‘ Technische
‘ Universitat

Dresden

Formale Systeme

22. Vorlesung: Das Halteproblem und Reduktionen

Markus Kroétzsch

Professur fiir Wissensbasierte Systeme

TU Dresden, 15. Januar 2026

https://iccl.inf.tu-dresden.de/web/FS2025
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

LOOP und WHILE, Reprise

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 2 von 26

Zusammenfassung LOOP und WHILE

LOOP-Programme
® Terminieren immer
e Koénnen fast alle praktisch relevanten Funktionen berechnen

e Kdénnen nicht jede berechenbare Funktion berechnen, z.B. Ackermann-Funktion,
Sudan-Funktion, LOOP-Busy-Beaver

WHILE-Programme
® Verallgemeinern LOOP
® Terminieren nicht immer

e Kdénnen alle berechenbaren totalen und partiellen Funktionen berechnen

Online-Simulator fiir LOOP und WHILE“* (+Abkiirzungen, +Kommentare):
https://tools.iccl.inf.tu-dresden.de/while/

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 3 von 26

https://tools.iccl.inf.tu-dresden.de/while/

Die Kraft des LOOP

Auf der vorigen Folie steht:
,LOOP-Programme kénnen fast alle praktisch relevanten Funktionen berechnen.*

Stimmt das wirklich?

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 4 von 26

Die Kraft des LOOP

Auf der vorigen Folie steht:
,LOOP-Programme kénnen fast alle praktisch relevanten Funktionen berechnen.*

Stimmt das wirklich?

Idee: Die Schleife WHILE x!=0 DO P END kann mit dem folgenden LOOP-Programm
simuliert werden:

LOOP max DO
IF x!=0 THEN
P
END
END

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 4 von 26

Die Kraft des LOOP

Auf der vorigen Folie steht:
,LOOP-Programme kénnen fast alle praktisch relevanten Funktionen berechnen.*

Stimmt das wirklich?

Idee: Die Schleife WHILE x!=0 DO P END kann mit dem folgenden LOOP-Programm
simuliert werden:

LOOP max DO
IF x!=0 THEN
P
END
END

wenn man den Wert von max so setzt, dass er mindestens so grof3 ist wie die maximale
Anzahl von Wiederholungen der simulierten WHILE-Schleife.

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 4 von 26

LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE fur beliebig viele Schritte simulieren — man muss nur
wissen, wie viele Schritte bendtigt werden.

Kann man das ausrechnen?

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 5 von 26

LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE fur beliebig viele Schritte simulieren — man muss nur
wissen, wie viele Schritte bendtigt werden.

Kann man das ausrechnen? Jal!

Satz: Fir ein beliebiges WHILE-Programm P sei maxp(ny,...,n;) die maximale An-
zahl an Schleifendurchlaufen, die P bei der Eingabe ny, ..., n; abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.

Diese partielle Funktion maxp : N¥ — N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchlaufe bestimmt und ausgibt. O

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 5 von 26

LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE fur beliebig viele Schritte simulieren — man muss nur
wissen, wie viele Schritte bendtigt werden.

Kann man das ausrechnen? Jal!

Satz: Fir ein beliebiges WHILE-Programm P sei maxp(ny,...,n;) die maximale An-
zahl an Schleifendurchlaufen, die P bei der Eingabe ny, ..., n; abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.

Diese partielle Funktion maxp : N¥ — N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchlaufe bestimmt und ausgibt. O

Wo ist der Haken?

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 5 von 26

LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE fur beliebig viele Schritte simulieren — man muss nur
wissen, wie viele Schritte bendtigt werden.

Kann man das ausrechnen? Jal!

Satz: Fir ein beliebiges WHILE-Programm P sei maxp(ny,...,n;) die maximale An-
zahl an Schleifendurchlaufen, die P bei der Eingabe ny, ..., n; abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.

Diese partielle Funktion maxp : N¥ — N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchlaufe bestimmt und ausgibt. O

Wo ist der Haken?

