Lecture 4

Local Consistency

Outline

- Introduce several local consistency notions:
 - node consistency
 - arc consistency, hyper-arc consistency, directional arc consistency
 - path consistency, directional path consistency
 - *k*-consistency, strong *k*-consistency
 - relational consistency
- Use the proof theoretic framework to characterize these notions

Node Consistency

- CSP is node consistent if for every variable x every unary constraint on x coincides with the domain of x.
- Examples: Assume C contains no unary constraints.
 - IN natural numbers Z - integers - $\langle C, x_1 \ge 0, ..., x_n \ge 0$; $x_1 \in \mathbb{N}, ..., x_n \in \mathbb{N} \rangle$ is node consistent - $\langle C, x_1 \ge 0, ..., x_n \ge 0$; $x_1 \in \mathbb{N}, ..., x_{n-1} \in \mathbb{N}, x_n \in \mathbb{Z} \rangle$ is not node consistent

Arc Consistency

- A constraint C on the variables x, y with the domains X and Y (so $C \subseteq X \times Y$) is arc consistent if
 - $\forall a \in X \exists b \in Y (a,b) \in C$
 - $\forall b \in Y \exists a \in X (a,b) \in C$
- A CSP is arc consistent if all its binary constraints are
- Examples:
 - $\langle x < y ; x \in [2..6], y \in [3..7] \rangle$ is arc consistent
 - $\langle x < y ; x \in [2..7], y \in [3..7] \rangle$ is not arc consistent

Status of Arc Consistency

Arc consistency does not imply consistency!
 Example: ⟨x = y, x ≠ y ; x ∈ {a,b}, y ∈ {a,b}⟩

Consistency does not imply arc consistency!

Example: $\langle x = y ; x \in \{a, b\}, y \in \{a\} \rangle$

 For some CSP's arc consistency does imply consistency. (A general result later.)

Proof Rules for Arc Consistency

ARC CONSISTENCY 1

$$\frac{C; x \in D_x, y \in D_y}{C; x \in D'_x, y \in D_y}$$

where $D'_x \coloneqq \{a \in D_x \mid \exists b \in D_y (a,b) \in C\}$

ARC CONSISTENCY 2

$$\frac{C; x \in D_x, y \in D_y}{C; x \in D_x, y \in D_y'}$$

where $D'_y \coloneqq \{b \in D_y \mid \exists a \in D_x (a,b) \in C\}$

A CSP is arc consistent iff it is closed under the applications of the ARC CONSISTENCY rules 1 and 2.

Foundations of Constraint Programming

Local Consistency

Intuition and Example

The ARC CONSISTENCY rules

Example

¹ H	0	² S	E	³ S
		Α		Т
	⁴H		⁵ K	Ε
⁶ A			E	Ε
8	Α	S	Ε	R
Е			L	

Example, ctd

 $a: C_{1,2}, b: C_{1,3}, c: C_{4,2}, d: C_{4,5}, e: C_{4,2}, f: C_{7,2}, g: C_{7,5}, h: C_{8,2}, i: C_{8,6}, j: C_{8,3}$

Foundations of Constraint Programming

Local Consistency

Hyper-arc Consistency

 A constraint C on the variables x₁, ..., x_n with the domains D₁, ..., D_n is hyper-arc consistent if

 $\forall i \in [1..n] \forall a \in D_i \exists d \in C \ a = d[x_i]$

- CSP is hyper-arc consistent if all its constraints are
- Examples:
 - $\langle x \land y = z; x = 1, y \in \{0,1\}, z \in \{0,1\}\rangle$ is hyper-arc consistent
 - $\langle x \land y = z ; x \in \{0,1\}, y \in \{0,1\}, z = 1 \rangle$ is not hyper-arc consistent

Characterization of Hyper-arc Consistency

HYPER-ARC CONSISTENCY $\frac{\langle C; x_1 \in D_1, \dots, x_n \in D_n \rangle}{\langle C; \dots, x_i \in D'_y, \dots \rangle}$

- where C a constraint on the variables $x_1, ..., x_n, i \in [1..n]$

 $-D'_{i} \coloneqq \{a \in D_{i} \mid \exists d \in C \ a = d[x_{i}]\}$

A CSP is hyper-arc consistent iff it is closed under the applications of the HYPER-ARC CONSISTENCY rule.

