
Formale Systeme

22. Vorlesung: Das Halteproblem und Reduktionen

Markus Krötzsch

Professur für Wissensbasierte Systeme

TU Dresden, 15. Januar 2026

https://iccl.inf.tu-dresden.de/web/FS2025
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

LOOP und WHILE, Reprise

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 2 von 26

Zusammenfassung LOOP und WHILE

LOOP-Programme

• Terminieren immer

• Können fast alle praktisch relevanten Funktionen berechnen

• Können nicht jede berechenbare Funktion berechnen, z.B. Ackermann-Funktion,
Sudan-Funktion, LOOP-Busy-Beaver

WHILE-Programme

• Verallgemeinern LOOP

• Terminieren nicht immer

• Können alle berechenbaren totalen und partiellen Funktionen berechnen

Online-Simulator für LOOP und WHILE(++) (+Abkürzungen, +Kommentare):
https://tools.iccl.inf.tu-dresden.de/while/

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 3 von 26

https://tools.iccl.inf.tu-dresden.de/while/

Die Kraft des LOOP

Auf der vorigen Folie steht:
„LOOP-Programme können fast alle praktisch relevanten Funktionen berechnen.“

Stimmt das wirklich?

Idee: Die Schleife WHILE x!= 0 DO P END kann mit dem folgenden LOOP-Programm
simuliert werden:

LOOP max DO
IF x!= 0 THEN
P

END
END

wenn man den Wert von max so setzt, dass er mindestens so groß ist wie die maximale
Anzahl von Wiederholungen der simulierten WHILE-Schleife.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 4 von 26

Die Kraft des LOOP

Auf der vorigen Folie steht:
„LOOP-Programme können fast alle praktisch relevanten Funktionen berechnen.“

Stimmt das wirklich?

Idee: Die Schleife WHILE x!= 0 DO P END kann mit dem folgenden LOOP-Programm
simuliert werden:

LOOP max DO
IF x!= 0 THEN
P

END
END

wenn man den Wert von max so setzt, dass er mindestens so groß ist wie die maximale
Anzahl von Wiederholungen der simulierten WHILE-Schleife.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 4 von 26

Die Kraft des LOOP

Auf der vorigen Folie steht:
„LOOP-Programme können fast alle praktisch relevanten Funktionen berechnen.“

Stimmt das wirklich?

Idee: Die Schleife WHILE x!= 0 DO P END kann mit dem folgenden LOOP-Programm
simuliert werden:

LOOP max DO
IF x!= 0 THEN
P

END
END

wenn man den Wert von max so setzt, dass er mindestens so groß ist wie die maximale
Anzahl von Wiederholungen der simulierten WHILE-Schleife.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 4 von 26

LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE für beliebig viele Schritte simulieren – man muss nur
wissen, wie viele Schritte benötigt werden.

Kann man das ausrechnen?

Ja!

Satz: Für ein beliebiges WHILE-Programm P sei maxP(n1, . . . , nk) die maximale An-
zahl an Schleifendurchläufen, die P bei der Eingabe n1, . . . , nk abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.
Diese partielle Funktion maxP : Nk → N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchläufe bestimmt und ausgibt. □

Wo ist der Haken?

Die Funktion maxP ist zwar berechenbar, aber im Allgemeinen nicht LOOP-berechenbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 5 von 26

LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE für beliebig viele Schritte simulieren – man muss nur
wissen, wie viele Schritte benötigt werden.

Kann man das ausrechnen? Ja!

Satz: Für ein beliebiges WHILE-Programm P sei maxP(n1, . . . , nk) die maximale An-
zahl an Schleifendurchläufen, die P bei der Eingabe n1, . . . , nk abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.
Diese partielle Funktion maxP : Nk → N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchläufe bestimmt und ausgibt. □

Wo ist der Haken?

Die Funktion maxP ist zwar berechenbar, aber im Allgemeinen nicht LOOP-berechenbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 5 von 26

LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE für beliebig viele Schritte simulieren – man muss nur
wissen, wie viele Schritte benötigt werden.

Kann man das ausrechnen? Ja!

Satz: Für ein beliebiges WHILE-Programm P sei maxP(n1, . . . , nk) die maximale An-
zahl an Schleifendurchläufen, die P bei der Eingabe n1, . . . , nk abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.
Diese partielle Funktion maxP : Nk → N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchläufe bestimmt und ausgibt. □

Wo ist der Haken?

