
Formale Systeme

20. Vorlesung: Berechenbarkeit und Unentscheidbarkeit

Markus Krötzsch

Professur für Wissensbasierte Systeme

TU Dresden, 8. Januar 2026

https://iccl.inf.tu-dresden.de/web/FS2025
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch


Was bisher geschah . . .

Hilbert: „Die Mathematik hat mehr als ein Problem.
Wir brauchen ein formales Fundament! Dann kann
jedes mathematische Problem durch endlich viele
‘Rechenschritte’ gelöst werden!“

Turing: „Es gibt Dinge, die man nicht berechnen
kann. Ich kann das beweisen . . . aber erst ein-
mal muss ich definieren, was ‘berechnen’ eigent-
lich bedeutet.“

Church und Turing (im Chor mit Kleene und Rosser):
„Alle Computer sind gleich!“

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 2 von 31



Wichtige Typen von Turingmaschinen

• Deterministische Turingmaschine (DTM)

• Nichtdeterministische Turingmaschine (NTM)

• Mehrband-Turingmaschine
Wir ändern die Definition so, dass statt einem Band in jedem Schritt k ≥ 2 Bänder
gelesen und beschrieben werden.
Jedes Band hat einen unabhängigen Lese-/Schreibkopf.
Die Eingabe wird auf das erste Band geschrieben.

Satz: Deterministische und nichtdeterministische Turingmaschinen mit einer beliebigen
Anzahl von Bändern können die gleichen Berechnungen ausführen.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 3 von 31



Grundbegriffe: Berechnen und Entscheiden

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 4 von 31



TMs, die Mengen definieren

Eine Turingmaschine kann eine Menge von akzeptierten Eingaben definieren:

Die von einer TM M erkannte Sprache L(M) ist die Menge aller Wörter, die von einer
TM akzeptiert werden, d.h., bei deren Eingabe M in einem Endzustand hält (DTM) /
halten könnte (NTM).

Zwei Gründe für Nichtakzeptanz von Wörtern:

(1) TM hält in einem Zustand, der kein Endzustand ist

(2) TM hält nicht (Endlosschleife)

Es ist praktisch, wenn eine TM garantiert hält, da man Fall (2) meist nicht sicher
erkennen kann (man weiß nicht, ob die TM irgendwann doch noch anhält)

Eine TM ist ein Entscheider, wenn sie bei jeder Eingabe garantiert hält (bei NTMs: in
jedem möglichen Lauf). Wir sagen in diesem Fall, dass die TM die von ihr erkannte
Sprache entscheidet.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 5 von 31



TMs, die Funktionen definieren

Eine Turingmaschine kann eine Funktion von Eingabewörtern auf Ausgabewörter
definieren:

Eine DTM M berechnet eine partielle Funktion fM : Σ∗ → Σ∗ wie folgt. Für ein Wort
w ∈ Σ∗ ist fM(w) = v wenn M bei Eingabe w mit einem Band anhält, auf dem nur v
steht, d.h., wenn der Bandinhalt nach dem Halten die Form v␣␣␣ · · · hat.

Es gibt also zwei Fälle, in denen fM(w) undefiniert ist:

(1) M hält bei Eingabe w mit einem Band, das nicht die geforderte Form hat

(2) M hält bei Eingabe w gar nicht

Das heißt: Wenn fM eine totale Funktion ist, dann mussM immer halten.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 6 von 31



Entscheidbarkeit und Berechenbarkeit

Wir interessieren uns für Funktionen, die man berechnen kann:

Eine totale oder partielle Funktion f heißt berechenbar, wenn es eine DTM M gibt, die
f berechnet, d.h. mit f = fM.

Anmerkung: Berechenbare totale Funktionen nennt man auch rekursiv; berechenbare
partielle Funktionen partiell rekursiv.

Bei Sprachen unterscheiden wir mehrere Fälle:

Eine Sprache L ist entscheidbar (=berechenbar=rekursiv), wenn es eine TM M gibt,
die ihr Wortproblem entscheidet, d.h. M ist Entscheider und L = L(M). Andernfalls
heißt L unentscheidbar.

L ist semi-entscheidbar (=Turing-erkennbar=Turing-akzeptierbar=rekursiv aufzählbar)
wenn es eine TM M gibt mit L = L(M), auch wenn M kein Entscheider ist.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 7 von 31



Warum heißt es „rekursiv aufzählbar“?