Directional Arc Consistency

Assume a linear ordering \prec on the variables

- A constraint *C* on *x*, *y* with the domains D_x and D_y is directionally arc consistent w.r.t. \prec if
 - $\forall a \in D_x \exists b \in D_y (a,b) \in C$, provided $x \prec y$
 - $-\forall b \in D_y \exists a \in D_x (a,b) \in C$, provided $y \prec x$
- A CSP is directionally arc consistent w.r.t. ≺ if all its binary constraints are

Example:

 $\langle x < y \; ; \; x \in [2..7], \; y \in [3..7] \rangle$

- not arc consistent
- directionally arc consistent w.r.t. $y \prec x$
- not directionally arc consistent w.r.t. $x \prec y$

Foundations of Constraint Programming

Characterization of Directional Arc Consistency

 $\mathcal{P}_{\prec}\coloneqq \mathcal{P}$ with the variables reordered w.r.t. \prec

Example: Take $\mathcal{P} \coloneqq \langle x < y, y \neq z ; x \in [2..10], y \in [3..7], z \in [3..6] \rangle$ and $y \prec x \prec z$ Then $\mathcal{P}_{\prec} \coloneqq \langle y > x, y \neq z ; y \in [3..7], x \in [2..10], z \in [3..6] \rangle$

A CSP \mathcal{P} is directionally arc consistent w.r.t. \prec iff the CSP \mathcal{P}_{\prec} is closed under the applications of the ARC CONSISTENCY rule 1.

Foundations of Constraint Programming

Limitations of Arc Consistency

Example:

 $\langle x < y, y < z, z < x; x, y, z \in [1..100000] \rangle$ is inconsistent

Applying ARC CONSISTENCY rule 1 we get $\langle x < y, y < z, z < x; x \in [1..99999], y, z \in [1..100000] \rangle$ etc

Disadvantages:

- Large number of steps
- Length depends on the size of the domains

Direct proof: use transitivity of <

Path consistency generalizes this form of reasoning to arbitrary binary relations.

Normalized CSP's

A CSP \mathcal{P} is normalized if for each pair *x*, *y* of its variables at most one

constraint on x, y exists.

Denote by $C_{x,y}$ the unique constraint on x, y if it exists and otherwise the "universal" relation on x, y.

Consider binary relations *R* and *S*:

• transposition of *R*:

 $R^T \coloneqq \{(b,a) \mid (a,b) \in R\}$

• composition of *R* and *S*:

 $R \cdot S \coloneqq \{(a,b) \mid \exists c \ ((a,c) \in R, \ (c,b) \in S)\}$

Path Consistency

A normalized CSP is path consistent if for each subset $\{x, y, z\}$ of its variables

$$C_{x,z} \subseteq C_{x,y} \cdot C_{y,z}$$

Note: A normalized CSP is path consistent iff for each subsequence *x*, *y*, *z* of its variables

$$C_{x,y} \subseteq C_{x,z} \cdot C_{y,z}^{T}$$
$$C_{x,z} \subseteq C_{x,y} \cdot C_{y,z}$$
$$C_{y,z} \subseteq C_{x,y}^{T} \cdot C_{x,z}$$

Intuition:

Path Consistency: Example 1

 $(x < y, y < z, x < z; x \in [0..4], y \in [1..5], z \in [6..10])$ path consistent

$$C_{x,y} = \{(a,b) \mid a < b, a \in [0..4], b \in [1..5]\}$$

 $C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [6..10]\}$
 $C_{y,z} = \{(b,c) \mid b < c, b \in [1..5], c \in [6..10]\}$
→ the 3 conditions (cf. previous slide) are satisfied

Foundations of Constraint Programming

Path Consistency: Example 2

 $(x < y, y < z, x < z; x \in [0..4], y \in [1..5], z \in [5..10])$ not path consistent

$$C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [5..10]\}$$

But for $4 \in [0..4]$ and $5 \in [5..10]$ there is no $y \in [1..5]$ s.t. $4 < y$ and $y < 5$.