Die Funktion maxP ist zwar berechenbar, aber im Allgemeinen nicht LOOP-berechenbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 5 von 26

LOOP kann WHILE simulieren

Erkenntnis: LOOP kann WHILE für beliebig viele Schritte simulieren – man muss nur
wissen, wie viele Schritte benötigt werden.

Kann man das ausrechnen? Ja!

Satz: Für ein beliebiges WHILE-Programm P sei maxP(n1, . . . , nk) die maximale An-
zahl an Schleifendurchläufen, die P bei der Eingabe n1, . . . , nk abarbeitet, oder undefi-
niert, wenn P bei dieser Eingabe nicht terminiert.
Diese partielle Funktion maxP : Nk → N ist berechenbar.

Beweisskizze: Man kann P leicht so modifizieren, dass es die Maximalzahl der
Schleifendurchläufe bestimmt und ausgibt. □

Wo ist der Haken?

Die Funktion maxP ist zwar berechenbar, aber im Allgemeinen nicht LOOP-berechenbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 5 von 26

Was kann LOOP?

Es gibt aber viele Fälle, in denen man (eine obere Schranke von) maxP

LOOP-berechnen kann:

Satz: Die folgenden Funktionen sind LOOP-berechenbar:

• n · x für beliebige natürliche Zahlen n

• xn für beliebige natürliche Zahlen n

• nx für beliebige natürliche Zahlen n

• n...
nx

für beliebig hohe Türme von Exponenten n

Korollar: Jeder Algorithmus, der in Zeit O(n...
nx

) – oder weniger – läuft, berechnet ei-
ne LOOP-berechenbare Funktion. Insbesondere sind alle polynomiellen, exponentiel-
len oder mehrfach exponentiellen Algorithmen in LOOP implementierbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 6 von 26

Was kann LOOP?

Es gibt aber viele Fälle, in denen man (eine obere Schranke von) maxP

LOOP-berechnen kann:

Satz: Die folgenden Funktionen sind LOOP-berechenbar:

• n · x für beliebige natürliche Zahlen n

• xn für beliebige natürliche Zahlen n

• nx für beliebige natürliche Zahlen n

• n...
nx

für beliebig hohe Türme von Exponenten n

Korollar: Jeder Algorithmus, der in Zeit O(n...
nx

) – oder weniger – läuft, berechnet ei-
ne LOOP-berechenbare Funktion. Insbesondere sind alle polynomiellen, exponentiel-
len oder mehrfach exponentiellen Algorithmen in LOOP implementierbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 6 von 26

Universalität

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 7 von 26

Die Universalmaschine

Eine erste wichtige Beobachtung Turings war, dass TMs stark genug sind um andere
TMs zu simulieren:

Schritt 1: Kodiere TuringmaschinenM als Wörter enc(M)

Schritt 2: Konstruiere eine universelle TuringmaschineU, die enc(M) als Eingabe erhält und
dann die Berechnung vonM simuliert

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 8 von 26

Schritt 1: Turingmaschinen kodieren

Jede vernünftige Kodierung einer TMM = ⟨Q,Σ,Γ, δ, q0, F⟩ ist nutzbar, zum Beispiel die
folgende (für DTMs):

• Wir verwenden das Alphabet {0, 1, #}

• Zustände werden in beliebiger Reihenfolge nummeriert (mit Startzustand q0) und binär
kodiert:
Q = {q0, . . . , qn} { enc(Q) = bin(0)# · · · #bin(n)

• Wir kodieren auch Γ und die Bewegungsrichtungen {R, L, N} binär

• Ein Übergang δ(qi,σn) = ⟨qj,σm, D⟩ wird als 5-Tupel kodiert:
enc(qi,σn) = bin(i)#bin(n)#bin(j)#bin(m)#bin(D)

• Die Übergangsfunktion wird kodiert als Liste aller dieser Tupel, getrennt mit #:
enc(δ) =

(
enc(qi,σn)#

)
qi∈Q,σi∈Γ

• Insgesamt setzten wir enc(M) = enc(Q)##enc(Σ)##enc(Γ)##enc(δ)##enc(F)

Passend dazu kann man auch beliebige Wörter kodieren:

• Für ein Wort w = a1 · · · aℓ setzen wir enc(w) = bin(a1)# · · · #bin(aℓ)

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 9 von 26

Schritt 2: Die universelle Turingmaschine
Wir definieren die universelle TMU als Mehrbandturingmaschine:

Band 1: Eingabeband vonU: enthält enc(M)##enc(w)
Band 2: Arbeitsband vonU
Band 3: Speichert den Zustand der simulierten Turingmaschine
Band 4: Arbeitsband der simulierten Turingmaschine

Die Arbeitsweise vonU ist leicht skizziert:
• U prüft Eingabe, kopiert enc(w) auf Band 4, verschiebt den Kopf auf Band 4 zum Anfang

und initialisiert Band 3 mit enc(0).

