
Logics and Networks for Human Reasoning

Steffen Hölldobler and Carroline Dewi Puspa Kencana Ramli

International Center for Computational Logic,
TU Dresden, 01062 Dresden, Germany

sh@iccl.tu-dresden.de

http://www.computational-logic.org/~sh/

Abstract We propose to model human reasoning tasks using completed
logic programs interpreted under the three-valued Lukasiewicz semantics.
Given an appropriate immediate consequence operator, completed logic
programs admit a least model, which can be computed by iterating the
consequence operator. Reasoning is then performed with respect to the
least model. The approach is realized in a connectionist setting.

Key words: Human Reasoning, Logic Programs, Connectionist Models

1 Introduction

It has been widely argued in the field of Cognitive Science that logic is in-
adequate for modelling human reasoning (see e.g. [3]). In this context, “logic”
is meant to be classical logic and, indeed, classical logic fails to capture some
well-documented forms of human reasoning. However, in the field of Artificial
Intelligence many non-classical logics have been studied and widely used. These
logics try to capture many assumptions or features that occur in commonsense
reasoning like, for example, the closed world assumption or non-monotonicity.

Recently, in [17] Stenning and van Lambalgen have suggested that completed
logic programs under the three-valued Fitting semantics [7] can adequately model
many human reasoning tasks. In addition, they propose a connectionist realiza-
tion of their approach.

While trying to understand Stenning and van Lambalgen’s approach we made
the following observations: (i) Lukasiewicz semantics [15] seems to be better
suited for the approach as the law of equivalence holds under this semantics,
whereas it does not hold under Fitting semantics. (ii) [17] contains some (minor)
errors. (iii) The immediate consequence operator introduced in [17] differs in a
subtle way from the one in [7] and it turned out, that the latter is inadequate
for human reasoning. (iv) The core method, a connectionist model generator for
logic programs first presented in [10], can easily be adapted to handle Stenning
and van Lambalgen’s approach.

The paper discusses these observation by presenting three-valued logics, logic
programs, their completion semantics as well as their immediate consequence
operators in Section 2, by specifying an algorithm for mapping Stenning and van
Lambalgen’s immediate consequence operator onto a recurrent neural network

2 Steffen Hölldobler and Carroline Dewi Puspa Kencana Ramli

with feed-forward core in Section 3, by showing how some human reasoning
task can be adequately modelled in the proposed logic and its connectionist
realization in Section 4, and by discussing our findings in Section 5.

2 Logics, Programs and Consequence Operators

2.1 Three-Valued Logics

In this paper we consider (propositional logic) languages over an alphabet con-
sisting of (propositional) variables, the connectives {¬,∧,∨,→,↔} and paran-
thesis. We will consider various three-valued logics based on the semantics of
their connectives (see Table 1): Lukasiewicz has proposed {¬,∧,∨,→ L,↔ L}
[15], Kleene uses {¬,∧,∨,→K ,↔K} in his strong three-valued logic [14] and
{¬,∧,∨,→K ,↔c} is suggested by Fitting for logic programming [7] and used by
Stenning and van Lambalgen to model human reasoning [17].

An interpretation is a mapping from the language to the set of truth values
{>,⊥, u}. Using Table 1 an interpretation for a given formula is uniquely de-
termined by specifying the values for the propositional variables occurring in it.
We will represent interpretations by pairs 〈I>, I⊥〉, where the set I> contains
all variables which are mapped to >, the set I⊥ contains all variables mapped
to ⊥, and all variables which occur neither in I> nor in I⊥ are mapped to u.
We use IK , IF and I L to denote that an interpretation I uses Kleene, Fitting or
 Lukasiewicz semantics, respectively. Furthermore, let I denote the set of all in-
terpretation. (I,⊆) is a complete semilattice (see [7]). Finally, an interpretation
I is said to be a model for a formula G iff I(G) = >.

One should observe, that the law of equivalence (for all interpretations I:
I(F ↔ G) = I((F → G) ∧ (G → F))) holds under Lukasiewicz and Kleene
semantics, but not under Fitting semantics.