Bei rekursiv aufzählbaren Sprachen L kann man eine TM konstruieren, die alle
Elemente von L der Reihe nach „aufzählt“:

Ein Aufzähler ist eine deterministische Turingmaschine M mit einem speziellen Zu-
stand qAusgabe. Immer wenn M in den Zustand qAusgabe gelangt, wird der aktuelle
Bandinhalt vom Anfang bis zum ersten Zeichen in Γ \ Σ (z.B. ␣) ausgegeben.

Die durch M aufgezählte Sprache ist die Menge aller Wörter, die M ausgibt, wenn M
auf dem leeren Band gestartet wird.
(Anmerkung: Per Definition sind alle ausgegebenen Wörter in Σ∗ .)

Die durchM aufgezählte Sprache kann unendlich sein, wennM auf der leeren Eingabe
nicht hält.

Es ist erlaubt, dass Wörter mehr als einmal in der Aufzählung vorkommen.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 8 von 31



Beispiel für einen Aufzähler

Wir betrachten das Alphabet Σ = {a, b}

q0 q1 qAusgabe
␣ 7→ a, R ␣ 7→ b, N

b 7→ a, R

Frage: Welche Menge zählt diese TM auf?

Antwort: {a2n+1b | 0 ≤ n}

Aufgabe zur Selbstkontrolle: Schreiben Sie einen Aufzähler für diese Sprache, ohne
dabei die Bewegungsrichtung N zu verwenden.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 9 von 31



Aufzählbar = semi-entscheidbar (1)

Satz: Eine Sprache L ist genau dann semi-entscheidbar, wenn es einen Aufzähler für
L gibt.

Beweis: „⇐“ (Vom Aufzähler zur TM) Wenn es für L einen Aufzähler gibt, dann können
wir L wie folgt semi-entscheiden:

• Simuliere den Aufzähler auf einem leeren Band (wir dürfen eine Mehrband-TM
verwenden).

• Immer wenn qAusgabe erreicht wird: Vergleiche das Wort auf dem Eingabeband mit
dem auszugebeneden Wort aus Σ∗ auf dem Aufzählerband und akzeptiere, wenn
beide das gleich sind.

• Andernfalls fahre mit der Aufzählung fort.

• Falls die Aufzählung terminiert (ohne dass die Eingabe gefunden wurde), dann
verwerfe.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 10 von 31



Aufzählbar = semi-entscheidbar (2)

Satz: Eine Sprache L ist genau dann semi-entscheidbar, wenn es einen Aufzähler für
L gibt.

Beweis: „⇒“ (Von der TM zum Aufzähler) Wenn L durch eine TMM erkannt wird, dann
können wir L wie folgt aufzählen:

• Betrachte eine systematisch berechenbare Aufzählung aller Wörter w1, w2, w3, . . .
aus Σ∗

• Für jede natürliche Zahl n ≥ 1:
– Für jedes i ∈ {1, . . . , n}:

• SimuliereM auf Eingabe wi für n Schritte
• FallsM bei dieser Simulation terminiert und wi akzeptiert, dann gib wi

aus

Anmerkung 1: Der so konstruierte Aufzähler terminiert nicht (selbst wenn die
aufgezählte Menge endlich ist).

Anmerkung 2: Der Wert von n während der Iteration kann in Symbolen aus Γ \ Σ hinter
dem jeweils auszugebenen Wort gespeichert werden. □
Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 11 von 31



Berechnungen jenseits von Σ∗

Wir können den Berechnungsbegriff leicht auf beliebige Objekte ausdehnen, die als
Wörter kodiert werden können.

Wichtige Fälle:

• Natürliche Zahlen N können z.B. binär als Wörter über {0, 1} kodiert werden

• Tupel (Listen) von Wörtern (oder natürlichen Zahlen, . . . ), können kodiert werden,
indem man zum Eingabealphabet ein zusätzliches Trennzeichen # hinzufügt

Beispiel: Mithilfe dieser Kodierungen können wir z.B. von berechenbaren Funktionen
N→ N oder von semi-entscheidbaren Teilmengen von N × N sprechen.

Anmerkung: Oft gibt es viele denkbare Kodierungen eines Objektes als Wort. Vorerst
sollen uns die Details nicht interessieren, solange klar ist, dass eine TM die Kodierung
entschlüsseln kann.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 12 von 31



Zusammenhang von Sprache und Funktion

Berechenbarkeit von Funktionen und Sprachen sind eng verwandt.

