
COMPLEXITY THEORY

Lecture 2: Turing Machines and Languages

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 15th Oct 2024

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

A Model for Computation

Clear
To understand computational problems we need to have a formal understanding of what
an algorithm is.

Example 2.1 (Hilbert’s Tenth Problem):
“Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To devise
a process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.”
(→ Wikipedia)

Question
How can we model the notion of an algorithm?

Answer
With Turing machines.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 2 of 27

https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem

A Model for Computation

Clear
To understand computational problems we need to have a formal understanding of what
an algorithm is.

Example 2.1 (Hilbert’s Tenth Problem):
“Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To devise
a process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.”
(→ Wikipedia)

Question
How can we model the notion of an algorithm?

Answer
With Turing machines.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 2 of 27

https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem

A Model for Computation

Clear
To understand computational problems we need to have a formal understanding of what
an algorithm is.

Example 2.1 (Hilbert’s Tenth Problem):
“Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To devise
a process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.”
(→ Wikipedia)

Question
How can we model the notion of an algorithm?

Answer
With Turing machines.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 2 of 27

https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem

A Model for Computation

Clear
To understand computational problems we need to have a formal understanding of what
an algorithm is.

Example 2.1 (Hilbert’s Tenth Problem):
“Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To devise
a process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.”
(→ Wikipedia)

Question
How can we model the notion of an algorithm?

Answer
With Turing machines.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 2 of 27

https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem

Turing Machines

Let us fix a blank symbol ␣.

Definition 2.2: A (deterministic) Turing Machine M = ⟨Q,Σ,Γ, δ, q0, qaccept, qreject⟩

consists of

• a finite set Q of states,

• an input alphabet Σ not containing ␣,

• a tape alphabet Γ such that Γ ⊇ Σ ∪ { ␣ }.

• a transition function δ : Q × Γ→ Q × Γ × { L, R }

• an initial state q0 ∈ Q,

• an accepting state qaccept ∈ Q, and

• a rejecting state qreject ∈ Q such that qaccept , qreject.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 3 of 27

Turing Machines

Let us fix a blank symbol ␣.

Definition 2.2: A (deterministic) Turing Machine M = ⟨Q,Σ,Γ, δ, q0, qaccept, qreject⟩

consists of

• a finite set Q of states,

• an input alphabet Σ not containing ␣,

• a tape alphabet Γ such that Γ ⊇ Σ ∪ { ␣ }.

• a transition function δ : Q × Γ→ Q × Γ × { L, R }

• an initial state q0 ∈ Q,

• an accepting state qaccept ∈ Q, and

• a rejecting state qreject ∈ Q such that qaccept , qreject.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 3 of 27

Turing Machines

Example 2.3:

aba c ␣

q1

. . .

δ(q1, a)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

aba c ␣

q1

. . .

δ(q1, a)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

aba c ␣

q1

. . .

δ(q1, a)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

aba c ␣

q1

. . .

δ(q1, a)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

aba c ␣

q1

. . .

δ(q1, a)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

aba c ␣

q1

. . .

δ(q1, a)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

aba c ␣

q1

. . .

δ(q1, a)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

aba c ␣

q1

. . .

δ(q1, a) = (q2, b, L)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

bba c ␣

q2

. . .

δ(q1, a) = (q2, b, L)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Turing Machines

Example 2.3:

bba c ␣

q2

. . .

δ(q1, a) = (q2, b, L)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of ␣.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 4 of 27

Configurations

Observation: to describe the current step of a computation of a TM it is enough to know

• the content of the tape,

• the current state, and

• the position of the head

Definition 2.4: A configuration of a TM M is a word uqv such that

• q ∈ Q,

• uv ∈ Γ∗

Some special configurations:

• The start configuration for some input word w ∈ Σ∗ is the configuration q0w

• A configuration uqv is accepting if q = qaccept.

