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Outline

Introduce several local consistency notions:
- node consistency
- arc consistency, hyper-arc consistency, directional arc consistency
- path consistency, directional path consistency
- k-consistency, strong k-consistency
- relational consistency

Use the proof theoretic framework to characterize these notions
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Node Consistency

CSP is node consistent if for every variable x every unary constraint on x 
coincides with the domain of x.

Examples:
Assume C contains no unary constraints.

ℕ - natural numbers
ℤ - integers
- 〈C, x1 ≥ 0, ..., xn ≥ 0 ; x1 ∈ ℕ, ..., xn ∈ ℕ  is node consistent〉

- 〈C, x1 ≥ 0, ..., xn ≥ 0 ; x1 ∈ ℕ, ..., xn-1 ∈ ℕ, xn ∈ ℤ  is not node consistent〉
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Arc Consistency

A constraint C on the variables x, y with the domains X and Y (so C   X   Y) 
is arc consistent if
- a   Xb   Y (a,b)   C
- b   Ya   X (a,b)   C

A CSP is arc consistent if all its binary constraints are

Examples:
- 〈x < y ; x ∈ [2..6], y ∈ [3..7]  is arc consistent〉
- 〈x < y ; x ∈ [2..7], y ∈ [3..7]  is not arc consistent〉
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Status of Arc Consistency

Arc consistency does not imply consistency!

Example: 〈x = y, x ≠ y ; x ∈ {a,b}, y ∈ {a,b}〉

Consistency does not imply arc consistency!

Example: 〈x = y ; x ∈ {a,b}, y ∈ {a}〉

For some CSP's arc consistency does imply consistency.

(A general result later.)
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Proof Rules for Arc Consistency

ARC CONSISTENCY 1

where D'x ≔ {a ∈ Dx | ∃b ∈ Dy (a,b) ∈ C}

ARC CONSISTENCY 2

where D'
y ≔ {b ∈ Dy | ∃a ∈ Dx (a,b) ∈ C}

A CSP is arc consistent iff it is closed under the 
applications of the ARC CONSISTENCY rules 1 and 2.

C ; x∈Dx , y ∈Dy

C ; x∈D ′x , y∈Dy

C ; x∈Dx , y ∈Dy

C ; x∈Dx , y ∈Dy
'



7Foundations of Constraint Programming Local Consistency

Intuition and Example

The ARC CONSISTENCY rules

Example
1 2 3

4 5

6 7

8

H O S E S
A T

H I K E
A L E E

L A S E R

E L
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Example, ctd

a : C1,2, b : C1,3, c : C4,2, d : C4,5, e : C4,2, f : C7,2, g : C7,5, h : C8,2, i : C8,6, j : C8,3

d

d
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Hyper-arc Consistency

A constraint C on the variables x1, ..., xn with the domains D1, ..., Dn is 
hyper-arc consistent if

∀i ∈ [1..n]∀a ∈ Di ∃d ∈ C a = d[xi]

CSP is hyper-arc consistent if all its constraints are

Examples:
- 〈x ∧ y = z ; x = 1, y ∈ {0,1}, z ∈ {0,1}  is hyper-arc consistent〉
- 〈x ∧ y = z ; x ∈ {0,1}, y ∈ {0,1}, z = 1  is not hyper-arc consistent〉
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Characterization of Hyper-arc Consistency

HYPER-ARC CONSISTENCY

- where C a constraint on the variables x1, ..., xn, i ∈ [1..n]

- D'
i ≔ {a ∈ Di | ∃d ∈ C a = d[xi]}

A CSP is hyper-arc consistent iff it is closed under the applications 
of the HYPER-ARC CONSISTENCY rule.