Satz: Eine Sprache L ist genau dann entscheidbar, wenn die folgende Funktion f :
Σ∗ → Σ∗ berechenbar ist (o.B.d.A. sei {0, 1} ⊆ Σ):

f (w) =

 1 falls w ∈ L

0 falls w < L

Beweisskizze: „⇒“ Ein Entscheider für L kann in eine TM für f umgebaut werden. Dazu
verwendet man „Subroutinen“, die den Bandinhalt löschen und mit einem einzelnen Zeichen 1
oder 0 ersetzten. Diese Routinen werden aufgerufen, wenn der ursprüngliche Entscheider halten
würde: die 1-Routine beim Halten in einem Endzustand, die 0-Routine andernfalls.
Eventuell muss man den Entscheider außerdem so modifizieren, dass das Zeichen ␣ nur am Ende des verwendeten Bandinhaltes vorkommen
kann (sonst wird das Löschen des gesamten Bandes problematisch!).

„⇐“ Eine TM, die f berechnet, kann in einen Entscheider für L umgebaut werden. Die Idee ist wie
zuvor, aber die Subroutinen prüfen jetzt, ob das Band 1 oder 0 enthält und wechseln
entsprechend in einen akzeptierenden oder nicht-akzeptierenden Zustand. □

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 13 von 31



Zusammenhang von Funktion und Sprache

Für die Umkehrung stellen wir Funktionen als Mengen dar:

Satz: Eine partielle Funktion f ist genau dann berechenbar, wenn die Sprache

Graphf = {⟨w, f (w)⟩ | w ∈ Σ∗, f (w) definiert}

semi-entscheidbar ist. Ist f total, dann ist Graphf sogar entscheidbar.

Beweis: „⇒“ Sei f berechenbar. Dann kann man Graphf wie folgt erkennen:

• Für eine Eingabe ⟨w, v⟩, berechne f (w) (als Subroutine).

• Wenn die Berechnung von f (w) terminiert, dann akzeptiere falls f (w) = v.

• Wenn die Berechnung von f (w) nicht terminiert, dann wird auch die Erkennung von
Graphf nicht halten. Dieses Verhalten ist korrekt, da in diesem Fall f (w) undefiniert
ist und ⟨w, v⟩ < Graphf .

Falls f total ist, dann hält auch die Erkennung von Graphf .

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 14 von 31



Zusammenhang von Funktion und Sprache (2)

Für die Umkehrung stellen wir Funktionen als Mengen dar:

Satz: Eine partielle Funktion f ist genau dann berechenbar, wenn die Sprache

Graphf = {⟨w, f (w)⟩ | w ∈ Σ∗, f (w) definiert}

semi-entscheidbar ist. Ist f total, dann ist Graphf sogar entscheidbar.

Beweis: „⇐“ Sei Graphf semi-entscheidbar. Dann kann man f wie folgt berechnen:
• Wir konstruieren einen Aufzähler für Graphf wie zuvor gezeigt
• Der Aufzähler wird auf einem eigenen Band simuliert.
• Immer wenn der Aufzähler ein Paar ⟨w, f (w)⟩ ausgibt, vergleichen wir w mit dem

Inhalt des Eingabebandes
• Wenn die Eingabe mit w übereinstimmt, dann wird f (w) als Ergebnis verwendet

und die TM hält.
• Andernfalls wird die Simulation der Aufzählung fortgesetzt. □

Anmerkung: Wir haben nicht formal definiert, was bei einer Mehrband-TM die Ausgabe ist, aber das kann man leicht tun (oder die Mehrband-TM
auf einem Band simulieren).

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 15 von 31



Unentscheidbare Probleme

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 16 von 31



Es gibt unentscheidbare Probleme

Satz: Es gibt Sprachen und Funktionen, die nicht berechenbar sind.

Dies kann man wie folgt zeigen:

• Die Menge der Turingmaschinen ist abzählbar

• Die Menge der Sprachen über jedem Alphabet ist überabzählbar

• Also muss es Sprachen geben, die durch keine TM entschieden werden.

Das Argument funktioniert analog mit (partiellen) Funktionen, deren Menge ebenfalls
überabzählbar groß ist.

Das Argument zeigt zudem auch, dass die meisten Sprachen nicht einmal
semi-entscheidbar sind (Kontrollfrage: Warum?).

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 17 von 31



Die Menge der TMs ist abzählbar

Dies folgt in zwei Schritten:

• Jede TM kann leicht durch ein endliches Wort kodiert werden (z.B. binär)
• Es gibt abzählbar viele Wörter. Man kann sie zum Beispiel wie folgt abzählen:

– Beginne mit dem leeren Wort ϵ.
– Reihe dann alle Wörter der Länge 1 auf
– Reihe dann alle Wörter der Länge 2 auf
– Reihe dann alle Wörter der Länge 3 auf
– . . .

