γ⇒ ∆, w : φ(a/x), w : ∃xφ)

(∃QC
r1 )

DomCL(R,Γ⇒ ∆, w : ∃xφ)

(∃QC
r )-(ii). In case (ii), we assume that a is an eigenvariable. Then, after applying IH

there will be a single domain atom of the form a ∈ Dw (and no other domain atoms will
contain the parameter a). This follows from the definition of DomCL and the fact that
w : φ(a/x) is the only labelled formula containing a (by the eigenvariable condition). We
then apply the (∃QC

r2 ) rule to obtain the desired conclusion.

R,Γ⇒ ∆, w : φ(a/x), w : ∃xφ
(∃QC
r )R,Γ⇒ ∆, w : ∃xφ

 

IH
DomCL(R,Γ⇒ ∆, w : φ(a/x), w : ∃xφ)

(∃QC
r2 )

DomCL(R,Γ⇒ ∆, w : ∃xφ)

(∃QC
l ). After invoking IH we know that a single domain atom of the form a ∈ Dw occurs

within the output labelled sequent (and no other domain atoms contain the parameter
a). This fact follows from the fact that a is an eigenvariable, and so, by the definition of
DomCL only a single domain atom uniquely containing the parameter a will be introduced
on the basis of the labelled formula w : φ(a/x). Hence, we may directly apply (∃l) after
applying the inductive hypothesis.

R,Γ, w : φ(a/x)⇒ ∆
(∃QC
l )R,Γ, w : ∃xφ⇒ ∆

 
IH

DomCL(R,Γ, w : φ(a/x)⇒ ∆)
(∃l)DomCL(R,Γ, w : ∃xφ⇒ ∆)
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(∀QC
l )-(i). In case (i), we assume that a is not an eigenvariable. By the side condition

imposed on (∀QC
l ), we know that a is S5-available for v and that there exists a propagation

path π(w, v) such that sπ(w, v) ∈ LS4(a). The former implies that there exists a labelled
formula u : ψ(a) ∈ Γ,∆ and propagation path π′(u, v) such that sπ′(u, v) ∈ LS5(a). After
invoking IH, a domain atom of the form a ∈ Du will occur in the output labelled sequent
(since applying IH applies DomCL), showing that the side condition of (∀QC

l1 ) is satisfied,
and hence, the rule (∀QC

l1 ) may be applied.

R, w : ∀xφ, v : φ(a/x),Γ⇒ ∆
(∀QC
l )R, w : ∀xφ,Γ⇒ ∆

 

IH
DomCL(R, w : ∀xφ, v : φ(a/x),Γ⇒ ∆)

(∀QC
l1 )

DomCL(R, w : ∀xφ,Γ⇒ ∆)

(∀QC
l )-(ii). In case (ii), we assume that a is an eigenvariable and let Λ := DomCL(R, w :
∀xφ, v : φ(a/x),Γ ⇒ ∆). By the side condition imposed on (∀QC

l ), we know that
there exists a propagation path π(w, v) in the premise of the top left derivation such
that sπ(w, v) ∈ LS4(a). Since a is an eigenvariable, we know that after invoking IH
(which applies DomCL), there will be a domain atom of the form a ∈ Dv occurring
in Λ. Since ε ∈ LS5(a) and the empty path λ(v, v) = v occurs in Λ, we know that
sλ(v, v) = ε ∈ LS5(a). Therefore, we have that a is an eigenvarible, sλ(v, v) ∈ LS5(a),
and sπ(w, v) ∈ LS4(a) holds for Λ, meaning that (∀QC

l2 ) may be applied, giving the desired
result.

R, w : ∀xφ, v : φ(a/x),Γ⇒ ∆
(∀QC
l )R, w : ∀xφ,Γ⇒ ∆

 

IH
DomCL(R, w : ∀xφ, v : φ(a/x),Γ⇒ ∆)

(∀QC
l2 )

DomCL(R, w : ∀xφ,Γ⇒ ∆)

(∀QC
r ). Let Λ := DomCL(R, w ≤ u,Γ ⇒ u : φ(a/x),∆). We have two cases to consider:

either (i) u : φ(a/x) contains no other parameters other than possibly a, or (ii) u : φ(a/x)
is of the form u : φ(~a)(a/x) and contains the parameters ~a := a1, . . . , an. Case (i) is
simple to resolve, so we show how to resolve case (ii). By the assumption of case (ii), Λ
is of the form R′, w ≤ u,~a ∈ Du, a ∈ Du,Γ⇒ u : φ(~a)(a/x),∆. To resolve the case, as
shown below, we first apply admissibility of (wk) (Lem. 27) to add in the domain atoms
~a′ ∈ Dw := ai1 ∈ Dw, . . . , aik ∈ Dw such that aij ∈ Dw 6∈ R′ for ij ∈ {1, . . . , n} and
j ∈ {1, . . . , k}, i.e. for each parameter aij in ~a we add a new domain atom aij ∈ Dw given
that it does not already occur in R′. We then apply the admissible (nd) rule (Thm. 25)
n times to delete all domain atoms ~a ∈ Du, yielding a labelled sequent where u and a
are eigenvariables. One application of (∀X