〈C ; x1∈D1 , ... , xn∈Dn 〉
〈C ; ... , x i∈D ′y , ... 〉
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Directional Arc Consistency

Assume a linear ordering Á on the variables

A constraint C on x, y with the domains Dx and Dy is directionally arc 
consistent w.r.t. Á if

- ∀a ∈ Dx ∃b ∈ Dy (a,b) ∈ C, provided x Á y 

- ∀b ∈ Dy ∃a ∈ Dx (a,b) ∈ C, provided y Á x 

A CSP is directionally arc consistent w.r.t. Á if all its binary constraints are

Example:

〈x < y ; x ∈ [2..7], y ∈ [3..7]〉

not arc consistent

directionally arc consistent w.r.t. y Á x

not directionally arc consistent w.r.t. x Á y
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Characterization of Directional Arc Consistency

P Á ≔ P with the variables reordered w.r.t. Á

Example:

Take P ≔ 〈x < y, y ≠ z ; x ∈ [2..10], y ∈ [3..7], z ∈ [3..6]〉

and y Á x Á z

Then P Á ≔ 〈y > x, y ≠ z ; y ∈ [3..7], x ∈ [2..10], z ∈ [3..6]〉

A CSP P is directionally arc consistent w.r.t. Á iff the CSP PÁ is closed 

under the applications of the ARC CONSISTENCY rule 1.
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Limitations of Arc Consistency

Example:

〈x < y, y < z, z < x ; x, y, z ∈ [1..100000]  〉 is inconsistent

Applying ARC CONSISTENCY rule 1 we get

〈x < y, y < z, z < x ; x ∈ [1..99999], y, z ∈ [1..100000]  etc〉

Disadvantages:

Large number of steps

Length depends on the size of the domains

Direct proof: use transitivity of <

Path consistency generalizes this form of reasoning to arbitrary binary relations.
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Normalized CSP's

A CSP P is normalized if for each pair x, y of its variables at most one 

constraint on x, y exists.

Denote by Cx,y the unique constraint on x, y if it exists and otherwise the 
“universal” relation on x, y.

Consider binary relations R and S:

transposition of R:

RT ≔ {(b,a) | (a,b) ∈ R}

composition of R and S:

R⋅S ≔ {(a,b) | ∃c ((a,c) ∈ R, (c,b) ∈ S)}
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Path Consistency

A normalized CSP is path consistent if for each subset {x,y,z} of its variables

Cx,z   Cx,y ⋅Cy,z

Note: A normalized CSP is path consistent iff for each subsequence x, y, z of 
its variables

Cx,y   Cx,z ⋅C
T

y,z

Cx,z   Cx,y ⋅Cy,z

Cy,z   CT
x,y ⋅Cx,z

Intuition:
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Path Consistency: Example 1

〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]〉 path consistent

Cx,y = {(a,b) | a < b, a ∈ [0..4], b ∈ [1..5]}

Cx,z = {(a,c) | a < c, a ∈ [0..4], c ∈ [6..10]}

Cy,z = {(b,c) | b < c, b ∈ [1..5], c ∈ [6..10]}

➸ the 3 conditions (cf. previous slide) are satisfied

<
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Path Consistency: Example 2

〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉 not path consistent

Cx,z = {(a,c) | a < c, a ∈ [0..4], c ∈ [5..10]}

But for 4 ∈ [0..4] and 5 ∈ [5..10] there is no y ∈ [1..5] s.t. 4 < y and y < 5.
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Characterization of Path Consistency

PATH CONSISTENCY 1

  where C'x,y ≔ Cx,y ∩ Cx,z ⋅C
T
y,z 

PATH CONSISTENCY 2

  where C'x,z ≔ Cx,z ∩ Cx,y ⋅Cy,z 

PATH CONSISTENCY 3

  where C'y,z ≔ Cy,z ∩ CT
x,y ⋅Cx,z

A normalized CSP is path consistent iff it is closed under the 
applications of the PATH CONSISTENCY rules 1, 2, and 3.

C x , y ,C x ,z ,Cy , z

C ' x , y ,Cx , z ,C y ,z

C x , y ,C x ,z ,Cy , z

C x , y ,C x ,z , C ' y ,z

C x , y ,C x ,z ,Cy , z

C x , y ,C ' x , z ,C y ,z
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m-Path Consistency

A normalized CSP is m-path consistent (m ≥ 2) if for each subset {x1, ..., xm+1} 
of its variables

Cx1,xm+1
   Cx1,x2

⋅Cx2,x3
⋅...⋅Cxm,xm+1

A normalized CSP is m-path consistent if for each subset {x1, ..., xm+1} of its 
variables

if (a1,am+1) ∈ Cx1,xm+1
, then for some a2, ..., am: 