• A configuration uqv is rejecting if q = qreject.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 5 of 27

Configurations

Observation: to describe the current step of a computation of a TM it is enough to know

• the content of the tape,

• the current state, and

• the position of the head

Definition 2.4: A configuration of a TM M is a word uqv such that

• q ∈ Q,

• uv ∈ Γ∗

Some special configurations:

• The start configuration for some input word w ∈ Σ∗ is the configuration q0w

• A configuration uqv is accepting if q = qaccept.

• A configuration uqv is rejecting if q = qreject.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 5 of 27

Configurations

Observation: to describe the current step of a computation of a TM it is enough to know

• the content of the tape,

• the current state, and

• the position of the head

Definition 2.4: A configuration of a TM M is a word uqv such that

• q ∈ Q,

• uv ∈ Γ∗

Some special configurations:

• The start configuration for some input word w ∈ Σ∗ is the configuration q0w

• A configuration uqv is accepting if q = qaccept.

• A configuration uqv is rejecting if q = qreject.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 5 of 27

Computation

We write

• C ⊢M C
′ only if C′ can be reached from C by one computation step ofM;

• C ⊢∗
M
C′ only if C′ can be reached from C in a finite number of computation steps of

M.

We say thatM halts on input w if and only if there is a finite sequence of configurations

C0 ⊢M C1 ⊢M · · · ⊢M Cℓ

such that C0 is the start configuration ofM on input w and Cℓ is an accepting or
rejecting configuration. OtherwiseM loops on input w.

We say thatM accepts the input w only ifM halts on input w with an accepting
configuration.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 6 of 27

Computation

We write

• C ⊢M C
′ only if C′ can be reached from C by one computation step ofM;

• C ⊢∗
M
C′ only if C′ can be reached from C in a finite number of computation steps of

M.

We say thatM halts on input w if and only if there is a finite sequence of configurations

C0 ⊢M C1 ⊢M · · · ⊢M Cℓ

such that C0 is the start configuration ofM on input w and Cℓ is an accepting or
rejecting configuration. OtherwiseM loops on input w.

We say thatM accepts the input w only ifM halts on input w with an accepting
configuration.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 6 of 27

Computation

We write

• C ⊢M C
′ only if C′ can be reached from C by one computation step ofM;

• C ⊢∗
M
C′ only if C′ can be reached from C in a finite number of computation steps of

M.

We say thatM halts on input w if and only if there is a finite sequence of configurations

C0 ⊢M C1 ⊢M · · · ⊢M Cℓ

such that C0 is the start configuration ofM on input w and Cℓ is an accepting or
rejecting configuration. OtherwiseM loops on input w.

We say thatM accepts the input w only ifM halts on input w with an accepting
configuration.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 6 of 27

Recognisability and Decidability

Definition 2.5: Let M be a Turing machine with input alphabet Σ. The language
accepted by M is the set

L(M) B {w ∈ Σ∗ | M accepts w }.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 7 of 27

Recognisability and Decidability

Definition 2.5: Let M be a Turing machine with input alphabet Σ. The language
accepted by M is the set

L(M) B {w ∈ Σ∗ | M accepts w }.

A language L ⊆ Σ∗ is called Turing-recognisable (recursively enumerable) if and
only if there exists a Turing machine M with input alphabet Σ such that L = L(M).
In this case we say that M recognises L.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 7 of 27

Recognisability and Decidability

Definition 2.5: Let M be a Turing machine with input alphabet Σ. The language
accepted by M is the set

L(M) B {w ∈ Σ∗ | M accepts w }.

A language L ⊆ Σ∗ is called Turing-recognisable (recursively enumerable) if and
only if there exists a Turing machine M with input alphabet Σ such that L = L(M).
In this case we say that M recognises L.

A language L ⊆ Σ∗ is called Turing-decidable (decidable, recursive) if and only if
there exists a Turing machine M such that L = L(M) and M halts on every input.
In this case we say that M decides L.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 7 of 27

Example

Claim 2.6: The language L B { a2n
| n ≥ 0 } is decidable.