r ) gives the desired conclusion.
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R, w ≤ u,Γ⇒ u : φ(~a)(a/x),∆
(∀QC
r )R,Γ⇒ w : ∀xφ(~a),∆

 

IH
DomCL(R, w ≤ u,Γ⇒ u : φ(~a)(a/x),∆). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R′, w ≤ u,~a ∈ Du, a ∈ Du,Γ⇒ u : φ(~a)(a/x),∆
(wk)

R′, w ≤ u,~a′ ∈ Dw,~a ∈ Du, a ∈ Du,Γ⇒ u : φ(~a)(a/x),∆
(nd)× n

R′, w ≤ u,~a′ ∈ Dw, a ∈ Du,Γ⇒ u : φ(~a)(a/x),∆
(∀r)R′,~a′ ∈ Dw,Γ⇒ w : ∀xφ(~a),∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

DomCL(R,Γ⇒ w : ∀xφ(~a),∆)

Lemma 47. The rule (lsb) is hp-admissible in IntQL and IntQCL.

Proof. We prove the result by induction on the height of the given derivation.

Base case. The base case follows from the fact that any application of (lsb) to (id∗) or
(⊥l) yields another instance of the rule.

Inductive step. With the exception of the (⊃r) and (∀X
r ) rules, all cases follow by invoking

IH and then applying the corresponding rule. In the (⊃r) and (∀X
r ) cases it may be

necessary to invoke IH twice (before applying each respective rule) to ensure that the
eigenvariable condition is met, similar to what was done in the proof of Lem. 14.

Lemma 48. The rule (psb) is hp-admissible in IntQL and IntQCL.

Proof. We show the result for IntQL as the proof for IntQCL is similar, and prove the
claim by induction on the height of the given derivation.

Base case. Any application of (psb) to (id∗) or (⊥l) yields another instance of the rule,
resolving the base case.

Inductive step. With the exception of the (∃Q
r ), (∀Q

l ), (∃Q
l ), and (∀Q

r ) rules, all cases follow
by invoking IH and then applying the corresponding rule. The non-trivial (∃Q

r ) and (∀Q
l )

cases occur when (psb) substitutes a parameter b for the parameter a (occurring in the
auxiliary formula) or introduces the parameter a of the auxiliary labelled formula when
the parameter is an eigenvariable. The non-trivial (∃Q

l ) and (∀Q
r ) cases occur when (psb)

introduces the eigenvariable a. Let us consider each non-trivial case in turn:

(∃Q
r ). Either (i) a is S4-available for w or (ii) a is an eigenvariable. In case (i), the

non-trivial (psb) instance applies a substitution of the form (b/a). By the assumption
of the case, we know there exists a labelled formula u : ψ(a) ∈ Γ,∆ and a propagation
path π(u,w) such that sπ(u,w) ∈ LS4(a). Observe that since (psb) applies (b/a) to all
labelled formulae of the sequent, the auxiliary formula will become w : φ(b/x), and we
will know that a labelled formula u : ψ(b) ∈ Γ,∆ exists with a propagation path π(u,w)
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such that sπ(u,w) ∈ LS4(a). Hence, the side condition of the inference will continue to
hold if IH is applied first, allowing for the two rules to be permuted. In case (ii), where a
is an eigenvariable, the non-trivial case occurs when (psb) is of the form (a/b). In such a
case we invoke IH twice to ensure that the eigenvariable condition is met (similar to the
non-trivial case of (∃Q

l ) below), and then apply (∃Q
r ).

(∀Q
l ). By the side condition of the rule, either (i) a is S4-available for v or (ii) a is an

eigenvariable, and there exists a propagation path π(w, v) such that sπ(w, v) ∈ LS4(a).
Let us consider case (i) first, where the non-trivial (psb) instance applies a substitution of
the form (b/a). Since a is S4-available for v, we know that there exists a labelled formula
u : ψ(a) ∈ Γ,∆ and a propagation path π(u, v) such that sπ(u, v) ∈ LS4(a). If we invoke
IH and apply (psb) first, then the auxiliary formula will be of the form v : φ(b/x), and by
the side condition there will be a labelled formula u : ψ(b) ∈ Γ,∆ and a propagation path
π(u, v) such that sπ(u, v) ∈ LS4(a). Hence, the side condition continues to hold after the
invocation of IH, allowing for (∀Q

l ) to be applied an the two rules to be permuted. In
case (ii), the non-trivial case occurs when (psb) introduces the eigenvariable a. In such a
case we invoke IH twice to ensure that the eigenvariable condition is met (similar to the
non-trivial case of (∀Q

r ) below), and then apply (∀Q
l ).