• In jedem Schritt liest U ein (kodiertes) Zeichen von der aktuellen Kopfposition auf Band
(4), sucht für den simulierten Zustand (Band 3) einen passenden Übergang in enc(M)
auf Band 1:

– Übergang gefunden: setze Band 3 auf den neuen Zustand; ersetzt das kodierte
Zeichen auf Band 4 durch das neue Zeichen; verschiebe den Kopf auf Band 4
entsprechend

– Übergang nicht gefunden: nimm Endzustand ein, falls der Zustand von Band 3
Endzustand in enc(M) ist; halte

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 10 von 26

Schritt 2: Die universelle Turingmaschine
Wir definieren die universelle TMU als Mehrbandturingmaschine:

Band 1: Eingabeband vonU: enthält enc(M)##enc(w)
Band 2: Arbeitsband vonU
Band 3: Speichert den Zustand der simulierten Turingmaschine
Band 4: Arbeitsband der simulierten Turingmaschine

Die Arbeitsweise vonU ist leicht skizziert:
• U prüft Eingabe, kopiert enc(w) auf Band 4, verschiebt den Kopf auf Band 4 zum Anfang

und initialisiert Band 3 mit enc(0).

• In jedem Schritt liest U ein (kodiertes) Zeichen von der aktuellen Kopfposition auf Band
(4), sucht für den simulierten Zustand (Band 3) einen passenden Übergang in enc(M)
auf Band 1:

– Übergang gefunden: setze Band 3 auf den neuen Zustand; ersetzt das kodierte
Zeichen auf Band 4 durch das neue Zeichen; verschiebe den Kopf auf Band 4
entsprechend

– Übergang nicht gefunden: nimm Endzustand ein, falls der Zustand von Band 3
Endzustand in enc(M) ist; halte

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 10 von 26

Die Theorie der Software

Satz: Es gibt eine universelle Turingmaschine U, die für Eingaben der Form
enc(M)##enc(w) das Verhalten der DTM M auf w simuliert:

• Falls M auf w hält, dann hält U auf enc(M)##enc(w) mit dem gleichen Ergebnis

• Falls M auf w nicht hält, dann hält U auf enc(M)##enc(w) ebenfalls nicht

Unsere Konstruktion ist für DTMs, die Sprachen erkennen – DTMs, die Funktionen
berechnen, können ähnlich simuliert werden.

Praktische Konsequenzen:

• Universalrechner sind möglich

• Wir müssen nicht für jede neue Anwendung einen neuen Computer anschaffen

• Es gibt Software

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 11 von 26

Die Theorie der Software

Satz: Es gibt eine universelle Turingmaschine U, die für Eingaben der Form
enc(M)##enc(w) das Verhalten der DTM M auf w simuliert:

• Falls M auf w hält, dann hält U auf enc(M)##enc(w) mit dem gleichen Ergebnis

• Falls M auf w nicht hält, dann hält U auf enc(M)##enc(w) ebenfalls nicht

Unsere Konstruktion ist für DTMs, die Sprachen erkennen – DTMs, die Funktionen
berechnen, können ähnlich simuliert werden.

Praktische Konsequenzen:

• Universalrechner sind möglich

• Wir müssen nicht für jede neue Anwendung einen neuen Computer anschaffen

• Es gibt Software

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 11 von 26

Unentscheidbare Probleme und Reduktionen

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 12 von 26

Das Halteproblem

Ein klassisches unentscheidbares Problem ist das Halteproblem:

Das Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M und ein Wort w,
wird M für die Eingabe w jemals anhalten?

Wir können das Halteproblem formal als Entscheidungsproblem ausdrücken, wenn wir
M und w kodieren:

Das Halteproblem ist das Wortproblem für die Sprache

PHalt = {enc(M)##enc(w) | M hält bei Eingabe w},

wobei enc(M) und enc(w) geeignete Kodierungen von M und w sind, so dass ## als
Trennwort verwendet werden kann.

Anmerkung: Falsch kodierte Eingaben werden hier auch abgelehnt.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 13 von 26

Das Halteproblem

Ein klassisches unentscheidbares Problem ist das Halteproblem:

Das Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M und ein Wort w,
wird M für die Eingabe w jemals anhalten?

