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Rackblick

Die wichtigsten Ressourcen zur Messung von Komplexitat sind Rechenzeit und
Speicher.

Die wichtigsten deterministischen Komplexitatsklassen sind:

P = PTime = U DTime(n") polynomielle Zeit
daz1
Exp = ExpTime = U DTime(2") exponentielle Zeit*
d>1
L = LogSpace = DSpace(log n) logarithmischer Speicher
PSpace = U DSpace(n“) polynomieller Speicher

d=1
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Robustheit von Zeitklassen
Zwei wichtige Erkenntnisse zur Robustheit von Zeitklassen:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine zeitbeschrankte
Mehrband-TM lésen kann, sofern mindestens lineare Zeit erlaubt ist (Linear Speedup
Theorem).

Anmerkung: Wenn nicht wenigstens lineare Zeit zur Verfligung steht, dann kann die TM
nicht einmal die Eingabe lesen. Das ergibt also bei einer herkdmmlichen TM wenig Sinn.
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Robustheit von Zeitklassen
Zwei wichtige Erkenntnisse zur Robustheit von Zeitklassen:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine zeitbeschrankte
Mehrband-TM lésen kann, sofern mindestens lineare Zeit erlaubt ist (Linear Speedup
Theorem).

Anmerkung: Wenn nicht wenigstens lineare Zeit zur Verfligung steht, dann kann die TM
nicht einmal die Eingabe lesen. Das ergibt also bei einer herkdmmlichen TM wenig Sinn.

Die Anzahl der Bénder hat lediglich einen polynomiellen (quadratischen) Einfluss auf
die Probleme, die eine zeitbeschrankte TM I6sen kann.

Das hatten wir in Formale Systeme durch Simulation mehrerer Bander auf einem gezeigt.
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Robustheit von Speicherklassen

Bei speicherbeschrankten TMs ist die Situation sogar etwas einfacher:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine speicherbe-
schrankte TM l6sen kann.
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Robustheit von Speicherklassen

Bei speicherbeschrankten TMs ist die Situation sogar etwas einfacher:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine speicherbe-
schrankte TM l6sen kann.

Beweis: Ahnlich zu Linear Speedup, aber viel einfacher.
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Robustheit von Speicherklassen

Bei speicherbeschrankten TMs ist die Situation sogar etwas einfacher:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine speicherbe-
schrankte TM l6sen kann.

Beweis: Ahnlich zu Linear Speedup, aber viel einfacher.

Die Anzahl der Bénder hat keinen Einfluss auf die Probleme, die eine speicherbe-
schrénkte TM lésen kann.
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Robustheit von Speicherklassen

Bei speicherbeschrankten TMs ist die Situation sogar etwas einfacher:

Konstante Faktoren haben keinen Einfluss auf die Probleme, die eine speicherbe-
schrankte TM l6sen kann.

Beweis: Ahnlich zu Linear Speedup, aber viel einfacher.

Die Anzahl der Bénder hat keinen Einfluss auf die Probleme, die eine speicherbe-
schrénkte TM lésen kann.

Beweis: Reduktion von k Bandern auf 1 Band wie gehabt, kombiniert mit einer 1/k
Speicherreduktion.
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Beziehung von Zeit und Raum (1)

Ist die Berechnungszeit beschrankt, so kann auch nur beschrankt viel Speicher genutzt
werden:

Satz: Fir jede beliebige Funktion f : N — R gilt

DTIME(f) € DSPACE(f).

Beweis: Die TM benétigt immer mindestens einen Schritt, um eine zusatzliche
Speicherstelle zu beschreiben. O
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Beziehung von Zeit und Raum (1)

Ist die Berechnungszeit beschrankt, so kann auch nur beschrankt viel Speicher genutzt
werden:

Satz: Fir jede beliebige Funktion f : N — R gilt

DTIME(f) € DSPACE(f).