Proof: A Turing machineM that decides L is

M B On input w, where w is a string

• Go from left to right over the tape and cross off every other a

• If in the first step the tape contained a single a, accept

• If in the first step the number of a’s on the tape was odd, reject

• Return the head the beginning of the tape

• Go to the first step

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 8 of 27

Example

Claim 2.6: The language L B { a2n
| n ≥ 0 } is decidable.

Proof: A Turing machineM that decides L is

M B On input w, where w is a string

• Go from left to right over the tape and cross off every other a

• If in the first step the tape contained a single a, accept

• If in the first step the number of a’s on the tape was odd, reject

• Return the head the beginning of the tape

• Go to the first step

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 8 of 27

Example (cont’d)
Formally,M = (Q,Σ,Γ, δ, q1, qaccept, qreject), where
• Q = { q1, q2, q3, q4, q5, qaccept, qreject }

• Σ = { a }, Γ = { a, x, ␣ }

and δ is given by

q1 q2

q5

q3

q4qacceptqreject

␣ 7→ ␣, R
x 7→ x, R

a 7→ ␣, R

x 7→ x, R

␣ 7→
␣, R

a 7→ x, R

a 7→ a, L
x 7→ x, L

␣ 7→
␣
, L
x 7→ x, R

a 7→ a, R a 7→ x, R

x 7→ x, R
␣ 7→ ␣, R

␣ 7→ ␣, R

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 9 of 27

Problems as Languages

Observation
• Languages can be used to model computational problems.

• For this, a suitable encoding is necessary

• TMs must be able to decode the encoding

Example 2.7 (Graph-Connectedness): The question whether a graph is con-
nected or not can be seen as the word problem of the following language

GCONN B { ⟨G⟩ | G is a connected graph },

where ⟨G⟩ is (for example) the adjacency matrix encoded in binary.

Notation 2.8: The encoding of objects O1, . . . ,On we denote by ⟨O1, . . . ,On⟩.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 10 of 27

Problems as Languages

Observation
• Languages can be used to model computational problems.

• For this, a suitable encoding is necessary

• TMs must be able to decode the encoding

Example 2.7 (Graph-Connectedness): The question whether a graph is con-
nected or not can be seen as the word problem of the following language

GCONN B { ⟨G⟩ | G is a connected graph },

where ⟨G⟩ is (for example) the adjacency matrix encoded in binary.

Notation 2.8: The encoding of objects O1, . . . ,On we denote by ⟨O1, . . . ,On⟩.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 10 of 27

Problems as Languages

Observation
• Languages can be used to model computational problems.

• For this, a suitable encoding is necessary

• TMs must be able to decode the encoding

Example 2.7 (Graph-Connectedness): The question whether a graph is con-
nected or not can be seen as the word problem of the following language

GCONN B { ⟨G⟩ | G is a connected graph },

where ⟨G⟩ is (for example) the adjacency matrix encoded in binary.

Notation 2.8: The encoding of objects O1, . . . ,On we denote by ⟨O1, . . . ,On⟩.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 10 of 27

The Church-Turing Thesis

It turns out that Turing-machines are equivalent to a number of formalisations of the
intuitive notion of an algorithm

• λ-calculus

• while-programs

• µ-recursive functions

• Random-Access Machines

• . . .

Because of this it is believed that Turing-machines completely capture the intuitive
notion of an algorithm. { Church-Turing Thesis:

“A function on the natural numbers is intuitively computable if and only if it can
be computed by a Turing machine.”

(→Wikipedia: Church-Turing Thesis)

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 11 of 27

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

The Church-Turing Thesis

It turns out that Turing-machines are equivalent to a number of formalisations of the
intuitive notion of an algorithm

• λ-calculus

• while-programs

• µ-recursive functions

• Random-Access Machines

• . . .

Because of this it is believed that Turing-machines completely capture the intuitive
notion of an algorithm. { Church-Turing Thesis:

“A function on the natural numbers is intuitively computable if and only if it can
be computed by a Turing machine.”