(∃Q
l ). The non-trivial case arises when IH (i.e. (psb)) introduces the eigenvariable a, and

is resolved as shown below:

R,Γ, w : φ(a/x)⇒ ∆
(∃X
l )R,Γ, w : ∃xφ⇒ ∆ (psb)

R(a/b),Γ(a/b), (w : ∃xφ)(a/b)⇒ ∆(a/b)
 

R,Γ, w : φ(a/x)⇒ ∆
IHR(c/a),Γ(c/a), (w : φ(a/x))(c/a)⇒ ∆(c/a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R,Γ, w : φ(c/x)⇒ ∆
IHR(a/b),Γ(a/b), (w : φ(c/x))(a/b)⇒ ∆(a/b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R(a/b),Γ(a/b), w : φ(c/x)(a/b)⇒ ∆(a/b)
(∃Q
l )R(a/b),Γ(a/b), (w : ∃xφ)(a/b)⇒ ∆(a/b)

(∀Q
r ). The non-trivial case arises when IH introduces the eigenvariable a, and is resolved

as shown below:

R, w ≤ u,Γ⇒ u : φ(a/x),∆
(∀Q
r )R,Γ⇒ w : ∀xφ,∆ (psb)

R(a/b),Γ(a/b)⇒ (w : ∀xφ)(a/b),∆(a/b)
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R, w ≤ u,Γ⇒ u : φ(a/x),∆
IHR(c/a), (w ≤ u)(c/a),Γ(c/a)⇒ (u : φ(a/x))(c/a),∆(c/a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, w ≤ u,Γ⇒ u : φ(c/x),∆
IHR(a/b), (w ≤ u)(a/b),Γ(a/b)⇒ (u : φ(c/x))(a/b),∆(a/b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R(a/b), w ≤ u,Γ(a/b)⇒ u : φ(c/x)(a/b),∆(a/b)
(∀Q
r )R(a/b),Γ(a/b)⇒ (w : ∀xφ)(a/b),∆(a/b)

Lemma 49. The rule (wk) is hp-admissible in IntQL and IntQCL.

Proof. We show the result for IntQL as the proof for IntQCL is similar. We prove the
result by induction on the height of the given derivation.

Base case. The base case is straightforward since any application of (wk) to (id∗) or (⊥l)
yields another instance of the rule.

Inductive step. The only non-trivial cases concern (⊃r), (∃Q
r ), (∀Q

l ), (∃Q
l ), and (∀Q

r ), and
arise when (wk) introduces a parameter or label identical to an eigenvariable of one
of the aforementioned inferences. The cases involving the other rules are resolved by
applying IH followed by the corresponding rule. We show how to resolve the non-trivial
(⊃r), (∃Q

l ), (∀Q
r ) cases below; all other cases are similar or simple. We let c and z be a

fresh parameter and label, respectively.

R, w ≤ u,Γ, u : φ⇒ u : ψ,∆ (⊃r)R,Γ⇒ w : φ ⊃ ψ,∆ (wk)
R,R′,Γ,Γ′ ⇒ w : φ ⊃ ψ,∆,∆′

 

R, w ≤ u,Γ, u : φ⇒ u : ψ,∆ (lsb)
R(z/u), (w ≤ u)(z/u),Γ(z/u), (u : φ)(z/u)⇒ (u : ψ)(z/u),∆(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, w ≤ z,Γ, z : φ⇒ z : ψ,∆
IHR,R′, w ≤ z,Γ,Γ′, z : φ⇒ z : ψ,∆,∆′ (⊃r)R,R′,Γ,Γ′ ⇒ w : φ ⊃ ψ,∆,∆′

R,Γ, w : φ(a/x)⇒ ∆
(∃Q
l )R,Γ, w : ∃xφ⇒ ∆ (wk)

R,R′,Γ,Γ′, w : ∃xφ⇒ ∆,∆′
 

R,Γ, w : φ(a/x)⇒ ∆
(psb)

R(c/a),Γ(c/a), (w : φ(a/x))(c/a)⇒ ∆(c/a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R,Γ, w : φ(c/x)⇒ ∆

