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LOOP und WHILE, Reprise
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Zusammenfassung LOOP und WHILE

LOOP-Programme

• Terminieren immer

• Können fast alle praktisch relevanten Funktionen berechnen

• Können nicht jede berechenbare Funktion berechnen, z.B. Ackermann-Funktion,
Sudan-Funktion, LOOP-Busy-Beaver

WHILE-Programme

• Verallgemeinern LOOP

• Terminieren nicht immer

• Können alle berechenbaren totalen und partiellen Funktionen berechnen

Online-Simulator für LOOP und WHILE(++) (+Abkürzungen, +Kommentare):
https://tools.iccl.inf.tu-dresden.de/while/
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Die Kraft des LOOP

Auf der vorigen Folie steht:
„LOOP-Programme können fast alle praktisch relevanten Funktionen berechnen.“

Stimmt das wirklich?

Idee: Die Schleife WHILE x!= 0 DO P END kann mit dem folgenden LOOP-Programm
simuliert werden:

LOOP max DO
IF x!= 0 THEN
P

END
END

wenn man den Wert von max so setzt, dass er mindestens so groß ist wie die maximale
Anzahl von Wiederholungen der simulierten WHILE-Schleife.
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LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE für beliebig viele Schritte simulieren – man muss nur
wissen, wie viele Schritte benötigt werden.

Kann man das ausrechnen?

Ja!

Satz: Für ein beliebiges WHILE-Programm P sei maxP(n1, . . . , nk) die maximale An-
zahl an Schleifendurchläufen, die P bei der Eingabe n1, . . . , nk abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.
Diese partielle Funktion maxP : Nk → N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchläufe bestimmt und ausgibt. □

Wo ist der Haken?

Die Funktion maxP ist zwar berechenbar, aber im Allgemeinen nicht LOOP-berechenbar.
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Was kann LOOP?

Es gibt aber viele Fälle, in denen man (eine obere Schranke von) maxP

LOOP-berechnen kann:

Satz: Die folgenden Funktionen sind LOOP-berechenbar:

• n · x für beliebige natürliche Zahlen n

• xn für beliebige natürliche Zahlen n

• nx für beliebige natürliche Zahlen n

• n...
nx

für beliebig hohe Türme von Exponenten n

Korollar: Jeder Algorithmus, der in Zeit O(n...
nx

) – oder weniger – läuft, berechnet ei-
ne LOOP-berechenbare Funktion. Insbesondere sind alle polynomiellen, exponentiel-
len oder mehrfach exponentiellen Algorithmen in LOOP implementierbar.
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Universalität
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Die Universalmaschine

Eine erste wichtige Beobachtung Turings war, dass TMs stark genug sind um andere
TMs zu simulieren:

Schritt 1: Kodiere TuringmaschinenM als Wörter enc(M)

Schritt 2: Konstruiere eine universelle TuringmaschineU, die enc(M) als Eingabe erhält und
dann die Berechnung vonM simuliert
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Schritt 1: Turingmaschinen kodieren

Jede vernünftige Kodierung einer TMM = ⟨Q,Σ,Γ, δ, q0, F⟩ ist nutzbar, zum Beispiel die
folgende (für DTMs):

• Wir verwenden das Alphabet {0, 1, #}

• Zustände werden in beliebiger Reihenfolge nummeriert (mit Startzustand q0) und binär
kodiert:
Q = {q0, . . . , qn} { enc(Q) = bin(0)# · · · #bin(n)

• Wir kodieren auch Γ und die Bewegungsrichtungen {R, L, N} binär

• Ein Übergang δ(qi,σn) = ⟨qj,σm, D⟩ wird als 5-Tupel kodiert:
enc(qi,σn) = bin(i)#bin(n)#bin(j)#bin(m)#bin(D)

• Die Übergangsfunktion wird kodiert als Liste aller dieser Tupel, getrennt mit #:
enc(δ) =

(
enc(qi,σn)#

)
qi∈Q,σi∈Γ

• Insgesamt setzten wir enc(M) = enc(Q)##enc(Σ)##enc(Γ)##enc(δ)##enc(F)

Passend dazu kann man auch beliebige Wörter kodieren:

• Für ein Wort w = a1 · · · aℓ setzen wir enc(w) = bin(a1)# · · · #bin(aℓ)
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Schritt 2: Die universelle Turingmaschine
Wir definieren die universelle TMU als Mehrbandturingmaschine:

Band 1: Eingabeband vonU: enthält enc(M)##enc(w)
Band 2: Arbeitsband vonU
Band 3: Speichert den Zustand der simulierten Turingmaschine
Band 4: Arbeitsband der simulierten Turingmaschine

Die Arbeitsweise vonU ist leicht skizziert:
• U prüft Eingabe, kopiert enc(w) auf Band 4, verschiebt den Kopf auf Band 4 zum Anfang

und initialisiert Band 3 mit enc(0).