(→Wikipedia: Church-Turing Thesis)

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 11 of 27

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

Variations of Turing-Machines

It has also been shown that deterministic, single-tape Turing machines are equivalent to
a wide range of other forms of Turing machines:

• Multi-tape Turing machines

• Nondeterministic Turing machines

• Turing machines with doubly-infinite tape

• Multi-head Turing machines

• Two-dimensional Turing machines

• Write-once Turing machines

• Two-stack machines

• Two-counter machines

• . . .

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 12 of 27

Variations of Turing-Machines

It has also been shown that deterministic, single-tape Turing machines are equivalent to
a wide range of other forms of Turing machines:

• Multi-tape Turing machines

• Nondeterministic Turing machines

• Turing machines with doubly-infinite tape

• Multi-head Turing machines

• Two-dimensional Turing machines

• Write-once Turing machines

• Two-stack machines

• Two-counter machines

• . . .

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 12 of 27

Multi-Tape Turing Machines

k-tape Turing machines are a variant of Turing machines that have k tapes.

q

. . .

. . .

. . .

a a b ␣ ␣

a c b c ␣

c b ␣ ␣ ␣

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 13 of 27

Multi-Tape Turing Machines

k-tape Turing machines are a variant of Turing machines that have k tapes.

q

. . .

. . .

. . .

a a b ␣ ␣

a c b c ␣

c b ␣ ␣ ␣

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 13 of 27

Multi-Tape Turing Machines

Definition 2.9: Let k ∈ N \ {0}. Then a (deterministic) k-tape Turing machine is a
tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject), where

• Q, Σ, Γ, q0, qaccept, qreject are as for TMs

• δ is a transition function for k tapes, i.e.,

δ : Q × Γk → Q × Γk × { L, R, N }k

RunningM on input w ∈ Σ∗ means to startM with the content of the first tape being w
and all other tapes blank.

The notions of a configuration and of the language accepted byM are defined
analogously to the single-tape case.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 14 of 27

Multi-Tape Turing Machines

Definition 2.9: Let k ∈ N \ {0}. Then a (deterministic) k-tape Turing machine is a
tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject), where

• Q, Σ, Γ, q0, qaccept, qreject are as for TMs

• δ is a transition function for k tapes, i.e.,

δ : Q × Γk → Q × Γk × { L, R, N }k

RunningM on input w ∈ Σ∗ means to startM with the content of the first tape being w
and all other tapes blank.

The notions of a configuration and of the language accepted byM are defined
analogously to the single-tape case.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 14 of 27

Multi-Tape Turing Machines

Definition 2.9: Let k ∈ N \ {0}. Then a (deterministic) k-tape Turing machine is a
tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject), where

• Q, Σ, Γ, q0, qaccept, qreject are as for TMs

• δ is a transition function for k tapes, i.e.,

δ : Q × Γk → Q × Γk × { L, R, N }k

RunningM on input w ∈ Σ∗ means to startM with the content of the first tape being w
and all other tapes blank.

The notions of a configuration and of the language accepted byM are defined
analogously to the single-tape case.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 14 of 27

Multi-Tape Turing Machines

Theorem 2.10: Every multi-tape Turing machine has an equivalent single-tape
Turing machine.

Proof: LetM be a k-tape Turing machine. SimulateM with a single-tape TM S by

• keeping the content of all k tapes on a single tape, separated by #

• marking the positions of the individual heads using special symbols

q . . .

. . .

. . .

a a ␣

a c b

c ␣ ␣

p

. . .# a a •␣ # a •c b # •c

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 15 of 27

Multi-Tape Turing Machines

Theorem 2.10: Every multi-tape Turing machine has an equivalent single-tape
Turing machine.

Proof: LetM be a k-tape Turing machine. SimulateM with a single-tape TM S by

• keeping the content of all k tapes on a single tape, separated by #

• marking the positions of the individual heads using special symbols

q . . .

. . .

. . .

a a ␣

a c b

c ␣ ␣

p

. . .# a a •␣ # a •c b # •c

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 15 of 27

Multi-Tape Turing Machines

Theorem 2.10: Every multi-tape Turing machine has an equivalent single-tape
Turing machine.