Die Funktion maxp ist zwar berechenbar, aber im Allgemeinen nicht LOOP-berechenbar.

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 5 von 26

Was kann LOOP?

Es gibt aber viele Félle, in denen man (eine obere Schranke von) maxp
LOOP-berechnen kann:

‘E’«Jtz: Die folgenden Funktionen sind LOOP-berechenbar:
® n - x fUr beliebige natirliche Zahlen n

e x" flr beliebige natlrliche Zahlen n

® * fir beliebige natlrliche Zahlen n

¥

® n fir beliebig hohe Tiirme von Exponenten n

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 6 von 26

Was kann LOOP?

Es gibt aber viele Félle, in denen man (eine obere Schranke von) maxp
LOOP-berechnen kann:

‘E’«Jtz: Die folgenden Funktionen sind LOOP-berechenbar:
® n - x fUr beliebige natirliche Zahlen n

e x" flr beliebige natlrliche Zahlen n

® * fir beliebige natlrliche Zahlen n

¥

® n fir beliebig hohe Tiirme von Exponenten n

X

Korollar: Jeder Algorithmus, der in Zeit O(n”) — oder weniger — |auft, berechnet ei-
ne LOOP-berechenbare Funktion. Insbesondere sind alle polynomiellen, exponentiel-
len oder mehrfach exponentiellen Algorithmen in LOOP implementierbar.

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 6 von 26

Universalitat

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 7 von 26

Die Universalmaschine

Eine erste wichtige Beobachtung Turings war, dass TMs stark genug sind um andere
TMs zu simulieren:

Schritt 1: Kodiere Turingmaschinen M als Wérter enc(M)

Schritt 2: Konstruiere eine universelle Turingmaschine U, die enc(M) als Eingabe erhélt und
dann die Berechnung von M simuliert

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 8 von 26

Schritt 1: Turingmaschinen kodieren

Jede verniinftige Kodierung einer TM M =(Q, %, T, 6, qo, F) ist nutzbar, zum Beispiel die
folgende (fir DTMs):

® Wir verwenden das Alphabet {0, 1, #}
® Zustande werden in beliebiger Reihenfolge nummeriert (mit Startzustand go) und binar
kodiert:
0 =1{qo,---,q.} ~ enc(Q) = bin(0)#- - - #bin(n)
® Wir kodieren auch I' und die Bewegungsrichtungen {R, L, N} binar
® Ein Ubergang 6(g;, o) = {(gj, 0w, D) wird als 5-Tupel kodiert:
enc(g;, o) = bin()#bin(n)#bin(j)#bin(m)#bin(D)
¢ Die Ubergangsfunktion wird kodiert als Liste aller dieser Tupel, getrennt mit #:
enc(6) = (enc(qi, o) .co.orer
® |nsgesamt setzten wir enc(M) = enc(Q)##enc(X)##enc(D)##tenc(d)#tenc(F)

Passend dazu kann man auch beliebige Worter kodieren:

T ® Fir ein Wort w = a, - - - a, setzen wir enc(w) = bin(a;)# - - - #bin(a,)

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 9 von 26

Schritt 2: Die universelle Turingmaschine

Wir definieren die universelle TM U als Mehrbandturingmaschine:
Band 1: Eingabeband von U: enthalt enc(M)##enc(w)
Band 2: Arbeitsband von U
Band 3: Speichert den Zustand der simulierten Turingmaschine
Band 4: Arbeitsband der simulierten Turingmaschine

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 10 von 26

Schritt 2: Die universelle Turingmaschine

Wir definieren die universelle TM U als Mehrbandturingmaschine:
Band 1: Eingabeband von U: enthalt enc(M)##enc(w)
Band 2: Arbeitsband von U
Band 3: Speichert den Zustand der simulierten Turingmaschine
Band 4: Arbeitsband der simulierten Turingmaschine

Die Arbeitsweise von U ist leicht skizziert:

® U prift Eingabe, kopiert enc(w) auf Band 4, verschiebt den Kopf auf Band 4 zum Anfang
und initialisiert Band 3 mit enc(0).