• In jedem Schritt liest U ein (kodiertes) Zeichen von der aktuellen Kopfposition auf Band
(4), sucht für den simulierten Zustand (Band 3) einen passenden Übergang in enc(M)
auf Band 1:

– Übergang gefunden: setze Band 3 auf den neuen Zustand; ersetzt das kodierte
Zeichen auf Band 4 durch das neue Zeichen; verschiebe den Kopf auf Band 4
entsprechend

– Übergang nicht gefunden: nimm Endzustand ein, falls der Zustand von Band 3
Endzustand in enc(M) ist; halte
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Die Theorie der Software

Satz: Es gibt eine universelle Turingmaschine U, die für Eingaben der Form
enc(M)##enc(w) das Verhalten der DTM M auf w simuliert:

• Falls M auf w hält, dann hält U auf enc(M)##enc(w) mit dem gleichen Ergebnis

• Falls M auf w nicht hält, dann hält U auf enc(M)##enc(w) ebenfalls nicht

Unsere Konstruktion ist für DTMs, die Sprachen erkennen – DTMs, die Funktionen
berechnen, können ähnlich simuliert werden.

Praktische Konsequenzen:

• Universalrechner sind möglich

• Wir müssen nicht für jede neue Anwendung einen neuen Computer anschaffen

• Es gibt Software
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Unentscheidbare Probleme und Reduktionen
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Das Halteproblem

Ein klassisches unentscheidbares Problem ist das Halteproblem:

Das Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M und ein Wort w,
wird M für die Eingabe w jemals anhalten?

Wir können das Halteproblem formal als Entscheidungsproblem ausdrücken, wenn wir
M und w kodieren:

Das Halteproblem ist das Wortproblem für die Sprache

PHalt = {enc(M)##enc(w) | M hält bei Eingabe w},

wobei enc(M) und enc(w) geeignete Kodierungen von M und w sind, so dass ## als
Trennwort verwendet werden kann.

Anmerkung: Falsch kodierte Eingaben werden hier auch abgelehnt.
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„Beweis“ durch Intuition

Satz: Das Halteproblem PHalt ist unentscheidbar.

„Beweis:“ Das Gegenteil wäre zu schön um wahr zu sein. Viele ungelöste Probleme
könnte man damit direkt lösen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n ≥ 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.

Man kann leicht einen Algorithmus A angeben, der die Goldbachsche Vermutung
systematisch verifiziert, d.h., für alle geraden Zahlen ab 4 testet:

• Erfolg: teste die nächste gerade Zahl

• Misserfolg: terminiere mit Meldung „Goldbach hat sich geirrt!“

Die Frage „Wird A halten?“ ist gleichbedeutend mit der Frage
„Gilt die Goldbachsche Vermutung nicht?“ V
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Abschweifung

Ist die Goldbachsche Vermutung entscheidbar?
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Beweis durch „Diagonalisierung“

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H für das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:

(1) Prüfe, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prüfe, obM auf enc(M)
hält

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?

D hält und akzeptiert genau dann wenn D nicht hält

Widerspruch. □
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Diagonalisierung, graphische Darstellung

Bekannt: Eine Maschine hält auf
einem Input oder nicht:

Annahme: Es gibt eine Maschine,
die Halten entscheidet:

Bauplan Diagonalisierungsmaschine:

Paradoxon:
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Beweis durch Reduktion

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wäre entscheidbar.

Ein Algorithmus:

• Eingabe: (binärkodierte) natürliche Zahl k
• Iteriere über alle TuringmaschinenM mit k Zuständen über dem Arbeitsalphabet
{x, ␣}:

– Entscheide obM bei leerer Eingabe ϵ hält
(möglich, wenn das Halteproblem entscheidbar ist)

– Falls ja, dann simuliereM auf der leeren Eingabe und zähle nach der
Terminierung vonM die x auf dem Band
(möglich, da es universelle Turingmaschinen gibt)

• Ausgabe: die maximale Zahl der geschriebenen x.

Dieser Algorithmus würde die Busy-Beaver-Funktion Σ : N→ N berechnen.

Wir wissen, dass das unmöglich ist – Widerspruch. □
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Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus für ein Problem (Busy Beaver) durch Aufruf
von Subroutinen für ein anderes (Halteproblem)

Diese Idee lässt sich verallgemeinern:

Ein Problem P ist Turing-reduzierbar auf ein Problem Q (in Symbolen: P ≤T Q), wenn
man P mit einem Programm lösen kann, welches ein Programm für Q als Unterpro-
gramm aufrufen darf.

Anmerkung: Das ist etwas informell. Eine ganz formelle Definition verwendet den Begriff des
Orakels für Turingmaschinen.

Beispiel: Unser Beweis basiert auf einer Turing-Reduktion der Berechnung der Busy-
Beaver-Funktion auf das Halteproblem.
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Turing-Reduktionen: Beispiel

Beispiel: Das Nicht-Halteproblem PHalt, ist definiert als

PHalt = {enc(M)##enc(w) | M hält nicht bei Eingabe w}

PHalt ist Turing-reduzierbar auf PHalt: (1) Prüfe Eingabeformat, (2) entscheide Haltepro-
blem, (3) invertiere Ergebnis.