Proof: LetM be a k-tape Turing machine. SimulateM with a single-tape TM S by

• keeping the content of all k tapes on a single tape, separated by #

• marking the positions of the individual heads using special symbols

q . . .

. . .

. . .

a a ␣

a c b

c ␣ ␣

p

. . .# a a •␣ # a •c b # •c

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 15 of 27

Multi-Tape Turing Machines

Theorem 2.10: Every multi-tape Turing machine has an equivalent single-tape
Turing machine.

Proof: LetM be a k-tape Turing machine. SimulateM with a single-tape TM S by

• keeping the content of all k tapes on a single tape, separated by #

• marking the positions of the individual heads using special symbols

q . . .

. . .

. . .

a a ␣

a c b

c ␣ ␣

p

. . .# a a •␣ # a •c b # •c

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 15 of 27

Multi-Tape Turing Machines

Theorem 2.10: Every multi-tape Turing machine has an equivalent single-tape
Turing machine.

Proof: LetM be a k-tape Turing machine. SimulateM with a single-tape TM S by

• keeping the content of all k tapes on a single tape, separated by #

• marking the positions of the individual heads using special symbols

q . . .

. . .

. . .

a a ␣

a c b

c ␣ ␣

p

. . .# a a •␣ # a •c b # •c

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 15 of 27

Multi-Tape Turing Machines

S B On input w = w1 . . .wn

• Format the tape to contain the word

•w1w2 . . .wn# •␣# •␣# . . .

• Scan the tape from the first # to the (k + 1)-th # to determine the symbols
below the markers.

• Update all tapes according toM’s transition function with a second pass
over the tape; if any head ofM moves to some previously unread portion
of its tape, insert a blank symbol at the corresponding position and shift
the right tape contents by one cell

• Repeat until the accepting or rejecting state is reached.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 16 of 27

Multi-Tape Turing Machines

S B On input w = w1 . . .wn

• Format the tape to contain the word

•w1w2 . . .wn# •␣# •␣# . . .

• Scan the tape from the first # to the (k + 1)-th # to determine the symbols
below the markers.

• Update all tapes according toM’s transition function with a second pass
over the tape; if any head ofM moves to some previously unread portion
of its tape, insert a blank symbol at the corresponding position and shift
the right tape contents by one cell

• Repeat until the accepting or rejecting state is reached.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 16 of 27

Multi-Tape Turing Machines

S B On input w = w1 . . .wn

• Format the tape to contain the word

•w1w2 . . .wn# •␣# •␣# . . .

• Scan the tape from the first # to the (k + 1)-th # to determine the symbols
below the markers.

• Update all tapes according toM’s transition function with a second pass
over the tape; if any head ofM moves to some previously unread portion
of its tape, insert a blank symbol at the corresponding position and shift
the right tape contents by one cell

• Repeat until the accepting or rejecting state is reached.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 16 of 27

Multi-Tape Turing Machines

S B On input w = w1 . . .wn

• Format the tape to contain the word

•w1w2 . . .wn# •␣# •␣# . . .

• Scan the tape from the first # to the (k + 1)-th # to determine the symbols
below the markers.

• Update all tapes according toM’s transition function with a second pass
over the tape; if any head ofM moves to some previously unread portion
of its tape, insert a blank symbol at the corresponding position and shift
the right tape contents by one cell

• Repeat until the accepting or rejecting state is reached.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 16 of 27

Multi-Tape Turing Machines

S B On input w = w1 . . .wn

• Format the tape to contain the word

•w1w2 . . .wn# •␣# •␣# . . .

• Scan the tape from the first # to the (k + 1)-th # to determine the symbols
below the markers.

• Update all tapes according toM’s transition function with a second pass
over the tape; if any head ofM moves to some previously unread portion
of its tape, insert a blank symbol at the corresponding position and shift
the right tape contents by one cell

• Repeat until the accepting or rejecting state is reached.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 16 of 27

Multi-Tape Turing Machines

S B On input w = w1 . . .wn

• Format the tape to contain the word

•w1w2 . . .wn# •␣# •␣# . . .

