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Zusammenfassung LOOP und WHILE

LOOP-Programme
® Terminieren immer
e Koénnen fast alle praktisch relevanten Funktionen berechnen

e Kdénnen nicht jede berechenbare Funktion berechnen, z.B. Ackermann-Funktion,
Sudan-Funktion, LOOP-Busy-Beaver

WHILE-Programme
® Verallgemeinern LOOP
® Terminieren nicht immer

e Kdénnen alle berechenbaren totalen und partiellen Funktionen berechnen

Online-Simulator fiir LOOP und WHILE“* (+Abkiirzungen, +Kommentare):
https://tools.iccl.inf.tu-dresden.de/while/
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Die Kraft des LOOP

Auf der vorigen Folie steht:
,LOOP-Programme kénnen fast alle praktisch relevanten Funktionen berechnen.*

Stimmt das wirklich?
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Die Kraft des LOOP

Auf der vorigen Folie steht:
,LOOP-Programme kénnen fast alle praktisch relevanten Funktionen berechnen.*

Stimmt das wirklich?

Idee: Die Schleife WHILE x!=0 DO P END kann mit dem folgenden LOOP-Programm
simuliert werden:

LOOP max DO
IF x!=0 THEN
P
END
END
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Die Kraft des LOOP

Auf der vorigen Folie steht:
,LOOP-Programme kénnen fast alle praktisch relevanten Funktionen berechnen.*

Stimmt das wirklich?

Idee: Die Schleife WHILE x!=0 DO P END kann mit dem folgenden LOOP-Programm
simuliert werden:

LOOP max DO
IF x!=0 THEN
P
END
END

wenn man den Wert von max so setzt, dass er mindestens so grof3 ist wie die maximale
Anzahl von Wiederholungen der simulierten WHILE-Schleife.
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LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE fur beliebig viele Schritte simulieren — man muss nur
wissen, wie viele Schritte bendtigt werden.

Kann man das ausrechnen?
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LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE fur beliebig viele Schritte simulieren — man muss nur
wissen, wie viele Schritte bendtigt werden.

Kann man das ausrechnen? Jal!

Satz: Fir ein beliebiges WHILE-Programm P sei maxp(ny,...,n;) die maximale An-
zahl an Schleifendurchlaufen, die P bei der Eingabe ny, ..., n; abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.

Diese partielle Funktion maxp : N¥ — N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchlaufe bestimmt und ausgibt. O
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LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE fur beliebig viele Schritte simulieren — man muss nur
wissen, wie viele Schritte bendtigt werden.

Kann man das ausrechnen? Jal!

Satz: Fir ein beliebiges WHILE-Programm P sei maxp(ny,...,n;) die maximale An-
zahl an Schleifendurchlaufen, die P bei der Eingabe ny, ..., n; abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.

Diese partielle Funktion maxp : N¥ — N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchlaufe bestimmt und ausgibt. O

Wo ist der Haken?

Die Funktion maxp ist zwar berechenbar, aber im Allgemeinen nicht LOOP-berechenbar.
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Was kann LOOP?

Es gibt aber viele Félle, in denen man (eine obere Schranke von) maxp
LOOP-berechnen kann:

‘E’«Jtz: Die folgenden Funktionen sind LOOP-berechenbar:
® n - x fUr beliebige natirliche Zahlen n

e x" flr beliebige natlrliche Zahlen n

® * fir beliebige natlrliche Zahlen n

¥

® n fir beliebig hohe Tiirme von Exponenten n
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Was kann LOOP?

Es gibt aber viele Félle, in denen man (eine obere Schranke von) maxp
LOOP-berechnen kann:

‘E’«Jtz: Die folgenden Funktionen sind LOOP-berechenbar:
® n - x fUr beliebige natirliche Zahlen n

e x" flr beliebige natlrliche Zahlen n

® * fir beliebige natlrliche Zahlen n

¥

® n fir beliebig hohe Tiirme von Exponenten n

X

Korollar: Jeder Algorithmus, der in Zeit O(n” ) — oder weniger — |auft, berechnet ei-
ne LOOP-berechenbare Funktion. Insbesondere sind alle polynomiellen, exponentiel-
len oder mehrfach exponentiellen Algorithmen in LOOP implementierbar.
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Universalitat
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Die Universalmaschine

Eine erste wichtige Beobachtung Turings war, dass TMs stark genug sind um andere
TMs zu simulieren:

Schritt 1: Kodiere Turingmaschinen M als Wérter enc(M)

