
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

8. Vorlesung: Beziehungen zwischen Komplexitätsklassen / Effizient
lösbare Probleme

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 8. Mai 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Rückblick

Die wichtigsten Ressourcen zur Messung von Komplexität sind Rechenzeit und
Speicher.

Die wichtigsten deterministischen Komplexitätsklassen sind:

P = PTime =
⋃
d≥1

DTime
(
nd

)
polynomielle Zeit

Exp = ExpTime =
⋃
d≥1

DTime
(
2nd)

exponentielle Zeit∗

L = LogSpace = DSpace
(
log n

)
logarithmischer Speicher

PSpace =
⋃
d≥1

DSpace
(
nd

)
polynomieller Speicher

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 2 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Robustheit von Zeitklassen

Zwei wichtige Erkenntnisse zur Robustheit von Zeitklassen:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine zeitbeschränkte
Mehrband-TM lösen kann, sofern mindestens lineare Zeit erlaubt ist (Linear Speedup
Theorem).

Anmerkung: Wenn nicht wenigstens lineare Zeit zur Verfügung steht, dann kann die TM
nicht einmal die Eingabe lesen. Das ergibt also bei einer herkömmlichen TM wenig Sinn.

Die Anzahl der Bänder hat lediglich einen polynomiellen (quadratischen) Einfluss auf
die Probleme, die eine zeitbeschränkte TM lösen kann.

Das hatten wir in Formale Systeme durch Simulation mehrerer Bänder auf einem gezeigt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 3 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Robustheit von Zeitklassen

Zwei wichtige Erkenntnisse zur Robustheit von Zeitklassen:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine zeitbeschränkte
Mehrband-TM lösen kann, sofern mindestens lineare Zeit erlaubt ist (Linear Speedup
Theorem).

Anmerkung: Wenn nicht wenigstens lineare Zeit zur Verfügung steht, dann kann die TM
nicht einmal die Eingabe lesen. Das ergibt also bei einer herkömmlichen TM wenig Sinn.

Die Anzahl der Bänder hat lediglich einen polynomiellen (quadratischen) Einfluss auf
die Probleme, die eine zeitbeschränkte TM lösen kann.

Das hatten wir in Formale Systeme durch Simulation mehrerer Bänder auf einem gezeigt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 3 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Robustheit von Speicherklassen

Bei speicherbeschränkten TMs ist die Situation sogar etwas einfacher:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine speicherbe-
schränkte TM lösen kann.

Beweis: Ähnlich zu Linear Speedup, aber viel einfacher.

Die Anzahl der Bänder hat keinen Einfluss auf die Probleme, die eine speicherbe-
schränkte TM lösen kann.

Beweis: Reduktion von k Bändern auf 1 Band wie gehabt, kombiniert mit einer 1/k
Speicherreduktion.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 4 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Robustheit von Speicherklassen

Bei speicherbeschränkten TMs ist die Situation sogar etwas einfacher:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine speicherbe-
schränkte TM lösen kann.

Beweis: Ähnlich zu Linear Speedup, aber viel einfacher.

Die Anzahl der Bänder hat keinen Einfluss auf die Probleme, die eine speicherbe-
schränkte TM lösen kann.

Beweis: Reduktion von k Bändern auf 1 Band wie gehabt, kombiniert mit einer 1/k
Speicherreduktion.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 4 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Robustheit von Speicherklassen

Bei speicherbeschränkten TMs ist die Situation sogar etwas einfacher:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine speicherbe-
schränkte TM lösen kann.

Beweis: Ähnlich zu Linear Speedup, aber viel einfacher.

Die Anzahl der Bänder hat keinen Einfluss auf die Probleme, die eine speicherbe-
schränkte TM lösen kann.

Beweis: Reduktion von k Bändern auf 1 Band wie gehabt, kombiniert mit einer 1/k
Speicherreduktion.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 4 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Robustheit von Speicherklassen

Bei speicherbeschränkten TMs ist die Situation sogar etwas einfacher:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine speicherbe-
schränkte TM lösen kann.

Beweis: Ähnlich zu Linear Speedup, aber viel einfacher.

Die Anzahl der Bänder hat keinen Einfluss auf die Probleme, die eine speicherbe-
schränkte TM lösen kann.

Beweis: Reduktion von k Bändern auf 1 Band wie gehabt, kombiniert mit einer 1/k
Speicherreduktion.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 4 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (1)

Ist die Berechnungszeit beschränkt, so kann auch nur beschränkt viel Speicher genutzt
werden:

Satz: Für jede beliebige Funktion f : N→ R gilt

DTIME(f) ⊆ DSPACE(f).

Beweis: Die TM benötigt immer mindestens einen Schritt, um eine zusätzliche
Speicherstelle zu beschreiben. □

Daraus folgt zum Beispiel PTime ⊆ PSpace.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (1)

Ist die Berechnungszeit beschränkt, so kann auch nur beschränkt viel Speicher genutzt
werden:

Satz: Für jede beliebige Funktion f : N→ R gilt

DTIME(f) ⊆ DSPACE(f).

Beweis: Die TM benötigt immer mindestens einen Schritt, um eine zusätzliche
Speicherstelle zu beschreiben. □

Daraus folgt zum Beispiel PTime ⊆ PSpace.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (2)
Andererseits ist Speicher mächtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Für jede beliebige Funktion f : N→ R gilt

DSPACE(f) ⊆ DTIME
(
2O(f)

)
.