Beweis: Die TM benétigt immer mindestens einen Schritt, um eine zusatzliche
Speicherstelle zu beschreiben. O

Daraus folgt zum Beispiel PTime C PSpace.
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Beziehung von Zeit und Raum (2)

Andererseits ist Speicher machtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Fir jede beliebige Funktion f : N — R gilt

DSPACE(f) € DTIME(29).
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Beziehung von Zeit und Raum (2)

Andererseits ist Speicher machtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Fir jede beliebige Funktion f : N — R gilt

DSPACE(f) € DTIME(29).

Beweis: Sei M eine O(f)-speicherbeschrankte Turingmaschine; wir betrachten eine
Eingabe w der Lénge |w| = n.
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Beziehung von Zeit und Raum (2)

Andererseits ist Speicher machtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Fir jede beliebige Funktion f : N — R gilt

DSPACE(f) € DTIME(29).

Beweis: Sei M eine O(f)-speicherbeschrankte Turingmaschine; wir betrachten eine
Eingabe w der Lénge |w| = n.
e Es gibt [T[/™ = 2le220Mf0 Speicherbelegungen der Lénge f(n)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 6 von 32


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehung von Zeit und Raum (2)

Andererseits ist Speicher machtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Fir jede beliebige Funktion f : N — R gilt

DSPACE(f) € DTIME(29).

Beweis: Sei M eine O(f)-speicherbeschrankte Turingmaschine; wir betrachten eine
Eingabe w der Lénge |w| = n.

e Es gibt [T[/™ = 2le220Mf0 Speicherbelegungen der Lénge f(n)

® Hinzu kommen f(n) mdgliche Kopfpositionen und |Q| Zustande
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Beziehung von Zeit und Raum (2)

Andererseits ist Speicher machtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Fir jede beliebige Funktion f : N — R gilt

DSPACE(f) € DTIME(29).

Beweis: Sei M eine O(f)-speicherbeschrankte Turingmaschine; wir betrachten eine
Eingabe w der Lénge |w| = n.

e Es gibt [T[/™ = 2le220Mf0 Speicherbelegungen der Lénge f(n)

® Hinzu kommen f(n) mdgliche Kopfpositionen und |Q| Zustande

e Es gibt also |Q] - f(n) - 202207 ¢ 0(20)) TM-Konfigurationen.
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Beziehung von Zeit und Raum (2)

Andererseits ist Speicher machtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Fir jede beliebige Funktion f : N — R gilt

DSPACE(f) € DTIME(29).

Beweis: Sei M eine O(f)-speicherbeschrankte Turingmaschine; wir betrachten eine
Eingabe w der Lénge |w| = n.

Es gibt [T}[/® = 2le20Mf0 Speicherbelegungen der Lange f(n)
Hinzu kommen f(n) mdgliche Kopfpositionen und |Q| Zustande
Es gibt also |Q| - f(n) - 202207 ¢ 0209 TM-Konfigurationen.

Aus diesen kann man fiir eine gegebene Eingabe in polynomieller Zeit einen
Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die mdglichen Ubergange
darstellen.
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Beziehung von Zeit und Raum (2)

Andererseits ist Speicher machtiger als Zeit, da man Speicher mehrfach verwenden
kann (Zeit leider nicht):

Satz: Fir jede beliebige Funktion f : N — R gilt

DSPACE(f) € DTIME(29).

Beweis: Sei M eine O(f)-speicherbeschrankte Turingmaschine; wir betrachten eine
Eingabe w der Lénge |w| = n.

Es gibt [T}[/® = 2le20Mf0 Speicherbelegungen der Lange f(n)
Hinzu kommen f(n) mdgliche Kopfpositionen und |Q| Zustande
Es gibt also |Q| - f(n) - 202207 ¢ 0209 TM-Konfigurationen.

Aus diesen kann man fiir eine gegebene Eingabe in polynomieller Zeit einen
Konfigurationsgraphen berechnen, in dem (gerichtete) Kanten die mdglichen Ubergange
darstellen.

Daraus kann man die Akzeptanz der Eingabe in polynomieller Zeit ermitteln (,Ist von der
Startkonfiguration aus eine akzeptierende Endkonfiguration erreichbar?*).