• Scan the tape from the first # to the (k + 1)-th # to determine the symbols
below the markers.

• Update all tapes according toM’s transition function with a second pass
over the tape; if any head ofM moves to some previously unread portion
of its tape, insert a blank symbol at the corresponding position and shift
the right tape contents by one cell

• Repeat until the accepting or rejecting state is reached.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 16 of 27

Nondeterministic Turing Machines

Goal
Allow transitions to be nondeterministic.

Approach
Change transition function from

δ : Q × Γ→ Q × Γ × { L, R }

to
δ : Q × Γ→ 2Q×Γ×{ L,R }

.

The notions of accepting and rejecting computations are defined accordingly.
Note: there may be more than one or no computation of a nondeterministic TM on a
given input.
A nondeterministic TMM accepts an input w if and only if there exists some accepting
computation ofM on input w.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 17 of 27

Nondeterministic Turing Machines

Goal
Allow transitions to be nondeterministic.

Approach
Change transition function from

δ : Q × Γ→ Q × Γ × { L, R }

to
δ : Q × Γ→ 2Q×Γ×{ L,R }

.

The notions of accepting and rejecting computations are defined accordingly.
Note: there may be more than one or no computation of a nondeterministic TM on a
given input.
A nondeterministic TMM accepts an input w if and only if there exists some accepting
computation ofM on input w.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 17 of 27

Nondeterministic Turing Machines

Goal
Allow transitions to be nondeterministic.

Approach
Change transition function from

δ : Q × Γ→ Q × Γ × { L, R }

to
δ : Q × Γ→ 2Q×Γ×{ L,R }

.

The notions of accepting and rejecting computations are defined accordingly.
Note: there may be more than one or no computation of a nondeterministic TM on a
given input.

A nondeterministic TMM accepts an input w if and only if there exists some accepting
computation ofM on input w.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 17 of 27

Nondeterministic Turing Machines

Goal
Allow transitions to be nondeterministic.

Approach
Change transition function from

δ : Q × Γ→ Q × Γ × { L, R }

to
δ : Q × Γ→ 2Q×Γ×{ L,R }

.

The notions of accepting and rejecting computations are defined accordingly.
Note: there may be more than one or no computation of a nondeterministic TM on a
given input.
A nondeterministic TMM accepts an input w if and only if there exists some accepting
computation ofM on input w.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 17 of 27

Nondeterministic Turing Machines

Theorem 2.11: Every nondeterministic TM has an equivalent deterministic TM.

Proof: Let N be a nondeterministic TM. We construct a deterministic TM D that is
equivalent to N, i.e., L(N) = L(D).

Idea

• D deterministically traverses in breadth-first order the tree of configuration of N,
where each branch represents a different possibility for N to continue.

• For this, successively try out all possible choices of transitions allowed by N.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 18 of 27

Nondeterministic Turing Machines

Theorem 2.11: Every nondeterministic TM has an equivalent deterministic TM.

Proof: Let N be a nondeterministic TM. We construct a deterministic TM D that is
equivalent to N, i.e., L(N) = L(D).

Idea

• D deterministically traverses in breadth-first order the tree of configuration of N,
where each branch represents a different possibility for N to continue.

• For this, successively try out all possible choices of transitions allowed by N.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 18 of 27

Nondeterministic Turing Machines

Theorem 2.11: Every nondeterministic TM has an equivalent deterministic TM.

Proof: Let N be a nondeterministic TM. We construct a deterministic TM D that is
equivalent to N, i.e., L(N) = L(D).

Idea

• D deterministically traverses in breadth-first order the tree of configuration of N,
where each branch represents a different possibility for N to continue.

• For this, successively try out all possible choices of transitions allowed by N.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 18 of 27

Nondeterministic Turing Machines

Theorem 2.11: Every nondeterministic TM has an equivalent deterministic TM.

Proof: Let N be a nondeterministic TM. We construct a deterministic TM D that is
equivalent to N, i.e., L(N) = L(D).