Beweis: SeiM eine O(f)-speicherbeschränkte Turingmaschine; wir betrachten eine
Eingabe w der Länge |w| = n.
• Es gibt |Γ| f (n) = 2log2(|Γ|)·f (n) Speicherbelegungen der Länge f (n)
• Hinzu kommen f (n) mögliche Kopfpositionen und |Q| Zustände
• Es gibt also |Q| · f (n) · 2log2(|Γ|)·f (n) ∈ O(2O(f)) TM-Konfigurationen.
• Aus diesen kann man für eine gegebene Eingabe in polynomieller Zeit einen

Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die möglichen Übergänge
darstellen.

• Daraus kann man die Akzeptanz der Eingabe in polynomieller Zeit ermitteln („Ist von der
Startkonfiguration aus eine akzeptierende Endkonfiguration erreichbar?“).

Damit hat man das Wortproblem für L(M) in Zeit O
(
2O(f)

)
entschieden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (2)
Andererseits ist Speicher mächtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Für jede beliebige Funktion f : N→ R gilt

DSPACE(f) ⊆ DTIME
(
2O(f)

)
.

Beweis: SeiM eine O(f)-speicherbeschränkte Turingmaschine; wir betrachten eine
Eingabe w der Länge |w| = n.

• Es gibt |Γ| f (n) = 2log2(|Γ|)·f (n) Speicherbelegungen der Länge f (n)
• Hinzu kommen f (n) mögliche Kopfpositionen und |Q| Zustände
• Es gibt also |Q| · f (n) · 2log2(|Γ|)·f (n) ∈ O(2O(f)) TM-Konfigurationen.
• Aus diesen kann man für eine gegebene Eingabe in polynomieller Zeit einen

Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die möglichen Übergänge
darstellen.

• Daraus kann man die Akzeptanz der Eingabe in polynomieller Zeit ermitteln („Ist von der
Startkonfiguration aus eine akzeptierende Endkonfiguration erreichbar?“).

Damit hat man das Wortproblem für L(M) in Zeit O
(
2O(f)

)
entschieden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (2)
Andererseits ist Speicher mächtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Für jede beliebige Funktion f : N→ R gilt

DSPACE(f) ⊆ DTIME
(
2O(f)

)
.

Beweis: SeiM eine O(f)-speicherbeschränkte Turingmaschine; wir betrachten eine
Eingabe w der Länge |w| = n.
• Es gibt |Γ| f (n) = 2log2(|Γ|)·f (n) Speicherbelegungen der Länge f (n)

• Hinzu kommen f (n) mögliche Kopfpositionen und |Q| Zustände
• Es gibt also |Q| · f (n) · 2log2(|Γ|)·f (n) ∈ O(2O(f)) TM-Konfigurationen.
• Aus diesen kann man für eine gegebene Eingabe in polynomieller Zeit einen

Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die möglichen Übergänge
darstellen.

• Daraus kann man die Akzeptanz der Eingabe in polynomieller Zeit ermitteln („Ist von der
Startkonfiguration aus eine akzeptierende Endkonfiguration erreichbar?“).

Damit hat man das Wortproblem für L(M) in Zeit O
(
2O(f)

)
entschieden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (2)
Andererseits ist Speicher mächtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Für jede beliebige Funktion f : N→ R gilt

DSPACE(f) ⊆ DTIME
(
2O(f)

)
.

Beweis: SeiM eine O(f)-speicherbeschränkte Turingmaschine; wir betrachten eine
Eingabe w der Länge |w| = n.
• Es gibt |Γ| f (n) = 2log2(|Γ|)·f (n) Speicherbelegungen der Länge f (n)
• Hinzu kommen f (n) mögliche Kopfpositionen und |Q| Zustände

• Es gibt also |Q| · f (n) · 2log2(|Γ|)·f (n) ∈ O(2O(f)) TM-Konfigurationen.
• Aus diesen kann man für eine gegebene Eingabe in polynomieller Zeit einen

Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die möglichen Übergänge
darstellen.

• Daraus kann man die Akzeptanz der Eingabe in polynomieller Zeit ermitteln („Ist von der
Startkonfiguration aus eine akzeptierende Endkonfiguration erreichbar?“).

Damit hat man das Wortproblem für L(M) in Zeit O
(
2O(f)

)
entschieden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (2)
Andererseits ist Speicher mächtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Für jede beliebige Funktion f : N→ R gilt

DSPACE(f) ⊆ DTIME
(
2O(f)

)
.

Beweis: SeiM eine O(f)-speicherbeschränkte Turingmaschine; wir betrachten eine
Eingabe w der Länge |w| = n.
• Es gibt |Γ| f (n) = 2log2(|Γ|)·f (n) Speicherbelegungen der Länge f (n)
• Hinzu kommen f (n) mögliche Kopfpositionen und |Q| Zustände
• Es gibt also |Q| · f (n) · 2log2(|Γ|)·f (n) ∈ O(2O(f)) TM-Konfigurationen.

• Aus diesen kann man für eine gegebene Eingabe in polynomieller Zeit einen
Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die möglichen Übergänge
darstellen.

• Daraus kann man die Akzeptanz der Eingabe in polynomieller Zeit ermitteln („Ist von der
Startkonfiguration aus eine akzeptierende Endkonfiguration erreichbar?“).

Damit hat man das Wortproblem für L(M) in Zeit O
(
2O(f)

)
entschieden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (2)
Andererseits ist Speicher mächtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Für jede beliebige Funktion f : N→ R gilt

DSPACE(f) ⊆ DTIME
(
2O(f)

)
.

Beweis: SeiM eine O(f)-speicherbeschränkte Turingmaschine; wir betrachten eine
Eingabe w der Länge |w| = n.
• Es gibt |Γ| f (n) = 2log2(|Γ|)·f (n) Speicherbelegungen der Länge f (n)
• Hinzu kommen f (n) mögliche Kopfpositionen und |Q| Zustände
• Es gibt also |Q| · f (n) · 2log2(|Γ|)·f (n) ∈ O(2O(f)) TM-Konfigurationen.
• Aus diesen kann man für eine gegebene Eingabe in polynomieller Zeit einen

Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die möglichen Übergänge
darstellen.