Damit hat man das Wortproblem fiir L(M) in Zeit 0(20(-f)) entschieden. o
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Nichtdeterministische Komplexitatsklassen
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Ressourcen nichtdeterministischer TMs

Bei NTMs gibt es viele mégliche Berechnungspfade.
~> Welche Pfade meinen wir, wenn wir Ressourcen beschrénken?
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Ressourcen nichtdeterministischer TMs

Bei NTMs gibt es viele mégliche Berechnungspfade.
~> Welche Pfade meinen wir, wenn wir Ressourcen beschrénken?

— Alle!

Sei f : N — R eine Funktion und M eine nichtdeterministische TM.

* M hei3t genau dann O(f)-zeitbeschrankt, wenn es eine Funktion g € O(f) gibt,
so dass M fir eine beliebige Eingabe w € £* auf jedem Berechnungspfad nach
maximal g(lw|) Schritten anhalt.

® M hei3t genau dann O(f)-speicherbeschrankt wenn es eine Funktion g € O(f)
gibt, so dass M fir eine beliebige Eingabe w € £* halt und zuvor auf jedem
Berechnungspfad maximal g(jw|) Speicherzellen verwendet.

Eine zeit- oder speicherbeschrankte NTM muss also auch auf erfolglosen Pfaden
(.falsch geratene Ubergénge®) garantiert innerhalb der Ressourcengrenzen halten.
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Zeit und Raum, nichtdeterministisch

Die entsprechenden Sprachklassen werden genau wie bei deterministischen TMs definiert:

Sei f : N — R eine Funktion.
® NTIME(f(n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-zeitbeschrankte NTM entschieden werden kdnnen.

o NSPACE(f(n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-speicherbeschrankte NTM entschieden werden kdnnen.
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Nichtdeterministische Komplextitatsklassen

Auch hier beschranken wir uns auf einige wichtige Falle:

NP = NPTime = U NTime(n‘) nichtdet. polynomielle Zeit
d>1
NExp = NExpTime = U NTime(Z"d) nichtdet. exponentielle Zeit
d>1
NL = NLogSpace = NSpace(log n) nichtdet. logarithmischer Speicher
NPSpace = U NSpace(n") nichtdet. polynomieller Speicher

d=1

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 10 von 32


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Nichtdeterministische Komplextitatsklassen

Auch hier beschranken wir uns auf einige wichtige Falle:

NP = NPTime = U NTime(n‘) nichtdet. polynomielle Zeit
d>1
NExp = NExpTime = U NTime(2") nichtdet. exponentielle Zeit
d>1
NL = NLogSpace = NSpace(log ) nichtdet. logarithmischer Speicher
NPSpace = U NSpace(nd) nichtdet. polynomieller Speicher

d=1

Beispiel: Die Existenz eines Hamiltonpfads ist in NP entscheidbar. Wenn ein Hamil-
tonpfad existiert, dann kann er in polynomieller Zeit erraten und Gberprift werden.
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Quiz: Nichtdeterministische Komplexitatsklassen

NL = NLogSpace = NSpace(log ) NP = NPTime = |_J NTime(n?)
d=1
NExp = NExpTime = | | NTime(Z"d)

NPSpace = _| NSpace(n?)
a3l

d=1

Quiz: Welche der Probleme sind passend klassifiziert? ...
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Einfache Beobachtungen

Die folgenden Konstruktionen funktionieren wie im deterministischen Fall:

e Zeitreduktion durch linear Speedup
® |ineare Speicherreduktion
® Bandreduktion von Mehrband-TMs
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Einfache Beobachtungen

Die folgenden Konstruktionen funktionieren wie im deterministischen Fall:
e Zeitreduktion durch linear Speedup
® |ineare Speicherreduktion
e Bandreduktion von Mehrband-TMs
Die Beziehungen von Zeit und Speicher bleiben ebenfalls erhalten, mit einer Besonderheit:

Satz: Fir jede beliebige Funktion f : N — R gilt:

NTIME(f) € NSPACE()
NSPACE(f) C DTIME(2°)
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Einfache Beobachtungen

Die folgenden Konstruktionen funktionieren wie im deterministischen Fall:
e Zeitreduktion durch linear Speedup
® |ineare Speicherreduktion
e Bandreduktion von Mehrband-TMs
Die Beziehungen von Zeit und Speicher bleiben ebenfalls erhalten, mit einer Besonderheit:

Satz: Fir jede beliebige Funktion f : N — R gilt:

NTIME(f) € NSPACE()
NSPACE(f) C DTIME(2°)

Beweis: Beide Falle wie im deterministischen Fall. Der Konfigurationsgraph ist auch
hier exponentiell grof3, aber kann wie zuvor deterministisch durchsucht werden. O
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Deterministisch vs. nichtdeterministisch

Wir haben also nebenbei auch gezeigt: NTIME(f) € NSPACE(f) € DTIME(2°).

Satz: Fur jede beliebige Funktion f : N — R gilt:

NTIME(f) € DTIME(27)

Anmerkung: In Formale Systeme, Vorlesung 19, haben wir dieses Ergebnis durch eine
alternative Konstruktion gezeigt (ausgehend von der Simulation einer beliebigen,
unbeschrankten NTM durch deterministische Suche im Baum der méglichen
Berechnungspfade).

Anmerkung 2: Es ist bis heute nicht bekannt, ob NTIME(f) € DTIME(g) auch fir eine
Funktion g € 0(29) gilt (Achtung: Klein-o-Notation!).
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Was wir wissen

Aus unseren Beobachtungen folgen verschiedene einfache Beziehungen:
e DTM c NTM* L € NL, P € NP, PSpace € NPSpace, Exp € NExp
® Zeit C Speicher*: P C PSpace, NP C NPSpace
e (N)Speicher c 2(®Zet“: NL ¢ P, NPSpace C Exp
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Was wir wissen

Aus unseren Beobachtungen folgen verschiedene einfache Beziehungen:
e DTM c NTM* L € NL, P € NP, PSpace € NPSpace, Exp € NExp
® Zeit C Speicher*: P C PSpace, NP C NPSpace
e (N)Speicher c 2(®Zet“: NL ¢ P, NPSpace C Exp

Zudem besagt der beriihmte Satz von Savitch, dass speicherbeschréankte NTMs durch
DTMs mit nur quadratischen Mehrkosten simuliert werden kénnen. Daraus folgt:

Satz (Savitch): PSpace = NPSpace.

(ohne Beweis)
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Was wir wissen

Aus unseren Beobachtungen folgen verschiedene einfache Beziehungen:
e DTM c NTM* L € NL, P € NP, PSpace € NPSpace, Exp € NExp
® Zeit C Speicher*: P C PSpace, NP C NPSpace
e (N)Speicher c 2(®Zet“: NL ¢ P, NPSpace C Exp

Zudem besagt der beriihmte Satz von Savitch, dass speicherbeschréankte NTMs durch
DTMs mit nur quadratischen Mehrkosten simuliert werden kénnen. Daraus folgt:

Satz (Savitch): PSpace = NPSpace.

(ohne Beweis)

Zusammenfassung der wichtigsten bekannten Beziehungen:

L € NL € P C NP C PSpace = NPSpace C Exp € NExp
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Was wir nicht wissen

Wir wissen:

L € NL € P € NP ¢ PSpace = NPSpace € Exp € NExp

* Wir wissen nicht, ob irgendeines dieser C ein C ist.
® |nsbesondere wissen wir nicht, ob P ¢ NP oder P = NP.
e Wir wissen nicht einmal, ob L € NP oder L = NP.
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Was wir nicht wissen

Wir wissen:

L € NL € P C NP C PSpace = NPSpace C Exp € NExp

* Wir wissen nicht, ob irgendeines dieser C ein C ist.
® |nsbesondere wissen wir nicht, ob P ¢ NP oder P = NP.
e Wir wissen nicht einmal, ob L € NP oder L = NP.