Wir können das Halteproblem formal als Entscheidungsproblem ausdrücken, wenn wir
M und w kodieren:

Das Halteproblem ist das Wortproblem für die Sprache

PHalt = {enc(M)##enc(w) | M hält bei Eingabe w},

wobei enc(M) und enc(w) geeignete Kodierungen von M und w sind, so dass ## als
Trennwort verwendet werden kann.

Anmerkung: Falsch kodierte Eingaben werden hier auch abgelehnt.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 13 von 26

„Beweis“ durch Intuition

Satz: Das Halteproblem PHalt ist unentscheidbar.

„Beweis:“ Das Gegenteil wäre zu schön um wahr zu sein. Viele ungelöste Probleme
könnte man damit direkt lösen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n ≥ 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.

Man kann leicht einen Algorithmus A angeben, der die Goldbachsche Vermutung
systematisch verifiziert, d.h., für alle geraden Zahlen ab 4 testet:

• Erfolg: teste die nächste gerade Zahl

• Misserfolg: terminiere mit Meldung „Goldbach hat sich geirrt!“

Die Frage „Wird A halten?“ ist gleichbedeutend mit der Frage
„Gilt die Goldbachsche Vermutung nicht?“ V

gl
.1

3.
Ü

bu
ng

,A
uf

g.
4:

M
it

P
H

al
t

ka
nn

m
an

al
le

se
m

i-e
nt

sc
he

id
ba

re
n

P
ro

bl
em

e
lö

se
n

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 14 von 26

„Beweis“ durch Intuition

Satz: Das Halteproblem PHalt ist unentscheidbar.

„Beweis:“ Das Gegenteil wäre zu schön um wahr zu sein. Viele ungelöste Probleme
könnte man damit direkt lösen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n ≥ 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.

Man kann leicht einen Algorithmus A angeben, der die Goldbachsche Vermutung
systematisch verifiziert, d.h., für alle geraden Zahlen ab 4 testet:

• Erfolg: teste die nächste gerade Zahl

• Misserfolg: terminiere mit Meldung „Goldbach hat sich geirrt!“

Die Frage „Wird A halten?“ ist gleichbedeutend mit der Frage
„Gilt die Goldbachsche Vermutung nicht?“ V

gl
.1

3.
Ü

bu
ng

,A
uf

g.
4:

M
it

P
H

al
t

ka
nn

m
an

al
le

se
m

i-e
nt

sc
he

id
ba

re
n

P
ro

bl
em

e
lö

se
n

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 14 von 26

„Beweis“ durch Intuition

Satz: Das Halteproblem PHalt ist unentscheidbar.

„Beweis:“ Das Gegenteil wäre zu schön um wahr zu sein. Viele ungelöste Probleme
könnte man damit direkt lösen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n ≥ 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.

Man kann leicht einen Algorithmus A angeben, der die Goldbachsche Vermutung
systematisch verifiziert, d.h., für alle geraden Zahlen ab 4 testet:

• Erfolg: teste die nächste gerade Zahl

• Misserfolg: terminiere mit Meldung „Goldbach hat sich geirrt!“

Die Frage „Wird A halten?“ ist gleichbedeutend mit der Frage
„Gilt die Goldbachsche Vermutung nicht?“ V

gl
.1

3.
Ü

bu
ng

,A
uf

g.
4:

M
it

P
H

al
t

ka
nn

m
an

al
le

se
m

i-e
nt

sc
he

id
ba

re
n

P
ro

bl
em

e
lö

se
n

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 14 von 26

„Beweis“ durch Intuition

Satz: Das Halteproblem PHalt ist unentscheidbar.

„Beweis:“ Das Gegenteil wäre zu schön um wahr zu sein. Viele ungelöste Probleme
könnte man damit direkt lösen.

Beispiel: Die Goldbachsche Vermutung (Christian Goldbach, 1742) besagt, dass jede
gerade Zahl n ≥ 4 die Summe zweier Primzahlen ist. Zum Beispiel ist 4 = 2 + 2 und
100 = 47 + 53.

Man kann leicht einen Algorithmus A angeben, der die Goldbachsche Vermutung
systematisch verifiziert, d.h., für alle geraden Zahlen ab 4 testet:

• Erfolg: teste die nächste gerade Zahl

• Misserfolg: terminiere mit Meldung „Goldbach hat sich geirrt!“

Die Frage „Wird A halten?“ ist gleichbedeutend mit der Frage
„Gilt die Goldbachsche Vermutung nicht?“ V

gl
.1

3.
Ü

bu
ng

,A
uf

g.
4:

M
it

P
H

al
t

ka
nn

m
an

al
le

se
m

i-e
nt

sc
he

id
ba

re
n

P
ro

bl
em

e
lö

se
n

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 14 von 26

Abschweifung

Ist die Goldbachsche Vermutung entscheidbar?