® In jedem Schritt liest U ein (kodiertes) Zeichen von der aktuellen Kopfposition auf Band

(4), sucht fir den simulierten Zustand (Band 3) einen passenden Ubergang in enc(M)
auf Band 1:

— Ubergang gefunden: setze Band 3 auf den neuen Zustand; ersetzt das kodierte
Zeichen auf Band 4 durch das neue Zeichen; verschiebe den Kopf auf Band 4
entsprechend

— Ubergang nicht gefunden: nimm Endzustand ein, falls der Zustand von Band 3
Endzustand in enc(M) ist; halte

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 10 von 26

Die Theorie der Software

Satz: Es gibt eine universelle Turingmaschine U, die fiir Eingaben der Form
enc(M)##enc(w) das Verhalten der DTM M auf w simuliert:

® Falls M auf w halt, dann halt U auf enc(M)##enc(w) mit dem gleichen Ergebnis
® Falls M auf w nicht halt, dann halt U auf enc(M)##enc(w) ebenfalls nicht

Unsere Konstruktion ist fir DTMs, die Sprachen erkennen — DTMs, die Funktionen
berechnen, kénnen ahnlich simuliert werden.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 11 von 26

Die Theorie der Software

Satz: Es gibt eine universelle Turingmaschine U, die fiir Eingaben der Form
enc(M)##enc(w) das Verhalten der DTM M auf w simuliert:

® Falls M auf w halt, dann halt U auf enc(M)##enc(w) mit dem gleichen Ergebnis
® Falls M auf w nicht halt, dann halt U auf enc(M)##enc(w) ebenfalls nicht

Unsere Konstruktion ist fir DTMs, die Sprachen erkennen — DTMs, die Funktionen
berechnen, kénnen ahnlich simuliert werden.

Praktische Konsequenzen:
® Universalrechner sind mdéglich
® Wir mlssen nicht fir jede neue Anwendung einen neuen Computer anschaffen
® Es gibt Software

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 11 von 26

Unentscheidbare Probleme und Reduktionen

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 12 von 26

Das Halteproblem

Ein klassisches unentscheidbares Problem ist das Halteproblem:

Das Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M und ein Wort w,
wird M fur die Eingabe w jemals anhalten?

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 13 von 26

Das Halteproblem

Ein klassisches unentscheidbares Problem ist das Halteproblem:

Das Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M und ein Wort w,
wird M fur die Eingabe w jemals anhalten?

Wir kénnen das Halteproblem formal als Entscheidungsproblem ausdriicken, wenn wir
Mund w kodieren:

Das Halteproblem ist das Wortproblem fiir die Sprache
Pt = {enc(M)##enc(w) | M halt bei Eingabe w},

wobei enc(M) und enc(w) geeignete Kodierungen von M und w sind, so dass ## als
Trennwort verwendet werden kann.

Anmerkung: Falsch kodierte Eingaben werden hier auch abgelehnt.

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 13 von 26

.Beweis* durch Intuition

\ Satz: Das Halteproblem Py, ist unentscheidbar.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 14 von 26

.Beweis* durch Intuition

\ Satz: Das Halteproblem Py, ist unentscheidbar.

»Beweis:* Das Gegenteil ware zu schén um wahr zu sein. Viele ungeldste Probleme
kénnte man damit direkt I6sen.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 14 von 26

.Beweis* durch Intuition

Fatz: Das Halteproblem Py ist unentscheidbar.

»Beweis:* Das Gegenteil ware zu schén um wahr zu sein. Viele ungeldste Probleme
kénnte man damit direkt I6sen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n > 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 14 von 26

.Beweis* durch Intuition

Fatz: Das Halteproblem Py ist unentscheidbar.

»Beweis:* Das Gegenteil ware zu schén um wahr zu sein. Viele ungeldste Probleme
kénnte man damit direkt I6sen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n > 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.

Man kann leicht einen Algorithmus A angeben, der die Goldbachsche Vermutung
systematisch verifiziert, d.h., fir alle geraden Zahlen ab 4 testet:

* Erfolg: teste die nachste gerade Zahl
® Misserfolg: terminiere mit Meldung ,Goldbach hat sich geirrt!”