Es wird aber vermutet, dass alle C eigentlich ¢ sind.
Bekannt ist das allerdings bisher nur bei exponentiell groBen Ressourcenunterschieden:

Satz: Die folgenden Inklusionen sind echt:
* NL ¢ PSpace
* PC Exp
°* NP ¢ NExp

(Ohne Beweis; folgt aus dem sogenannten Time (bzw. Space) Hierarchy Theorem.)
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Effizient I6sbare Probleme
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Was bedeutet ,effizient?

Intuitiv klar: Lineare Algorithmen sind ,effizient*.
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Was bedeutet ,effizient?

Intuitiv klar: Lineare Algorithmen sind ,effizient*.

Aber der Begriff ,linear” ist nicht robust:
® Abhé&nging von Details des Maschinenmodells
® Abhéanging von Details der Kodierung

~> Polynomielle Zeit als robuste Verallgemeinerung von Linearzeit:

P = PTime = U DTime(n)

d>1
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Wachstum einiger Funktionen

Zeitin us ! o

1024+ Alter des Universums

1021 4
1018_
1015 4
1012_
109 4

106 4

103 4

10° : : : : : : : : :
1 10 20 30 40 50 60 70 80 90
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Wachstum einiger Funktionen

Zeitin us ! o
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Polynomiell = effizient?

Wir verwenden P als mathematisches Modell fir die Klasse der praktisch I6sbaren
Probleme.

Aber: Diese Ubereinstimmung ist nicht perfekt.
® Polynome hohen Grades kénnen sehr schnell wachsen.
® Die konstanten Faktoren kénnen auch sehr groB sein (und Linear Speedup hilft in
der Praxis wenig).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 8 Folie 19 von 32


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Polynomiell = effizient?

Wir verwenden P als mathematisches Modell fir die Klasse der praktisch I6sbaren
Probleme.

Aber: Diese Ubereinstimmung ist nicht perfekt.
® Polynome hohen Grades kénnen sehr schnell wachsen.

® Die konstanten Faktoren kénnen auch sehr groB sein (und Linear Speedup hilft in
der Praxis wenig).

Dennoch: P ist von praktischem wie theoretischem Interesse.
® Praxis: Die meisten polynomiellen Probleme erlauben Algorithmen in O(xz) oder
0(x3), wéhrend man zum Beispiel O(x“)) selten antrifft.

® Theorie: Unabhangig von der tatsachlichen Laufzeit liefert uns P tiefe Einsichten in
die Struktur eines Problems.
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Probleme in P

Aus der Vorlesung Formale Systeme kennen wir bereits ein typisches P-Problem.

Riuckblick:

® Eine Horn-Klausel ist eine aussagenlogische Formel der Form
PIA...Ap, = gmitn >0 (bei n = 0 ergibt sich einfach ¢ — ein Fakt)

® Eine Formel ist erfullbar, wenn sie fiir eine Wertzuweisung auf wahr abgebildet wird.

® Eine Menge von Formeln ist erflllbar, wenn es eine Wertzuweisung gibt, die alle
ihre Elemente gleichzeitig wahr macht.

Erflllbarkeit aussagenlogischer Horn-Formeln (HornSAT) ist das folgende Entschei-
dungsproblem:

Gegeben: Eine Menge aussagenlogischer Horn-Klauseln.
Frage: Ist diese Menge erflllbar?
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2SAT

Ein weiteres Beispiel fir ein polynomiell Idsbares Problem aus der Aussagenlogik:

Rickblick:
® Ein Literal ist ein aussagenlogisches Atom oder ein negiertes aussagenlogisches
Atom.
* Eine Klausel ist eine Disjunktion von Literalen, die man oft einfach als Menge
darstellt.
* Eine Formel in Klauselform ist eine Konjunktion von Klauseln, ebenfalls dargestellt
als Menge.
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2SAT

Ein weiteres Beispiel fir ein polynomiell Idsbares Problem aus der Aussagenlogik:

Rickblick:
® Ein Literal ist ein aussagenlogisches Atom oder ein negiertes aussagenlogisches
Atom.
* Eine Klausel ist eine Disjunktion von Literalen, die man oft einfach als Menge
darstellt.
* Eine Formel in Klauselform ist eine Konjunktion von Klauseln, ebenfalls dargestellt
als Menge.