• Daraus kann man die Akzeptanz der Eingabe in polynomieller Zeit ermitteln („Ist von der
Startkonfiguration aus eine akzeptierende Endkonfiguration erreichbar?“).

Damit hat man das Wortproblem für L(M) in Zeit O
(
2O(f)

)
entschieden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (2)
Andererseits ist Speicher mächtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Für jede beliebige Funktion f : N→ R gilt

DSPACE(f) ⊆ DTIME
(
2O(f)

)
.

Beweis: SeiM eine O(f)-speicherbeschränkte Turingmaschine; wir betrachten eine
Eingabe w der Länge |w| = n.
• Es gibt |Γ| f (n) = 2log2(|Γ|)·f (n) Speicherbelegungen der Länge f (n)
• Hinzu kommen f (n) mögliche Kopfpositionen und |Q| Zustände
• Es gibt also |Q| · f (n) · 2log2(|Γ|)·f (n) ∈ O(2O(f)) TM-Konfigurationen.
• Aus diesen kann man für eine gegebene Eingabe in polynomieller Zeit einen

Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die möglichen Übergänge
darstellen.

• Daraus kann man die Akzeptanz der Eingabe in polynomieller Zeit ermitteln („Ist von der
Startkonfiguration aus eine akzeptierende Endkonfiguration erreichbar?“).

Damit hat man das Wortproblem für L(M) in Zeit O
(
2O(f)

)
entschieden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Nichtdeterministische Komplexitätsklassen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 7 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ressourcen nichtdeterministischer TMs

Bei NTMs gibt es viele mögliche Berechnungspfade.
{Welche Pfade meinen wir, wenn wir Ressourcen beschränken?

– Alle!

Sei f : N→ R eine Funktion und M eine nichtdeterministische TM.

• M heißt genau dann O(f)-zeitbeschränkt, wenn es eine Funktion g ∈ O(f) gibt,
so dass M für eine beliebige Eingabe w ∈ Σ∗ auf jedem Berechnungspfad nach
maximal g(|w|) Schritten anhält.

• M heißt genau dann O(f)-speicherbeschränkt wenn es eine Funktion g ∈ O(f)
gibt, so dass M für eine beliebige Eingabe w ∈ Σ∗ hält und zuvor auf jedem
Berechnungspfad maximal g(|w|) Speicherzellen verwendet.

Eine zeit- oder speicherbeschränkte NTM muss also auch auf erfolglosen Pfaden
(„falsch geratene Übergänge“) garantiert innerhalb der Ressourcengrenzen halten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 8 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ressourcen nichtdeterministischer TMs

Bei NTMs gibt es viele mögliche Berechnungspfade.
{Welche Pfade meinen wir, wenn wir Ressourcen beschränken?

– Alle!

Sei f : N→ R eine Funktion und M eine nichtdeterministische TM.

• M heißt genau dann O(f)-zeitbeschränkt, wenn es eine Funktion g ∈ O(f) gibt,
so dass M für eine beliebige Eingabe w ∈ Σ∗ auf jedem Berechnungspfad nach
maximal g(|w|) Schritten anhält.

• M heißt genau dann O(f)-speicherbeschränkt wenn es eine Funktion g ∈ O(f)
gibt, so dass M für eine beliebige Eingabe w ∈ Σ∗ hält und zuvor auf jedem
Berechnungspfad maximal g(|w|) Speicherzellen verwendet.

Eine zeit- oder speicherbeschränkte NTM muss also auch auf erfolglosen Pfaden
(„falsch geratene Übergänge“) garantiert innerhalb der Ressourcengrenzen halten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 8 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeit und Raum, nichtdeterministisch

Die entsprechenden Sprachklassen werden genau wie bei deterministischen TMs definiert:

Sei f : N→ R eine Funktion.

• NTIME(f (n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-zeitbeschränkte NTM entschieden werden können.

• NSPACE(f (n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-speicherbeschränkte NTM entschieden werden können.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 9 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Nichtdeterministische Komplextitätsklassen

Auch hier beschränken wir uns auf einige wichtige Fälle:

NP = NPTime =
⋃
d≥1

NTime
(
nd

)
nichtdet. polynomielle Zeit

NExp = NExpTime =
⋃
d≥1

NTime
(
2nd)

nichtdet. exponentielle Zeit

NL = NLogSpace = NSpace
(
log n

)
nichtdet. logarithmischer Speicher

NPSpace =
⋃
d≥1

NSpace
(
nd

)
nichtdet. polynomieller Speicher

Beispiel: Die Existenz eines Hamiltonpfads ist in NP entscheidbar. Wenn ein Hamil-
tonpfad existiert, dann kann er in polynomieller Zeit erraten und überprüft werden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 10 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Nichtdeterministische Komplextitätsklassen

Auch hier beschränken wir uns auf einige wichtige Fälle:

NP = NPTime =
⋃
d≥1

NTime
(
nd

)
nichtdet. polynomielle Zeit

NExp = NExpTime =
⋃
d≥1

NTime
(
2nd)

nichtdet. exponentielle Zeit

NL = NLogSpace = NSpace
(
log n

)
nichtdet. logarithmischer Speicher

NPSpace =
⋃
d≥1

NSpace
(
nd

)
nichtdet. polynomieller Speicher

Beispiel: Die Existenz eines Hamiltonpfads ist in NP entscheidbar. Wenn ein Hamil-
tonpfad existiert, dann kann er in polynomieller Zeit erraten und überprüft werden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 10 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Nichtdeterministische Komplexitätsklassen

