On k-piecewise testability (preliminary report)✩

Tomáš Masopust¹, Michaël Thomazo²

TU Dresden, Germany

Abstract

For a non-negative integer k, a language is k-piecewise testable (k-PT) if it is a finite boolean combination of languages of the form $\Sigma^* a_1 \Sigma^* \cdots \Sigma^* a_n \Sigma^*$ for $a_i \in \Sigma$ and $0 \leq n \leq k$. We study the following problem: Given a DFA recognizing a piecewise testable language, decide whether the language is k-PT. We provide a complexity bound and a detailed analysis for small k's. The result can be used to find the minimal k for which the language is k-PT. We show that the upper bound on k given by the depth of the minimal DFA can be exponentially bigger than the minimal possible k, and provide a tight upper bound on the depth of the minimal DFA recognizing a k-PT language.

1. Introduction

A regular language is piecewise testable (PT) if it is a finite boolean combination of languages of the form

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* \cdots \Sigma^* a_n \Sigma^*$$

where $a_i \in \Sigma$ and $n \geq 0$. It is k-piecewise testable (k-PT) if $n \leq k$. These languages were introduced by Simon in his PhD thesis [38]. Simon proved that PT languages are exactly those regular languages whose syntactic monoid is J-trivial. He provided various characterizations of PT languages in terms of monoids, automata, etc.

In this paper, we study the k-piecewise testability problem, that is, to decide whether a PT language is k-PT.

NAME: k-PIECEWISE-TESTABILITY

INPUT: an automaton (minimal DFA or NFA) A

OUTPUT: Yes if and only if $L(A)$ is k-piecewise testable

Note that the problem is trivially decidable, since there is only a finite number of k-PT languages over the input alphabet of A.

We investigate the complexity of the problem and the relationship between k and the depth of the input automaton. The motivation to study this relationship comes from the result showing that a PT language is k-PT for any k bigger than or equal to the depth of its minimal DFA [25].

Our motivation is twofold. The first motivation is theoretical and comes from the investigation of various fragments of first-order logic over words, namely the Straubing-Thérien and dot-depth hierarchies. For instance, the languages of levels 1/2 and 1 of the dot-depth hierarchy are constructed as boolean combinations of variants of languages of the form $\Sigma^* w_1 \Sigma^* \cdots \Sigma^* w_n \Sigma^*$, where $w_i \in \Sigma^*$, cf. [27, Table 1]. The reader can notice a similarity to PT languages. For these fragments, a problem similar to k-piecewise testability is also relevant.

The second, practical motivation comes from simplifying the XML Schema specification language.

✩This is a full version of the paper accepted for DLT 2015.

Email addresses: tomas.masopust@tu-dresden.de (Tomáš Masopust), michael.thomazo@tu-dresden.de (Michaël Thomazo)

¹Research supported by the DFG in grant KR 4381/1-1

²Research supported by the Alexander von Humboldt Foundation
In 2001, Trahtman [42] improved Stern’s result to obtain a quadratic algorithm. Another quadratic algorithm can be
testable. As mentioned above, decidability was shown by Simon. In 1985, Stern showed that the problem is decidable

Applications of PT Languages. Piecewise testable languages are of interest in many disciplines of mathematics and
computer science. For instance, in semigroup theory [1, 2, 32], since they possess interesting algebraic properties,
namely, the syntactic monoid of a PT language is \(J \)-trivial, where \(J \) is one of the Green relations; in logic over
words [11, 34, 35] because of their close relation to first-order logic—piecewise testable languages can be character-
ized by a (two-variable) fragment of first-order logic over words, namely, they form level 1 of the Straubing-Thérien
hierarchy as already depicted above; in formal languages and automata theory [8, 25, 33], since their automata are
of a special simple form (they are partially ordered and confluent) and PT languages form a strict subclass of the
class of star-free languages, that is, languages definable by LTL formulas; in natural language processing, since they
are comprehensible and many other interesting results concerning PT languages can be found in the literature. It is also
worth mentioning that PT languages and several results have recently been generalized from word languages to tree
languages [6].

We now give a brief overview on the complexity of the problem to decide whether a regular language is piecewise
testable. As mentioned above, decidability was shown by Simon. In 1985, Stern showed that the problem is decidable
In 2001, Trahtman [42] improved Stern’s result to obtain a quadratic algorithm. Another quadratic algorithm can be
found in [25]. The problem is PSPACE-complete if the languages are represented as NFAs [21].

Our Contribution. The k-piecewise testability problem asks whether, given a finite automaton A, the language $L(A)$ is k-PT. It is easy to see that if a language is k-PT, it is also $(k + 1)$-PT. Klíma and Polák [25] have shown that if the depth of a minimal DFA recognizing a PT language is k, then the language is k-PT. However, the opposite implication does not hold, that is, the depth of the minimal DFA is only an upper bound on k. To the best of our knowledge, no efficient algorithm to find the minimal k for which a PT language is k-PT nor an algorithm to decide whether a language is k-PT has been published so far.

We first give a co-NP upper bound to decide whether a minimal DFA recognizes a k-PT language for a fixed k (Theorem 1), which results in an algorithm to find the minimal k that runs in the time single exponential with respect to the size of the DFA and double exponential with respect to the resulting k. We then provide a detailed complexity analysis for small k's. In particular, the problem is trivial for $k = 0$, decidable in deterministic logarithmic space for $k = 1$ (Theorem 4), and NL-complete for $k = 2, 3$ (Theorems 6 and 11). As a result, we obtain a PSPACE upper bound to decide whether an NFA recognizes a k-PT language for a fixed k. Recall that it is PSPACE-complete to decide whether an NFA recognizes a PT language, and it is actually PSPACE-complete to decide whether an NFA recognizes a 0-PT language (Theorem 12).

Since the depth of the minimal DFAs plays a role as an upper bound on k, we investigate the relationship between the depth of an NFA and k-piecewise testability of its language. We show that, for every $k \geq 0$, there exists a k-PT language with an NFA of depth $k - 1$ and with the minimal DFA of depth $2^k - 1$ (Theorem 13). Although it is well known that DFAs can be exponentially larger than NFAs, a by-product of our result is that all the exponential number of states of the DFA form a simple path. Finally, we investigate the opposite implication and show that the tight upper bound on the depth of the minimal DFA recognizing a k-PT language over an n-letter alphabet is $(\binom{n}{k}) - 1$ (Theorem 19). A relationship with Stirling cyclic numbers is also discussed.

For all missing proofs, the reader is referred to the appendix.

2. Preliminaries and Definitions

We assume that the reader is familiar with automata theory [28]. The cardinality of a set A is denoted by $|A|$ and the power set of A by 2^A. An alphabet Σ is a finite nonempty set. The free monoid generated by Σ is denoted by Σ^*. A word over Σ is any element of Σ^*; the empty word is denoted by e. For a word $w \in \Sigma^*$, alph(w) denotes the set of all letters occurring in w, and $|w|$ denotes the number of occurrences of letter a in w. A language over Σ is a subset of Σ^*. For a language L over Σ, let $\overline{L} = \Sigma^* \setminus L$ denote the complement of L.

A nondeterministic finite automaton (NFA) is a quintuple $A = (Q, \Sigma, \cdot, I, F)$, where Q is a finite nonempty set of states, Σ is an input alphabet, $I \subseteq Q$ is a set of initial states, $F \subseteq Q$ is a set of accepting states, and $\cdot : Q \times \Sigma \rightarrow 2^Q$ is the transition function that can be extended to the domain $Q^* \times \Sigma^*$. The language accepted by A is the set $L(A) = \{w \in \Sigma^* | I \cdot w \cap F \neq \emptyset\}$. We usually omit \cdot and write simply Iw instead of $I \cdot w$. A path π from a state q_0 to a state q_n under a word $a_1a_2\cdots a_n$, for some $n \geq 0$, is a sequence of states and input symbols $q_0a_1q_1a_2\cdots q_{n-1}a_nq_n$ such that $q_{i+1} = q_i \cdot a_{i+1}$, for all $i = 0, 1, \ldots, n - 1$. The path π is accepting if $q_0 \in I$ and $q_n \in F$. We use the notation $q_0 \xrightarrow{a_1\cdots a_n} q_n$ to denote that there exists a path from q_0 to q_n under the word $a_1a_2\cdots a_n$. A definition is simple if all states of the path are pairwise different. The number of states on the longest simple path of A decreased by one (i.e., the number of transitions on that path) is called the depth of the automaton A, denoted by depth(A).