(Siehe Vorlesung 2)

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 18 von 31



Die Menge der Sprachen ist überabzählbar (1)

Dies folgt aus einer Konstruktion von Georg Cantor:

• Beweis durch Widerspruch: Wir nehmen an,
dass die Menge aller Sprachen abzählbar ist.

• Sei L1, L2, L3, . . . eine entsprechende
Aufzählung aller Sprachen.

• Wir reihen außerdem alle Wörter in Σ∗ auf:
w1, w2, w3, . . ..

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 19 von 31



Die Menge der Sprachen ist überabzählbar (2)

• Man kann sich die Relation ∈ zwischen Wörtern und Sprachen jetzt als unendliche
Tabelle vorstellen:

w1 w2 w3 w4 . . .

L1 × − − × . . .

L2 − × − × . . .

L3 − × − − . . .

...
...

...
...

...
. . .

Ld − − × . . .

• Wir konstruieren eine Sprache Ld durch Diagonalisierung.
Formal: wi ∈ Ld genau dann wenn wi < Li.

Dann kommt Ld in der Tabelle nicht vor. Widerspruch.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 20 von 31



Nichtwissen , Unentscheidbarkeit

Wie finden wir konkrete unentscheidbare Probleme?

Es reicht nicht aus, dass wir nicht wissen, wie ein Problem algorithmisch gelöst werden
kann!

Beispiel: Sei Lπ die Menge aller endlichen Ziffernfolgen, die in der Dezimaldarstellung
von π vorkommen. Zum Beispiel gilt 14159265 ∈ Lπ und 41 ∈ Lπ.

Wir wissen nicht, ob man die Sprache Lπ entscheiden kann, aber sie könnte dennoch
entscheidbar sein (z.B. wenn jede endliche Ziffernfolge irgendwo in π vorkommt, was
aber bisher nicht bekannt ist).

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 21 von 31



Nichtwissen , Unentscheidbarkeit (2)

Es gibt sogar Fälle, in denen wir sicher sind, dass ein Problem entscheidbar ist, aber
trotzdem nicht wissen, wie man es löst.

Beispiel: Sei Lπ7 die Menge aller Ziffernfolgen der Form 7n, die in der Dezimaldarstel-
lung von π vorkommen.

Lπ7 ist entscheidbar:

• Möglichkeit 1: π enthält beliebig lange Ketten der Ziffer 7. Dann wird Lπ7 durch
eine TM entschieden, die alle Wörter der Form 7n akzeptiert.

• Möglichkeit 2: π enthält Ketten der Ziffer 7 nur bis zu einer maximalen Länge ℓ.
Dann wird Lπ7 durch eine TM entschieden, die alle Wörter der Form 7n mit n ≤ ℓ
akzeptiert.

Für jeden denkbaren Fall gibt es einen Algorithmus – wir wissen nur nicht, welcher
davon korrekt ist.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 22 von 31



Ein erstes unentscheidbares Problem (1)

Frage: Falls eine TM anhält, wie lange kann das im schlimmsten Fall dauern?

Antwort: Beliebig lange, weil:

(a) die Eingabe beliebig groß sein kann

(b) die TM beliebig groß sein kann

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 23 von 31



Ein erstes unentscheidbares Problem (2)

Frage: Falls eine TM mit n Zuständen und einem zwei-elementigen Arbeitsalphabet
Γ = {x, ␣} auf einem leeren Band anhält, wie lange kann das im schlimmsten Fall
dauern?

Antwort: Das kommt auf n an . . .

Wir definieren S(n) als die maximale Zahl an Schritten, die eine DTM mit n Zuständen
und dem Arbeitsalphabet Γ = {x, ␣} auf dem leeren Band ausführt, bevor sie schließ-
lich hält.

Beobachtung: S ist wohldefiniert.

• Die Zahl der TMs mit maximal n Zuständen ist endlich

• Unter den relevanten n-Zustand-TMs, gibt es eine maximale Anzahl an Schritten
bis zum Halten (TMs die nicht halten werden ignoriert)

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 24 von 31



Fleißige Biber

Eine leichte Abwandlung des Schrittzählers ist
das Busy-Beaver-Problem:

Tibor Radó, BB-Erfinder

Die Busy-Beaver-Funktion Σ : N → N ist eine totale Funktion, wobei Σ(n) die maxi-
male Zahl an x ist, die eine DTM mit höchstens n Zuständen und dem Arbeitsalphabet
Γ = {x, ␣} beginnend mit dem leeren Band schreiben kann, bevor sie schließlich hält.