2.2 Programs

A (program) clause is an expression of the form A← B1∧ . . .∧Bn, n ≥ 1, where
A is an atom and each Bi, 1 ≤ i ≤ n, is either a literal (i.e., atom or negated

¬
> ⊥
⊥ >
u u

∧ ∨ →K → L ↔K ↔ L ↔c

> > > > > > > > >
⊥ > ⊥ > > > ⊥ ⊥ ⊥
u > u > > > u u ⊥
> ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ > > > > >
u ⊥ ⊥ u u u u u ⊥
> u u > u u u u ⊥
⊥ u ⊥ u > > u u ⊥
u u u u u > u > >

Table 1. Truth tables for 3-valued logics.

Logics and Networks for Human Reasoning 3

atom), > or ⊥. A is called head and B1∧ . . .∧Bn body of the program clause. >
is a valid formula, whereas ⊥ is an unsatisfiable one. One should observe that the
body of each clause is non-empty. A clause of the form A← > is called positive
fact. A clause of the form A ← ⊥ is called negative fact. A (logic) program is a
finite set of clauses. Two examples are P1 = {p← q} and P2 = {p← q, q ← ⊥}.

2.3 Completion

Let P be a program. It is turned into a single formula in the following way:

1. All clauses with the same head A← Body1, . . . , A← Bodyn are replaced by
the single formula A← Body1 ∨ . . . ∨ Bodyn.

2. The resulting set is replaced by its conjunction.
3. If A is a variable occurring in P with no clause in P of the form A← Body,

then add A← ⊥.
4. All occurrences of ← are replaced by ↔.

The resulting formula is called completion of P and is denoted by comp(P). If
the third step is omitted, then the resulting formula is called weak completion
of P and is denoted by wcomp(P). For example, wcomp(P1) = (p ↔ q) 6=
comp(P1) = (p↔ q) ∧ (q ↔ ⊥) = comp(P2) = wcomp(P2).

Let I = 〈{p, q}, ∅〉. IK(P2) = IF (P2) = I L(P2) = >, whereas IK(comp(P2)) =
IF (comp(P2)) = I L(comp(P2)) = ⊥. The completion forces all models to map q
to ⊥, and the same holds for the weak completion.

Let I = 〈∅, ∅〉. IK(p↔ p) = u, whereas IF (p↔ p) = >. This has led Fitting
to consider ↔c in [7]. One should observe that IK(p ← p) = IF (p ← p) = u.
In other words, whereas I is a model for the completed program p ↔ p, it
is not a model for p ← p under the Fitting semantics. On the other hand,
I L(p↔ p) = I L(p← p) = >.

2.4 Consequence Operators

In [7] Fitting has defined an immediate consequence operator ΦF,P(I) =
〈J>, J⊥〉, where J> = {A | A ← Body ∈ P and I(Body) = >} and J⊥ =
{A | for all A ← Body ∈ P : I(Body) = ⊥}. One should note that IK(Body) =
IF (Body) = I L(Body) because the body of a clause is a conjunction of literals.
Fitting has shown that ΦF,P is monotone on (I,⊆).

Proposition 1. ΦF,P is continuous and admits a least fixed point lfp(ΦF,P).

Proof Because our programs are finite and, thus, the underlying alphabet
and all directed subsets of I are finite, we find that a monotone ΦF,P is also
continuous (see e.g. [18]). Hence, ΦF,P admits a least fixed point, which can be
computed by iterating ΦF,P starting with the empty interpretation. 2

lfp(ΦF,P) is equal to the least model of comp(P) under Fitting semantics.
For example, lfp(ΦF,P1) = lfp(ΦF,P2) = 〈∅, {p, q}〉.

4 Steffen Hölldobler and Carroline Dewi Puspa Kencana Ramli

In [17] Stenning and van Lambalgen have defined a slightly different immedi-
ate consequence operator: ΦSvL,P(I) = 〈J>, J⊥〉, where J> = {A | A← Body ∈
P and I(Body) = >} and J⊥ = {A | there exists A← Body ∈ P and for all A←
Body ∈ P : I(Body) = ⊥}. They showed that this operator is also monotone.