NL = NLogSpace = NSpace
(
log n

)
NP = NPTime =

⋃
d≥1

NTime
(
nd

)

NPSpace =
⋃
d≥1

NSpace
(
nd

)
NExp = NExpTime =

⋃
d≥1

NTime
(
2nd)

Quiz: Welche der Probleme sind passend klassifiziert? . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 11 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Einfache Beobachtungen

Die folgenden Konstruktionen funktionieren wie im deterministischen Fall:

• Zeitreduktion durch linear Speedup

• Lineare Speicherreduktion

• Bandreduktion von Mehrband-TMs

Die Beziehungen von Zeit und Speicher bleiben ebenfalls erhalten, mit einer Besonderheit:

Satz: Für jede beliebige Funktion f : N→ R gilt:

NTIME(f) ⊆ NSPACE(f)

NSPACE(f) ⊆ DTIME
(
2O(f)

)
Beweis: Beide Fälle wie im deterministischen Fall. Der Konfigurationsgraph ist auch
hier exponentiell groß, aber kann wie zuvor deterministisch durchsucht werden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 12 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Einfache Beobachtungen

Die folgenden Konstruktionen funktionieren wie im deterministischen Fall:

• Zeitreduktion durch linear Speedup

• Lineare Speicherreduktion

• Bandreduktion von Mehrband-TMs

Die Beziehungen von Zeit und Speicher bleiben ebenfalls erhalten, mit einer Besonderheit:

Satz: Für jede beliebige Funktion f : N→ R gilt:

NTIME(f) ⊆ NSPACE(f)

NSPACE(f) ⊆ DTIME
(
2O(f)

)

Beweis: Beide Fälle wie im deterministischen Fall. Der Konfigurationsgraph ist auch
hier exponentiell groß, aber kann wie zuvor deterministisch durchsucht werden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 12 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Einfache Beobachtungen

Die folgenden Konstruktionen funktionieren wie im deterministischen Fall:

• Zeitreduktion durch linear Speedup

• Lineare Speicherreduktion

• Bandreduktion von Mehrband-TMs

Die Beziehungen von Zeit und Speicher bleiben ebenfalls erhalten, mit einer Besonderheit:

Satz: Für jede beliebige Funktion f : N→ R gilt:

NTIME(f) ⊆ NSPACE(f)

NSPACE(f) ⊆ DTIME
(
2O(f)

)
Beweis: Beide Fälle wie im deterministischen Fall. Der Konfigurationsgraph ist auch
hier exponentiell groß, aber kann wie zuvor deterministisch durchsucht werden. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 12 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Deterministisch vs. nichtdeterministisch

Wir haben also nebenbei auch gezeigt: NTIME(f) ⊆ NSPACE(f) ⊆ DTIME
(
2O(f)

)
.

Satz: Für jede beliebige Funktion f : N→ R gilt:

NTIME(f) ⊆ DTIME
(
2O(f)

)
Anmerkung: In Formale Systeme, Vorlesung 19, haben wir dieses Ergebnis durch eine
alternative Konstruktion gezeigt (ausgehend von der Simulation einer beliebigen,
unbeschränkten NTM durch deterministische Suche im Baum der möglichen
Berechnungspfade).

Anmerkung 2: Es ist bis heute nicht bekannt, ob NTIME(f) ⊆ DTIME(g) auch für eine
Funktion g ∈ o(2O(f)) gilt (Achtung: Klein-o-Notation!).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 13 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was wir wissen

Aus unseren Beobachtungen folgen verschiedene einfache Beziehungen:

• „DTM ⊆ NTM“: L ⊆ NL, P ⊆ NP, PSpace ⊆ NPSpace, Exp ⊆ NExp

• „Zeit ⊆ Speicher“: P ⊆ PSpace, NP ⊆ NPSpace

• „(N)Speicher ⊆ 2(D)Zeit“: NL ⊆ P, NPSpace ⊆ Exp

Zudem besagt der berühmte Satz von Savitch, dass speicherbeschränkte NTMs durch
DTMs mit nur quadratischen Mehrkosten simuliert werden können. Daraus folgt:

Satz (Savitch): PSpace = NPSpace.

(ohne Beweis)

Zusammenfassung der wichtigsten bekannten Beziehungen:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ Exp ⊆ NExp

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 14 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was wir wissen

Aus unseren Beobachtungen folgen verschiedene einfache Beziehungen:

• „DTM ⊆ NTM“: L ⊆ NL, P ⊆ NP, PSpace ⊆ NPSpace, Exp ⊆ NExp

• „Zeit ⊆ Speicher“: P ⊆ PSpace, NP ⊆ NPSpace

• „(N)Speicher ⊆ 2(D)Zeit“: NL ⊆ P, NPSpace ⊆ Exp

Zudem besagt der berühmte Satz von Savitch, dass speicherbeschränkte NTMs durch
DTMs mit nur quadratischen Mehrkosten simuliert werden können. Daraus folgt:

Satz (Savitch): PSpace = NPSpace.

(ohne Beweis)

Zusammenfassung der wichtigsten bekannten Beziehungen:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ Exp ⊆ NExp

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 14 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was wir wissen

Aus unseren Beobachtungen folgen verschiedene einfache Beziehungen:

• „DTM ⊆ NTM“: L ⊆ NL, P ⊆ NP, PSpace ⊆ NPSpace, Exp ⊆ NExp

• „Zeit ⊆ Speicher“: P ⊆ PSpace, NP ⊆ NPSpace

• „(N)Speicher ⊆ 2(D)Zeit“: NL ⊆ P, NPSpace ⊆ Exp

Zudem besagt der berühmte Satz von Savitch, dass speicherbeschränkte NTMs durch
DTMs mit nur quadratischen Mehrkosten simuliert werden können. Daraus folgt:

Satz (Savitch): PSpace = NPSpace.