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 15 von 26

Beweis durch „Diagonalisierung“

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H für das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:

(1) Prüfe, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prüfe, obM auf enc(M)
hält

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?

D hält und akzeptiert genau dann wenn D nicht hält

Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Beweis durch „Diagonalisierung“

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H für das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:

(1) Prüfe, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prüfe, obM auf enc(M)
hält

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?

D hält und akzeptiert genau dann wenn D nicht hält

Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Beweis durch „Diagonalisierung“

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H für das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:

(1) Prüfe, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prüfe, obM auf enc(M)
hält

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?

D hält und akzeptiert genau dann wenn D nicht hält

Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Beweis durch „Diagonalisierung“

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H für das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:

(1) Prüfe, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prüfe, obM auf enc(M)
hält

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?

D hält und akzeptiert genau dann wenn D nicht hält

Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Beweis durch „Diagonalisierung“

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Per Widerspruch: Wir nehmen an, dass es einen Entscheider H für das
Halteproblem gibt.

Dann kann man eine TM D konstruieren, die folgendes tut:

(1) Prüfe, ob die Eingabe eine TM-Kodierung enc(M) ist

(2) Simuliere H auf der Eingabe enc(M)##enc(enc(M)), d.h. prüfe, obM auf enc(M)
hält

(3) Falls ja, dann gehe in eine Endlosschleife;
falls nein, dann halte und akzeptiere

Akzeptiert D die Eingabe enc(D)?

D hält und akzeptiert genau dann wenn D nicht hält

Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 16 von 26

Diagonalisierung, graphische Darstellung

Bekannt: Eine Maschine hält auf
einem Input oder nicht:

Annahme: Es gibt eine Maschine,
die Halten entscheidet:

Bauplan Diagonalisierungsmaschine:

Paradoxon:

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 17 von 26

Beweis durch Reduktion

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wäre entscheidbar.

Ein Algorithmus:

• Eingabe: (binärkodierte) natürliche Zahl k
• Iteriere über alle TuringmaschinenM mit k Zuständen über dem Arbeitsalphabet
{x, ␣}:

– Entscheide obM bei leerer Eingabe ϵ hält
(möglich, wenn das Halteproblem entscheidbar ist)

– Falls ja, dann simuliereM auf der leeren Eingabe und zähle nach der
Terminierung vonM die x auf dem Band
(möglich, da es universelle Turingmaschinen gibt)

• Ausgabe: die maximale Zahl der geschriebenen x.

Dieser Algorithmus würde die Busy-Beaver-Funktion Σ : N→ N berechnen.

Wir wissen, dass das unmöglich ist – Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 18 von 26

Beweis durch Reduktion

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wäre entscheidbar.

Ein Algorithmus:

• Eingabe: (binärkodierte) natürliche Zahl k
• Iteriere über alle TuringmaschinenM mit k Zuständen über dem Arbeitsalphabet
{x, ␣}:

– Entscheide obM bei leerer Eingabe ϵ hält
(möglich, wenn das Halteproblem entscheidbar ist)

– Falls ja, dann simuliereM auf der leeren Eingabe und zähle nach der
Terminierung vonM die x auf dem Band
(möglich, da es universelle Turingmaschinen gibt)

• Ausgabe: die maximale Zahl der geschriebenen x.

Dieser Algorithmus würde die Busy-Beaver-Funktion Σ : N→ N berechnen.

Wir wissen, dass das unmöglich ist – Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 18 von 26

Beweis durch Reduktion

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wäre entscheidbar.

Ein Algorithmus:

• Eingabe: (binärkodierte) natürliche Zahl k
• Iteriere über alle TuringmaschinenM mit k Zuständen über dem Arbeitsalphabet
{x, ␣}:

– Entscheide obM bei leerer Eingabe ϵ hält
(möglich, wenn das Halteproblem entscheidbar ist)

– Falls ja, dann simuliereM auf der leeren Eingabe und zähle nach der
Terminierung vonM die x auf dem Band
(möglich, da es universelle Turingmaschinen gibt)

• Ausgabe: die maximale Zahl der geschriebenen x.