Proposition 2. ΦSvL,P is continuous and admits a least fixed point lfp(ΦSvL,P).

This result can be proven along the lines of the proof of Propostion 1. For ex-
ample, lfp(ΦSvL,P1) = 〈∅, ∅〉 and lfp(ΦSvL,P2) = 〈∅, {p, q}〉. In addition, Stenning
and van Lambalgen make the following claims, where they assume that models
are defined with respect to Fitting semantics:

A. The least fixed point of ΦSvL,P can be shown to be the minimal model of P
(Lemma 4(1.) in [17]).

B. All models of comp(P) are fixed points of ΦSvL,P (Lemma 4(3.) in [17]).

Both claims are false. Consider P1 = {p ← q} and let I = 〈∅, ∅〉. As discussed
before, lfp(ΦSvL,P1) = I, but IF (P1) = u; thus, we have obtained a counter
example for A. One should observe that the minimal models of P1 under Fitting
semantics are 〈{p}, ∅〉 and 〈∅, {q}〉, both of which are not fixed points of ΦSvL,P1 .
Now let I ′′ = 〈∅, {p, q}〉 and I ′ = 〈∅, {p}〉. I ′′F (comp(P1)) = >, but ΦSvL,P1(I ′′) =
I ′, ΦSvl,P1(I ′) = I, and ΦSvL,P1(I) = I; thus, we have obtained a counter
example for B.

Problem A. can be overcome if we interprete programs under Lukasiewicz
semantics. For the discussed example we find I L(P1) = >, which is no coincidence
as we will show in the sequel.

Proposition 3. (i) If I L(wcomp(P)) = > then ΦSvL,P(I) ⊆ I.
(ii) If ΦSvL,P(I) = I then I L(wcomp(P)) = >.

Proof Sketch (i) If I L(wcomp(P)) = > then for for each equivalence A ↔
Body1 ∨ . . . ∨ Bodyn occurring in wcomp(P) we find that

I L(A) = I L(Body1 ∨ . . . ∨ Bodyn). (1)

Now let I = 〈I>, I⊥〉 and 〈J>, J⊥〉 = ΦSvL,P(〈I>, I⊥〉). By definition of ΦSvL,P
we find J> ⊆ I> and J⊥ ⊆ I⊥ given (1). Hence, ΦSvL,P(I) ⊆ I.

(ii) Suppose ΦSvL,P(I) = I. Let F := A↔ Body1∨. . .∨Bodyn be an arbitrary
but fixed conjunct occurring in wcomp(P). If I L(A) = >, then there exists
A← Bodyi ∈ P, such that I L(Bodyi) = >. Hence, I L(Body1 ∨ . . . ∨ Bodyn) = >
and, consequently, I L(F) = >. The cases I L(A) = ⊥ and I L(A) = u follow
similarly. Because F was arbitrary but fixed we conclude I L(wcomp(P)) = >.2

Proposition 4. If I = lfp(ΦSvL,P) then I L(wcomp(P)) = I L(P) = >.

Proof Sketch From Proposition 3(ii) we learn that I = lfp(ΦSvL,P) entails
I L(wcomp(P)) = >. Moreover, I L(wcomp(P)) = > iff for each equivalence A↔
Body1 ∨ . . . ∨ Bodyn occurring in wcomp(P) we find that I L(A) = I L(Body1 ∨
. . . ∨ Bodyn). A careful case analysis reveals that I L(P) = > holds. 2

Logics and Networks for Human Reasoning 5

3 The Core Method

In [10] a connectionist model generator for propositional logic programs using
recurrent networks with feed-forward core was presented. It was later called the
core method [2]. The core method has been extended and applied to a variety
of programs including modal (see e.g. [5]) and first-order logic programs [1]. It
is based on the idea that feed-forward connectionist networks can approximate
almost all functions arbitrarily well [12,9] and, hence, they can also approximate
– and in some cases compute – the immediate consequence operators associated
with logic programs. Moreover, if such an operator is a contraction mapping on
a complete metric space, then Banach’s contraction mapping theorem ensures
that a unique fixpoint exists such that the sequence constructed from applying
the operator iteratively to any element of the metric space converges to the
fixed point [8]. Turning the feed-forward core into a recurrent network allows to
compute or approximate the least model of a logic program [11].