The NFA A is deterministic (DFA) if $|I| = 1$ and $|q \cdot a| = 1$ for every $q \in Q$ and $a \in \Sigma$. Then the transition function \cdot is a map from $Q \times \Sigma$ to Q that can be extended to the domain $Q \times \Sigma^*$. Two states of a DFA are distinguishable if there exists a word w that is accepted from one of them and rejected from the other. A DFA is minimal if all its states are reachable and pairwise distinguishable.

Let $A = (Q, \Sigma, \cdot, I, F)$ be an NFA. The reachability relation \leq on the set of states is defined by $p \leq q$ if there exists a word w in Σ^* such that $q \in p \cdot w$. The NFA A is partially ordered if the reachability relation \leq is a partial order. For two states p and q of A, we write $p < q$ if $p \leq q$ and $p \neq q$. A state p is maximal if there is no state q such that $p < q$. Partially ordered automata are also called acyclic automata, see, e.g., [25].

\footnote{Very recently, a co-NP upper bound appeared in [19] in terms of separability.}
The notion of confluent DFAs was introduced in [25]. Let \(\mathcal{A} = (Q, \Sigma, \cdot, I, F) \) be a DFA and \(\Gamma \subseteq \Sigma \) be a subalphabet. The DFA \(\mathcal{A} \) is \(\Gamma \)-confluent if, for every state \(q \) in \(Q \) and every pair of words \(u, v \) in \(\Gamma^* \), there exists a word \(w \) in \(\Gamma^* \) such that \((qu)w = (qv)w\). The DFA \(\mathcal{A} \) is confluent if it is \(\Gamma \)-confluent for every subalphabet \(\Gamma \). The DFA \(\mathcal{A} \) is locally confluent if, for every state \(q \) in \(Q \) and every pair of letters \(a, b \) in \(\Sigma \), there exists a word \(w \) in \{a, b\} \(\ast \) such that \((qa)w = (qb)w\).

An NFA \(\mathcal{A} = (Q, \Sigma, \cdot, I, F) \) can be turned into a directed graph \(G(\mathcal{A}) \) with the set of vertices \(Q \), where a pair \((p, q)\) in \(Q \times Q \) is an edge in \(G(\mathcal{A}) \) if there is a transition from \(p \) to \(q \) in \(\mathcal{A} \). For \(\Gamma \subseteq \Sigma \), we define the directed graph \(G(\mathcal{A}, \Gamma) \) with the set of vertices \(Q \) by considering all those transitions that correspond to letters in \(\Gamma \). For a state \(p \), let \(\Sigma(p) = \{a \in \Sigma \mid p \in p \cdot a\} \) denote the set of all letters under which the NFA \(\mathcal{A} \) has a self-loop in the state \(p \). Let \(\mathcal{A} \) be a partially ordered NFA. If for every state \(p \) of \(\mathcal{A} \), state \(p \) is the unique maximal state of the connected component of \(G(\mathcal{A}, \Sigma(p)) \) containing \(p \), then we say that the NFA satisfies the unique maximal state (UMS) property.

A regular language is \(k \)-piecewise testable, for a non-negative integer \(k \), if it is a finite boolean combination of languages of the form \(\Sigma^* a_1 \Sigma^* a_2 \Sigma^* \cdots \Sigma^* a_n \Sigma^* \), where \(0 \leq n \leq k \) and \(a_i \in \Sigma \). A regular language is piecewise testable if it is \(k \)-piecewise testable for some \(k \geq 0 \). We adopt the notation \(L_{a_1 \cdots a_n} = \Sigma^* a_1 \Sigma^* a_2 \Sigma^* \cdots \Sigma^* a_n \Sigma^* \) from [25]. For two words \(v = a_1 a_2 \cdots a_n \) and \(w \in L_v \), we say that \(v \) is a subsequence of \(w \) or that \(v \) can be embedded into \(w \), denoted by \(v \preceq w \). For \(k \geq 0 \), let \(\text{sub}_v(w) = \{v \in \Sigma^* \mid v \preceq w, |v| \leq k\} \). For two words \(w_1, w_2 \), define \(w_1 \sim_k w_2 \) if and only if \(\text{sub}_{w_1}(w_1) = \text{sub}_{w_2}(w_2) \). If \(w_1 \sim_k w_2 \), we say that \(w_1 \) and \(w_2 \) are \(k \)-equivalent. Note that \(\sim_k \) is a congruence with finite index.

Fact 1 ([33]). Let \(L \) be a regular language, and let \(\sim_L \) denote the Myhill congruence [31]. A language \(L \) is \(k \)-PT if and only if \(\sim_k \subseteq \sim_L \). Moreover, \(L \) is a finite union of \(\sim_k \) classes.

The theorem says that if \(L \) is \(k \)-PT, then any two \(k \)-equivalent words either both belong to \(L \) or neither does. In terms of minimal DFAs, two \(k \)-equivalent words lead the automaton to the same state.

Fact 2. Let \(L \) be a language recognized by the minimal DFA \(\mathcal{A} \). The following is equivalent.

1. The language \(L \) is PT.
2. The minimal DFA \(\mathcal{A} \) is partially ordered and (locally) confluent [25].
3. The minimal DFA \(\mathcal{A} \) is partially ordered and satisfies the UMS property [42].

3. Complexity of \(k \)-Piecewise Testability for DFAs

The \(k \)-piecewise testability problem for DFAs asks whether, given a minimal DFA \(\mathcal{A} \), the language \(L(\mathcal{A}) \) is \(k \)-PT. We show that it belongs to co-NP, which can be used to compute the minimal \(k \) for which the language is \(k \)-PT in the time single exponential with respect to the size of the DFA and double exponential with respect to the resulting \(k \). For small \(k \)’s we then provide precise complexity analyses.

We now prove the following theorem.

Theorem 1. The following problem belongs to co-NP:

Name: \(k \)-PiecewiseTestability

Input: a minimal DFA \(\mathcal{A} \)

Output: YES if and only if \(L(\mathcal{A}) \) is \(k \)-PT

Let \(w_1 \) and \(w_2 \) be two words such that \(w_1 \preceq w_2 \). Let \(\varphi : \{1, 2, \ldots, |w_1|\} \rightarrow \{1, 2, \ldots, |w_2|\} \) be a monotonically increasing mapping induced by one of the possible embeddings of \(w_1 \) into \(w_2 \), that is, the letter at the \(j^{th} \) position in \(w_1 \) coincides with the letter at the \(\varphi(j)^{th} \) position in \(w_2 \). Any such \(\varphi \) is called a witness (of the embedding) of \(w_1 \) in \(w_2 \). If we speak about a letter \(a \) of \(w_2 \) that does not belong to the range of \(\varphi \), we mean an occurrence of \(a \) in \(w_2 \) whose position does not belong to the range of \(\varphi \).
Lemma 2. Let \mathcal{A} be a minimal DFA recognizing a PT language. If there exist two words w_1 and w_2 that are k-equivalent and lead to two different states from the initial state, such that w_1 is a subword of w_2, then there exists a w'_2 that is k-equivalent to w_1 leading to the same state as w_2 such that w'_2 contains at most $\text{depth}(\mathcal{A})$ more letters than w_1.

Proof. Let us consider w_1 and w_2 as in the statement of the lemma. Let φ be a witness of w_1 in w_2. Let a be a letter of w_2 that does not belong to the range of φ. Let us denote $w_2' = w_2 aw'_a$. If $iw_2a = iw_2$, then $iw_2w'_a = iw_2$. Moreover, since $a \notin \text{range}(\varphi)$, w_1 is a subword of $w_2w'_a$. Thus, $\text{sub}_k(w_1) \subseteq \text{sub}_k(w_2w'_a) \subseteq \text{sub}_k(w_2)$, which proves that w_1 and $w_2w'_a$ are k-equivalent. By induction on the number of letters in w_2 that do not belong to the range of the given witness of w_1 in w_2 and that do not trigger a change of state in \mathcal{A}, one can show that there exists a word equivalent to w_1 and leading to the same state as w_1 that does not contain any such letter. Since in a run of an acyclic automaton there are at most $\text{depth}(\mathcal{A})$ changes of states, this concludes the proof.