2SAT ist das folgende Entscheidungsproblem:

Gegeben: Eine aussagenlogische Formel F in Klauselform, bei der jede Klausel
héchstens zwei Literale enthalt.
Frage: Ist F erflllbar?
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2SAT istin P

Satz: 2SAT € P
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2SAT istin P

Satz: 2SAT € P

Beweis: Dazu wollen wir einen polynomiellen Algorithmus angeben.
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2SAT istin P

Satz: 2SAT € P

Beweis: Dazu wollen wir einen polynomiellen Algorithmus angeben.
Der Resolutionsalgorithmus aus der Vorlesung Formale Systeme erfiillt den Zweck ohne
jegliche Abwandlungen:

® Ein Resolutionsschritt kombiniert zwei Klauseln {p, L,} und {-p, L,} zu einer neuen
Klausel {L, N L}.

e Aus Zweier-Klauseln entstehen also immer wieder Klauseln mit hdchstens zwei
Literalen.

® Es gibt nur quadratisch viele Klauseln mit hdchstens zwei Literalen:
2 —
(zn)+2n+1 = w+2n+1:2n2+n+l

* Das Resolutionsverfahren terminiert also nach polynomieller Zeit. ]
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Quiz: Probleme in P

Quiz: Welche der folgenden Probleme halten Sie fiir in P entscheidbar? ...
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Effizienter als P?

Wenn wir eine robuste Klasse wollen, die Linearzeit-Algorithmen enthalt, dann enthalt
sie auch beliebige polynomiellen Algorithmen.

Gibt es Probleme, die noch einfacher sind?
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Effizienter als P?

Wenn wir eine robuste Klasse wollen, die Linearzeit-Algorithmen enthalt, dann enthalt
sie auch beliebige polynomiellen Algorithmen.

Gibt es Probleme, die noch einfacher sind?

e Sub-lineare Zeit funktioniert mit dem Gblichen TM-Modell nicht, da man in dieser
Zeit nicht einmal die Eingabe lesen kann.

(Erfordert Rechenmodelle mit einer Form von Parallelverarbeitung . ..)

® Sub-linearer Speicher ist machbar, wenn man ein getrenntes schreibgeschiitztes
Eingabeband erlaubt. (Siehe letzte Vorlesung.)

~ Komplexitatsklassen L und NL
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Was kann L?

Intuition: ein Algorithmus mit logarithmischem Speicher kann:

® Eine feste Anzahl an binarkodierten Zahlern speichern, die nicht gréBer als O(n)
werden.

® Eine feste Anzahl an Zeigern auf eine Position der Eingabe speichern.
® Den Inhalt von Z&hlern und Speicherstellen miteinander vergleichen.

Damit kann man bereits viele einfache Algorithmen umsetzen.
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Was kann L?

Intuition: ein Algorithmus mit logarithmischem Speicher kann:

® Eine feste Anzahl an binarkodierten Zahlern speichern, die nicht gréBer als O(n)
werden.

® Eine feste Anzahl an Zeigern auf eine Position der Eingabe speichern.
® Den Inhalt von Z&hlern und Speicherstellen miteinander vergleichen.

Damit kann man bereits viele einfache Algorithmen umsetzen.

Beispiel: Die Sprache aller Wérter Gber {0, 1}, welche die gleiche Anzahl der Symbole
0 und 1 enthalten, ist in L:

e Wir verwenden zwei Zahler fir die beiden Zahlen.