Kalinke has applied the core method to logic programs under the Fitting
semantics presented in Section 2 [13]. In particular, her feed-forward cores com-
pute ΦF,P for any given program P. Seda and Lane showed that the core method
can be extended to many-valued logic programs [16]. Restricted to three-valued
logic programs considered here, their cores also compute ΦF,P . In the sequel,
these approaches are modified in order to compute ΦSvL,P .

Given a program P, the following algorithm translates P into a feed-forward
core. Let m be the number of propositional variables occurring in P. Without
loss of generality, we may assume that the variables are denoted by natural
numbers from [1,m]. Let ω ∈ R+.

1. The input and output layer is a vector of binary threshold units of length
2m representing interpretations. The 2i − 1-st unit in the layers, denoted
by i>, is active iff the i-th variable is mapped to >. The 2i-th unit in the
layers, denoted by i⊥, is active iff the i-th variable is mapped to ⊥. Both,
the 2i − 1-st and the 2i-th unit, are passive iff the i-th variable is mapped
to u. The case where both, the 2i− 1-st and the 2i-th unit, are active is not
allowed.
The threshold of each unit occurring in the input layer is set to ω

2 . The
threshold of each 2i − 1-st unit occurring in the output layer is set to ω

2 .
The threshold of each 2i-th unit occurring in the output layer is set to
max {ω

2 , l −
ω
2 }, where l is the number of clauses with head i in P.

In addition, two units representing > and ⊥ are added to the input layer.
The threshold of these units is set to −ω

2 .
2. For each clause of the form A← B1∧. . .∧Bk occurring in P, do the following.

(a) Add two binary threshold units h> and h⊥ to the hidden layer.
(b) Connect h> to the unit A> in the output layer. Connect h⊥ to the unit

A⊥ in the output layer.
(c) For each Bj , 1 ≤ j ≤ k, do the following.

i. If Bj is an atom, then connect the units B>j and B⊥j in the input
layer to h> and h⊥, respectively.

6 Steffen Hölldobler and Carroline Dewi Puspa Kencana Ramli

ii. If Bj is the literal ¬B, then connect the units B⊥ and B> in the
input layer to h> and h⊥, respectively.

iii. If Bj is >, then connect the unit > in the input layer to h>.
iv. If Bj is ⊥, then connect the unit ⊥ in the input layer to h⊥.

(d) Set the threshold of h> to l − ω
2 , where l is the number of clauses with

head A in P. Set the threshold of h⊥ to ω
2 .

3. Set the weights associated with all connections to ω.

Proposition 5. For each program P, there exists a core of binary threshold
units computing ΦSvL,P .

Proof Assume that the input layer is actived at time t such that it represents an
interpretation I. Then, at time t+ 1 an h>-unit representing A← B1 ∧ . . .∧Bk

in the hidden layer becomes active iff all units representing B1, . . . , Bn in the
input layer are active, i.e., if I(B1) = . . . = I(Bn) = >. Likewise, at time t + 1
an h⊥-unit representing A← B1∧ . . .∧Bk in the hidden layer becomes active iff
one unit representing the negation of B1, . . . , Bn in the input layer is active, i.e.,
if I(¬B1)∨ . . .∨ I(¬Bn) = >. At time t+ 2 a unit representing A in the output
later becomes active iff there is an active h>-unit representing A← B1∧ . . .∧Bk

at time t+ 1. Likewise, at time t+ 2 a unit representing ¬A in the ouput layer
becomes active iff all h⊥ units reprenting rules with head A are active at time
t+ 1. Thus, the core is a direct encoding of ΦSvL,P . 2

Given a program P and its core, then a recurrent network can be constructed
by connecting each unit in the output layer to its corresponding unit in the input
layer with weight 1.