Die Frage ,Wird A halten?” ist gleichbedeutend mit der Frage
,Gilt die Goldbachsche Vermutung nicht?*

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 14 von 26

Vgl. 13. Ubung, Aufg. 4: Mit Py kann man alle semi-entscheidbaren Probleme I8sen

Abschweifung

Ist die Goldbachsche Vermutung entscheidbar?

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 15 von 26

Beweis durch ,Diagonalisierung”

\ Satz: Das Halteproblem Py, ist unentscheidbar.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Beweis durch ,Diagonalisierung”

\ Satz: Das Halteproblem Py, ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H fir das
Halteproblem gibt.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Beweis durch ,Diagonalisierung”

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H fir das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:
(1) Prife, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prife, ob M auf enc(M)
halt

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Beweis durch ,Diagonalisierung”

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H fir das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:
(1) Prife, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prife, ob M auf enc(M)
halt

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Beweis durch ,Diagonalisierung”

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H fir das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:
(1) Prife, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prife, ob M auf enc(M)
halt

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?
D halt und akzeptiert genau dann wenn D nicht hélt

Widerspruch. O

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Diagonalisierung, graphische Darstellung

Bekannt: Eine Maschine halt auf
einem Input oder nicht:

STOP
- <

Annahme: Es gibt eine Maschine,
die Halten entscheidet:

,STOP*
EL R

Eingabe
1+2=?

Markus Krotzsch, 15. Januar 2026

Bauplan Diagonalisierungsmaschine:

W'k = £ = .sToOP"
i lﬁn’ STOP

o0

Paradoxon: E -) ' =

Formale Systeme Folie 17 von 26

Beweis durch Reduktion

\ Satz: Das Halteproblem Py, ist unentscheidbar.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 18 von 26

Beweis durch Reduktion

\ Satz: Das Halteproblem Py, ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wére entscheidbar.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 18 von 26

Beweis durch Reduktion

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wére entscheidbar.

Ein Algorithmus:
® Eingabe: (binarkodierte) naturliche Zahl k
® |teriere Uber alle Turingmaschinen M mit k Zustanden tber dem Arbeitsalphabet
{Xa '—‘}:
— Entscheide ob M bei leerer Eingabe € halt
(mdglich, wenn das Halteproblem entscheidbar ist)
— Falls ja, dann simuliere M auf der leeren Eingabe und z&hle nach der
Terminierung von M die x auf dem Band
(mdglich, da es universelle Turingmaschinen gibt)

® Ausgabe: die maximale Zahl der geschriebenen x.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 18 von 26

Beweis durch Reduktion

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wére entscheidbar.

Ein Algorithmus:
® Eingabe: (binarkodierte) naturliche Zahl k
® |teriere Uber alle Turingmaschinen M mit k Zustanden tber dem Arbeitsalphabet
{Xa '—‘}:
— Entscheide ob M bei leerer Eingabe € halt
(mdglich, wenn das Halteproblem entscheidbar ist)
— Falls ja, dann simuliere M auf der leeren Eingabe und z&hle nach der
Terminierung von M die x auf dem Band
(mdglich, da es universelle Turingmaschinen gibt)

® Ausgabe: die maximale Zahl der geschriebenen x.
Dieser Algorithmus wirde die Busy-Beaver-Funktion X : N — N berechnen.

Wir wissen, dass das unmdglich ist — Widerspruch. O

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 18 von 26

Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus fir ein Problem (Busy Beaver) durch Aufruf
von Subroutinen fiir ein anderes (Halteproblem)

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 19 von 26

Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus fir ein Problem (Busy Beaver) durch Aufruf
von Subroutinen fiir ein anderes (Halteproblem)

Diese Idee lasst sich verallgemeinern:

Ein Problem P ist Turing-reduzierbar auf ein Problem Q (in Symbolen: P <7 Q), wenn
man P mit einem Programm I&sen kann, welches ein Programm fiir Q als Unterpro-
gramm aufrufen darf.