Lemma 3. Let \mathcal{A} be a minimal DFA recognizing a PT language. If $L(\mathcal{A})$ is not k-PT, there exist two words w_1 and w_2 such that:

- w_1 and w_2 are k-equivalent;
- the length of w_1 is at most $k|\Sigma|^k$;
- w_1 is a subword of w_2;
- w_1 and w_2 lead to two different states from the initial state.

Proof. If $L(\mathcal{A})$ is not k-PT, then there exist w_1 and w_2 that are k-equivalent and lead to two different states from the initial state. Let us show that for $i \in \{1, 2\}$, there exists w'_i such that $w_i \sim_k w'_i$ and the length of w'_i is at most $k|\Sigma|^k$. Let w_i^k denote the suffix of w_i of length k. Assume that there exists j such that $\text{sub}_k(w'_j) = \text{sub}_k(w'^{j+1}_i)$. Then the letter at the $(j+1)^{th}$ position of w_i can be removed while keeping the same set of subwords of length k. Thus there exists w'_i equivalent to w_i such that any two different prefixes of w'_i are not k-equivalent. Moreover, since $\text{sub}_k(w'_i) \subseteq \text{sub}_k(w'^{j+1}_i)$, such a w'_i contains at most $\sum_{n=1}^{k-1} |\Sigma|^n \leq k|\Sigma|^k$ letters.

To complete the proof, there are two cases. Either w'_1 and w'_2 lead to the same state: then, without loss of generality, w'_1 and w'_2 lead to two different states, which proves the claim. Or w'_1 and w'_2 lead to two different states: then consider w' such that $w' \sim_k w'_1$ and both w'_1 and w'_2 are subwords of w', which exists by [17] Theorem 6.2.6]. Without loss of generality, w'_1 and w' fulfill the required conditions.

Proof of Theorem 1. One can first check that the automaton \mathcal{A} over Σ recognizes a PT language. By Lemma 3, if $L(\mathcal{A})$ is not k-PT, there exist two k-equivalent words w_1 and w_2, with the length of w_1 being at most $k|\Sigma|^k$, w_1 being a subword of w_2, and w_1 and w_2 leading the automaton to two different states. By Lemma 2 one can choose w_2 of length at most $\text{depth}(\mathcal{A})$ bigger than the length of w_1. A polynomial certificate for non-k-piecewise testability can thus be given by providing such w_1 and w_2, which are indeed of polynomial length in the size of \mathcal{A} and Σ.

If we search for the minimal k for which the language is k-PT, we can first check whether it is 0-PT. If not, we check whether it is 1-PT and so on until we find the required k. In this case, the bounds $k|\Sigma|^k$ and $k|\Sigma|^k + \text{depth}(\mathcal{A})$ on the length of words w_1 and w_2 that need to be investigated are exponential with respect to k. To investigate all the words up to these lengths then gives an algorithm that is exponential with respect to the size of the minimal DFA and double exponential with respect to the desired k.

Proposition 1. Let \mathcal{A} be a minimal DFA that is partially ordered and confluent. To find the minimal k for which the language $L(\mathcal{A})$ is k-PT can be done in time exponential with respect to the size of \mathcal{A} and double exponential with respect to the resulting k.

Theorem 1 gives an upper bound on the complexity to decide whether a language is k-PT for a fixed k. We now show that for $k \leq 3$, the complexity of the problem is much simpler.

0-Piecewise Testability. Let \mathcal{A} be a minimal DFA over an alphabet Σ. The language $L(\mathcal{A})$ is 0-PT if and only if it has a single state, that is, it recognizes either Σ^* or \emptyset. Thus, given a minimal DFA, it is decidable in $O(1)$ whether its language is 0-PT.
1-Piecewise Testability.

Theorem 4. The problem to decide whether a minimal DFA recognizes a 1-PT language is in LOGSPACE.

The proof of Theorem 4 follows immediately from the following lemma.

Lemma 5. Let $\mathcal{A} = (Q, \Sigma, i, F)$ be a minimal DFA. The language $L(\mathcal{A})$ is 1-PT if and only if both of the following holds:

1. for every $p \in Q$ and $a \in \Sigma$, $pa = q$ implies $qa = q$.
2. for every $p \in Q$ and $a, b \in \Sigma$, $pab = pba$.

Proof. We show successively both directions of the equivalence.

(\Rightarrow) Assume that $L(\mathcal{A})$ is 1-PT. Since \mathcal{A} is minimal, p is reachable. Thus, there exists w such that $iw = p$. It holds that $\text{alph}(wa) = \text{alph}(waa)$, thus w and waa lead to the same state, that is, $qa = q$. Similarly, we notice that $\text{alph}(wab) = \text{alph}(wba)$, and thus $pab = pba$.

(\Leftarrow) We show that for any word w, it holds that $iw = ia_1a_2 \ldots a_n$, where $\text{alph}(w) = \{a_1, a_2, \ldots, a_n\}$. This then proves that if $w_1 \sim_1 w_2$, then $iw_1 = iw_2$. Thus, since for any letters $a, b \in \Sigma$ and any state q, $qab = qba$, we have that $iw = ia_1^1a_2^2 \ldots a_n^n$, where k_i is the number of appearances of a_i in w. By assumption 1 and induction on $k_i \geq 1$, $ia_1^1 = ia_2$. By induction on n, we thus show that $iw = ia_1a_2 \ldots a_n$. This shows confluence of \mathcal{A}. To show that \mathcal{A} is partially ordered, assume that there exists a cycle $p \xrightarrow{a} q \xrightarrow{b} r \xrightarrow{b} p$, for some states $p \neq q$ and r, and a word $w \in \Sigma^*$. By the previous argument, we have that $r = p \cdot aw = p \cdot a$, for some $u \in \Sigma^*$. But then $r \cdot ab = p \neq q = r \cdot ba$, which violates the second assumption.

2-Piecewise Testability. We show that the problem to decide whether a minimal DFA recognizes a 2-PT language is NL-complete. Note that this complexity coincides with the complexity to decide whether the language is PT, that is, whether there exists a k for which the language is k-PT.

Theorem 6. The problem to decide whether a minimal DFA recognizes a 2-PT language is NL-complete.

We first need the following lemma that states that for any two k-equivalent words that lead the automaton to two different states, there exist other two equivalent words leading the automaton to two different states, such that one word is a subword of the other and the words differ only by a single letter.

Lemma 7. Let $\mathcal{A} = (Q, \Sigma, i, F)$ be a minimal DFA. For every $k \geq 0$, if $w_1 \sim_k w_2$ and $iw_1 \neq iw_2$, then there exist two words w and w' such that $w \sim_k w'$, w' is obtained from w by adding a single letter at some place, and $iw \neq iw'$.

Proof. Let w_1 and w_2 be two words such that $w_1 \sim_k w_2$ and $iw_1 \neq iw_2$. Then, by [13, Theorem 6.2.6], there exists a word w_3 such that w_1 and w_2 are subwords of w_3, and $w_1 \sim_k w_2 \sim_k w_3$. Moreover, either w_1 and w_3, or w_2 and w_3, do not lead to the same state. Let $v, v' \in \{w_1, w_2, w_3\}$ be such that v is a subword of v' and $iv \neq iv'$. Let $v = u_0, u_1, \ldots, u_n = v'$ be a sequence such that u_{i+1} is obtained from u_i by adding a letter at some place. Such a sequence exists since v is a subword of v'. If, for every i, u_i and u_{i+1} lead to the same state, then v and v' does as well. Thus, there must exist i such that the words u_i and u_{i+1} lead to two different states and u_i is obtained from u_{i+1} by adding a letter at some place. Setting $w = u_i$ and $w' = u_{i+1}$ completes the proof, since $\text{sub}_k(v) \subseteq \text{sub}_k(w) \subseteq \text{sub}_k(v') \subseteq \text{sub}_k(v'') \subseteq \text{sub}_k(v)$.

Lemma 8. Let $\mathcal{A} = (Q, \Sigma, i, F)$ be a minimal partially ordered and confluent DFA. The language $L(\mathcal{A})$ is 2-PT if and only if for every $a \in \Sigma$ and every states p such that there exists w with $|w| \geq 1$, $pua = pawa$, for every $u \in \Sigma^*$.