Proposition 6. For each program P, the corresponding recurrent network ini-
tialized by the empty interpretation will converge to a stable state which corre-
sponds to the least fixed point of ΦSvL,P .

Proof The result follows immediately from the construction of the recurrent
network using Propositions 4 and 5. 2

The construction and the behavior of the networks is illustrated in Figure 1.

4 Human Reasoning

In this section we will discuss some examples taken from [3]. These examples
were used by Byrne to show that classical logic cannot appropriately model
human reasoning. Stenning and van Lambalgen argue that a three-valued logic
programs under a completion semantics can well model human reasoning [17].
Moreover, as we will see, the core method presented in Section 3 serves as a
connectionist model generator in these cases.

Consider the following sentences: If Marian has an essay to write, she will
study late in the library. She has an essay to write. In [3] 96% of all subjects

Logics and Networks for Human Reasoning 7

1
2

1
2

1
2

1
2
− 1

2
− 1

2

p ¬p q ¬q⊥ >

ω
2

ω
2

ω
2

ω
2

p ¬p q ¬q

ω
2

ω
2

H
HH

HY

H
HH

HY

6 6

− 1
2

− 1
2

1
2

1
2

1
2

1
2
− 1

2
− 1

2

p ¬p q ¬q⊥ >

ω
2

ω
2

ω
2

ω
2

p ¬p q ¬q

ω
2

ω
2

H
HH

HY

H
HH

HY

6 6

ω
2

ω
2

@
@I

66

− 1
2

− 1
2

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

Figure 1. The stable states of the feed-forward cores for P1 (left) and P2 (right), where
all connections have weight ω, active units are shown in grey and passive units in white.
The recurrent connections between corresponding units in the output and input layer
are not shown.

1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

> e ¬e l ¬l ab ¬ab ⊥

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

e ¬e l ¬l ab ¬ab

ω
2

ω
2

6 6

�
��

3ω
2

ω
2

��
��*

��
��*

@
@I

PP
PP

PPi

6 6

ω
2

ω
2

6 6

@
@I

− 1
2

− 1
2

ω
2

ω
2

ω
2

ω
2

1
2

1
2

3ω
2

ω
2

1
2

Figure 2. The stable state of the feed-forward core for P3.

conclude that Marian will study late in the library. The two sentences can be
represented by the program P3 = {l ← e ∧ ¬ab, e ← >, ab ← ⊥}. The first
sentence is interpreted as a licence for a conditional and the atom ab is used to
cover all additional preconditions that we may be unaware of. As we know of
no such preconditions, the rule ab← ⊥ is added. The corresponding network as
well as its stable state are shown in Figure 2. From lfp(ΦSvL,P3) = 〈{l, e}, {ab}〉
follows that Marian will study late in the library.

Suppose now that the antecedent is denied: If Marian has an essay to write,
she will study late in the library. She does not have an essay to write. In [3]
46% of subjects conclude that Marian will not study late in the library. These
subject err with respect to classical logic. But they do not err with respect to
the non-classical logic considered here. The two sentences can be represented by
the program P4 = {l← e∧¬ab, e← ⊥, ab← ⊥}. The corresponding network as
well as its stable state are shown in Figure 3. From lfp(ΦSvL,P4) = 〈∅, {ab, e, l}〉
follows that Marian will not study late in the library.

8 Steffen Hölldobler and Carroline Dewi Puspa Kencana Ramli

1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

> ⊥e ¬e l ¬l ab ¬ab

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

e ¬e l ¬l ab ¬ab

3ω
2

ω
2

�
��
�*

�
��
�*

@
@I

PP
PP

PPi

6 6

ω
2

ω
2

6 6

@@
@@I

ω
2

ω
2

6 6

@
@I

− 1
2

− 1
2

ω
2

ω
2

ω
2

ω
2

1
2

1
2

ω
2

ω
2

1
2

Figure 3. The stable state of feed-forward core for P4.