Characterization of Path Consistency

PATH CONSISTENCY 1

$$\frac{C_{x,y}, C_{x,z}, C_{y,z}}{C'_{x,y}, C_{x,z}, C_{y,z}} \quad \text{where } C'_{x,y} \coloneqq C_{x,y} \cap C_{x,z} \cdot C'_{y,z}$$

PATH CONSISTENCY 2

$$\frac{C_{x,y}, C_{x,z}, C_{y,z}}{C_{x,y}, C'_{x,z}, C_{y,z}} \quad \text{where } C'_{x,z} \coloneqq C_{x,z} \cap C_{x,y} \cdot C_{y,z}$$

PATH CONSISTENCY 3

$$\frac{C_{x,y}, C_{x,z}, C_{y,z}}{C_{x,y}, C_{x,z}, C'_{y,z}} \quad \text{where } C'_{y,z} \coloneqq C_{y,z} \cap C^{T}_{x,y} \cdot C_{x,z}$$

A normalized CSP is path consistent iff it is closed under the applications of the PATH CONSISTENCY rules 1, 2, and 3.

m-Path Consistency

A normalized CSP is *m*-path consistent ($m \ge 2$) if for each subset { $x_1, ..., x_{m+1}$ } of its variables

$$C_{x_1,x_{m+1}} \subseteq C_{x_1,x_2} \cdot C_{x_2,x_3} \cdot \ldots \cdot C_{x_m,x_{m+1}}$$

A normalized CSP is *m*-path consistent if for each subset $\{x_1, ..., x_{m+1}\}$ of its variables

if
$$(a_1, a_{m+1}) \in C_{x_1, x_{m+1}}$$
, then for some $a_2, ..., a_m$:
 $(a_i, a_{i+1}) \in C_{x_i, x_{i+1}}$ for all $i \in [1..m]$

 $a_2, ..., a_m$: path connecting a_1 and a_{m+1}

Theorem

Every normalized, path consistent CSP is *m*-path consistent for each $m \ge 2$

Proof: Induction on *m*

Foundations of Constraint Programming

Directional Path Consistency

Assume a linear ordering \prec on the variables. A normalized CSP is directionally path consistent w.r.t. \prec if for each subset {*x*, *y*, *z*} of its variables

 $C_{x,z} \subseteq C_{x,y} \cdot C_{y,z}$, provided $x, z \prec y$

A normalized CSP is directionally path consistent w.r.t. \prec iff for each

subsequence *x*, *y*, *z* of its variables

$$C_{x,y} \subseteq C_{x,z} \cdot C^{T}_{y,z}$$
, provided $x, y \prec z$
 $C_{x,z} \subseteq C_{x,y} \cdot C_{y,z}$, provided $x, z \prec y$
 $C_{y,z} \subseteq C^{T}_{x,y} \cdot C_{x,z}$, provided $y, z \prec x$

Foundations of Constraint Programming

Examples

Recall $\langle x < y, y < z, x < z; x \in [0..4], y \in [1..5], z \in [5..10] \rangle$

 $C_{x,y} = \{(a,b) \mid a < b, a \in [0..4], b \in [1..5]\}$ $C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [5..10]\}$ $C_{y,z} = \{(b,c) \mid b < c, b \in [1..5], c \in [5..10]\}$

- It is directionally path consistent w.r.t. the ordering \prec in which $x, y \prec z$. Indeed, for every pair $(a,b) \in C_{x,y}$ there exists $z \in [5..10]$ such that a < z and b < z.
- It is directionally path consistent w.r.t. the ordering \prec in which $y, z \prec x$. Indeed, for every pair $(b,c) \in C_{y,z}$ there exists $x \in [0..4]$ such that x < b and x < c.
- It is not directionally path consistent w.r.t. the ordering \prec in which x, $z \prec y$.