Schritt 2: Konstruiere eine universelle Turingmaschine U, die enc(M) als Eingabe erhélt und
dann die Berechnung von M simuliert
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Schritt 1: Turingmaschinen kodieren

Jede verniinftige Kodierung einer TM M =(Q, %, T, 6, qo, F) ist nutzbar, zum Beispiel die
folgende (fir DTMs):

® Wir verwenden das Alphabet {0, 1, #}
® Zustande werden in beliebiger Reihenfolge nummeriert (mit Startzustand go) und binar
kodiert:
0 =1{qo,---,q.} ~ enc(Q) = bin(0)#- - - #bin(n)
® Wir kodieren auch I' und die Bewegungsrichtungen {R, L, N} binar
® Ein Ubergang 6(g;, o) = {(gj, 0w, D) wird als 5-Tupel kodiert:
enc(g;, o) = bin()#bin(n)#bin(j)#bin(m)#bin(D)
¢ Die Ubergangsfunktion wird kodiert als Liste aller dieser Tupel, getrennt mit #:
enc(6) = (enc(qi, o) .co.orer
® |nsgesamt setzten wir enc(M) = enc(Q)##enc(X)##enc(D)##tenc(d)#tenc(F)

Passend dazu kann man auch beliebige Worter kodieren:

T ® Fir ein Wort w = a, - - - a, setzen wir enc(w) = bin(a;)# - - - #bin(a,)
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Schritt 2: Die universelle Turingmaschine

Wir definieren die universelle TM U als Mehrbandturingmaschine:
Band 1: Eingabeband von U: enthalt enc(M)##enc(w)
Band 2: Arbeitsband von U
Band 3: Speichert den Zustand der simulierten Turingmaschine
Band 4: Arbeitsband der simulierten Turingmaschine
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Schritt 2: Die universelle Turingmaschine

Wir definieren die universelle TM U als Mehrbandturingmaschine:
Band 1: Eingabeband von U: enthalt enc(M)##enc(w)
Band 2: Arbeitsband von U
Band 3: Speichert den Zustand der simulierten Turingmaschine
Band 4: Arbeitsband der simulierten Turingmaschine

Die Arbeitsweise von U ist leicht skizziert:

® U prift Eingabe, kopiert enc(w) auf Band 4, verschiebt den Kopf auf Band 4 zum Anfang
und initialisiert Band 3 mit enc(0).

® In jedem Schritt liest U ein (kodiertes) Zeichen von der aktuellen Kopfposition auf Band

(4), sucht fir den simulierten Zustand (Band 3) einen passenden Ubergang in enc(M)
auf Band 1:

— Ubergang gefunden: setze Band 3 auf den neuen Zustand; ersetzt das kodierte
Zeichen auf Band 4 durch das neue Zeichen; verschiebe den Kopf auf Band 4
entsprechend

— Ubergang nicht gefunden: nimm Endzustand ein, falls der Zustand von Band 3
Endzustand in enc(M) ist; halte

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 10 von 26



Die Theorie der Software

Satz: Es gibt eine universelle Turingmaschine U, die fiir Eingaben der Form
enc(M)##enc(w) das Verhalten der DTM M auf w simuliert:

® Falls M auf w halt, dann halt U auf enc(M)##enc(w) mit dem gleichen Ergebnis
® Falls M auf w nicht halt, dann halt U auf enc(M)##enc(w) ebenfalls nicht

Unsere Konstruktion ist fir DTMs, die Sprachen erkennen — DTMs, die Funktionen
berechnen, kénnen ahnlich simuliert werden.
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Die Theorie der Software

Satz: Es gibt eine universelle Turingmaschine U, die fiir Eingaben der Form
enc(M)##enc(w) das Verhalten der DTM M auf w simuliert:

® Falls M auf w halt, dann halt U auf enc(M)##enc(w) mit dem gleichen Ergebnis
® Falls M auf w nicht halt, dann halt U auf enc(M)##enc(w) ebenfalls nicht

Unsere Konstruktion ist fir DTMs, die Sprachen erkennen — DTMs, die Funktionen
berechnen, kénnen ahnlich simuliert werden.

Praktische Konsequenzen:
® Universalrechner sind mdéglich
® Wir mlssen nicht fir jede neue Anwendung einen neuen Computer anschaffen
® Es gibt Software

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 11 von 26



Unentscheidbare Probleme und Reduktionen
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Das Halteproblem

Ein klassisches unentscheidbares Problem ist das Halteproblem:

Das Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M und ein Wort w,
wird M fur die Eingabe w jemals anhalten?
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Das Halteproblem

Ein klassisches unentscheidbares Problem ist das Halteproblem:

Das Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M und ein Wort w,
wird M fur die Eingabe w jemals anhalten?