Anmerkung: Das ist etwas informell. Eine ganz formelle Definition verwendet den Begriff des
Orakels fur Turingmaschinen.

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 19 von 26

Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus fir ein Problem (Busy Beaver) durch Aufruf
von Subroutinen fiir ein anderes (Halteproblem)

Diese Idee lasst sich verallgemeinern:

Ein Problem P ist Turing-reduzierbar auf ein Problem Q (in Symbolen: P <7 Q), wenn
man P mit einem Programm I&sen kann, welches ein Programm fiir Q als Unterpro-
gramm aufrufen darf.

Anmerkung: Das ist etwas informell. Eine ganz formelle Definition verwendet den Begriff des
Orakels fur Turingmaschinen.

Beispiel: Unser Beweis basiert auf einer Turing-Reduktion der Berechnung der Busy-
Beaver-Funktion auf das Halteproblem.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 19 von 26

Turing-Reduktionen: Beispiel

Eeispiel: Das Nicht-Halteproblem Phan, ist definiert als
Prai = {enc(M)##tenc(w) | M halt nicht bei Eingabe w}

Pyar ist Turing-reduzierbar auf Pyay: (1) Priife Eingabeformat, (2) entscheide Haltepro-
blem, (3) invertiere Ergebnis.

Analog kann auch Py, auf Phiat Turing-reduziert werden.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 20 von 26

Turing-Reduktionen: Beispiel

Beispiel: Das Nicht-Halteproblem Phan, ist definiert als
Prai = {enc(M)##tenc(w) | M halt nicht bei Eingabe w}

Pyar ist Turing-reduzierbar auf Pyay: (1) Priife Eingabeformat, (2) entscheide Haltepro-
blem, (3) invertiere Ergebnis.

Analog kann auch Py, auf Phiat Turing-reduziert werden.

Daraus ergibt sich:

Fatz: Das Nicht-Halteproblem Ppar ist unentscheidbar.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 20 von 26

e-Halten

Sonderfalle des Halteproblems sind in der Regel nicht einfacher:

Das e-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M fir die leere Eingabe € jemals anhalten?

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 21 von 26

e-Halten

Sonderfalle des Halteproblems sind in der Regel nicht einfacher:

Das e-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M fir die leere Eingabe € jemals anhalten?

\ Satz: Das e-Halteproblem ist unentscheidbar.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 21 von 26

e-Halten

Sonderfalle des Halteproblems sind in der Regel nicht einfacher:

Das e-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M flr die leere Eingabe € jemals anhalten?

Fatz: Das e-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem ware entscheidbar.

Ein Algorithmus:
® Eingabe: Eine Turingmaschine M und ein Wort w.
® Konstruiere eine TM M,,, die zwei Schritte ausfihrt:

(1) Ldsche das Eingabeband und fllle es mit dem Wort w
(2) Verarbeite diese Eingabe wie M

® Entscheide das e-Halteproblem fir M,,.
® Ausgabe: Ergebnis des e-Halteproblems

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 21 von 26

e-Halten

Sonderfalle des Halteproblems sind in der Regel nicht einfacher:

Das e-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M flr die leere Eingabe € jemals anhalten?

Fatz: Das e-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem ware entscheidbar.

Ein Algorithmus:
® Eingabe: Eine Turingmaschine M und ein Wort w.
® Konstruiere eine TM M,,, die zwei Schritte ausfihrt:
(1) Ldsche das Eingabeband und fllle es mit dem Wort w
(2) Verarbeite diese Eingabe wie M

® Entscheide das e-Halteproblem fir M,,.
® Ausgabe: Ergebnis des e-Halteproblems
Dies wirde das Halteproblem entscheiden — Widerspruch. O

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 21 von 26

Beweistechniken im Vergleich

Wir haben zwei ahnliche Unentscheidbarkeitsbeweise gesehen:

Halteproblem e-Halteproblem

® Reduktion der ® Reduktion des
Busy-Beaver-Funktion Halteproblems

® Algorithmus ruft Subroutine ~ ® Algorithmus ruft Subroutine
flr Halteproblem flr e-Halteproblem immer
exponentiell oft auf genau einmal auf

® Ausgabe wird durch weitere ~ ® Ausgabe ist das Ergebnis
TM-Simulationen berechnet der e-Halteproblem-Routine

~» Turing-Reduktion! ~» Turing-Reduktion?