Dieser Algorithmus würde die Busy-Beaver-Funktion Σ : N→ N berechnen.

Wir wissen, dass das unmöglich ist – Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 18 von 26

Beweis durch Reduktion

Satz: Das Halteproblem PHalt ist unentscheidbar.

Beweis: Nehmen wir an, das Halteproblem wäre entscheidbar.

Ein Algorithmus:

• Eingabe: (binärkodierte) natürliche Zahl k
• Iteriere über alle TuringmaschinenM mit k Zuständen über dem Arbeitsalphabet
{x, ␣}:

– Entscheide obM bei leerer Eingabe ϵ hält
(möglich, wenn das Halteproblem entscheidbar ist)

– Falls ja, dann simuliereM auf der leeren Eingabe und zähle nach der
Terminierung vonM die x auf dem Band
(möglich, da es universelle Turingmaschinen gibt)

• Ausgabe: die maximale Zahl der geschriebenen x.

Dieser Algorithmus würde die Busy-Beaver-Funktion Σ : N→ N berechnen.

Wir wissen, dass das unmöglich ist – Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 18 von 26

Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus für ein Problem (Busy Beaver) durch Aufruf
von Subroutinen für ein anderes (Halteproblem)

Diese Idee lässt sich verallgemeinern:

Ein Problem P ist Turing-reduzierbar auf ein Problem Q (in Symbolen: P ≤T Q), wenn
man P mit einem Programm lösen kann, welches ein Programm für Q als Unterpro-
gramm aufrufen darf.

Anmerkung: Das ist etwas informell. Eine ganz formelle Definition verwendet den Begriff des
Orakels für Turingmaschinen.

Beispiel: Unser Beweis basiert auf einer Turing-Reduktion der Berechnung der Busy-
Beaver-Funktion auf das Halteproblem.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 19 von 26

Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus für ein Problem (Busy Beaver) durch Aufruf
von Subroutinen für ein anderes (Halteproblem)

Diese Idee lässt sich verallgemeinern:

Ein Problem P ist Turing-reduzierbar auf ein Problem Q (in Symbolen: P ≤T Q), wenn
man P mit einem Programm lösen kann, welches ein Programm für Q als Unterpro-
gramm aufrufen darf.

Anmerkung: Das ist etwas informell. Eine ganz formelle Definition verwendet den Begriff des
Orakels für Turingmaschinen.

Beispiel: Unser Beweis basiert auf einer Turing-Reduktion der Berechnung der Busy-
Beaver-Funktion auf das Halteproblem.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 19 von 26

Turing-Reduktionen

Unser Beweis konstruiert den Algorithmus für ein Problem (Busy Beaver) durch Aufruf
von Subroutinen für ein anderes (Halteproblem)

Diese Idee lässt sich verallgemeinern:

Ein Problem P ist Turing-reduzierbar auf ein Problem Q (in Symbolen: P ≤T Q), wenn
man P mit einem Programm lösen kann, welches ein Programm für Q als Unterpro-
gramm aufrufen darf.

Anmerkung: Das ist etwas informell. Eine ganz formelle Definition verwendet den Begriff des
Orakels für Turingmaschinen.

Beispiel: Unser Beweis basiert auf einer Turing-Reduktion der Berechnung der Busy-
Beaver-Funktion auf das Halteproblem.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 19 von 26

Turing-Reduktionen: Beispiel

Beispiel: Das Nicht-Halteproblem PHalt, ist definiert als

PHalt = {enc(M)##enc(w) | M hält nicht bei Eingabe w}

PHalt ist Turing-reduzierbar auf PHalt: (1) Prüfe Eingabeformat, (2) entscheide Haltepro-
blem, (3) invertiere Ergebnis.

Analog kann auch PHalt auf PHalt Turing-reduziert werden.

Daraus ergibt sich:

Satz: Das Nicht-Halteproblem PHalt ist unentscheidbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 20 von 26

Turing-Reduktionen: Beispiel

Beispiel: Das Nicht-Halteproblem PHalt, ist definiert als

PHalt = {enc(M)##enc(w) | M hält nicht bei Eingabe w}

PHalt ist Turing-reduzierbar auf PHalt: (1) Prüfe Eingabeformat, (2) entscheide Haltepro-
blem, (3) invertiere Ergebnis.

Analog kann auch PHalt auf PHalt Turing-reduziert werden.

Daraus ergibt sich:

Satz: Das Nicht-Halteproblem PHalt ist unentscheidbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 20 von 26

ϵ-Halten
Sonderfälle des Halteproblems sind in der Regel nicht einfacher:

Das ϵ-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M für die leere Eingabe ϵ jemals anhalten?