Anmerkung: Der genaue Wert von Σ(n) hängt von Details der TM-Definition ab.
Üblich ist hier insbesondere die Verwendung eines zweiseitig unendlichen Bands, das man bei
Bedarf nach links und rechts erweitern kann.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 25 von 31



Beispiel

Die Busy-Beaver-Zahl Σ(2) ist 4, wenn man ein beidseitig unendliches Band annimmt.
Die folgende TM realisiert dieses Verhalten:

A B

␣ 7→ x, R
x 7→ x, L

␣ 7→ x, L

Wir erhalten: A␣ ⊢ xB␣ ⊢ Axx ⊢ B␣xx ⊢ A␣xxx ⊢ xBxxx

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 26 von 31



Busy-Beaver berechnen?

Satz: Die Busy-Beaver-Funktion ist nicht berechenbar.

Beweisskizze: Nehmen wir an, Σ wäre berechenbar.

• Dann kann man eine TMMΣ erzeugen, die mit dem Alphabet {x, ␣} arbeitet und
die Funktion xn 7→ xΣ(n) berechnet.

• SeiM+1 eine TM, welche die Funktion xn 7→ xn+1 berechnet.

• SeiM×2 eine TM, welche die Funktion xn 7→ x2n berechnet.

• Sei k die Gesamtzahl der Zustände inMΣ,M+1 undM×2. Es gibt eine TM Ik mit
k + 1 Zuständen, die das Wort xk auf das leere Band schreibt.

• Wenn man nun hintereinander Ik,M×2,MΣ undM+1 ausführt, dann erhält man
eine TM mit ≤ 2k Zuständen,∗ die insgesamt Σ(2k)+ 1 mal x schreibt und dann hält.
∗ Bei der Hintereinanderausführung kann man End- und Anfangszustand jeweils verschmelzen.

• Also ist Σ(2k) ≥ Σ(2k) + 1 – Widerspruch. □

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 27 von 31



Bemerkungen zum Beweis

Anmerkung 1: Der Beweis verwendet die interessante Idee, dass man TMs als
„Subroutinen“ von anderen TMs verwenden kann. Wir werden das noch an anderer
Stelle verwenden.

Anmerkung 2: Der Schritt von einer beliebigen Berechnung einer Funktion f : N→ N
zu einer TM, die eine Funktion xn 7→ xf (n) berechnet, ist nicht schwer; man ändert nur
die Kodierung der Ein- und Ausgabe von binär auf unär.

Anmerkung 3: Der Schritt von einer beliebigen TM zu einer, die auf dem Alphabet {x, ␣}
arbeitet, ist etwas kniffliger, aber machbar.

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 28 von 31



Theorie und Praxis

„Unentscheidbarkeit ist doch eine rein theoretische Eigenschaft! In der Praxis ist es
egal, ob wir Σ(n) für beliebig große n berechnen können. Die praktisch relevanten Fälle
können wir sicher klären.“

Nun ja . . . seit den 1960ern ist man noch nicht so weit gekommen:

n: 1 2 3 4 5 6 7 8

Σ(n): 1 4 6 13 40981 ≥ 3, 5 × 1018267 riesig irrsinnig

Für n = 10 kann man eine untere Schranke der Form Σ(10) > 333.
..

3

angeben, wobei der
komplette Ausdruck über 7, 6 Billionen mal die Zahl 3 enthält.

1Erstmals bewiesen 2024, publiziert in Blanchard et al.: Determination of the fifth Busy Beaver
value, Sept 2025 [link]. Der entsprechende Wert für S(5) ist 47176870.
Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 29 von 31

https://arxiv.org/abs/2509.12337
https://arxiv.org/abs/2509.12337


Zusammenfassung und Ausblick

Turingmaschinen sind auf viele Arten verwendbar (und definierbar)

Funktionen und Mengen können berechenbar sein, aber die meisten sind es nicht

Semi-entscheidbare Mengen können durch Aufzähler erzeugt werden

Die Busy-Beaver-Funktion ist nicht berechenbar und wächst irrsinnig schnell

Was erwartet uns als nächstes?

• Relevantere Probleme

• Reduktionen

• Rechenmodelle, die nicht auf TMs beruhen

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 30 von 31



Bildrechte

Folie 2: gemeinfrei
Folie 19: Fotografie von 1870, gemeinfrei
Folie 25: Ausschnitt aus einer Fotografie von 1928,
http://www.bibl.u-szeged.hu/sztegy/photo/778.jpg, CC-By-SA 3.0

Markus Krötzsch, 8. Januar 2026 Formale Systeme Folie 31 von 31

http://www.bibl.u-szeged.hu/sztegy/photo/778.jpg