IHR,R′,Γ,Γ′, w : φ(c/x)⇒ ∆,∆′
(∃Q
l )R,R′,Γ,Γ′, w : ∃xφ⇒ ∆,∆′
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R, w ≤ u,Γ⇒ u : φ(a/x),∆
(∀Q
r )R,Γ⇒ w : ∀xφ,∆ (wk)

R,R′,Γ,Γ′ ⇒ w : ∀xφ,∆,∆′
 

R, w ≤ u,Γ⇒ u : φ(a/x),∆
(lsb)

R(z/u), (w ≤ u)(z/u),Γ(z/u)⇒ (u : φ(a/x))(z/u),∆(z/u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =
R, w ≤ z,Γ⇒ z : φ(a/x),∆

(psb)
R(c/a), (w ≤ z)(c/a),Γ(c/a)⇒ (z : φ(a/x))(c/a),∆(c/a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R, w ≤ z,Γ⇒ z : φ(c/x),∆
IHR,R′, w ≤ z,Γ,Γ′ ⇒ z : φ(c/x),∆,∆′
(∀Q
r )R,R′,Γ,Γ′ ⇒ w : ∀xφ,∆,∆′

Lemma 50. The (∧l), (∧r), (∨l), and (∨r) rules are hp-invertible in IntQL and IntQCL.

Proof. We prove the result by induction on the height of the given derivation, and
consider only the (∧l) case since the (∧r), (∨l), and (∨r) cases are similar.

Base case. The base cases are resolved as shown below:

(id∗)R,Γ, v : φ ∧ ψ,w : p(~a)⇒ u : p(~a),∆  

(id)
R,Γ, v : φ, v : ψ,w : p(~a)⇒ u : p(~a),∆

(⊥l)R,Γ, w : ⊥, u : φ ∧ ψ ⇒ ∆  (⊥l)R,Γ, w : ⊥, u : φ, u : ψ ⇒ ∆
Inductive step. With the exception of the (∧l) case, all cases are resolved by invoking IH
followed by the corresponding rule. If the last rule applied in the derivation is (∧l), then
there are two cases to consider: either (i) the conjunction we aim to invert is principal,
or (ii) it is not. Case (i) is shown below top—the derivation of the premise gives the
desired conclusion—and case (ii) is shown below bottom.

R,Γ, w : φ,w : ψ ⇒ ∆ (∧l)R,Γ, w : φ ∧ ψ ⇒ ∆
 R,Γ, w : φ,w : ψ ⇒ ∆

R,Γ, u : χ, u : θ, w : φ ∧ ψ ⇒ ∆ (∧l)R,Γ, u : χ ∧ θ, w : φ ∧ ψ ⇒ ∆
 

R,Γ, u : χ, u : θ, w : φ ∧ ψ ⇒ ∆
IHR,Γ, u : χ, u : θ, w : φ,w : ψ ⇒ ∆ (∧l)R,Γ, u : χ ∧ θ, w : φ,w : ψ ⇒ ∆

Lemma 51. The (Pr⊃) and (⊃r) rules are hp-invertible in IntQL and IntQCL.
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Proof. The hp-invertibility of (Pr⊃) follows from Lem. 49. We argue that the rule (⊃r)
is hp-invertible by induction on the height of the given derivation.

Base case. The base cases are resolved as shown below:

(id∗)R,Γ, w : p(~a)⇒ v : φ ⊃ ψ, u : p(~a),∆  

(id∗)R, v ≤ z,Γ, w : p(~a), z : φ⇒ z : ψ, u : p(~a),∆

(⊥l)R,Γ, w : ⊥ ⇒ v : φ ⊃ ψ,∆  (⊥l)R, v ≤ z,Γ, w : ⊥, z : φ⇒ z : ψ,∆

Inductive step. With the exception of the (⊃r) rule, all cases are resolved by invoking IH
followed by the corresponding rule. If the last inference of the derivation is an instance
of (⊃r), then there are two cases to consider: either (i) the implication we aim to invert
is principal, or (ii) it is not. Case (i) is resolved below top—the derivation of the premise
gives the desired conclusion—and case (ii) is resolved as shown below bottom.

R, w ≤ u,Γ, u : φ⇒ u : ψ,∆ (⊃r)R,Γ⇒ w : φ ⊃ ψ,∆
 R, w ≤ u,Γ, u : φ⇒ u : ψ,∆

R, v ≤ z,Γ, z : χ⇒ z : θ, w : φ ⊃ ψ,∆ (⊃r)R,Γ⇒ v : χ ⊃ θ, w : φ ⊃ ψ,∆
 

R, v ≤ z,Γ, z : χ⇒ z : θ, w : φ ⊃ ψ,∆
IHR, w ≤ u, v ≤ z,Γ, z : χ, u : φ⇒ u : ψ, z : θ,∆ (⊃r)R, w ≤ u,Γ, u : φ⇒ u : ψ, v : χ ⊃ θ,∆

Lemma 52.