Now consider an alternative argument: If Marian has an essay to write,
she will study late in the library. She does not have an essay to write. If she
has textbooks to read, she will study late in the library. In [3] 4% of subjects
conclude that Marian will not study late in the library. These sentences can be
represented by P5 = {l ← e ∧ ¬ab1, e← ⊥, ab1 ← ⊥, l ← t ∧ ¬ab2, ab2 ← ⊥}.
Due to lack of space we leave the construction of the network to the interested
reader. From lfp(ΦSvL,P5) = 〈∅, {ab1, ab2, e}〉 follows that it is unknown whether
Marian will study late in the library. One should observe that lfp(ΦF,P5) =
〈∅, {ab1, ab2, e, t, l}〉 and, consequently, one would conclude that Marian will not
study late in the library. Thus, Fitting’s operator leads to a wrong answer with
respect to human reasoning, whereas Stenning and van Lambalgen’s operator
does not.

As final example consider the presence of an additional argument: If Marian
has an essay to write, she will study late in the library. She has an essay to
write. If the library stays open, she will study late in the library. In [3] 38% of
subjects conclude that Marian will study late in the library. These sentences can
be represented by P6 = {l← e ∧ ¬ab1, e← >, l← o ∧ ¬ab2, ab1 ← ¬o, ab2 ←
¬e, }. As argued in [17] the third sentence gives rise to an additinal argument
for studying in the library, viz. that the library is open. Likewise, there must
be a reason for going to the library like, for example, writing an essay. The
corresponding network as well as its stable state are shown in Figure 4. From
lfp(ΦSvL,P6) = 〈{e}, {ab2}〉 follows that it is unknown whether Marian will study
late in the library.

5 Discussion

We propose to use the Lukasiewicz semantics for three-valued logic programs
in the area of human reasoning. Returning to our last example, lfp(ΦSvL,P6) =
〈{e}, {ab2}〉 is a model for both, the weak completion of P6 and P6 itself, under
the Lukasiewicz semantics, whereas it is – somewhat surprisingly – a model for
the weak completion of P6 but not for P6 under the Fitting semantics. Under the

Logics and Networks for Human Reasoning 9

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

> ⊥e ¬e l ¬l ab1 ¬ab1 o ¬o ab2 ¬ab2

ω
2

ω
2

ω
2

3ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

ω
2

e ¬e l ¬l ab1 ¬ab1 o ¬o ab2 ¬ab2

ω
2

ω
2

6 6

�
��

3ω
2

ω
2

�
��
�*

�
��
�*

@
@I

PP
PP

PPi

6 6

3ω
2

ω
2

6 6
@
@I

PP
PP

PPi

XX
XXX

XXXy

XX
XXX

XXXy

ω
2

ω
2

@
@I

PP
PP

PPi

6 6

ω
2

ω
2

��
�� ��

���:

��
���

���
�:

6 6

− 1
2

− 1
2

ω
2

ω
2

1
2

ω
2

ω
2

1
2

Figure 4. The stable state of feed-forward core for P6.

 Lukasiewicz semantics the completion of a three-valued logic program is exactly
what completion was originally thought of, viz., the addition of the only-if halves
to a program specifying the if-halves [4]. Nevertheless, whether Lukasiewicz se-
mantics is adequate for human reasoning in a broader sense remains to be seen.

We showed that the core method can be adapted to implement the revised
immediate consequence operator of Stenning and van Lambalgen. We presented
an algorithm for constructing the networks and proved that the networks settle
down in a state encoding the least fixed point of the operator. Although our
networks consist of logical threshold units, we claim that they can be replaced
by bipolar sigmoidal ones while preserving the relationship to logic programs by
applying the method first presented in [6] (see also [5]). The modified networks
can then be trained using backpropagation or related techniques, rule extraction
methods can be applied to the trained networks and the neural-symbolic cycle
can be closed.