Proof. (\Rightarrow) By contraposition. Assume that there exists $u \in \Sigma^*$ and a state p such that $iw = p$ for some $w \in \Sigma^*$ containing a and such that $pua \neq pawa$. By the assumption, $w = w_1aw_2$, for some $w_1, w_2 \in \Sigma^*$ such that $a \notin \text{alph}(w_1)$, and we want to show that $w_1aw_2a \sim_2 w_1aw_2aau$. However, for any $c \in \text{alph}(w_1aw_2)$, if $ca \notin w_1aw_2aau$, then $ca \sim w_1aw_2aau$. Similarly for $d \in \text{alph}(wa)$ and $ad \notin w_1aw_2aau$. Since $i \cdot wua \neq i \cdot wa$, the minimality of \mathcal{A} gives that there exists a word v such that $wauv \in L(\mathcal{A})$ if and only if $wauv \not\in L(\mathcal{A})$. Since \sim_2 is a congruence, $wauv \sim wauv$, which violates Fact 1, hence $L(\mathcal{A})$ is not 2-PT.
Claim 2. Both states z_1, z_2 have self-loops under all letters of the alphabet B.

Proof. Indeed, $q_i, b_j = q_i, b_j = q_i, b_j$, where the second equality is by the assumption from the statement of the theorem, since b_j appears in u_i. Thus, there is a self-loop in q_i, b_j.

Then, we have $z_1 = q_i, b_1 = z_1, b_1$. Now, for every $j = 2, \ldots, \ell$, we have $z_1 = q_i, b_1 = q_i, b_1$, where the third equality is because there is a self-loop in q_i, b_1 under b_1, and the fourth is by several applications of commutativity (Claim 1 above).

Thus, since no other states are reachable from z_1, z_2 under B, and z_1, z_2 are reachable from $i \cdot w_{1, \ell}$ by words over B, confuency of the automaton implies that $z_1 = z_2$, which completes the proof of part (A).

(B) If $a = a_i$, for some $i \leq k$, we consider two cases. First, assume that for every $c \in \Sigma \cup \{e\}$, ca is a subword of $w_{1, \ell}$. Then a is a subword of $w_{1, \ell}$. Let $w_{1, \ell} = w_{1, \ell}a_1a_2\ldots a_n$, where a does not appear in $w_{1, \ell}$. Let $q = \epsilon \cdot w_{1, \ell}$, and let $B = \text{alph}(w_{1, \ell})$. Note that $B \subseteq \text{alph}(w_{1, \ell})$, since if x is a subword of $w_{1, \ell}$, then it is also in $w_{1, \ell}$. By the assumption of the theorem, $q = i \cdot w_{1, \ell}a_i = i \cdot w_{1, \ell}a_i$; hence we get that there is a self-loop in q under a. Now, by the self-loop under a in q and commutativity (Claim 1 above), $q \cdot w_{1, \ell}a_i = q \cdot w_{1, \ell}a_i$. Thus, $i \cdot w_{1, \ell}a_i = i \cdot w_{1, \ell}a_i$.

\[w = a_1 \ldots a_k a_{k+1} \ldots a_n \text{ and } w' = a_1 \ldots a_k a_{k+1} \ldots a_n \]
Second, assume that there exists \(c \) in \(w_{1,k} \) such that \(ca \preceq w_{1,k}a \) is not a subword of \(w_{1,k} \). Then \(a \) must appear in \(w_{k+1,j} \). Together, there exist \(i \leq k < j \) such that \(a_i = a_j = a \). By the assumption of the theorem, we obtain that \(i \cdot w_{1,k}aw_{k+1,j} = i \cdot w_{1,k}w_{k+1,j} \), since \(w_{k+1,j} = xa \), for some \(x \in \Sigma^* \). This implies that \(i \cdot w = i \cdot w' \).

This completes the proof of part (B) and, hence, the whole proof.

This result gives a PTIME algorithm to decide whether a minimal DFA recognizes a 2-PT language. However, our aim is to show that the problem is in NL-complete. To show that the problem is in NL, we need the following lemma, which gives a characterization of 2-PT languages that can be verified locally in nondeterministic logarithmic space, and provides a quadratic-time algorithm.

Lemma 9. Let \(\mathcal{A} = (Q, \Sigma, \cdot, i, F) \) be a DFA. Then the following conditions are equivalent:

1. For every \(a \in \Sigma \) and every state \(s \) such that \(iw = s \) for some \(w \in \Sigma^* \) with \(|w|_a \geq 1 \), \(sua = saua \), for every \(u \in \Sigma^* \).

2. For every \(a \in \Sigma \) and every state \(s \) such that \(iw = s \) for some \(w \in \Sigma^* \) with \(|w|_a \geq 1 \), \(sba = saba \) for every \(b \in \Sigma \cup \{\varepsilon\} \).

Proof: (1 \(\Rightarrow \) 2) is a special case of 1. where \(u = b \).

(2 \(\Rightarrow \) 1) We prove this direction by induction on the length of \(u \). Let \(a \in \text{alph}(w) \) such that \(iw = s \). If \(u = \varepsilon \), then we take \(b = e \). Otherwise, we have \(u = u \cdot b \). By induction hypothesis, we have \(su'a = su'a \). Thus \(sua = su'b = (su')ba = (su')a = (sa')ba = (sa')ba = sawu. \)

Proof (of Theorem 6). The check of whether a minimal DFA is not confluent or does not satisfy condition 2 of Lemma 9 can be done in NL; the reader is referred to [7] for a proof how to check confluence in NL. Since NL=co-NL [22, 41], we have an NL algorithm to check 2-piecewise testability of a minimal DFA. NL-hardness follows from the following lemma.

Lemma 10. For every \(k \geq 2 \), the \(k \)-PT problem is NL-hard.

Proof. To prove NL-hardness, we reduce an NL-complete problem monotone graph accessibility (2MGAP) [4], which is a special case of the graph reachability problem, to the \(k \)-piecewise testability problem. An instance of 2MGAP is a graph \((G, s, g)\), where \(G = (V, E) \) is a graph with the set of vertices \(V = \{1, 2, \ldots, n\} \), the source vertex \(s = 1 \) and the target vertex \(g = n \), the out-degree of each vertex is bounded by 2 and for all edges \((u, v)\), \(v \) is greater than \(u \) (the vertices are linearly ordered).

We construct the automaton \(\mathcal{A} = (V \cup \{i, f_1, f_2, \ldots, f_{k-1}, d\}, \Sigma, \cdot, i, \{f_{k-1}\}) \) as follows. For every edge \((u, v)\), we construct a transition \(u \cdot aw = v \) over a fresh letter \(aw \). Moreover, we add the transitions \(i \cdot a = s \), \(g \cdot a = f_1 \) and \(f_i \cdot a = f_{i+1} \), \(i = 1, 2, \ldots, k-2 \), over a fresh letter \(a \). The automaton is deterministic, but not necessarily minimal, since some of the states may not be reachable from the initial state, or some states may be equivalent. To ensure minimality of the constructed automaton, we add, for each state \(v \in V \setminus \{s\} \), new transitions from \(i \) to \(v \) under fresh letters, and for each state \(v \in V \setminus \{g\} \), new transitions from \(v \) to \(f_{k-1} \) under fresh letters. All undefined transitions go to the sink state \(d \).

Claim 3. The automaton \(\mathcal{A} \) is deterministic and minimal, and \(L(\mathcal{A}) \) is finite.

Proof. Note that, by construction, all states are reachable from the initial state \(i \) and can reach (except the sink state) the unique accepting state \(f_{k-1} \). In addition, the automaton is deterministic and minimal, since every transition is labeled by a unique label (except for the transitions \(ia = s \) and \(ga^{k-1} = f_{k-1} \) labeled with the same letter), which makes the states non-equivalent. Finally, \(L(\mathcal{A}) \) is finite because the monotonicity of the graph \((G, s, g)\) implies that the automaton does not contain a cycle nor a self-loop (but the sink state \(d \)).

The following claim is needed to complete the proof.

Claim 4. Let \(w \) be a word over \(\Sigma \). If every \(a \) from \(\Sigma \) appears at most once in \(w \), that is, \(|w|_a \leq 1 \), then the language \(\{w\} \) is 2-PT.
Proof. First, since the language \([w]\) is PT, the minimal DFA is partially ordered and confluent. Then the condition of Lemma 8 is trivially satisfied, since, after the second occurrence of the same letter, the minimal DFA accepting \([w]\) is in the unique maximal non-accepting state.