(i) The (∃Q
l ), (∃Q

r ), (∀Q
l ), and (∀Q

r ) rules are hp-invertible in IntQL.

(ii) The (∃QC
l ), (∃QC

r ), (∀QC
l ), and (∀QC

r ) rules are hp-invertible in IntQCL.

Proof. We prove both results simultaneously and let X ∈ {Q,QC}. Hp-invertibility of (∃X
r )

and (∀X
l ) follows from Lem. 49. Hp-invertibility of (∃X

l ) and (∀X
r ) is shown by induction

on the height of the given derivation; we prove the (∀X
r ) case as the (∃X

l ) case is similar.

Base case. The base cases are resolved as shown below:

(id∗)R,Γ, w : p(~a)⇒ u : p(~a), v : ∀xφ,∆  

(id∗)R, v ≤ z,Γ, w : p(~a)⇒ u : p(~a), z : φ(b/y),∆
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(⊥l)R,Γ, v : ⊥ ⇒ w : ∀xφ,∆  (⊥l)R, w ≤ u,Γ, v : ⊥ ⇒ u : φ(a/x),∆

Inductive step. With the exception of the (∀Q
r ) rule, all cases are resolved by invoking IH

followed by the corresponding rule. If the last inference of the derivation is an instance
of (∀Q

r ), then there are two cases to consider: either (i) the labelled formula we aim to
invert is principal, or (ii) it is not. Case (i) is resolved below top—the derivation of the
premise gives the desired conclusion—and case (ii) is resolved as shown below bottom.

R, w ≤ u,Γ⇒ u : φ(a/x),∆
(∀X
r )R,Γ⇒ w : ∀xφ,∆

 R, w ≤ u,Γ⇒ u : φ(a/x),∆

R, v ≤ z,Γ⇒ z : ψ(b/y), w : ∀xφ,∆
(∀X
r )R,Γ⇒ v : ∀xψ,w : ∀xφ,∆

 

R, v ≤ z,Γ⇒ z : ψ(b/y), w : ∀xφ,∆
IHR, v ≤ z, w ≤ u,Γ⇒ z : ψ(b/y), u : φ(a/x),∆
(∀X
r )R, w ≤ u,Γ⇒ w : ∀xψ, u : φ(a/x),∆

Lemma 55. The rule (ctrl) is hp-admissible in IntQL and IntQCL.

Proof. We prove both results simultaneously and let X ∈ {Q,QC}. We prove the result
by induction on the height of the given derivation.

Base case. Any application of (ctrl) an instance of (id∗) or (⊥l) yields another instance
of the rule, which confirms the base case.

Inductive step. For the inductive step, we assume that the derivation ends with an
instance of a rule (r) (from IntQL or IntQCL) followed by an instance of (ctrl). If the
principal formula of (r) is not active in (ctrl), then the case is handled by invoking IH
followed by an instance of (r). We therefore assume that the principal formula of (r) is
active in the (ctrl) inference. This assumption also implies that we need only consider
the cases where (r) is an instance of (∧l), (∨l), (Pr⊃), (∃X

l ), or (∀X
l ). We show how to

resolve the (∧l), (∃X
l ), and (∀X

l ) cases below; the (∨l) and (Pr⊃) cases are similar or
simple to verify.

R,Γ, w : φ ∧ ψ,w : φ,w : ψ ⇒ ∆ (∧l)R,Γ, w : φ ∧ ψ,w : φ ∧ ψ ⇒ ∆ (ctrl)R,Γ, w : φ ∧ ψ ⇒ ∆
 

R,Γ, w : φ ∧ ψ,w : φ,w : ψ ⇒ ∆
Lem. 50R,Γ, w : φ,w : ψ,w : φ,w : ψ ⇒ ∆
IH ×2R,Γ, w : φ,w : ψ ⇒ ∆ (∧l)R,Γ, w : φ ∧ ψ ⇒ ∆
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R,Γ, w : ∃xφ,w : φ(a/x)⇒ ∆
(∃X
l )R,Γ, w : ∃xφ,w : ∃xφ⇒ ∆ (ctrl)R,Γ, w : ∃xφ⇒ ∆

 

R,Γ, w : ∃xφ,w : φ(a/x)⇒ ∆
Lem. 52R,Γ, w : φ(a/x), w : φ(b/x)⇒ ∆

(psb)
R(a/b),Γ(a/b), (w : φ(a/x))(a/b), (w : φ(b/x))(a/b)⇒ ∆(a/b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =

R,Γ, w : φ(a/x), w : φ(a/x)⇒ ∆
IHR,Γ, w : φ(a/x)⇒ ∆

(∃X
l )R,Γ, w : ∃xφ⇒ ∆

R,Γ, u : φ(a/x), w : ∀xφ,w : ∀xφ⇒ ∆
(∀X
l )R,Γ, w : ∀xφ,w : ∀xφ⇒ ∆ (ctrl)R,Γ, w : ∀xφ⇒ ∆

 

R,Γ, u : φ(a/x), w : ∀xφ,w : ∀xφ⇒ ∆
IHR,Γ, u : φ(a/x), w : ∀xφ⇒ ∆

(∀X
l )R,Γ, w : ∀xφ⇒ ∆

Theorem 30. The rule (cut) is eliminable in IntQL and IntQCL.

Proof. We show both results simultaneously and let X ∈ {Q,QC}. We proceed by
induction on the lexicographic ordering of pairs (|φ|, h1 + h2), where |φ| is the complexity
of the cut formula φ, h1 is the height of the derivation of the left premise of (cut), and
h2 is the height of the derivation of the right premise of (cut). We assume w.l.o.g. that
(cut) is the last rule used in our given derivation, and that no other instances of (cut)
appear in the given derivation. The general result follows by repeatedly applying the
algorithm described below to successively eliminate topmost instances of (cut) until the
derivation is free of (cut) instances.

As usual, we separate the proof into a large variety of cases, and additionally, we explicitly
write out the assumption being made in each case.

1. The complexity of the cut formula is 0, that is, |φ| = 0.

1.1 Both premises of (cut) are an instance of (id∗) or (⊥l).

1.1.1 Both premises of (cut) are instances of (id∗) with the cut formula principal in
both premises. By the side conditions of the (id∗) instances (in the top left derivation),
we know that there exists a propagation path π(w, u) and a propagation path π′(u, v)
such that sπ(w, u), sπ′(u, v) ∈ LS4(a). This implies the existence of a propagation path
π′′(w, v) such that sπ′′(w, v) ∈ LS4(a), showing that the output instance of (id∗) is valid.
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(id∗)R,Γ, w : p(~a)⇒ u : p(~a),∆
(id∗)R,Γ, u : p(~a)⇒ v : p(~a),∆
(cut)

R,Γ, w : p(~a)⇒ v : p(~a),∆
 

(id∗)R,Γ, w : p(~a)⇒ v : p(~a),∆

1.1.2 Both premises of (cut) are instances of (id∗) with the cut formula principal in
the left premise and not the right. Then, the conclusion of (cut) is an instance of (id∗).

1.1.3 Both premises of (cut) are instances of (id∗) with the cut formula principal in
the right premise and not the left. Then, the conclusion of (cut) is an instance of (id∗).

1.1.4 Both premises of (cut) are instances of (id∗) with the cut formula principal in
neither premise. Then, the conclusion of (cut) is an instance of (id∗).

1.1.5 The left premise of (cut) is an instance of (⊥l). Then, the conclusion of (cut)
is an instance of (⊥l).

1.1.6 The right premise of (cut) is an instance of (⊥l). Due to our assumption in
case 1.1.5 above, we may assume that the left premise is an instance of (id∗), which gives
rise to two possibilities: either (i) the principal occurrence of ⊥ in (⊥l) is the cut formula,
or (ii) it is not. In case (i), the conclusion is an instance of (id∗), and in case (ii), the
conclusion is an instance of (⊥l).

1.2 The left premise of (cut) is an instance of (id∗) or (⊥l) and the right premise is
not. Note that by assumption 1, the principal formula of the right premise of (cut) is not
the cut-formula. We split case 1.2 into two further cases, which are resolved as explained
below:

1.2.1 The right premise of (cut) is derived with an instance of (⊃r), (∃X
r ), (∀X

l ),
(∃X
l ), or (∀X

r ). The result follows by (i) potentially invoking the hp-admissibility of (lsb)
(Lem. 47) and (psb) (Lem. 48) on the premise of (⊃r), (∃X

r ), (∀X
l ), (∃X

l ), or (∀X
r ) (which

gives the right premise of (cut)) to ensure the eigenvariable condition is met (if required),
followed by the hp-invertibility of (⊃r), (∃X

r ), (∀X
l ), (∃X

l ), or (∀X
r ) (Lem. 53) on the left

premise of (cut) to ensure that its contexts match those of the sequent obtained from
step (i). Then, (iii) we invoke IH between the proofs of our two newly obtained sequents,
followed by (iv) an application of the corresponding (⊃r), (∃X

r ), (∀X
l ), (∃X

l ), or (∀X
r ) rule.