Local Consistency

Characterization of Directional Path Consistency

A normalized CSP \mathcal{P} is directionally path consistent w.r.t. \prec iff \mathcal{P}_{\prec} is closed under the applications of the PATH CONSISTENCY rule 1.

Instantiations

Fix a CSP \mathcal{P} .

• Instantiation: function on a subset of the variables of \mathcal{P} . It assigns to each

variable a value from its domain. Notation: $\{(x_1, d_1), ..., (x_k, d_k)\}$

- C: a constraint on $x_1, ..., x_k$ Instantiation { $(x_1, d_1), ..., (x_k, d_k)$ } satisfies C if $(d_1, ..., d_k) \in C$
- *I*: instantiation with a domain $X, Y \subseteq X$ *I* | *Y*: restriction of *I* to *Y*
- Instantiation *I* with domain *X* is consistent if for every constraint *C* of \mathcal{P} on some *Y* with $Y \subseteq X$: $I \mid Y$ satisfies *C*.
- Consistent instantiation is k-consistent if its domain consists of k variables.
- An instantiation is a solution to *P* if it is consistent and defined on all variables of *P*.

Foundations of Constraint Programming

Local Consistency

Example

Consider $\langle x < y, y < z, x < z ; x \in [0..4], y \in [1..5], z \in [5..10] \rangle$ Let $I \coloneqq \{(x,0), (y,5), (z,6)\}$

- I | {x,y} = {(x,0), (y,5)}; it satisfies x < y</p>
- I | {x,z} = {(x,0), (z,6)}; it satisfies x < z</p>
- I | {y,z} = {(y,5), (z,6)}; it satisfies y < z</p>
- So *I* is a 3-consistent instantiation. It is a solution to this CSP.

k-Consistency

- CSP is 1-consistent if for every variable x with a domain D each unary constraint on x equals D
- CSP is k-consistent, k > 1, if every (k 1)-consistent instantiation can be extended to a k-consistent instantiation no matter which new variable is chosen.

1-consistency aka node consistency

Note:

- A node consistent CSP is arc consistent iff it is 2-consistent
- A node consistent, normalized, binary CSP is path consistent iff it is 3-consistent

k-Consistency, ctd

(i) Fix k > 1: There exists a CSP that is (k - 1)-consistent but not *k*-consistent (ii) Fix k > 2: There exists a CSP that is not (k - 1)-consistent but is *k*-consistent

Strong k-Consistency

CSP strongly *k*-consistent, $k \ge 1$, if it is *i*-consistent for every $i \in [1..k]$

Theorem

Take a CSP with *k* variables, $k \ge 1$, s.t.

- at least one domain is non-empty
- it is strongly *k*-consistent

Then it is consistent.

Proof: Construct a solution by induction: Prove that

- (i) there exists a 1-consistent instantiation
- (ii) for every $i \in [2..k]$ each (i 1)-consistent instantiation can be extended to an *i*-consistent instantiation

Disadvantage: Required level of strong consistency = # of variables

Graphs and CSP's

A graph can be associated with a CSP \mathcal{P} .

Nodes: variables of \mathcal{P}

Arcs: connect two variables if they appear jointly in some constraint

Examples

Width of a Graph

G: finite graph

- \prec : linear ordering on the nodes of G
- \prec -width of a node of G: number of arcs in G that connect it to \prec -smaller nodes
- \prec -width of G: maximum of the \prec -widths of its nodes
- The width of G: minimum of \prec -widths for all linear orderings \prec

Examples:

SEND + MORE = MONEY puzzle
 Complete graph with 8 nodes, so its width is 7

It is a tree, so its width = 1

Examples, ctd

The width of this graph is 2.