We now show that the language \(L(\mathcal{A})\) is \(k\)-PT if and only if \(g\) is not reachable from \(s\).

By contraposition, we assume that \(g\) is reachable from \(s\). Let \(w\) be a sequence of labels of such a path from \(s\) to \(g\) in \(\mathcal{A}\). Then the word \(awa^k\) belongs to \(L(\mathcal{A})\) and \(awa^d\) does not. However, \(awa^{k-1} \sim_k awa^k\), which proves that the language \(L(\mathcal{A})\) is not \(k\)-PT.

If \(g\) is not reachable from \(s\), the language \(L(\mathcal{A}) = \{au_1, au_2, \ldots, au_k, u_{e+1}, \ldots, u_{n+1}\} \cup \{w_1 a^{d-1}, w_2 a^{d-1}, \ldots, w_n a^{d-1}\}\), where \(u_i\) and \(w_j\) are words over \(\Sigma \setminus \{a\}\) that do not contain any letter twice. Then the first part is 2-PT by the previous claim, as well as the second part for \(k = 2\). It remains to show that, for any \(k \geq 3\), the second part of \(L(\mathcal{A})\) is \(k\)-PT. Assume that \(w_j a^{d-1} \sim_k w\) for some \(1 \leq j \leq m\) and \(w \in \Sigma^*\). Then \(w = v_1 a v_2 \ldots a v_k\) for some \(v_1, v_2, \ldots, v_k\) such that \(|v_1 \cdots v_k| = 0\). Since \(|w_j| = 0\) and, for any letter \(c\) of \(v_2 \cdots v_{k-1}\) (resp. \(v_1\)), the word \(aca\) (resp. \(a^{d-1}c\)) can be embedded into \(w_j a^{d-1}\), that is, into \(a^{d-1}\), we have that \(v_2 \cdots v_k = \varepsilon\), i.e., \(w = v_1 a^{d-1}\). Since \(w_j a^{d-1} \sim_k v_1 a^{d-1}\), we have that \(w_j a = v_1 a\) — hence \(w_j a^{d-1}\) and \(w\) lead to the same state, concluding the proof.

It was shown in [4] that the syntactic monoids of 1-PT languages are defined by equations \(x = x^2\) and \(xy = yx\), and those of 2-PT languages by equations \(xyxzx = yxyxz\) and \((xy)^2 = (yx)^2\). These equations can be used to achieve NL algorithms. However, our characterizations improve these results and show that, for 1-PT languages, it is sufficient to verify the equations \(x = x^2\) and \(xy = yx\) on letters (generators), and that, for 2-PT languages, equation \(xyxzx = yxyxz\) can be verified on letters (generators) up to the element \(y\), which is a general element of the monoid. It decreases the complexity of the problems. Moreover, the partial order and (local) confluency properties can be checked instead of the equation \((xy)^2 = (yx)^2\).

3-Piecewise Testability. The equations \((xy)^3 = (yx)^3\), \(xyxyxwy = xzxyxzyw\) and \(ywxyxzx = ywxyxzyxz\) characterize the variety of 3-PT languages [4]. Non-satisfiability of any of these equations can be check in the DFA in NL by guessing a finite number of states and the right sequences of transitions between them (in parallel, when labeled with the same labels). Thus, we have the following.

Theorem 11. The problem to decide whether a minimal DFA recognizes a 3-PT language is NL-complete.

k-Piecewise Testability. Even though [5] provides a finite sequence of equations to define the \(k\)-PT languages over a fixed alphabet for any \(k \geq 4\), the equations are more involved and it is not clear whether they can be used to obtain the precise complexity. So far, the \(k\)-piecewise testability problem can be shown to be NL-hard (for \(k \geq 2\)) and in co-NP, and it is open whether it tends rather to NL or to co-NP.

4. Complexity of \(k\)-Piecewise Testability for NFAs

The \(k\)-piecewise testability problem for NFAs asks whether, given an NFA \(\mathcal{A}\), the language \(L(\mathcal{A})\) is \(k\)-PT. A language is 0-PT if and only if it is either empty or universal. Since the universality problem for NFAs is PSPACE-complete [16], the 0-PT problem for NFAs is PSPACE-complete. Using the same argument as in [21] then gives us the following result.

Proposition 2. For every integer \(k \geq 0\), the problem to decide whether an NFA recognizes a \(k\)-PT language is PSPACE-hard.

Since \(k\) is fixed, we can make use of the idea of Theorem 11 to decide whether an NFA recognizes a \(k\)-PT language. The length of the word \(w_2\) is now bounded by \(2^n\), where \(n\) is the number of states of the NFA. Guessing the word \(w_2\) on-the-fly then gives that the \(k\)-piecewise testability problem for NFAs is in PSPACE.

Theorem 12. The following problem is PSPACE-complete:
Claim 6. The minimal DFA D hence i Thus, $\text{alph}(w)$ it for induction on k).

with each guess of the next letter of w, we correspondingly move all the pointers to all the stored subwords to keep track of all subwords of w_2. We accept if w_1 and w_2 have the same subwords, w_1 is a subword of w_2, and w_1 and w_2 lead the minimal DFA A' to two different states. Note that because of the space limits the minimal DFA A' cannot be stored in the memory, but must be simulated on-the-fly while the word w_2 is being guessed. The state of A' defined by the word w_2 can then be compared with the state of A' defined by the word w_1, which is either computed at the end or stored from the beginning.

The problem to find the minimal k for which the language recognized by an NFA is k-PT is PSPACE-hard, since a language is PT if and only if there exists a minimal $k \geq 0$ for which it is PT.

5. Piecewise Testability and the Depth of NFAs

In this section, we generalize a result valid for DFAs to NFAs and investigate the relationship between the depth of an NFA and the minimal k for which its language is k-PT. We show that the upper bound on k given by the depth of the minimal DFA can be exponentially far from such a minimal k. More specifically, we show that for every $k \geq 0$, there exists a k-PT language L recognized by an NFA \mathcal{A} of depth $k-1$ and by the minimal DFA D of depth 2^k-1.

Recall that a regular language is PT if and only if its minimal DFA satisfies some properties that can be tested in a quadratic time, cf. Fact 2. We now show that this characterization generalizes to NFAs. We say that an NFA \mathcal{A} over an alphabet Σ is complete if for every state q of \mathcal{A} and every letter a in Σ, the set $q \cdot a$ is nonempty, that is, in every state, a transition under every letter is defined.

Theorem 13. A regular language is PT if and only if there exists a complete NFA that is partially ordered and satisfies the UMS property.

Proof. (\Rightarrow) If a regular language is PT, then its minimal DFA is partially ordered and satisfies the UMS property by [42].

(\Leftarrow) To prove the other direction, let $\mathcal{A} = (Q, \Sigma, \cdot, I, F)$ be a complete partially ordered NFA such that it satisfies the UMS property. Let D be the minimal DFA computed from \mathcal{A} by the standard subset construction and minimization. We represent every state of D by a set of states of \mathcal{A}.

Claim 5. The minimal DFA D is partially ordered.

Proof. Let $X = \{p_1, p_2, \ldots, p_n\}$ with $p_i < p_j$ for $i < j$ be a state of D, and let $w \in \Sigma^*$ be such that $X \cdot w = X$. By induction on $k = 1, 2, \ldots, n$, we show that $p_iw = p_i$. Assume that for all $i < k$, it holds that $p_iw = p_i$. We prove it for k. Since $X = \{p_1, p_2, \ldots, p_n\} = Xw = \cup_{i=1}^n p_iw$, $p_k \leq p_iw$ and $p_jw = p_j$ for $i < k$, we have that $p_k \in p_iw$. Thus, $\text{alph}(w) \subseteq \Sigma(p_k)$ and the UMS property of \mathcal{A} implies that $p_iw = p_k$. Therefore, for every $a \in \text{alph}(w)$ and $i = 1, 2, \ldots, n$, $p_ia = p_i$. If, for any state Y of D, $Xw_1 = Y$ and $Yw_2 = X$, the previous argument gives that $X = Y$, hence D is partially ordered.