Analog kann auch PHalt auf PHalt Turing-reduziert werden.

Daraus ergibt sich:

Satz: Das Nicht-Halteproblem PHalt ist unentscheidbar.
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ϵ-Halten
Sonderfälle des Halteproblems sind in der Regel nicht einfacher:

Das ϵ-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M für die leere Eingabe ϵ jemals anhalten?

Satz: Das ϵ-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem wäre entscheidbar.

Ein Algorithmus:
• Eingabe: Eine TuringmaschineM und ein Wort w.
• Konstruiere eine TMMw, die zwei Schritte ausführt:

(1) Lösche das Eingabeband und fülle es mit dem Wort w
(2) Verarbeite diese Eingabe wieM

• Entscheide das ϵ-Halteproblem fürMw.
• Ausgabe: Ergebnis des ϵ-Halteproblems

Dies würde das Halteproblem entscheiden – Widerspruch. □
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Beweistechniken im Vergleich

Wir haben zwei ähnliche Unentscheidbarkeitsbeweise gesehen:

Halteproblem

• Reduktion der
Busy-Beaver-Funktion

• Algorithmus ruft Subroutine
für Halteproblem
exponentiell oft auf

• Ausgabe wird durch weitere
TM-Simulationen berechnet

{ Turing-Reduktion!

ϵ-Halteproblem

• Reduktion des
Halteproblems

• Algorithmus ruft Subroutine
für ϵ-Halteproblem immer
genau einmal auf

• Ausgabe ist das Ergebnis
der ϵ-Halteproblem-Routine

{ Turing-Reduktion?
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Many-One-Reduktionen

Idee: Im letzten Beweis verwendeten wir das ϵ-Halteproblem nicht als Subroutine eines
komplexen Programms, sondern wir formten das Halteproblem in ein ϵ-Halteproblem um

Eine berechenbare totale Funktion f : Σ∗ → Σ∗ ist eine Many-One-Reduktion von einer
Sprache P auf eine Sprache Q (in Symbolen: P ≤m Q), wenn für alle Wörter w ∈ Σ∗

gilt:

w ∈ P genau dann wenn f (w) ∈ Q

Beispiel: Die folgende Funktion definiert eine Many-One-Reduktion vom Halteproblem
auf das ϵ-Halteproblem:

f (v) =

 enc(Mw) falls v = enc(M)##enc(w) für eine TM M

# falls die Eingabe nicht korrekt kodiert ist

Dabei ist Mw die TM aus dem Beweis.
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Entscheidbarkeit durch Reduktion

Das folgende Resultat drückt die wesentliche Idee hinter Reduktionen aus:

Satz: Wenn P ≤m Q und Q entscheidbar ist, dann ist auch P entscheidbar.

Beweis: Die Reduktion liefert einen Entscheidungsalgorithmus. □

Eigentlich benutzen wir bisher vor allem die Umkehrung:

Satz: Wenn P ≤m Q und P unentscheidbar ist, dann ist auch Q unentscheidbar.
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Many-One vs. Turing

Many-One-Reduktionen sind schwächer als Turing-Reduktionen:

Satz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedrückt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. □

Satz: Es gibt Probleme P und Q, für die P ≤T Q gilt, aber nicht P ≤m Q.

Beweis: Wir haben bereits gesehen, dass PHalt ≤T PHalt. Aber es gilt nicht PHalt ≤m PHalt

– wir werden in der nächsten Vorlesung sehen, warum nicht. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26



Many-One vs. Turing

Many-One-Reduktionen sind schwächer als Turing-Reduktionen:

Satz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedrückt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. □

Satz: Es gibt Probleme P und Q, für die P ≤T Q gilt, aber nicht P ≤m Q.

Beweis: Wir haben bereits gesehen, dass PHalt ≤T PHalt. Aber es gilt nicht PHalt ≤m PHalt

– wir werden in der nächsten Vorlesung sehen, warum nicht. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26



Many-One vs. Turing

Many-One-Reduktionen sind schwächer als Turing-Reduktionen:

Satz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedrückt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. □

Satz: Es gibt Probleme P und Q, für die P ≤T Q gilt, aber nicht P ≤m Q.

Beweis: Wir haben bereits gesehen, dass PHalt ≤T PHalt. Aber es gilt nicht PHalt ≤m PHalt

– wir werden in der nächsten Vorlesung sehen, warum nicht. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26



Zusammenfassung und Ausblick

LOOP-Programme können wirklich fast alle praktisch relevanten Probleme lösen

Durch Reduktionen können wir aus der (Un)Lösbarkeit eines Problems die
(Un)Lösbarkeit eines anderen ableiten

Turing-Reduktionen P ≤T Q verwenden die Lösung von Q als Subroutine in einem
Algorithmus für P

Many-One-Reduktionen P ≤m Q formen eine Problemstellung für P in eine
Problemstellung für Q um

Was erwartet uns als nächstes?

• Mehr zu Semi-Entscheidbarkeit

• Ein unentscheidbares Problem von Emil Post . . .

• . . . und unendlich viele von Henry Gordon Rice
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