® Die TM liest das Wort von links nach rechts und erhéht jeweils den
entsprechenden Zahler.

e Am Ende wird der Wert beider Zahler verglichen.
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Noch ein Beispiel in L

Beispiel: Die Sprache Palindrom, welche Wérter enthalt, die von hinten gelesen ge-
nauso lauten wie von vorn, ist in L:

® Wir verwenden zwei Zeiger in die Eingabe, einer auf die erste und einer auf die
letzte Eingabezelle.

® Die TM vergleicht die Speicherinhalte bei den Zeigern und verschiebt sie
anschlieBend um eine Zelle in Richtung Wortmitte.

® Das Wort wird akzeptiert, wenn die Zeiger sich treffen und alle Vergleiche
erfolgreich waren.
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Reduktionen
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Effizient berechenbare Funktionen

Bisher haben wir Entscheidungsprobleme betrachtet. Man kann unsere Definitionen
leicht auf andere Berechnungsprobleme (bertragen.

Eine totale Funktion f ist in polynomieller Zeit berechenbar, wenn es eine polynomiell
zeitbeschrankte DTM M gibt, die f berechnet, d.h. mit f = f.
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Effizient berechenbare Funktionen

Bisher haben wir Entscheidungsprobleme betrachtet. Man kann unsere Definitionen
leicht auf andere Berechnungsprobleme (bertragen.

Eine totale Funktion f ist in polynomieller Zeit berechenbar, wenn es eine polynomiell
zeitbeschrankte DTM M gibt, die f berechnet, d.h. mit f = f.

Bei logarithmischen Speicherschranken missen wir vorsichtig sein: Das Ergebnis
kdnnte gréBer sein als der Arbeitsspeicher!

Eine totale Funktion f ist in logarithmischem Speicher berechenbar, wenn es eine 3-
Band DTM M gibt, die f wie folgt berechnet:

(1) die Eingabe befindet sich auf dem schreibgeschitzten Eingabeband,
(2) die DTM verwendet maximal O(logn) Speicherzellen auf dem Arbeitsband,

(3) die Ausgabe wird auf das Ausgabeband geschrieben (pro Zelle einmaliges
Schreiben, kein Lesen).
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Polynomielle Many-One-Reduktionen

Mit Hilfe effizient berechenbarer Funktionen kdnnen wir ein Problem effizient auf ein
anderes reduzieren.

Eine polynomiell berechenbare Funktion f : £* — Z* ist genau dann eine polynomielle
Many-One-Reduktion von einer Sprache P auf eine Sprache Q (in Symbolen: P <, Q),
wenn fir alle Worter w € X* gilt:

we P genau dann wenn f(w) € Q
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Polynomielle Many-One-Reduktionen

Mit Hilfe effizient berechenbarer Funktionen kdnnen wir ein Problem effizient auf ein
anderes reduzieren.

Eine polynomiell berechenbare Funktion f : £* — Z* ist genau dann eine polynomielle
Many-One-Reduktion von einer Sprache P auf eine Sprache Q (in Symbolen: P <, Q),
wenn fur alle Wérter w € £* gilt:

weP genau dann wenn f(w) € Q

Wir sprechen oft einfach von polynomiellen Reduktionen.

Logarithmische Many-One-Reduktionen kénnten analog definiert werden (wir werden
uns damit nicht nédher beschéftigen).
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Komplexitat durch Reduktion zeigen

Idee: Wenn man ein Problem A leicht auf ein leichtes Problem B reduzieren kann, dann
ist A ebenfalls leicht.

Satz: Falls A <, B und B € PTime, dann ist A € PTime.

Beweis: Nach Voraussetzung gibt es polynomiell zeitbeschrénkte TMs Mg und M;, die
B entscheiden bzw. die Reduktion f : A — B berechnen. Zum Entscheiden von A
missen nun nur M; und Mg hintereinander ausgefiihrt werden. Diese
Hintereinanderausfiihrung ist polynomiell zeitbeschrankt: Sei Mg zeitbeschrankt durch
pe(n) € O(n*), M; zeitbeschrankt durch py(n) € O(n’), fir k, € € N. Die Laufzeit der
Hintereinanderausfihrung ist demnach durch py(n) + pg(ps(n)) € O(n" + (n")*) = O(n"*)
— also polynomiell — beschrankt. O
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Komplexitat durch Reduktion zeigen

Idee: Wenn man ein Problem A leicht auf ein leichtes Problem B reduzieren kann, dann
ist A ebenfalls leicht.