Claim 6. The minimal DFA D satisfies the UMS property.
Proof. Assume, for the sake of contradiction, that there exist two different states \(X \) and \(Y \) in the same component of \(\mathcal{D} \) that are maximal with respect to the alphabet \(\Sigma(X) \). That is, there exist a state \(Z \) in \(\mathcal{D} \) and two words \(u \) and \(v \) over \(\Sigma(X) \) such that \(X = Zu \) and \(Y = Zv \). Without loss of generality, we may assume that there exists a state \(x \) in \(X \setminus Y \). Let \(z \) in \(Z \) be such that \(x = zu \). Since \(x \) does not belong to \(Y \), \(zv \neq x \). Note that \(zv \) is defined, since \(A \) is complete. By the proof of the previous claim, \(\Sigma(X) \subseteq \Sigma(zv) \) and \(\Sigma(X) \subseteq \Sigma(x) \). If \(x \) is not reachable from \(zv \) by \(\Sigma(x) \), we have a contradiction with the UMS property of \(A \). Thus, assume that \(zv \) reaches \(x \) under \(\Sigma(x) \), that is, \(zv \leq x \). If \(x \) does not reach \(zv \) under \(\Sigma(zv) \), then \(zv \) and a maximal state of \(x \cdot \Sigma(zv) \) are two different maximal states in \(A \), a contradiction. If \(x \) reaches \(zv \) under \(\Sigma(zv) \), then \(x \leq zv \), which implies, since the NFA is partially ordered, that \(zv = x \), which is again a contradiction. \(\square \)

Thus, we have shown that the minimal DFA \(\mathcal{D} \) is partially ordered and satisfies the UMS property. Fact 2 now completes the proof.

As it is PSPACE-complete to decide whether an NFA defines a PT language, it is PSPACE-complete to decide whether, given an NFA, there is an equivalent complete NFA that is partially ordered and satisfies the UMS property.

5.1. Exponential Gap between \(k \) and the Depth of DFAs

It was shown in [23] that the depth of minimal DFAs does not correspond to the minimal \(k \) for which the language is \(k \)-PT. Namely, an example of \((4\ell - 1)\)-PT languages with the minimal DFA of depth \(4\ell^2 \), for \(\ell > 1 \), has been presented. We now show that there is an exponential gap between the minimal \(k \) for which the language is \(k \)-PT and the depth of a minimal DFA.

Theorem 14. For every \(n \geq 2 \), there exists an \(n \)-PT language that is not \((n-1)\)-PT, it is recognized by an NFA of depth \(n - 1 \), and the minimal DFA recognizing it has depth \(2^n - 1 \).

Proof. For every \(k \geq 0 \), we define the NFA

\[
A_k = ([0, 1, \ldots, k], \{a_0, a_1, \ldots, a_k\}, \cdot, I_k, \{0\})
\]

with \(I_k = \{0, 1, \ldots, k\} \) and the transition function \(\cdot \) consisting of the self-loops under \(a_i \) in all states \(j > i \) and transitions under \(a_i \) from the state \(i \) to all states \(j < i \). Formally, \(i \cdot a_j = i \) if \(k \geq i > j \geq 0 \) and \(i \cdot a_i = \{0, 1, \ldots, i - 1\} \) if \(k \geq i \geq 1 \).

Automata \(A_2 \) and \(A_3 \) are shown in Fig. 1. Note that \(A_k \) is an extension of \(A_{k-1} \), in particular, \(L(A_{k-1}) \subseteq L(A_k) \).

![Figure 1: Automata A_2 and A_3.](image)

We define the word \(w_k \) inductively by \(w_0 = a_0 \) and \(w_\ell = w_{\ell-1}a_\ell w_{\ell-1} \), for \(0 < \ell \leq k \). Note that \(|w_\ell| = 2^{\ell+1} - 1 \).

In [23], we have shown that every prefix of \(w_k \) of odd length ends with \(a_0 \) and, thus, does not belong to \(L(A_k) \), while every prefix of even length belongs to \(L(A_k) \). For convenience, we briefly recall the proof here. The empty word belongs to \(L(A_0) \subseteq L(A_k) \). Let \(v \) be a prefix of \(w_k \) of even length. If \(|v| < 2^k - 1 \), then \(v \) is a prefix of \(w_{k-1} \) and, by the induction hypothesis, \(v \in L(A_{k-1}) \subseteq L(A_k) \). If \(|v| > 2^k - 1 \), then \(v = w_{k-1}a_kv' \). The definition of \(A_k \) and the induction hypothesis then yield that there is a path \(\xrightarrow{w_{k-1}} k \xrightarrow{a_k} (k-1) \xrightarrow{v'} 0 \). Thus, \(v \) belongs to \(L(A_k) \).

We now discuss the depth of the minimal DFA recognizing the language \(L(A_k) \).

Claim 7. For every \(k \geq 0 \), the depth of the minimal DFA recognizing the language \(L(A_k) \) is \(2^{k+1} - 1 \).
Proof. We prove the claim by induction on \(k\). For \(k = 0\), the minimal DFA \(\text{det}(\mathcal{A}_0) = ([\emptyset], \emptyset, \emptyset, \emptyset, \emptyset)\) obtained from \(\mathcal{A}_0\) by the standard subset construction and minimization has two states, accepts the single word \(\varepsilon\), and \(a_0\) goes from the initial state \(I_0 = \emptyset\) to the sink state \(\emptyset\). Thus, it has depth 1 as required. Consider the word \(w_{k-1} = w_{k-1}a_kw_{k-1}\) for \(k > 0\). By the induction hypothesis, there exists a simple path of length \(2^k - 1\) in \(\text{det}(\mathcal{A}_{k-1})\) defined by the word \(w_{k-1}\) starting from the initial state \(I_k = \{0, 1, \ldots, k - 1\}\) and ending in the state \(\emptyset\). Let \(Q_0, Q_1, \ldots, Q_{2^k-1}\) denote the states of that simple path in the order they appear on the path, that is, \(Q_0 = I_k, Q_{2^k-1} = \emptyset\), and \(Q_i \subseteq Q_0\) for \(i = 1, 2, \ldots, 2^k - 1\). Note that the states are pairwise non-equivalent by the induction hypothesis. Let \(w_{k-1,i}\) denote the \(i\)-th letter of the word \(w_{k-1}\). Then the path

\[
(Q_0 \cup \{k\}) \xrightarrow{w_{k-1,1}} (Q_1 \cup \{k\}) \xrightarrow{w_{k-1,2}} (Q_2 \cup \{k\}) \cdots (Q_{2^k-1} \cup \{k\}) \xrightarrow{a_k} Q_0 \xrightarrow{w_{k-1,1}} Q_1 \xrightarrow{w_{k-1,2}} Q_2 \cdots Q_{2^k-1}
\]

consists of \(2^{k+1}\) different states. We show that these states are pairwise non-equivalent. Since the letter \(a_k\) is accepted from every state \(Q_i \cup \{k\}\), but from no state \(Q_i\), for \(0 \leq i, j \leq 2^k - 1\), the state \(Q_i \cup \{k\}\) is distinguishable from the state \(Q_j\). Moreover, \(Q \cup \{k\}\) and \(Q' \cup \{k\}\) are distinguished by the same word as the states \(Q\) and \(Q'\), that are distinguishable by the induction hypothesis. Thus, we have a simple path of length \(2^{k+1} - 1\) as required.

We now show that \(\mathcal{A}_k\) defines a \((k + 1)\)-PT language that is not \(k\)-PT.

Claim 8. For every \(k \geq 0\), the language \(L(\mathcal{A}_k)\) is \((k + 1)\)-PT.

Proof. By induction on \(k\). For \(k = 0\), the language \(L(\mathcal{A}_0) = \{\varepsilon\} = \bigcap_{w \in \Sigma^*} L_0\) is indeed 1-PT. Consider the automaton \(\mathcal{A}_k\) and let \(u\) and \(v\) be two words such that \(u \sim_{k+1} v\). Assume that \(u \in L(\mathcal{A}_k)\). We show that \(v \in L(\mathcal{A}_k)\) as well. If \(u\) does not contain the letter \(a_k\), then \(u \in L(\mathcal{A}_{k-1})\) and, since \(u \sim_{k-1} v\) implies that \(u \sim_k v\), the induction hypothesis gives that \(v \in L(\mathcal{A}_{k-1}) \subseteq L(\mathcal{A}_k)\). If \(u\) contains the letter \(a_k\), the definition of \(\mathcal{A}_k\) gives that \(u\) is of the form \(u = u_1a_ku_2\), where \(u_1u_2\) does not contain the letter \(a_k\). Since \(u \sim_{k+1} v\), the word \(v\) is also of a form \(v = v_1a_kv_2\), where \(v_1v_2\) does not contain the letter \(a_k\). However, \(u_2 \sim_k v_2\), since \(w \in sub_k(u_2)\) if and only if \(a_kw \in sub_k(u)\), and \(v_1v_2\) is also of a form \(v = v_1a_kv_2\), which is if and only if \(w \in sub_k(v_2)\). Since, by the induction hypothesis, \(u_2 \in L(\mathcal{A}_{k-1})\) implies that \(v_2 \in L(\mathcal{A}_{k-1})\), we obtain that \(v \in L(\mathcal{A}_k)\).