(ohne Beweis)

Zusammenfassung der wichtigsten bekannten Beziehungen:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ Exp ⊆ NExp

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 14 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was wir nicht wissen

Wir wissen:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ Exp ⊆ NExp

• Wir wissen nicht, ob irgendeines dieser ⊆ ein ⊊ ist.

• Insbesondere wissen wir nicht, ob P ⊊ NP oder P = NP.

• Wir wissen nicht einmal, ob L ⊊ NP oder L = NP.

Es wird aber vermutet, dass alle ⊆ eigentlich ⊊ sind.
Bekannt ist das allerdings bisher nur bei exponentiell großen Ressourcenunterschieden:

Satz: Die folgenden Inklusionen sind echt:

• NL ⊊ PSpace

• P ⊊ Exp

• NP ⊊ NExp

(Ohne Beweis; folgt aus dem sogenannten Time (bzw. Space) Hierarchy Theorem.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 15 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was wir nicht wissen

Wir wissen:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ Exp ⊆ NExp

• Wir wissen nicht, ob irgendeines dieser ⊆ ein ⊊ ist.

• Insbesondere wissen wir nicht, ob P ⊊ NP oder P = NP.

• Wir wissen nicht einmal, ob L ⊊ NP oder L = NP.

Es wird aber vermutet, dass alle ⊆ eigentlich ⊊ sind.
Bekannt ist das allerdings bisher nur bei exponentiell großen Ressourcenunterschieden:

Satz: Die folgenden Inklusionen sind echt:

• NL ⊊ PSpace

• P ⊊ Exp

• NP ⊊ NExp

(Ohne Beweis; folgt aus dem sogenannten Time (bzw. Space) Hierarchy Theorem.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 15 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Effizient lösbare Probleme

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 16 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was bedeutet „effizient“?

Intuitiv klar: Lineare Algorithmen sind „effizient“.

Aber der Begriff „linear“ ist nicht robust:

• Abhänging von Details des Maschinenmodells

• Abhänging von Details der Kodierung

{ Polynomielle Zeit als robuste Verallgemeinerung von Linearzeit:

P = PTime =
⋃
d≥1

DTime
(
nd

)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 17 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was bedeutet „effizient“?

Intuitiv klar: Lineare Algorithmen sind „effizient“.

Aber der Begriff „linear“ ist nicht robust:

• Abhänging von Details des Maschinenmodells

• Abhänging von Details der Kodierung

{ Polynomielle Zeit als robuste Verallgemeinerung von Linearzeit:

P = PTime =
⋃
d≥1

DTime
(
nd

)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 17 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wachstum einiger Funktionen

n

Zeit in µs

1 10 20 30 40 50 60 70 80 90
100

103

106

109

1012

1015

1018

1021

1024

1 Min.

1 Tag

1 Jahr

1000 Jahre

Alter des Universums

n10

n3

n2

n

2nn!

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 18 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wachstum einiger Funktionen

n

Zeit in µs

1 10 20 30 40 50 60 70 80 90
100

103

106

109

1012

1015

1018

1021

1024

1 Min.

1 Tag

1 Jahr

1000 Jahre

Alter des Universums

n10

n3

n2

n

2nn!

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 18 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Polynomiell = effizient?

Wir verwenden P als mathematisches Modell für die Klasse der praktisch lösbaren
Probleme.

Aber: Diese Übereinstimmung ist nicht perfekt.

• Polynome hohen Grades können sehr schnell wachsen.

• Die konstanten Faktoren können auch sehr groß sein (und Linear Speedup hilft in
der Praxis wenig).

Dennoch: P ist von praktischem wie theoretischem Interesse.

• Praxis: Die meisten polynomiellen Probleme erlauben Algorithmen in O
(
x2

)
oder

O
(
x3

)
, während man zum Beispiel O

(
x10

)
selten antrifft.

• Theorie: Unabhängig von der tatsächlichen Laufzeit liefert uns P tiefe Einsichten in
die Struktur eines Problems.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 19 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Polynomiell = effizient?

Wir verwenden P als mathematisches Modell für die Klasse der praktisch lösbaren
Probleme.

Aber: Diese Übereinstimmung ist nicht perfekt.

• Polynome hohen Grades können sehr schnell wachsen.

• Die konstanten Faktoren können auch sehr groß sein (und Linear Speedup hilft in
der Praxis wenig).

Dennoch: P ist von praktischem wie theoretischem Interesse.

• Praxis: Die meisten polynomiellen Probleme erlauben Algorithmen in O
(
x2

)
oder

O
(
x3

)
, während man zum Beispiel O

(
x10

)
selten antrifft.

• Theorie: Unabhängig von der tatsächlichen Laufzeit liefert uns P tiefe Einsichten in
die Struktur eines Problems.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 19 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Probleme in P

Aus der Vorlesung Formale Systeme kennen wir bereits ein typisches P-Problem.

Rückblick:

• Eine Horn-Klausel ist eine aussagenlogische Formel der Form
p1 ∧ . . . ∧ pn → q mit n ≥ 0 (bei n = 0 ergibt sich einfach q – ein Fakt)

• Eine Formel ist erfüllbar, wenn sie für eine Wertzuweisung auf wahr abgebildet wird.

• Eine Menge von Formeln ist erfüllbar, wenn es eine Wertzuweisung gibt, die alle
ihre Elemente gleichzeitig wahr macht.