(ai,ai+1) ∈ Cxi,xi+1
 for all i ∈ [1..m]

a2, ..., am: path connecting a1 and am+1

Theorem

Every normalized, path consistent CSP is m-path consistent for each m ≥ 2

Proof: Induction on m
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Directional Path Consistency

Assume a linear ordering Á on the variables. A normalized CSP is directionally 

path consistent w.r.t. Á if for each subset {x, y, z} of its variables

Cx,z   Cx,y ⋅Cy,z, provided x, z Á y

A normalized CSP is directionally path consistent w.r.t. Á iff for each 

subsequence x, y, z of its variables

Cx,y   Cx,z ⋅C
T

y,z, provided x, y Á z

Cx,z   Cx,y ⋅Cy,z, provided x, z Á y

Cy,z   CT
x,y ⋅Cx,z, provided y, z Á x
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Examples

Recall 〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉

Cx,y = {(a,b) | a < b, a ∈ [0..4], b ∈ [1..5]}

Cx,z = {(a,c) | a < c, a ∈ [0..4], c ∈ [5..10]}

Cy,z = {(b,c) | b < c, b ∈ [1..5], c ∈ [5..10]}

It is directionally path consistent w.r.t. the ordering Á in which x, y Á z.

Indeed, for every pair (a,b) ∈ Cx,y there exists z ∈ [5..10] such that a < z and b < z.

It is directionally path consistent w.r.t. the ordering Á in which y, z Á x.

Indeed, for every pair (b,c) ∈ Cy,z there exists x ∈ [0..4] such that x < b and x < c.

It is not directionally path consistent w.r.t. the ordering Á in which x, z Á y.
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Characterization of Directional Path Consistency

A normalized CSP P is directionally path consistent w.r.t. Á iff PÁ is 

closed under the applications of the PATH CONSISTENCY rule 1.
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Instantiations
Fix a CSP P.

Instantiation: function on a subset of the variables of P. It assigns to each
 

variable a value from its domain.
Notation: {(x1,d1), ..., (xk,dk)}

C: a constraint on x1, ..., xk 
Instantiation {(x1,d1), ..., (xk,dk)} satisfies C if (d1, ..., dk) ∈ C

I: instantiation with a domain X, Y  X
I | Y: restriction of I to Y

Instantiation I with domain X is consistent if for every constraint C of P on
 

some Y with Y  X:  I | Y satisfies C.

Consistent instantiation is k-consistent if its domain consists of k variables.

An instantiation is a solution to P if it is consistent and defined on all
 

variables of P.
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Example

Consider 〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉

Let I ≔ {(x,0), (y,5), (z,6)}

I | {x,y} = {(x,0), (y,5)}; it satisfies x < y

I | {x,z} = {(x,0), (z,6)}; it satisfies x < z

I | {y,z} = {(y,5), (z,6)}; it satisfies y < z

So I is a 3-consistent instantiation. It is a solution to this CSP.
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k-Consistency

CSP is 1-consistent if for every variable x with a domain D each unary constraint 
on x equals D

CSP is k-consistent, k > 1, if every (k – 1)-consistent instantiation can be 
extended to a k-consistent instantiation no matter which new variable is chosen.

1-consistency aka node consistency

Note:

A node consistent CSP is arc consistent iff it is 2-consistent

A node consistent, normalized, binary CSP is path consistent iff it is 3-consistent
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k-Consistency, ctd

(i) Fix k > 1: There exists a CSP that is (k – 1)-consistent but not k-consistent

(ii) Fix k > 2: There exists a CSP that is not (k – 1)-consistent but is k-consistent

Proof of (i) for k = 3: Proof of (ii):
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Strong k-Consistency

CSP strongly k-consistent, k ≥ 1, if it is i-consistent for every i ∈ [1..k]

Theorem

Take a CSP with k variables, k ≥ 1, s.t.

at least one domain is non-empty

it is strongly k-consistent

Then it is consistent.

Proof: Construct a solution by induction: Prove that

(i) there exists a 1-consistent instantiation

(ii) for every i ∈ [2..k] each (i – 1)-consistent instantiation can be extended

 to an i-consistent instantiation

Disadvantage: Required level of strong consistency = # of variables
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Graphs and CSP's

A graph can be associated with a CSP P.