1.2.2 The right premise of (cut) is derived with a rule other than (⊃r), (∃X
r ), (∀X

l ),
(∃X
l ), or (∀X

r ) (and by assumption 1.2 above, cannot be an instance of (id∗) or (⊥l)). Let
(r) be the rule used to derive the right premise of (cut). The result follows by (i) applying
the hp-invertibility of (r) (Lem. 53) to the left premise of (cut) to ensure its contexts
match the contexts of the premise(s) of (r), followed by (ii) an application of IH between
the proof(s) of the sequent(s) obtained from step (i) and the premise(s) of (r), and last,
(iii) an application of (r) gives the desired conclusion.

1.3 The right premise of (cut) is an instance of (id∗) or (⊥l) and the left premise is
not. This case is argued similarly to case 1.2 above.
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1.4 Neither premise of (cut) is an instance of (id∗) or (⊥l). Let (r1) be the rule used
to derive the left premise of (cut) and (r2) be the rule used to derive the right premise of
(cut). Since the cut formula is of the form p(~a) or ⊥ by assumption 1 above, we know
that the cut formula is not principal in (r1) and (r2). To eliminate (cut), we perform
the following: (i) We potentially apply hp-admissibility of (lsb) (Lem. 47) and/or (psb)
(Lem. 48) to the premise(s) of (r1) and (r2) to ensure that the eigenvariable condition is
met, given that (r1) or (r2) is an instance of (⊃r), (∃X

r ), (∀X
l ), (∃X

l ), or (∀X
r ). (ii) We apply

hp-invertibility of (r2) to the proof(s) of the sequent(s) obtained from the premise(s) of
(r1) in step (i) and hp-invertibility of (r1) to the proof(s) of the sequent(s) obtained from
the premise(s) of (r2) in step (i) (thus invoking Lem. 53). (iii) We invoke IH between the
proofs of the sequents obtained from step (ii), followed by (iv) applications of (r1) and
(r2) to obtain a cut-free proof of the desired conclusion.

2. The complexity of the cut formula is greater than 0, that is, |φ| > 0.

2.1 The cut formula is not principal in either premise of (cut). Similar to the proof of
case 1.4 above. Note that in case 1.4, our assumptions implied that the cut formula was
not principal in the left or right premise of (cut). Here, in case 2.1, this fact holds by
assumption, and so, we may argue similarly.

2.2 The cut formula is principal in the left, but not the right, premise of (cut). Let
(r) be the rule used to derive the right premise of (cut). Below top, we show how to
resolve the case were (r) is a unary rule, and below bottom, we show how to resolve the
case where (r) is a binary rule. In the unary case below top, (r) may be an instance of
(⊃r), (∃X

r ), (∀X
l ), (∃X

l ), or (∀X
r ), and so, in such a case it may be necessary to apply the

hp-admissibility of (lsb) (Lem. 47) and/or (psb) (Lem. 48) to ensure the eigenvariable
condition is met after the application of IH. We note that in the cases below, IH may be
applied since the sum of the heights h1 + h2 has decreased by 1.

R,Γ⇒ w : φ,∆
R′,Γ′, w : φ⇒ ∆′ (r)R,Γ, w : φ⇒ ∆ (cut)R,Γ⇒ ∆

 

R,Γ⇒ w : φ,∆
Lem. 53R′,Γ′ ⇒ w : φ,∆′ R′,Γ′, w : φ⇒ ∆′

IHR′,Γ′ ⇒ ∆′ (r)R,Γ⇒ ∆

R,Γ⇒ w : φ,∆
R′,Γ′, w : φ⇒ ∆′ R′′,Γ′′, w : φ⇒ ∆′′ (r)R,Γ, w : φ⇒ ∆ (cut)R,Γ⇒ ∆

 
Π1 Π2 (r)R,Γ⇒ ∆

Π1 =
{ R,Γ⇒ w : φ,∆

Lem. 53R′,Γ′ ⇒ w : φ,∆′ R′,Γ′, w : φ⇒ ∆′
IHR′,Γ′ ⇒ ∆′
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Π2 =
{ R,Γ⇒ w : φ,∆

Lem. 53R′′,Γ′′ ⇒ w : φ,∆′′ R′′,Γ′′, w : φ⇒ ∆′′
IHR′′,Γ′′ ⇒ ∆′′

2.3 The cut formula is principal in the right, but not the left, premise of (cut). Similar
to the previous case 2.2.

2.4 The cut formula is principal in both premises of (cut). By the cut-elimination
theorem for G3IntQ and G3IntQC (Thm. 10), we need only consider the cases where the
cut formula is of the form ∀xψ or ∃xψ, as the propositional cases (where the cut formula
is of the form ψ ∨ χ, ψ ∧ χ, or φ ⊃ χ) are resolved in a similar manner.