Erfüllbarkeit aussagenlogischer Horn-Formeln (HornSAT) ist das folgende Entschei-
dungsproblem:

Gegeben: Eine Menge aussagenlogischer Horn-Klauseln.
Frage: Ist diese Menge erfüllbar?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 20 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

2SAT

Ein weiteres Beispiel für ein polynomiell lösbares Problem aus der Aussagenlogik:

Rückblick:

• Ein Literal ist ein aussagenlogisches Atom oder ein negiertes aussagenlogisches
Atom.

• Eine Klausel ist eine Disjunktion von Literalen, die man oft einfach als Menge
darstellt.

• Eine Formel in Klauselform ist eine Konjunktion von Klauseln, ebenfalls dargestellt
als Menge.

2SAT ist das folgende Entscheidungsproblem:

Gegeben: Eine aussagenlogische Formel F in Klauselform, bei der jede Klausel
höchstens zwei Literale enthält.
Frage: Ist F erfüllbar?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 21 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

2SAT

Ein weiteres Beispiel für ein polynomiell lösbares Problem aus der Aussagenlogik:

Rückblick:

• Ein Literal ist ein aussagenlogisches Atom oder ein negiertes aussagenlogisches
Atom.

• Eine Klausel ist eine Disjunktion von Literalen, die man oft einfach als Menge
darstellt.

• Eine Formel in Klauselform ist eine Konjunktion von Klauseln, ebenfalls dargestellt
als Menge.

2SAT ist das folgende Entscheidungsproblem:

Gegeben: Eine aussagenlogische Formel F in Klauselform, bei der jede Klausel
höchstens zwei Literale enthält.
Frage: Ist F erfüllbar?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 21 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

2SAT ist in P

Satz: 2SAT ∈ P

Beweis: Dazu wollen wir einen polynomiellen Algorithmus angeben.

Der Resolutionsalgorithmus aus der Vorlesung Formale Systeme erfüllt den Zweck ohne
jegliche Abwandlungen:

• Ein Resolutionsschritt kombiniert zwei Klauseln {p, L1} und {¬p, L2} zu einer neuen
Klausel {L1, L2}.

• Aus Zweier-Klauseln entstehen also immer wieder Klauseln mit höchstens zwei
Literalen.

• Es gibt nur quadratisch viele Klauseln mit höchstens zwei Literalen:(
2n
2

)
+ 2n + 1 =

2n(2n − 1)
2

+ 2n + 1 = 2n2 + n + 1

• Das Resolutionsverfahren terminiert also nach polynomieller Zeit. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

2SAT ist in P

Satz: 2SAT ∈ P

Beweis: Dazu wollen wir einen polynomiellen Algorithmus angeben.

Der Resolutionsalgorithmus aus der Vorlesung Formale Systeme erfüllt den Zweck ohne
jegliche Abwandlungen:

• Ein Resolutionsschritt kombiniert zwei Klauseln {p, L1} und {¬p, L2} zu einer neuen
Klausel {L1, L2}.

• Aus Zweier-Klauseln entstehen also immer wieder Klauseln mit höchstens zwei
Literalen.

• Es gibt nur quadratisch viele Klauseln mit höchstens zwei Literalen:(
2n
2

)
+ 2n + 1 =

2n(2n − 1)
2

+ 2n + 1 = 2n2 + n + 1

• Das Resolutionsverfahren terminiert also nach polynomieller Zeit. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

2SAT ist in P

Satz: 2SAT ∈ P

Beweis: Dazu wollen wir einen polynomiellen Algorithmus angeben.

Der Resolutionsalgorithmus aus der Vorlesung Formale Systeme erfüllt den Zweck ohne
jegliche Abwandlungen:

• Ein Resolutionsschritt kombiniert zwei Klauseln {p, L1} und {¬p, L2} zu einer neuen
Klausel {L1, L2}.

• Aus Zweier-Klauseln entstehen also immer wieder Klauseln mit höchstens zwei
Literalen.

• Es gibt nur quadratisch viele Klauseln mit höchstens zwei Literalen:(
2n
2

)
+ 2n + 1 =

2n(2n − 1)
2

+ 2n + 1 = 2n2 + n + 1

• Das Resolutionsverfahren terminiert also nach polynomieller Zeit. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Probleme in P

Quiz: Welche der folgenden Probleme halten Sie für in P entscheidbar? . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 23 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Effizienter als P?

Wenn wir eine robuste Klasse wollen, die Linearzeit-Algorithmen enthält, dann enthält
sie auch beliebige polynomiellen Algorithmen.

Gibt es Probleme, die noch einfacher sind?

• Sub-lineare Zeit funktioniert mit dem üblichen TM-Modell nicht, da man in dieser
Zeit nicht einmal die Eingabe lesen kann.

(Erfordert Rechenmodelle mit einer Form von Parallelverarbeitung . . .)

• Sub-linearer Speicher ist machbar, wenn man ein getrenntes schreibgeschütztes
Eingabeband erlaubt. (Siehe letzte Vorlesung.)

{ Komplexitätsklassen L und NL

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 24 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Effizienter als P?

Wenn wir eine robuste Klasse wollen, die Linearzeit-Algorithmen enthält, dann enthält
sie auch beliebige polynomiellen Algorithmen.

Gibt es Probleme, die noch einfacher sind?

• Sub-lineare Zeit funktioniert mit dem üblichen TM-Modell nicht, da man in dieser
Zeit nicht einmal die Eingabe lesen kann.

(Erfordert Rechenmodelle mit einer Form von Parallelverarbeitung . . .)

• Sub-linearer Speicher ist machbar, wenn man ein getrenntes schreibgeschütztes
Eingabeband erlaubt. (Siehe letzte Vorlesung.)

{ Komplexitätsklassen L und NL

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 24 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was kann L?