Idea
• D deterministically traverses in breadth-first order the tree of configuration of N,

where each branch represents a different possibility for N to continue.

• For this, successively try out all possible choices of transitions allowed by N.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 18 of 27

Nondeterministic Turing Machines

Theorem 2.11: Every nondeterministic TM has an equivalent deterministic TM.

Proof: Let N be a nondeterministic TM. We construct a deterministic TM D that is
equivalent to N, i.e., L(N) = L(D).

Idea
• D deterministically traverses in breadth-first order the tree of configuration of N,

where each branch represents a different possibility for N to continue.

• For this, successively try out all possible choices of transitions allowed by N.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 18 of 27

Nondeterministic Turing Machines

Sketch of D:

q . . .

. . .

. . .

a a b b c

a c b ␣ ␣

1 3 2 3 2

input tape

simulation tape

address tape

Let b be the maximal number of choices in δ, i.e.,

b B max
{
|δ(q, x)|

∣∣∣ q ∈ Q, x ∈ Γ
}
.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 19 of 27

Nondeterministic Turing Machines

Sketch of D:

q . . .

. . .

. . .

a a b b c

a c b ␣ ␣

1 3 2 3 2

input tape

simulation tape

address tape

Let b be the maximal number of choices in δ, i.e.,

b B max
{
|δ(q, x)|

∣∣∣ q ∈ Q, x ∈ Γ
}
.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 19 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.

– Interpret the address tape as a list of zero-indexed choices to make during
this computation (and abort if the end of the tape is reached).

– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.

– Interpret the address tape as a list of zero-indexed choices to make during
this computation (and abort if the end of the tape is reached).

– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.

– Interpret the address tape as a list of zero-indexed choices to make during
this computation (and abort if the end of the tape is reached).

– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.

– Interpret the address tape as a list of zero-indexed choices to make during
this computation (and abort if the end of the tape is reached).

– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.

– Interpret the address tape as a list of zero-indexed choices to make during
this computation (and abort if the end of the tape is reached).

– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.
– Interpret the address tape as a list of zero-indexed choices to make during

this computation (and abort if the end of the tape is reached).

– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.
– Interpret the address tape as a list of zero-indexed choices to make during

this computation (and abort if the end of the tape is reached).
– If a choice is invalid, abort simulation.

– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.
– Interpret the address tape as a list of zero-indexed choices to make during

this computation (and abort if the end of the tape is reached).
– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.
– Interpret the address tape as a list of zero-indexed choices to make during

this computation (and abort if the end of the tape is reached).
– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.
– Interpret the address tape as a list of zero-indexed choices to make during

this computation (and abort if the end of the tape is reached).
– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) “Increment” the content of the address tape by 1, intuitively considered as a
number in base b but b − 1 increments to 00, 0b − 1 to 10 and so on.
Go to step 3.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 20 of 27

Enumerators

Definition 2.12: A multi-tape Turing machine M is an enumerator if

• M has a designated write-only output-tape on which a symbol, once written,
can never be changed and where the head can never move left;

• M has a marker symbol # separating words on the output tape.

We define the language generated by M to be the set G(M) of all words that
eventually appear between two consecutive # on the output tape of M when
started on the empty word as input.

q

working tape(s)

␣ ␣ output tape

.

.

read/write

write-only

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 21 of 27

Enumerators

Definition 2.12: A multi-tape Turing machine M is an enumerator if

• M has a designated write-only output-tape on which a symbol, once written,
can never be changed and where the head can never move left;

• M has a marker symbol # separating words on the output tape.

We define the language generated by M to be the set G(M) of all words that
eventually appear between two consecutive # on the output tape of M when
started on the empty word as input.

q

working tape(s)

␣ ␣ output tape

.

.

read/write

write-only

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 21 of 27

Enumerators

Theorem 2.13: A language L is Turing-recognisable if and only if there exists
some enumerator E such that G(E) = L.