In our networks units come in pairs, where the first (second) element rep-
resents the fact that the corresponding variable or formula is mapped to true
(false). In [17] similar networks are proposed – albeit in a three-dimensional set-
ting – and, in addition, the elements of each pair inhibit each other. From a
logical point of view such an inhibition is unnecessary – it can never be the case
that both elements are active – as long as the units of the input layer are not
externally activited. In a general setting, however, where context information
is used to activate the input units, such inhibitory connections establishing a
winner-take-all behaviour are very useful. Unfortunately, the presented theoret-
ical results concerning the core networks and their relation to logic programs do
not apply in this case anymore unless we would be able to show that ΦSvL,P is
a contraction.

In [17] additional techniques like integrity constraints and abduction are sug-
gested to handle additional human reasoning tasks. At the moment, we do not
know how to map these into the core method.

In the field of Logic Programming Fitting’s three-valued (first-order) logic
has been used in termination analysis. It remains to be seen whether these

10 Steffen Hölldobler and Carroline Dewi Puspa Kencana Ramli

results carry over to Lukasiewicz semantics. How important is Stenning and van
Lambalgen’s operator from a logic programming perspective?

References

1. S. Bader, P. Hitzler, S. Hölldobler, and A. Witzel. A fully connectionist model
generator for covered first-order logic programs. In Manuela M. Veloso, editor,
Proceedings of the Twentieth International Joint Conference on Artificial Intelli-
gence, pages 666–671, Menlo Park CA, January 2007. AAAI Press.

2. S. Bader and S. Hölldobler. The core method: Connectionist model generation.
In Proceedings of the 16th International Conference on Artificial Neural Net-
works (ICANN), volume 4132 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2006.

3. R.M.J. Byrne. Suppressing valid inferences with conditionals. Cognition, 31:61–83,
1989.

4. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293–322. Plenum, New York, 1978.

5. A.S. d’Avila Garcez, K. Broda, and D.M. Gabbay. Neural-Symbolic Learning Sys-
tems: Foundations and Applications. Springer, 2002.

6. A.S. d’Avila Garcez, G. Zaverucha, and L.A.V. de Carvalho. Logic programming
and inductive learning in artificial neural networks. In Ch. Herrmann, F. Reine,
and A. Strohmaier, editors, Knowledge Representation in Neural Networks, pages
33–46, Berlin, 1997. Logos Verlag.

7. M. Fitting. A Kripke–Kleene semantics for logic programs. Journal of Logic Pro-
gramming, 2(4):295–312, 1985.

8. M. Fitting. Metric methods – three examples and a theorem. Journal of Logic
Programming, 21(3):113–127, 1994.

9. K.-I. Funahashi. On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2:183–192, 1989.

10. S. Hölldobler and Y. Kalinke. Towards a massively parallel computational model
for logic programming. In Proceedings of the ECAI94 Workshop on Combining
Symbolic and Connectionist Processing, pages 68–77. ECCAI, 1994.

11. S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence, 11:45–59, 1999.

12. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2:359–366, 1989.

13. Y. Kalinke. Ein massiv paralleles Berechnungsmodell für normale logische Pro-
gramme. Master’s thesis, TU Dresden, Fakultät Informatik, 1994. (in German).

14. S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.
15. J. Lukasiewicz. O logice trójwartościowej. Ruch Filozoficzny, 5:169–171, 1920.

English translation: On Three-Valued Logic. In: Jan Lukasiewicz Selected Works.
(L. Borkowski, ed.), North Holland, 87-88, 1990.

16. A.K. Seda and M. Lane. Some aspects of the integration of connectionist and
logic-based systems. In Proceedings of the Third International Conference on In-
formation, pages 297–300, International Information Institute, Tokyo, Japan, 2004.

17. K. Stenning and M. van Lambalgen. Human Reasoning and Cognitive Science.
MIT Press, 2008.

18. J. E. Stoy. Denotational Semantics. MIT Press, Cambridge, 1977.