Claim 9. For every \(k \geq 0\), the language \(L(\mathcal{A}_k)\) is not \(k\)-PT.

Proof. Let \(w_k = w_{k-1}a_kw_{k-1}\) be the word defined above. Let \(w'_k\) denote the prefix of \(w_k\) without the last letter (which is \(a_k\)), that is, \(w_k = w'_k\). We now show, by induction on \(k\), that \(w_k \sim_k w'_k\). This then implies that the language \(L(\mathcal{A}_k)\) is not \(k\)-PT, because \(w'_k\) belongs to \(L(\mathcal{A}_k)\) while \(w_k\) does not belong to \(L(\mathcal{A}_k)\). Indeed, for \(k = 0\), we have \(w_0 = a_0 \sim_0 \varepsilon \in w'_0\). Thus, assume that \(w_k \sim_k w'_k\) for some \(k \geq 0\), and consider a word \(w \in sub_k(w_k)\) for some \(k \geq 0\), and consider a word \(w \in sub_k(w_k)\). Then the word \(w\) can be decomposed to \(w = w'w''\), where \(w''\) is the maximal prefix of \(w\) that can be embedded into the word \(w_ka_kw_{k-1}\). Note that \(w''\) is a suffix of \(w\) that can be embedded into \(w_k\). Since \(|w''| > 0\), we have that \(|w''| \leq k\). By the induction hypothesis, \(w'' \in sub_k(w_k)\). Thus, \(w = w'w'' \in sub_k(w_k)\), which proves that \(w_{k+1} \sim_{k+1} w'_k\).

To finish the proof of Theorem 14 note that every NFA \(\mathcal{A}_k\) has depth \(k\), accepts a \((k + 1)\)-PT language that is not \(k\)-PT and its minimal DFA has depth \(2^{k+1} - 1\). This completes the proof.

Although it is well known that DFAs can be exponentially larger than NFAs, an interesting by-product of this result is that there are NFAs such that all the exponential number of states of their minimal DFAs form a simple path.

It could seem that NFAs are more convenient to provide upper bounds on the \(k\). However, the following simple example demonstrates that even for 1-PT languages, the depth of an NFA depends on the size of the input alphabet. Specifically, for any alphabet \(\Sigma\), the language \(L = \bigcap_{w \in \Sigma} L_w\) of all words containing all letters of \(\Sigma\) is a 1-PT language such that any NFA recognizing it requires at least \(2^{|\Sigma|}\) states and has depth \(|\Sigma|\). A deeper investigation in this direction is provided in the next section.
Example 15. Let $L = \bigcap_{w \in \Sigma} L_w$ be a language of all words that contain all letters of the alphabet. Then $2^{2^|\Sigma|}$ states are sufficient for an NFA to recognize L. Indeed, the automaton $\mathcal{A} = (2^{\Sigma}, \Sigma, \cdot, \{\emptyset\}, \Sigma)$ with the transition function defined by $X \cdot a = X \cup \{a\}$, for $X \subseteq \Sigma$ and $a \in \Sigma$, recognizes L. The depth of \mathcal{A} is $|\Sigma|$, since every non-self-loop transition goes to a strict superset of the current state.

To prove that every NFA requires at least $2^{2^|\Sigma|}$ states, we use a fooling set lower-bound technique [3]. A set of pairs of words $\{(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\}$ is a fooling set for L if, for all i, the words $x_i | y$ belong to L and, for $i \neq j$, at least one of the words $x_i | y_j$ and $x_j | y_i$ does not belong to L. To construct such a fooling set, for any $X \subseteq \Sigma$, we fix a word w_X such that $\text{alph}(w_X) = X$. Let $S = \{(w_X, w_{\Sigma \setminus X}) \mid X \subseteq \Sigma\}$. Then $\text{alph}(w_X w_{\Sigma \setminus X}) = \Sigma$ and $w_X w_{\Sigma \setminus X}$ belongs to L. On the other hand, for $X \neq Y$, either $X \cup (\Sigma \setminus Y)$ or $Y \cup (\Sigma \setminus X)$ is different from Σ, which implies that S is a fooling set of size $2^{2^|\Sigma|}$. The main result of [3] now implies the claim. It remains to prove that the depth is at least $|\Sigma|$. However, the shortest words of L are of length $|\Sigma|$, which completes the proof.

Note that if we consider union instead of intersection, the resulting minimal DFA has only 2 states and depth 1.

6. Tight Bounds on the Depth of Minimal DFAs

If a PT language is recognized by a minimal DFA of depth ℓ, then it is ℓ-PT. However, the opposite implication does not hold and the analysis of Section 5 shows that the language can be $(\ell - i)$-PT for exponentially large i's. Therefore, we study the opposite implication of the relationship between k-piecewise testability and the depth of the minimal DFA in this section. Specifically, given a k-PT language over an n-letter alphabet, we show that the depth of the minimal DFA recognizing it is at most $\binom{n+k}{k} - 1$.

To this end, we first investigate the following problem.

Problem 16. Let Σ be an alphabet of cardinality $n \geq 1$ and let $k \geq 1$. What is the length of a longest word, w, such that $\text{sub}_b(w) = \Sigma^k = \{v \in \Sigma^* \mid |v| \leq k\}$ and, for any two distinct prefixes w_1 and w_2 of w, $\text{sub}_b(w_1) \neq \text{sub}_b(w_2)$?

The answer to this question is formulated in the following proposition proved below by two lemmas.

Proposition 3. Let Σ be an alphabet of cardinality n. The length of a longest word, w, satisfying the requirements of Problem 16 is given by the recursive formula $|w| = P_{k,n} = P_{k-1,n} + P_{k,n-1} + 1$, where $P_{1,m} = m = P_{m,1}$, for $m \geq 1$.

Equivalently stated, Problem 16 asks what is the depth of the \sim_k-canonical DFA, whose states correspond to \sim_k classes, that is, of a DFA $\mathcal{A} = (Q, \Sigma, \cdot, [x], F)$, where $Q = \{|w| \mid w \in \Sigma^k\}$, $[w] = [w'] \sim_k w$, and the transition function \cdot is defined so that, for a state $[w]$ and a letter a, $[w] \cdot a = [wa]$. The set of accepting states F is not important here, but will be used later.

We show below that the solution to this problem is given by the following recursive formula:

$|w| = P_{k,n} = P_{k-1,n} + P_{k,n-1} + 1$,

where $P_{1,m} = m = P_{m,1}$, for any $m \geq 1$.

The following lemma shows that w is not longer than $P_{k,n}$.

Lemma 17. Let k and n be given, and let w' be any word over an n-letter alphabet satisfying the requirements of Problem 16. Then $|w'| \leq P_{k,n}$.

Proof. Let w' be a word over $\Sigma = \{a_1, a_2, \ldots, a_n\}$ with the order $a_i < a_j$ if $i < j$ induced by the occurrence of a in w'. For instance, $abada$ induces the order $a < b < d < c$. Let z denote the first occurrence of a_n in w'. Then $w' = w_1 z w_2$, where w_1 is a word over $\{a_1, a_2, \ldots, a_{n-1}\}$ satisfying the second requirement of Problem 16 hence $|w_1| \leq P_{k,n-1}$. On the other hand, since $\text{alph}(w_1 z) = \Sigma$, any prefix of w_2 extends the set of subwords with a subword of length at least k. Thus, w_2 cannot be longer than the longest word over Σ containing all subwords up to length $k - 1$, that is, $|w_2| \leq P_{k-1,n}$. This completes the proof.

We now show that there exists a word of length $P_{k,n}$.