Nodes: variables of P

Arcs: connect two variables if they appear jointly in some constraint
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Examples

SEND + MORE = MONEY puzzle
The graph has 8 nodes, S, E, N, D, M, O, R, Y, and is complete

〈x + y = z, x + u = v ; DE〉

〈x < z, x < y, y < u, y < v ; DE〉



30Foundations of Constraint Programming Local Consistency

Width of a Graph
G: finite graph

Á          : linear ordering on the nodes of G

Á          -width of a node of G: number of arcs in G that connect it to Á          -smaller nodes

Á-width of G: maximum of the Á          -widths of its nodes

The width of G: minimum of Á          -widths for all linear orderings Á          
Examples:

SEND + MORE = MONEY puzzle
Complete graph with 8 nodes, so its width is 7

It is a tree, so its width = 1
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Examples, ctd

The width of this graph is 2.

Two examples of the Á          -widths of the nodes:
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Consistency via Strong k-Consistency

Theorem: Given a CSP such that

all domains are non-empty

it is strongly k-consistent

the graph associated with it has width k – 1 

Then this CSP is consistent.

Proof: Assume n variables

Reorder the variables so that the resulting Á          -width is k – 1 

Prove by induction that
- there exists consistent instantiation with domain {x1}
- for every j ∈ [1..n – 1] each consistent instantiation with domain {x1, ..., xj}

can be extended to a consistent instantiation with domain {x1, ..., xj+1}
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Useful Corollaries
Corollary 1
Given: P and a linear ordering Á such that 

all domains are non-empty

P is node consistent

P is directionally arc consistent w.r.t. Á
the Á-width of the graph associated with P is 1

Then P is consistent.

Corollary 2
Given: P and a linear ordering Á such that

all domains are non-empty

P is directionally arc consistent w.r.t. Á
P is directionally path consistent w.r.t. Á
the Á-width of the graph associated with P is 2

Then P is consistent.
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Relational Consistency
“Ultimate” notion of local consistency

Given: P and a subsequence C of its constraints

 P | C:
- remove from P all constraints not in C
- delete all domain expressions involving variables not present in any constraint C

P is relationally (i, m)-consistent if for every sequence C of m constraints
 

and X  Var(C) of size i:

every consistent instantiation with the domain X can be extended to a solution to P | C

Intuition:

For every sequence of m constraints and for every set X of i variables, each present in 
one of these m constraints:

Each consistent instantiation with the domain X can be extended to a solution to all these 
m constraints.
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Relational Consistency, ctd

Some properties:

A node consistent, binary CSP is arc consistent iff it is relationally (1, 1)-consistent

A node consistent CSP is hyper-arc consistent iff it is relationally (1, 1)-consistent

Every node consistent, normalized, relationally (2, 3)-consistent CSP is path consistent

Every relationally (k – 1, k)-consistent CSP with only binary constraints is k-consistent

A CSP with m constraints is consistent iff it is relationally (0, m)-consistent
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Some Notation

Given: constraint C on variables X, subsequence Y of X


Y
(C) ≔ {d[Y] | d ∈ C}

Given: a sequence of constraints C1, ..., Cm on variables X1, ..., Xm

C1 « ... « Cm ≔ {d | d[Xi] | ∈ Ci for i ∈ [1..m]}
C1 « ... « Cm is a constraint on the “union” of X1, ..., Xm
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Characterization of Relational Consistency

RELATIONAL (i, m)-CONSISTENCY

If a regular CSP is closed under the applications of RELATIONAL 
(i, m)-CONSISTENCY rule for each subsequence of constraints 
C1, ..., Cm and each subsequence X of Var(C1, ..., Cm) of length i, 
then it is relationally (i, m)-consistent.

CX

C X∩∏X
C1 ...Cm
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Objectives

Introduce several local consistency notions:
- node consistency
- arc consistency, hyper-arc consistency, directional arc consistency
- path consistency, directional path consistency
- k-consistency, strong k-consistency
- relational consistency

Use the proof theoretic framework to characterize these notions
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