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 22 von 26

Many-One-Reduktionen

Idee: Im letzten Beweis verwendeten wir das e-Halteproblem nicht als Subroutine eines
komplexen Programms, sondern wir formten das Halteproblem in ein e-Halteproblem um

Eine berechenbare totale Funktion f : ¥* — X* ist eine Many-One-Reduktion von einer
Sprache P auf eine Sprache Q (in Symbolen: P <,, Q), wenn fir alle Worter w € ¥*

gilt:
weP genau dann wenn f(w)eQ

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 23 von 26

Many-One-Reduktionen

Idee: Im letzten Beweis verwendeten wir das e-Halteproblem nicht als Subroutine eines
komplexen Programms, sondern wir formten das Halteproblem in ein e-Halteproblem um

Eine berechenbare totale Funktion f : ¥* — X* ist eine Many-One-Reduktion von einer
Sprache P auf eine Sprache Q (in Symbolen: P <,, Q), wenn fir alle Worter w € ¥*

gilt:
weP genau dann wenn f(w)eQ

Beispiel: Die folgende Funktion definiert eine Many-One-Reduktion vom Halteproblem
auf das e-Halteproblem:

) enc(M,,) falls v = enc(M)##enc(w) fir eine TM M
V) =
falls die Eingabe nicht korrekt kodiert ist

Dabei ist M,, die TM aus dem Beweis.

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 23 von 26

Entscheidbarkeit durch Reduktion

Das folgende Resultat driickt die wesentliche Idee hinter Reduktionen aus:

\l Satz: Wenn P <,, Q und Q entscheidbar ist, dann ist auch P entscheidbar.

Beweis: Die Reduktion liefert einen Entscheidungsalgorithmus. O

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 24 von 26

Entscheidbarkeit durch Reduktion

Das folgende Resultat driickt die wesentliche Idee hinter Reduktionen aus:

Fatz: Wenn P <,, Q und Q entscheidbar ist, dann ist auch P entscheidbar.

Beweis: Die Reduktion liefert einen Entscheidungsalgorithmus. O

Eigentlich benutzen wir bisher vor allem die Umkehrung:

Fatz: Wenn P <,, Q und P unentscheidbar ist, dann ist auch Q unentscheidbar.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 24 von 26

Many-One vs. Turing

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26

Many-One vs. Turing

Many-One-Reduktionen sind schwécher als Turing-Reduktionen:

Fatz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedriickt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. O

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26

Many-One vs. Turing

Many-One-Reduktionen sind schwécher als Turing-Reduktionen:

Fatz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedriickt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. O

Fatz: Es gibt Probleme P und Q, flr die P <7 Q gilt, aber nicht P <,, Q.

Beweis: Wir haben bereits gesehen, dass Phai <7 Phar. Aber es gilt nicht Puai <, Phart
— wir werden in der nachsten Vorlesung sehen, warum nicht. O

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26

Zusammenfassung und Ausblick
LOOP-Programme kdénnen wirklich fast alle praktisch relevanten Probleme l6sen

Durch Reduktionen kdnnen wir aus der (Un)Lésbarkeit eines Problems die
(Un)Lésbarkeit eines anderen ableiten

Turing-Reduktionen P <; Q verwenden die Lésung von Q als Subroutine in einem
Algorithmus far P

Many-One-Reduktionen P <, Q formen eine Problemstellung fiir P in eine
Problemstellung fir Q um

Was erwartet uns als néachstes?
® Mehr zu Semi-Entscheidbarkeit
® Ein unentscheidbares Problem von Emil Post ...
e .. und unendlich viele von Henry Gordon Rice

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 26 von 26