2.4.1 The cut formula is of the form ∃xψ. The case is resolved as shown below.
Observe that we may the first use of IH as the sum of the heights h1 + h2 is one less
than the original (cut), and we may invoke the second use of IH since the cut formula
(namely, w : ψ(a/x)) is of a smaller complexity, i.e. |ψ(a/x)| < |∃xψ| = |φ|.

R,Γ⇒ ∆, w : ψ(a/x), w : ∃xψ
(∃X
r )R,Γ⇒ ∆, w : ∃xψ

R, w : ψ(b/x),Γ⇒ ∆
(∃X
l )R, w : ∃xψ,Γ⇒ ∆ (cut)R,Γ⇒ ∆

 

Π1

R, w : ψ(b/x),Γ⇒ ∆
(wk)

R, w : ψ(b/x),Γ⇒ w : ψ(a/x),∆
(∃X
l )R, w : ∃xψ,Γ⇒ w : ψ(a/x),∆

IHR,Γ⇒ w : ψ(a/x),∆
R, w : ψ(b/x),Γ⇒ ∆

(psb)
R, w : ψ(a/x),Γ⇒ ∆

IHR,Γ⇒ ∆

Π1 =
{
R,Γ⇒ ∆, w : ψ(a/x), w : ∃xψ

2.4.2 The cut formula is of the form ∀xψ. The case is resolved as shown below. We
my invoke the first use of IH since the sum of the heights h1 + h2 is one less than the
original (cut), and we may invoke the second use of IH since the cut formula v : ψ(a/x) is
of a smaller complexity, that is |ψ(a/x)| < |∀xψ| = |φ|. We note that the use of Lem. 58
is justified since there exists a propagation path π(w, v) in the propagation graph of
R,Γ⇒ ∆ such that sπ(w, v) ∈ LS4(a) due to the application of (∀X

l ).

R, w ≤ u,Γ⇒ ∆, u : ψ(b/x)
(∀X
r )R,Γ⇒ ∆, w : ∀xψ

R, v : ψ(a/x), w : ∀xψ,Γ⇒ ∆
(∀X
l )R, w : ∀xψ,Γ⇒ ∆ (cut)R,Γ⇒ ∆
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R, w ≤ u,Γ⇒ ∆, u : ψ(b/x)
(lsb)

R, w ≤ v,Γ⇒ ∆, v : ψ(b/x)
(psb)

R, w ≤ v,Γ⇒ ∆, v : ψ(a/x)
Π1 Π2 IHR, w ≤ v, v : ψ(a/x),Γ⇒ ∆

IHR, w ≤ v,Γ⇒ ∆
Lem. 58R,Γ⇒ ∆

Π1 =
{ R, w ≤ u,Γ⇒ ∆, u : ψ(b/x)

(∀X
r )R,Γ⇒ ∆, w : ∀xψ (wk)

R, w ≤ v, v : ψ(a/x),Γ⇒ ∆, w : ∀xψ

Π2 =
{

R, v : ψ(a/x), w : ∀xψ,Γ⇒ ∆
(wk)

R, w ≤ v, v : ψ(a/x), w : ∀xψ,Γ⇒ ∆
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Semi-Thue system, 17
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Display rule, 114
Domain atom, 54
Domain closure function, 160
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String, 16

Literal, 13
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Orthogonal, 195
Ought implies logical possibility, 29
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Predicate symbol, 19
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Residuation rule, 114
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for G3Km(S), 48
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Sequent graph

for deontic STIT logics, 84
for first-order intuitionistic logics, 67
for grammar logics, 52
of a nested sequent for IntQ and IntQC,
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of a nested sequent for Km(S), 108

Settledness operator, 25
Shallow nested calculus, 114
Stable, 181
Strings, 15
Structural rule, 41

for deontic STIT logics, 73
for first-order intuitionistic logics, 59
for grammar logics, 50

Structural rule elimination, 87
Substitution

for first-order intuitionistic formulae,
23

Transformation, 93
Translation, 93
Translation N

for first-order intuitionistic logics, 169
for grammar logics, 110

Translation L
for first-order intuitionistic logics, 170
for grammar logics, 111

Tree, 43
Truth lemma, 35

Undirected i-path, 119
Universal closure, 22

Valuation function∑
-model, 14

IntQC-model, 21
IntQ-model, 21
for deontic STIT logics, 27

Variable occurrence, 21
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