Wir kénnen das Halteproblem formal als Entscheidungsproblem ausdriicken, wenn wir
Mund w kodieren:

Das Halteproblem ist das Wortproblem fiir die Sprache
Pt = {enc(M)##enc(w) | M halt bei Eingabe w},

wobei enc(M) und enc(w) geeignete Kodierungen von M und w sind, so dass ## als
Trennwort verwendet werden kann.

Anmerkung: Falsch kodierte Eingaben werden hier auch abgelehnt.
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.Beweis* durch Intuition

\ Satz: Das Halteproblem Py, ist unentscheidbar.
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.Beweis* durch Intuition

\ Satz: Das Halteproblem Py, ist unentscheidbar.

»Beweis:* Das Gegenteil ware zu schén um wahr zu sein. Viele ungeldste Probleme
kénnte man damit direkt I6sen.
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.Beweis* durch Intuition

Fatz: Das Halteproblem Py ist unentscheidbar.

»Beweis:* Das Gegenteil ware zu schén um wahr zu sein. Viele ungeldste Probleme
kénnte man damit direkt I6sen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n > 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.
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.Beweis* durch Intuition

Fatz: Das Halteproblem Py ist unentscheidbar.

»Beweis:* Das Gegenteil ware zu schén um wahr zu sein. Viele ungeldste Probleme
kénnte man damit direkt I6sen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n > 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.

Man kann leicht einen Algorithmus A angeben, der die Goldbachsche Vermutung
systematisch verifiziert, d.h., fir alle geraden Zahlen ab 4 testet:

* Erfolg: teste die nachste gerade Zahl
® Misserfolg: terminiere mit Meldung ,Goldbach hat sich geirrt!”

Die Frage ,Wird A halten?” ist gleichbedeutend mit der Frage
,Gilt die Goldbachsche Vermutung nicht?*
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Vgl. 13. Ubung, Aufg. 4: Mit Py kann man alle semi-entscheidbaren Probleme I8sen



Abschweifung

Ist die Goldbachsche Vermutung entscheidbar?
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Beweis durch ,Diagonalisierung”

\ Satz: Das Halteproblem Py, ist unentscheidbar.

Markus Krétzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26



Beweis durch ,Diagonalisierung”

\ Satz: Das Halteproblem Py, ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H fir das
Halteproblem gibt.
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Beweis durch ,Diagonalisierung”

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H fir das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:
(1) Prife, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prife, ob M auf enc(M)
halt

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere
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Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:
(1) Prife, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prife, ob M auf enc(M)
halt

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?
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Beweis durch ,Diagonalisierung”

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H fir das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:
(1) Prife, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prife, ob M auf enc(M)
halt

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?
D halt und akzeptiert  genau dann wenn D nicht hélt

Widerspruch. O
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Diagonalisierung, graphische Darstellung

Bekannt: Eine Maschine halt auf
einem Input oder nicht:

STOP
- <

Annahme: Es gibt eine Maschine,
die Halten entscheidet:

,STOP*
EL R

Eingabe
1+2=?

Markus Krotzsch, 15. Januar 2026

Bauplan Diagonalisierungsmaschine:

W'k = £ = .sToOP"
i lﬁn’ STOP

o0

Paradoxon: E -) ' =
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Beweis durch Reduktion

\ Satz: Das Halteproblem Py, ist unentscheidbar.
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Beweis durch Reduktion

\ Satz: Das Halteproblem Py, ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wére entscheidbar.
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Beweis durch Reduktion

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wére entscheidbar.

Ein Algorithmus:
® Eingabe: (binarkodierte) naturliche Zahl k
® |teriere Uber alle Turingmaschinen M mit k Zustanden tber dem Arbeitsalphabet
{Xa '—‘}:
— Entscheide ob M bei leerer Eingabe € halt
(mdglich, wenn das Halteproblem entscheidbar ist)
— Falls ja, dann simuliere M auf der leeren Eingabe und z&hle nach der
Terminierung von M die x auf dem Band
(mdglich, da es universelle Turingmaschinen gibt)

® Ausgabe: die maximale Zahl der geschriebenen x.
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Beweis durch Reduktion

Fatz: Das Halteproblem Py ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wére entscheidbar.