Satz: Das ϵ-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem wäre entscheidbar.

Ein Algorithmus:
• Eingabe: Eine TuringmaschineM und ein Wort w.
• Konstruiere eine TMMw, die zwei Schritte ausführt:

(1) Lösche das Eingabeband und fülle es mit dem Wort w
(2) Verarbeite diese Eingabe wieM

• Entscheide das ϵ-Halteproblem fürMw.
• Ausgabe: Ergebnis des ϵ-Halteproblems

Dies würde das Halteproblem entscheiden – Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 21 von 26

ϵ-Halten
Sonderfälle des Halteproblems sind in der Regel nicht einfacher:

Das ϵ-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M für die leere Eingabe ϵ jemals anhalten?

Satz: Das ϵ-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem wäre entscheidbar.

Ein Algorithmus:
• Eingabe: Eine TuringmaschineM und ein Wort w.
• Konstruiere eine TMMw, die zwei Schritte ausführt:

(1) Lösche das Eingabeband und fülle es mit dem Wort w
(2) Verarbeite diese Eingabe wieM

• Entscheide das ϵ-Halteproblem fürMw.
• Ausgabe: Ergebnis des ϵ-Halteproblems

Dies würde das Halteproblem entscheiden – Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 21 von 26

ϵ-Halten
Sonderfälle des Halteproblems sind in der Regel nicht einfacher:

Das ϵ-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M für die leere Eingabe ϵ jemals anhalten?

Satz: Das ϵ-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem wäre entscheidbar.

Ein Algorithmus:
• Eingabe: Eine TuringmaschineM und ein Wort w.
• Konstruiere eine TMMw, die zwei Schritte ausführt:

(1) Lösche das Eingabeband und fülle es mit dem Wort w
(2) Verarbeite diese Eingabe wieM

• Entscheide das ϵ-Halteproblem fürMw.
• Ausgabe: Ergebnis des ϵ-Halteproblems

Dies würde das Halteproblem entscheiden – Widerspruch. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 21 von 26

ϵ-Halten
Sonderfälle des Halteproblems sind in der Regel nicht einfacher:

Das ϵ-Halteproblem besteht in der folgenden Frage:
Gegeben eine TM M,
wird M für die leere Eingabe ϵ jemals anhalten?

Satz: Das ϵ-Halteproblem ist unentscheidbar.

Beweis: Angenommen das Problem wäre entscheidbar.

Ein Algorithmus:
• Eingabe: Eine TuringmaschineM und ein Wort w.
• Konstruiere eine TMMw, die zwei Schritte ausführt:

(1) Lösche das Eingabeband und fülle es mit dem Wort w
(2) Verarbeite diese Eingabe wieM

• Entscheide das ϵ-Halteproblem fürMw.
• Ausgabe: Ergebnis des ϵ-Halteproblems

Dies würde das Halteproblem entscheiden – Widerspruch. □
Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 21 von 26

Beweistechniken im Vergleich

Wir haben zwei ähnliche Unentscheidbarkeitsbeweise gesehen:

Halteproblem

• Reduktion der
Busy-Beaver-Funktion

• Algorithmus ruft Subroutine
für Halteproblem
exponentiell oft auf

• Ausgabe wird durch weitere
TM-Simulationen berechnet

{ Turing-Reduktion!

ϵ-Halteproblem

• Reduktion des
Halteproblems

• Algorithmus ruft Subroutine
für ϵ-Halteproblem immer
genau einmal auf

• Ausgabe ist das Ergebnis
der ϵ-Halteproblem-Routine

{ Turing-Reduktion?

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 22 von 26

Many-One-Reduktionen

Idee: Im letzten Beweis verwendeten wir das ϵ-Halteproblem nicht als Subroutine eines
komplexen Programms, sondern wir formten das Halteproblem in ein ϵ-Halteproblem um

Eine berechenbare totale Funktion f : Σ∗ → Σ∗ ist eine Many-One-Reduktion von einer
Sprache P auf eine Sprache Q (in Symbolen: P ≤m Q), wenn für alle Wörter w ∈ Σ∗

gilt:

w ∈ P genau dann wenn f (w) ∈ Q

Beispiel: Die folgende Funktion definiert eine Many-One-Reduktion vom Halteproblem
auf das ϵ-Halteproblem:

f (v) =

 enc(Mw) falls v = enc(M)##enc(w) für eine TM M

falls die Eingabe nicht korrekt kodiert ist

Dabei ist Mw die TM aus dem Beweis.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 23 von 26