Satz: Falls A <, B und B € PTime, dann ist A € PTime.

Beweis: Nach Voraussetzung gibt es polynomiell zeitbeschrénkte TMs Mg und M;, die
B entscheiden bzw. die Reduktion f : A — B berechnen. Zum Entscheiden von A
missen nun nur M; und Mg hintereinander ausgefiihrt werden. Diese
Hintereinanderausfiihrung ist polynomiell zeitbeschrankt: Sei Mg zeitbeschrankt durch
pe(n) € O(n*), M; zeitbeschrankt durch py(n) € O(n’), fir k, € € N. Die Laufzeit der
Hintereinanderausfihrung ist demnach durch py(n) + pg(ps(n)) € O(n" + (n")*) = O(n"*)
— also polynomiell — beschrankt. O

Die Umkehrung (Kontraposition) wird uns spater noch interessieren:

Satz: Falls A <, B und A ¢ PTime, dann ist B ¢ PTime.

Dazu mehr in den kommenden Vorlesungen ...
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Beispiel

2-Farbbarkeit (2Col) ist das folgende Problem:

Gegeben: Ein ungerichteter Graph G

Frage: Kann man die Knoten von G mit zwei Farben (rot und blau) so einféarben, dass
keine zwei per Kante verbundenen Knoten gleich gefarbt sind?

Man kann 2Col € P leicht durch Reduktion auf 2SAT zeigen:
® Fir jeden Knoten @ fihren wir ein Atom p, ein.

® Fir jede Kante @—>@ fihren wir zwei Klauseln ein: {p,, p,} und {-p,, —p,}.
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Beispiel

2-Farbbarkeit (2Col) ist das folgende Problem:

Gegeben: Ein ungerichteter Graph G

Frage: Kann man die Knoten von G mit zwei Farben (rot und blau) so einféarben, dass
keine zwei per Kante verbundenen Knoten gleich gefarbt sind?

Man kann 2Col € P leicht durch Reduktion auf 2SAT zeigen:
® Fir jeden Knoten @ fihren wir ein Atom p, ein.

® Fir jede Kante @—>@ fihren wir zwei Klauseln ein: {p,, p,} und {-p,, —p,}.
Dies kann man offenbar in polynomieller Zeit berechnen.
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Beispiel

2-Farbbarkeit (2Col) ist das folgende Problem:

Gegeben: Ein ungerichteter Graph G

Frage: Kann man die Knoten von G mit zwei Farben (rot und blau) so einféarben, dass
keine zwei per Kante verbundenen Knoten gleich gefarbt sind?

Man kann 2Col € P leicht durch Reduktion auf 2SAT zeigen:
® Fir jeden Knoten @ fihren wir ein Atom p, ein.

® Fir jede Kante @—>@ fihren wir zwei Klauseln ein: {p,, p,} und {-p,, —p,}.
Dies kann man offenbar in polynomieller Zeit berechnen.

Die Reduktionseigenschaft gilt:

® Wenn der Graph 2-farbbar ist, dann verwenden wir die Farben als Wahrheitswerte
und erhalten eine erflllende Zuweisung.

® Wenn die Formel erflllbar ist, dann erhalten wir umgekehrt aus der Wertzuweisung
eine korrekte 2-Farbung. O
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Zusammenfassung und Ausblick

Die grundlegenden Beziehungen der Komplexitatsklassen sind:
L € NL € P € NP ¢ PSpace = NPSpace C Exp € NExp
Die Klassen P, L und NL sind mathematische Modelle fiir effiziente Algorithmen.

Mit polynomiellen Reduktionen kann man aus der Komplexitat eines Problems auf die
eines anderen schlie3en.

Was erwartet uns als nachstes?
e NP
e NL
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