Two examples of the \prec -widths of the nodes:

Consistency via Strong k-Consistency

Theorem: Given a CSP such that

- all domains are non-empty
- it is strongly *k*-consistent
- the graph associated with it has width k-1

Then this CSP is consistent.

Proof: Assume *n* variables

- Reorder the variables so that the resulting \prec -width is k-1
- Prove by induction that
 - there exists consistent instantiation with domain $\{x_1\}$
 - for every $j \in [1..n 1]$ each consistent instantiation with domain $\{x_1, ..., x_j\}$ can be extended to a consistent instantiation with domain $\{x_1, ..., x_{j+1}\}$

Useful Corollaries

Corollary 1

Given: \mathcal{P} and a linear ordering \prec such that

- all domains are non-empty
- \mathcal{P} is node consistent
- \mathcal{P} is directionally arc consistent w.r.t. \prec
- the \prec -width of the graph associated with \mathcal{P} is 1

Then \mathcal{P} is consistent.

Corollary 2

Given: $\mathcal P$ and a linear ordering \prec such that

- all domains are non-empty
- \mathcal{P} is directionally arc consistent w.r.t. \prec
- \mathcal{P} is directionally path consistent w.r.t. \prec
- the \prec -width of the graph associated with \mathcal{P} is 2

Then \mathcal{P} is consistent.

Foundations of Constraint Programming

Local Consistency

Relational Consistency

"Ultimate" notion of local consistency

- Given: *P* and a subsequence *C* of its constraints
 P | *C*:
 - remove from ${\mathcal P}$ all constraints not in ${\mathcal C}$
 - delete all domain expressions involving variables not present in any constraint $\ensuremath{\mathcal{C}}$
- \mathcal{P} is relationally (*i*, *m*)-consistent if for every sequence \mathcal{C} of *m* constraints

and $X \subseteq Var(\mathcal{C})$ of size *i*:

every consistent instantiation with the domain *X* can be extended to a solution to $\mathcal{P} \mid \mathcal{C}$

Intuition:

For every sequence of *m* constraints and for every set *X* of *i* variables, each present in one of these *m* constraints:

Each consistent instantiation with the domain X can be extended to a solution to all these m constraints.

Foundations of Constraint Programming

Local Consistency

Relational Consistency, ctd

Some properties:

- A node consistent, binary CSP is arc consistent iff it is relationally (1, 1)-consistent
- A node consistent CSP is hyper-arc consistent iff it is relationally (1, 1)-consistent
- Every node consistent, normalized, relationally (2, 3)-consistent CSP is path consistent
- Every relationally (k 1, k)-consistent CSP with only binary constraints is k-consistent
- A CSP with *m* constraints is consistent iff it is relationally (0, *m*)-consistent

Some Notation

- Given: constraint *C* on variables *X*, subsequence *Y* of *X* $\prod_{Y}(C) \coloneqq \{d[Y] \mid d \in C\}$
- Given: a sequence of constraints $C_1, ..., C_m$ on variables $X_1, ..., X_m$ $C_1 \bowtie ... \bowtie C_m \coloneqq \{d \mid d[X_i] \mid \in C_i \text{ for } i \in [1..m]\}$ $C_1 \bowtie ... \bowtie C_m$ is a constraint on the "union" of $X_1, ..., X_m$

Characterization of Relational Consistency

RELATIONAL (i, m)-CONSISTENCY

$$\frac{C_{X}}{C_{X} \cap \prod_{X} (C_{1} \bowtie ... \bowtie C_{m})}$$

If a regular CSP is closed under the applications of RELATIONAL (i, m)-CONSISTENCY rule for each subsequence of constraints $C_1, ..., C_m$ and each subsequence X of $Var(C_1, ..., C_m)$ of length *i*, then it is relationally (i, m)-consistent.

Objectives

- Introduce several local consistency notions:
 - node consistency
 - arc consistency, hyper-arc consistency, directional arc consistency
 - path consistency, directional path consistency
 - *k*-consistency, strong *k*-consistency
 - relational consistency
- Use the proof theoretic framework to characterize these notions