Ein Algorithmus:
® Eingabe: (binarkodierte) naturliche Zahl k
® |teriere Uber alle Turingmaschinen M mit k Zustanden tber dem Arbeitsalphabet
{Xa '—‘}:
— Entscheide ob M bei leerer Eingabe € halt
(mdglich, wenn das Halteproblem entscheidbar ist)
— Falls ja, dann simuliere M auf der leeren Eingabe und z&hle nach der
Terminierung von M die x auf dem Band
(mdglich, da es universelle Turingmaschinen gibt)

® Ausgabe: die maximale Zahl der geschriebenen x.
Dieser Algorithmus wirde die Busy-Beaver-Funktion X : N — N berechnen.

Wir wissen, dass das unmdglich ist — Widerspruch. O
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Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus fir ein Problem (Busy Beaver) durch Aufruf
von Subroutinen fiir ein anderes (Halteproblem)
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Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus fir ein Problem (Busy Beaver) durch Aufruf
von Subroutinen fiir ein anderes (Halteproblem)

Diese Idee lasst sich verallgemeinern:

Ein Problem P ist Turing-reduzierbar auf ein Problem Q (in Symbolen: P <7 Q), wenn
man P mit einem Programm I&sen kann, welches ein Programm fiir Q als Unterpro-
gramm aufrufen darf.

Anmerkung: Das ist etwas informell. Eine ganz formelle Definition verwendet den Begriff des
Orakels fur Turingmaschinen.
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Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus fir ein Problem (Busy Beaver) durch Aufruf
von Subroutinen fiir ein anderes (Halteproblem)

Diese Idee lasst sich verallgemeinern:

Ein Problem P ist Turing-reduzierbar auf ein Problem Q (in Symbolen: P <7 Q), wenn
man P mit einem Programm I&sen kann, welches ein Programm fiir Q als Unterpro-
gramm aufrufen darf.

Anmerkung: Das ist etwas informell. Eine ganz formelle Definition verwendet den Begriff des
Orakels fur Turingmaschinen.

Beispiel: Unser Beweis basiert auf einer Turing-Reduktion der Berechnung der Busy-
Beaver-Funktion auf das Halteproblem.
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Turing-Reduktionen: Beispiel

Eeispiel: Das Nicht-Halteproblem Phan, ist definiert als
Prai = {enc(M)##tenc(w) | M halt nicht bei Eingabe w}

Pyar ist Turing-reduzierbar auf Pyay: (1) Priife Eingabeformat, (2) entscheide Haltepro-
blem, (3) invertiere Ergebnis.

Analog kann auch Py, auf Phiat Turing-reduziert werden.
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Turing-Reduktionen: Beispiel

Beispiel: Das Nicht-Halteproblem Phan, ist definiert als
Prai = {enc(M)##tenc(w) | M halt nicht bei Eingabe w}

Pyar ist Turing-reduzierbar auf Pyay: (1) Priife Eingabeformat, (2) entscheide Haltepro-
blem, (3) invertiere Ergebnis.

Analog kann auch Py, auf Phiat Turing-reduziert werden.

Daraus ergibt sich:

Fatz: Das Nicht-Halteproblem Ppar ist unentscheidbar.
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e-Halten

Sonderfalle des Halteproblems sind in der Regel nicht einfacher:

Das e-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M fir die leere Eingabe € jemals anhalten?
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e-Halten

Sonderfalle des Halteproblems sind in der Regel nicht einfacher:

Das e-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M fir die leere Eingabe € jemals anhalten?

\ Satz: Das e-Halteproblem ist unentscheidbar.
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e-Halten

Sonderfalle des Halteproblems sind in der Regel nicht einfacher:

Das e-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M flr die leere Eingabe € jemals anhalten?

Fatz: Das e-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem ware entscheidbar.

Ein Algorithmus:
® Eingabe: Eine Turingmaschine M und ein Wort w.
® Konstruiere eine TM M,,, die zwei Schritte ausfihrt:

(1) Ldsche das Eingabeband und fllle es mit dem Wort w
(2) Verarbeite diese Eingabe wie M

® Entscheide das e-Halteproblem fir M,,.
® Ausgabe: Ergebnis des e-Halteproblems
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e-Halten

Sonderfalle des Halteproblems sind in der Regel nicht einfacher:

Das e-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M flr die leere Eingabe € jemals anhalten?

Fatz: Das e-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem ware entscheidbar.

