Complexity Theory

Exercise 3: Time Complexity

3 November 2025

Exercise 3.1. Show that P is closed under concatenation and Kleene star.

Exercise 3.2. A language $\mathbf{L} \in P$ is complete for P under polynomial-time reductions if $\mathbf{L}' \leq_p \mathbf{L}$ for every $\mathbf{L}' \in P$. Show that every language in P except \emptyset and Σ^* is complete for P under polynomial-time reductions.

Exercise 3.3. Consider the problem **CLIQUE**:

Input: An undirected graph G and some $k \in \mathbb{N}$

Question: Does there exists a clique in G of size at least k?

For an undirected graph G=(V,E) (i.e., with symmetric $E\subseteq V\times V$), a *clique* in G of size $k\in\mathbb{N}$ is a subset of nodes $C\subseteq V$ with |C|=k and $C\times C\subseteq E$.

Suppose **CLIQUE** can be solved in time T(n) for some $T: \mathbb{N} \to \mathbb{N}$ with $T(n) \ge n$ for all $n \in \mathbb{N}$. Furthermore, show that then the optimisation problem

Input: An undirected graph G

Compute: A clique in G of maximal size

can be computed in time $\mathcal{O}(n \cdot T(n))$. You can assume that T is monotone.

Exercise 3.4. Show that if $SAT \in P$, then a polynomial-time algorithm exists that produces a satisfying assignment of a given satisfiable propositional formula.

Exercise 3.5. Convince yourself of the following fact: If $T : \mathbb{N} \to \mathbb{N}$ is a polynomial function, then there is a polynomial time-bounded TM \mathcal{M} computing the binary representation of T(n), given an input $\mathbf{1}^n$ (that is n repetitions of the symbol 1).

Exercise 3.6. We consider propositional formulae φ in *conjunctive normal form* (CNF). We say that φ is a 2CNF-formula, written $\varphi \in 2$ CNF, if φ is a formula in CNF and every clause consists of at most two literals. A formula is in CNF $_2$ if every variable occurs at most twice in φ .

- a) Show that **2SAT** := $\{\langle \varphi \rangle \mid \varphi \in 2\mathsf{CNF} \text{ is satisfiable}\}\$ is in P.
- b) Show that $CNF_2 := \{ \langle \varphi \rangle \mid \varphi \in CNF_2 \text{ is satisfiable} \}$ is in P.