Intuition: ein Algorithmus mit logarithmischem Speicher kann:

• Eine feste Anzahl an binärkodierten Zählern speichern, die nicht größer als O(n)
werden.

• Eine feste Anzahl an Zeigern auf eine Position der Eingabe speichern.

• Den Inhalt von Zählern und Speicherstellen miteinander vergleichen.

Damit kann man bereits viele einfache Algorithmen umsetzen.

Beispiel: Die Sprache aller Wörter über {0, 1}, welche die gleiche Anzahl der Symbole
0 und 1 enthalten, ist in L:

• Wir verwenden zwei Zähler für die beiden Zahlen.

• Die TM liest das Wort von links nach rechts und erhöht jeweils den
entsprechenden Zähler.

• Am Ende wird der Wert beider Zähler verglichen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 25 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Was kann L?

Intuition: ein Algorithmus mit logarithmischem Speicher kann:

• Eine feste Anzahl an binärkodierten Zählern speichern, die nicht größer als O(n)
werden.

• Eine feste Anzahl an Zeigern auf eine Position der Eingabe speichern.

• Den Inhalt von Zählern und Speicherstellen miteinander vergleichen.

Damit kann man bereits viele einfache Algorithmen umsetzen.

Beispiel: Die Sprache aller Wörter über {0, 1}, welche die gleiche Anzahl der Symbole
0 und 1 enthalten, ist in L:

• Wir verwenden zwei Zähler für die beiden Zahlen.

• Die TM liest das Wort von links nach rechts und erhöht jeweils den
entsprechenden Zähler.

• Am Ende wird der Wert beider Zähler verglichen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 25 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Noch ein Beispiel in L

Beispiel: Die Sprache Palindrom, welche Wörter enthält, die von hinten gelesen ge-
nauso lauten wie von vorn, ist in L:

• Wir verwenden zwei Zeiger in die Eingabe, einer auf die erste und einer auf die
letzte Eingabezelle.

• Die TM vergleicht die Speicherinhalte bei den Zeigern und verschiebt sie
anschließend um eine Zelle in Richtung Wortmitte.

• Das Wort wird akzeptiert, wenn die Zeiger sich treffen und alle Vergleiche
erfolgreich waren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Reduktionen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 27 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Effizient berechenbare Funktionen

Bisher haben wir Entscheidungsprobleme betrachtet. Man kann unsere Definitionen
leicht auf andere Berechnungsprobleme übertragen.

Eine totale Funktion f ist in polynomieller Zeit berechenbar, wenn es eine polynomiell
zeitbeschränkte DTM M gibt, die f berechnet, d.h. mit fM = f .

Bei logarithmischen Speicherschranken müssen wir vorsichtig sein: Das Ergebnis
könnte größer sein als der Arbeitsspeicher!

Eine totale Funktion f ist in logarithmischem Speicher berechenbar, wenn es eine 3-
Band DTM M gibt, die f wie folgt berechnet:

(1) die Eingabe befindet sich auf dem schreibgeschützten Eingabeband,

(2) die DTM verwendet maximal O(log n) Speicherzellen auf dem Arbeitsband,

(3) die Ausgabe wird auf das Ausgabeband geschrieben (pro Zelle einmaliges
Schreiben, kein Lesen).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 28 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Effizient berechenbare Funktionen

Bisher haben wir Entscheidungsprobleme betrachtet. Man kann unsere Definitionen
leicht auf andere Berechnungsprobleme übertragen.

Eine totale Funktion f ist in polynomieller Zeit berechenbar, wenn es eine polynomiell
zeitbeschränkte DTM M gibt, die f berechnet, d.h. mit fM = f .

Bei logarithmischen Speicherschranken müssen wir vorsichtig sein: Das Ergebnis
könnte größer sein als der Arbeitsspeicher!

Eine totale Funktion f ist in logarithmischem Speicher berechenbar, wenn es eine 3-
Band DTM M gibt, die f wie folgt berechnet:

(1) die Eingabe befindet sich auf dem schreibgeschützten Eingabeband,

(2) die DTM verwendet maximal O(log n) Speicherzellen auf dem Arbeitsband,

(3) die Ausgabe wird auf das Ausgabeband geschrieben (pro Zelle einmaliges
Schreiben, kein Lesen).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 28 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Polynomielle Many-One-Reduktionen

Mit Hilfe effizient berechenbarer Funktionen können wir ein Problem effizient auf ein
anderes reduzieren.

Eine polynomiell berechenbare Funktion f : Σ∗ → Σ∗ ist genau dann eine polynomielle
Many-One-Reduktion von einer Sprache P auf eine Sprache Q (in Symbolen: P ≤p Q),
wenn für alle Wörter w ∈ Σ∗ gilt:

w ∈ P genau dann wenn f (w) ∈ Q

Wir sprechen oft einfach von polynomiellen Reduktionen.

Logarithmische Many-One-Reduktionen könnten analog definiert werden (wir werden
uns damit nicht näher beschäftigen).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 29 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Polynomielle Many-One-Reduktionen

Mit Hilfe effizient berechenbarer Funktionen können wir ein Problem effizient auf ein
anderes reduzieren.

Eine polynomiell berechenbare Funktion f : Σ∗ → Σ∗ ist genau dann eine polynomielle
Many-One-Reduktion von einer Sprache P auf eine Sprache Q (in Symbolen: P ≤p Q),
wenn für alle Wörter w ∈ Σ∗ gilt:

w ∈ P genau dann wenn f (w) ∈ Q

Wir sprechen oft einfach von polynomiellen Reduktionen.

Logarithmische Many-One-Reduktionen könnten analog definiert werden (wir werden
uns damit nicht näher beschäftigen).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 29 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität durch Reduktion zeigen

Idee: Wenn man ein Problem A leicht auf ein leichtes Problem B reduzieren kann, dann
ist A ebenfalls leicht.