Ein Algorithmus:
® Eingabe: Eine Turingmaschine M und ein Wort w.
® Konstruiere eine TM M,,, die zwei Schritte ausfihrt:
(1) Ldsche das Eingabeband und fllle es mit dem Wort w
(2) Verarbeite diese Eingabe wie M

® Entscheide das e-Halteproblem fir M,,.
® Ausgabe: Ergebnis des e-Halteproblems
Dies wirde das Halteproblem entscheiden — Widerspruch. O
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Beweistechniken im Vergleich

Wir haben zwei ahnliche Unentscheidbarkeitsbeweise gesehen:

Halteproblem e-Halteproblem

® Reduktion der ® Reduktion des
Busy-Beaver-Funktion Halteproblems

® Algorithmus ruft Subroutine ~ ® Algorithmus ruft Subroutine
flr Halteproblem flr e-Halteproblem immer
exponentiell oft auf genau einmal auf

® Ausgabe wird durch weitere ~ ® Ausgabe ist das Ergebnis
TM-Simulationen berechnet der e-Halteproblem-Routine

~» Turing-Reduktion! ~» Turing-Reduktion?

Markus Krotzsch, 15. Januar 2026 Formale Systeme Folie 22 von 26



Many-One-Reduktionen

Idee: Im letzten Beweis verwendeten wir das e-Halteproblem nicht als Subroutine eines
komplexen Programms, sondern wir formten das Halteproblem in ein e-Halteproblem um

Eine berechenbare totale Funktion f : ¥* — X* ist eine Many-One-Reduktion von einer
Sprache P auf eine Sprache Q (in Symbolen: P <,, Q), wenn fir alle Worter w € ¥*

gilt:
weP genau dann wenn f(w)eQ
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Many-One-Reduktionen

Idee: Im letzten Beweis verwendeten wir das e-Halteproblem nicht als Subroutine eines
komplexen Programms, sondern wir formten das Halteproblem in ein e-Halteproblem um

Eine berechenbare totale Funktion f : ¥* — X* ist eine Many-One-Reduktion von einer
Sprache P auf eine Sprache Q (in Symbolen: P <,, Q), wenn fir alle Worter w € ¥*

gilt:
weP genau dann wenn f(w)eQ

Beispiel: Die folgende Funktion definiert eine Many-One-Reduktion vom Halteproblem
auf das e-Halteproblem:

) enc(M,,) falls v = enc(M)##enc(w) fir eine TM M
V) =
falls die Eingabe nicht korrekt kodiert ist

Dabei ist M,, die TM aus dem Beweis.
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Entscheidbarkeit durch Reduktion

Das folgende Resultat driickt die wesentliche Idee hinter Reduktionen aus:

\l Satz: Wenn P <,, Q und Q entscheidbar ist, dann ist auch P entscheidbar.

Beweis: Die Reduktion liefert einen Entscheidungsalgorithmus. O
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Entscheidbarkeit durch Reduktion

Das folgende Resultat driickt die wesentliche Idee hinter Reduktionen aus:

Fatz: Wenn P <,, Q und Q entscheidbar ist, dann ist auch P entscheidbar.

Beweis: Die Reduktion liefert einen Entscheidungsalgorithmus. O

Eigentlich benutzen wir bisher vor allem die Umkehrung:

Fatz: Wenn P <,, Q und P unentscheidbar ist, dann ist auch Q unentscheidbar.
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Many-One vs. Turing
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Many-One vs. Turing

Many-One-Reduktionen sind schwécher als Turing-Reduktionen:

Fatz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedriickt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. O
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Many-One vs. Turing

Many-One-Reduktionen sind schwécher als Turing-Reduktionen:

Fatz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedriickt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. O

Fatz: Es gibt Probleme P und Q, flr die P <7 Q gilt, aber nicht P <,, Q.

Beweis: Wir haben bereits gesehen, dass Phai <7 Phar. Aber es gilt nicht Puai <, Phart
— wir werden in der nachsten Vorlesung sehen, warum nicht. O
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Zusammenfassung und Ausblick
LOOP-Programme kdénnen wirklich fast alle praktisch relevanten Probleme l6sen

Durch Reduktionen kdnnen wir aus der (Un)Lésbarkeit eines Problems die
(Un)Lésbarkeit eines anderen ableiten

Turing-Reduktionen P <; Q verwenden die Lésung von Q als Subroutine in einem
Algorithmus far P

Many-One-Reduktionen P <, Q formen eine Problemstellung fiir P in eine
Problemstellung fir Q um

Was erwartet uns als néachstes?
® Mehr zu Semi-Entscheidbarkeit
® Ein unentscheidbares Problem von Emil Post ...
e .. und unendlich viele von Henry Gordon Rice
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