Many-One-Reduktionen

Idee: Im letzten Beweis verwendeten wir das ϵ-Halteproblem nicht als Subroutine eines
komplexen Programms, sondern wir formten das Halteproblem in ein ϵ-Halteproblem um

Eine berechenbare totale Funktion f : Σ∗ → Σ∗ ist eine Many-One-Reduktion von einer
Sprache P auf eine Sprache Q (in Symbolen: P ≤m Q), wenn für alle Wörter w ∈ Σ∗

gilt:

w ∈ P genau dann wenn f (w) ∈ Q

Beispiel: Die folgende Funktion definiert eine Many-One-Reduktion vom Halteproblem
auf das ϵ-Halteproblem:

f (v) =

 enc(Mw) falls v = enc(M)##enc(w) für eine TM M

falls die Eingabe nicht korrekt kodiert ist

Dabei ist Mw die TM aus dem Beweis.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 23 von 26

Entscheidbarkeit durch Reduktion

Das folgende Resultat drückt die wesentliche Idee hinter Reduktionen aus:

Satz: Wenn P ≤m Q und Q entscheidbar ist, dann ist auch P entscheidbar.

Beweis: Die Reduktion liefert einen Entscheidungsalgorithmus. □

Eigentlich benutzen wir bisher vor allem die Umkehrung:

Satz: Wenn P ≤m Q und P unentscheidbar ist, dann ist auch Q unentscheidbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 24 von 26

Entscheidbarkeit durch Reduktion

Das folgende Resultat drückt die wesentliche Idee hinter Reduktionen aus:

Satz: Wenn P ≤m Q und Q entscheidbar ist, dann ist auch P entscheidbar.

Beweis: Die Reduktion liefert einen Entscheidungsalgorithmus. □

Eigentlich benutzen wir bisher vor allem die Umkehrung:

Satz: Wenn P ≤m Q und P unentscheidbar ist, dann ist auch Q unentscheidbar.

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 24 von 26

Many-One vs. Turing

Many-One-Reduktionen sind schwächer als Turing-Reduktionen:

Satz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedrückt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. □

Satz: Es gibt Probleme P und Q, für die P ≤T Q gilt, aber nicht P ≤m Q.

Beweis: Wir haben bereits gesehen, dass PHalt ≤T PHalt. Aber es gilt nicht PHalt ≤m PHalt

– wir werden in der nächsten Vorlesung sehen, warum nicht. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26

Many-One vs. Turing

Many-One-Reduktionen sind schwächer als Turing-Reduktionen:

Satz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedrückt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. □

Satz: Es gibt Probleme P und Q, für die P ≤T Q gilt, aber nicht P ≤m Q.

Beweis: Wir haben bereits gesehen, dass PHalt ≤T PHalt. Aber es gilt nicht PHalt ≤m PHalt

– wir werden in der nächsten Vorlesung sehen, warum nicht. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26

Many-One vs. Turing

Many-One-Reduktionen sind schwächer als Turing-Reduktionen:

Satz: Jede Many-One-Reduktion kann als Turing-Reduktion ausgedrückt werden.

Beweis: Die Turing-Reduktion ergibt sich, wenn man die (berechenbare)
Many-One-Reduktionsfunktion als Teil einer TM implementiert. □

Satz: Es gibt Probleme P und Q, für die P ≤T Q gilt, aber nicht P ≤m Q.

Beweis: Wir haben bereits gesehen, dass PHalt ≤T PHalt. Aber es gilt nicht PHalt ≤m PHalt

– wir werden in der nächsten Vorlesung sehen, warum nicht. □

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 25 von 26

Zusammenfassung und Ausblick

LOOP-Programme können wirklich fast alle praktisch relevanten Probleme lösen

Durch Reduktionen können wir aus der (Un)Lösbarkeit eines Problems die
(Un)Lösbarkeit eines anderen ableiten

Turing-Reduktionen P ≤T Q verwenden die Lösung von Q als Subroutine in einem
Algorithmus für P

Many-One-Reduktionen P ≤m Q formen eine Problemstellung für P in eine
Problemstellung für Q um

Was erwartet uns als nächstes?

• Mehr zu Semi-Entscheidbarkeit

• Ein unentscheidbares Problem von Emil Post . . .

• . . . und unendlich viele von Henry Gordon Rice

Markus Krötzsch, 15. Januar 2026 Formale Systeme Folie 26 von 26