Satz: Falls A ≤p B und B ∈ PTime, dann ist A ∈ PTime.

Beweis: Nach Voraussetzung gibt es polynomiell zeitbeschränkte TMsMB undMf , die
B entscheiden bzw. die Reduktion f : A→ B berechnen. Zum Entscheiden von A
müssen nun nurMf undMB hintereinander ausgeführt werden. Diese
Hintereinanderausführung ist polynomiell zeitbeschränkt: SeiMB zeitbeschränkt durch
pB(n) ∈ O(nk),Mf zeitbeschränkt durch pf (n) ∈ O(nℓ), für k, ℓ ∈ N. Die Laufzeit der
Hintereinanderausführung ist demnach durch pf (n) + pB(pf (n)) ∈ O(nℓ + (nℓ)k) = O(nℓ·k)
– also polynomiell – beschränkt. □

Die Umkehrung (Kontraposition) wird uns später noch interessieren:

Satz: Falls A ≤p B und A < PTime, dann ist B < PTime.

Dazu mehr in den kommenden Vorlesungen . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 30 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität durch Reduktion zeigen

Idee: Wenn man ein Problem A leicht auf ein leichtes Problem B reduzieren kann, dann
ist A ebenfalls leicht.

Satz: Falls A ≤p B und B ∈ PTime, dann ist A ∈ PTime.

Beweis: Nach Voraussetzung gibt es polynomiell zeitbeschränkte TMsMB undMf , die
B entscheiden bzw. die Reduktion f : A→ B berechnen. Zum Entscheiden von A
müssen nun nurMf undMB hintereinander ausgeführt werden. Diese
Hintereinanderausführung ist polynomiell zeitbeschränkt: SeiMB zeitbeschränkt durch
pB(n) ∈ O(nk),Mf zeitbeschränkt durch pf (n) ∈ O(nℓ), für k, ℓ ∈ N. Die Laufzeit der
Hintereinanderausführung ist demnach durch pf (n) + pB(pf (n)) ∈ O(nℓ + (nℓ)k) = O(nℓ·k)
– also polynomiell – beschränkt. □

Die Umkehrung (Kontraposition) wird uns später noch interessieren:

Satz: Falls A ≤p B und A < PTime, dann ist B < PTime.

Dazu mehr in den kommenden Vorlesungen . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 30 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

2-Färbbarkeit (2Col) ist das folgende Problem:
Gegeben: Ein ungerichteter Graph G
Frage: Kann man die Knoten von G mit zwei Farben (rot und blau) so einfärben, dass
keine zwei per Kante verbundenen Knoten gleich gefärbt sind?

Man kann 2Col ∈ P leicht durch Reduktion auf 2SAT zeigen:

• Für jeden Knoten v führen wir ein Atom pv ein.

• Für jede Kante u v führen wir zwei Klauseln ein: {pu, pv} und {¬pu,¬pv}.

Dies kann man offenbar in polynomieller Zeit berechnen.

Die Reduktionseigenschaft gilt:

• Wenn der Graph 2-färbbar ist, dann verwenden wir die Farben als Wahrheitswerte
und erhalten eine erfüllende Zuweisung.

• Wenn die Formel erfüllbar ist, dann erhalten wir umgekehrt aus der Wertzuweisung
eine korrekte 2-Färbung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 31 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

2-Färbbarkeit (2Col) ist das folgende Problem:
Gegeben: Ein ungerichteter Graph G
Frage: Kann man die Knoten von G mit zwei Farben (rot und blau) so einfärben, dass
keine zwei per Kante verbundenen Knoten gleich gefärbt sind?

Man kann 2Col ∈ P leicht durch Reduktion auf 2SAT zeigen:

• Für jeden Knoten v führen wir ein Atom pv ein.

• Für jede Kante u v führen wir zwei Klauseln ein: {pu, pv} und {¬pu,¬pv}.

Dies kann man offenbar in polynomieller Zeit berechnen.

Die Reduktionseigenschaft gilt:

• Wenn der Graph 2-färbbar ist, dann verwenden wir die Farben als Wahrheitswerte
und erhalten eine erfüllende Zuweisung.

• Wenn die Formel erfüllbar ist, dann erhalten wir umgekehrt aus der Wertzuweisung
eine korrekte 2-Färbung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 31 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

2-Färbbarkeit (2Col) ist das folgende Problem:
Gegeben: Ein ungerichteter Graph G
Frage: Kann man die Knoten von G mit zwei Farben (rot und blau) so einfärben, dass
keine zwei per Kante verbundenen Knoten gleich gefärbt sind?

Man kann 2Col ∈ P leicht durch Reduktion auf 2SAT zeigen:

• Für jeden Knoten v führen wir ein Atom pv ein.

• Für jede Kante u v führen wir zwei Klauseln ein: {pu, pv} und {¬pu,¬pv}.

Dies kann man offenbar in polynomieller Zeit berechnen.

Die Reduktionseigenschaft gilt:

• Wenn der Graph 2-färbbar ist, dann verwenden wir die Farben als Wahrheitswerte
und erhalten eine erfüllende Zuweisung.

• Wenn die Formel erfüllbar ist, dann erhalten wir umgekehrt aus der Wertzuweisung
eine korrekte 2-Färbung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 31 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

Die grundlegenden Beziehungen der Komplexitätsklassen sind:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ Exp ⊆ NExp

Die Klassen P, L und NL sind mathematische Modelle für effiziente Algorithmen.

Mit polynomiellen Reduktionen kann man aus der Komplexität eines Problems auf die
eines anderen schließen.

Was erwartet uns als nächstes?

• NP

• NL

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 32 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