Lemma 18. For any positive integers k and n, there exists a word w of length $P_{k,n}$ satisfying the requirements of Problem 16.
Proof. Let \(\Sigma_n \) denote the alphabet \(\{a_1, a_2, \ldots, a_n\} \) with the order \(a_i < a_j \) if \(i < j \). For \(n = 1 \) and \(k \geq 1 \), the word \(W_{k,1} = a^k \) is of length \(n \) and satisfies the requirements, as well as the word \(W_{1,n} = a_1 a_2 \ldots a_n \) of length \(P_{1,2} \) for \(k = 1 \) and \(n \geq 1 \). Assume that we have constructed the words \(W_{i,j} \) of length \(P_{i,j} \) for all \(i < k \) and \(j < n \), \(W_{i,n} \) of length \(P_{i,n} \) for all \(i < k \), and \(W_{k,j} \) of length \(P_{k,j} \) for all \(j < n \). We construct the word \(W_{k,n} \) of length \(P_{k,n} \) over \(\Sigma_n \) as follows:

\[
W_{k,n} = W_{k,n-1} a_n W_{k-1,n}.
\]

It remains to show that \(W_{k,n} \) satisfies the requirements of Problem 16. However, the set of subwords of \(W_{k-1,n} \) is \(\Sigma_n^{k-1} \). Since \(\alpha \left(W_{k,n-1}(a_n) \right) = \Sigma_n \), we obtain that the set of subwords of \(W_{k,n} \) is \(\Sigma_n^k \).

Let \(w_1 \) and \(w_2 \) be two different prefixes of \(W_{k,n} \). Without loss of generality, we may assume that \(w_1 \) is a prefix of \(w_2 \). If they are both prefixes of \(W_{k,n-1} \), the second requirement of Problem 16 follows by induction. If \(w_1 \) is a prefix of \(W_{k,n-1} \) and \(w_2 \) contains \(a_n \), then the second requirement of Problem 16 is satisfied, because \(w_1 \) does not contain \(a_n \). Thus, assume that both \(w_1 \) and \(w_2 \) contain \(a_n \), that is, they both contain \(W_{k,n-1} a_n \) as a prefix. Let \(w_1 = W_{k,n-1} a_n w'_1 \) and \(w_2 = W_{k,n-1} a_n w'_2 \). Since, by induction, \(\text{sub}_k(a_n w'_1) \subseteq \text{sub}_k(a_n w'_2) \), there exists \(v \in \text{sub}_{k-1}(w'_1 w'_2) \setminus \text{sub}_{k-1}(w'_1) \). Then \(a_n v \) belongs to \(\text{sub}_k(w_2) \), but not to \(\text{sub}_k(w_1) \), which completes the proof.

It follows by induction that for any positive integers \(k \) and \(n \)

\[
P_{k,n} = \binom{k + n}{k} - 1.
\] (1)

We now use this result to show that the depth of the minimal DFA recognizing a \(k \)-PT language over an \(n \)-letter alphabet is \(P_{k,n} \) in the worst case.

Theorem 19. For any natural numbers \(k \) and \(n \), the depth of the minimal DFA recognizing a \(k \)-PT language over an \(n \)-letter alphabet is at most \(P_{k,n} \). Moreover, the bound is tight for any \(k \) and \(n \).

Proof. Let \(L_{k,n} \) be a \(k \)-PT language over an \(n \)-letter alphabet. Since \(L_{k,n} \) is a finite union of \(k \) classes \([38]\), there exists \(F \) such that the \(\sim_k \)-canonical DFA \(\mathcal{A} = (Q, \Sigma, \epsilon, [\cdot], F) \) recognizes \(L_{k,n} \). The depth of \(\mathcal{A} \) is \(P_{k,n} \). Let \(\text{min}(\mathcal{A}) \) denote the minimal DFA obtained from \(\mathcal{A} \) by a standard minimization procedure. Since the minimization does not increase the depth, the depth of \(\text{min}(\mathcal{A}) \) is at most \(P_{k,n} \).

To show that the bound is tight, let \(w \) denote a fixed word of length \(P_{k,n} \), which exists by Lemma 18. Consider the \(\sim_k \)-canonical DFA \(\mathcal{A}' = (Q, \Sigma, \epsilon, [\cdot], F) \), where \(F = \{ [w'] \mid w' \text{ is a prefix of } w \text{ of even length} \} \). Then \(w \) defines a path \(\pi_w = [\epsilon] \xrightarrow{w_1} [w_1] \xrightarrow{w_2} [w_2] \ldots \xrightarrow{w_i} [w_i] \) in \(\mathcal{A}' \) of length \(P_{k,n} \), where \(w_i \) denotes the prefix of \(w \) of length \(i \) and accepting and non-accepting states alternate. Again, let \(\text{min}(\mathcal{A}') \) denote the minimal DFA obtained from \(\mathcal{A}' \). If there were two equivalent states in \(\pi_w \), then they must be of the same acceptance status. However, between any two states with the same acceptance status, there exists a state with the opposite acceptance status. Therefore, joining the two states creates a cycle in \(\text{min}(\mathcal{A}') \), which is a contradiction with Fact 2 since the DFA \(\mathcal{A}' \) recognizes a PT language. □

A few of these numbers are listed in Table 1. We now present several consequences of these results.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(n=1)</th>
<th>(n=2)</th>
<th>(n=3)</th>
<th>(n=4)</th>
<th>(n=5)</th>
<th>(n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>19</td>
<td>34</td>
<td>55</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>14</td>
<td>34</td>
<td>69</td>
<td>125</td>
<td>209</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>55</td>
<td>125</td>
<td>251</td>
<td>461</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>27</td>
<td>83</td>
<td>209</td>
<td>461</td>
<td>923</td>
</tr>
</tbody>
</table>

Table 1: The table of a few first numbers \(P_{k,n} \).
1. Note that it follows from the formula that $P_{k,n} = P_{n,k}$. This gives and interesting observation that increasing the length of the considered subwords has exactly the same effect as increasing the size of the alphabet.

2. Equivalently stated, Problem 16 asks what is the depth of the \sim_k-canonical DFA, whose states are \sim_k classes. The number of equivalence classes of \sim_k, i.e., the number of states, has recently been investigated in [23].

3. It provides a precise bound on the length of w_1 of Theorem 1. However, it does not improve the statement of the theorem.

To provide a relationship of $P_{k,n}$ with Stirling cyclic numbers, the following can be shown.

Proposition 4. For positive integers k and n, $P_{k,n} = \frac{1}{k!} \sum_{i=1}^{k} \left[k+1 \atop i \right] n^i$, where $\left[k \atop n \right]$ denotes the Stirling cyclic numbers.

Proof. To prove this, we first recall the following well-known properties of Stirling cyclic numbers.

\[
\left[k + 1 \atop 1 \right] = k! \quad \text{and} \quad \sum_{i=1}^{k} \left[k+1 \atop i \right] n^i = x(x + 1) \cdot \cdots \cdot (x + k - 1) = \frac{(x + k - 1)!}{(x - 1)!} \tag{2}
\]

Now we prove the claim.

\[
\frac{1}{k!} \sum_{i=1}^{k} \left[k+1 \atop i \right] n^i = \frac{1}{nk!} \sum_{i=1}^{k} \left[k+1 \atop i \right] n^{i+1}
\]

(multiplication by n/n)

\[
= \frac{1}{nk!} \sum_{i=2}^{k+1} \left[k+1 \atop i \right] n^i
\]

(changing indexes)

\[
= \frac{1}{nk!} \left(\sum_{i=0}^{k+1} \left[k+1 \atop i \right] n^i - \left[k+1 \atop 1 \right] n \right)
\]

(adding the cases $i = 0, 1$ into the sum)

\[
= \frac{1}{nk!} \left(\frac{(k+n)!}{(n-1)!} - k!n \right)
\]

(by Equation 2)

\[
= \frac{(k+n)!}{n!k!} - 1
\]

(by Equation 1)

\[
= P_{k,n}
\]

(by Equation 1)

This completes the proof. \qed

Finally, note that one could also see a noticeable relation between the columns (resp. rows) of Table 1 and the generalized Catalan numbers of [13]. We leave the details of this correspondence for a future investigation.

Acknowledgements. We thank an anonymous reviewer for informing us about the unpublished manuscript [24] and its authors for providing it. It shows that the k-PT problem is co-NP-complete for $k \geq 4$. It also provides a smaller bound on the length of the witnesses, which results in a single exponential algorithm to find the minimal k.

The authors are grateful to Sebastian Rudolph for a fruitful discussion.