Proof: Let E be an enumerator for L. Then the following TM accepts L:

M B On input w

• Simulate E on the empty input. Compare every string output by E with w

• If w appears in the output of E, accept

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 22 of 27

Enumerators

Theorem 2.13: A language L is Turing-recognisable if and only if there exists
some enumerator E such that G(E) = L.

Proof: Let E be an enumerator for L. Then the following TM accepts L:

M B On input w

• Simulate E on the empty input. Compare every string output by E with w

• If w appears in the output of E, accept

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 22 of 27

Enumerators

Let L = L(M) for some TMM, and let s1, s2, . . . be an enumeration of Σ∗.

Then the following enumerator E enumerates L:

E B Ignore the input.

• Print the first # to initialise the output.
• Repeat for i = 1, 2, 3, . . .

– RunM for i steps on each input s1, s2, . . . , si

– If any computation accepts, print the corresponding sj followed by #

□

Theorem 2.14: If L is Turing-recognisable, then there exists an enumerator for L
that prints each word of L exactly once.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 23 of 27

Enumerators

Let L = L(M) for some TMM, and let s1, s2, . . . be an enumeration of Σ∗.
Then the following enumerator E enumerates L:

E B Ignore the input.

• Print the first # to initialise the output.
• Repeat for i = 1, 2, 3, . . .

– RunM for i steps on each input s1, s2, . . . , si

– If any computation accepts, print the corresponding sj followed by #

□

Theorem 2.14: If L is Turing-recognisable, then there exists an enumerator for L
that prints each word of L exactly once.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 23 of 27

Enumerators

Let L = L(M) for some TMM, and let s1, s2, . . . be an enumeration of Σ∗.
Then the following enumerator E enumerates L:

E B Ignore the input.

• Print the first # to initialise the output.
• Repeat for i = 1, 2, 3, . . .

– RunM for i steps on each input s1, s2, . . . , si

– If any computation accepts, print the corresponding sj followed by #

□

Theorem 2.14: If L is Turing-recognisable, then there exists an enumerator for L
that prints each word of L exactly once.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 23 of 27

Enumerators

Theorem 2.15: A language L is decidable if and only if there exists an enumer-
ator for L that outputs exactly the words of L in some order of non-decreasing
length.

Proof: Suppose L to be decidable, and letM be a TM that decides L.

• Define a TMM′ that generates, on some scratch tape, all words over Σ in some
order of non-decreasing length. (Exercise!)

• An enumerator E works as follows:
(1) Print the first # to initialise the output.
(2) RunM′ (enumerating words), followed byM (to check if the current word is

accepted). IfM accepts w, then print w followed by #.

Then E enumerates exactly the words of L in some order of non-decreasing length.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 24 of 27

Enumerators

Theorem 2.15: A language L is decidable if and only if there exists an enumer-
ator for L that outputs exactly the words of L in some order of non-decreasing
length.

Proof: Suppose L to be decidable, and letM be a TM that decides L.

• Define a TMM′ that generates, on some scratch tape, all words over Σ in some
order of non-decreasing length. (Exercise!)

• An enumerator E works as follows:
(1) Print the first # to initialise the output.
(2) RunM′ (enumerating words), followed byM (to check if the current word is

accepted). IfM accepts w, then print w followed by #.

Then E enumerates exactly the words of L in some order of non-decreasing length.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 24 of 27

Enumerators

Theorem 2.15: A language L is decidable if and only if there exists an enumer-
ator for L that outputs exactly the words of L in some order of non-decreasing
length.

Proof: Suppose L to be decidable, and letM be a TM that decides L.

• Define a TMM′ that generates, on some scratch tape, all words over Σ in some
order of non-decreasing length. (Exercise!)

• An enumerator E works as follows:
(1) Print the first # to initialise the output.
(2) RunM′ (enumerating words), followed byM (to check if the current word is

accepted). IfM accepts w, then print w followed by #.

Then E enumerates exactly the words of L in some order of non-decreasing length.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 24 of 27

Enumerators

Theorem 2.15: A language L is decidable if and only if there exists an enumer-
ator for L that outputs exactly the words of L in some order of non-decreasing
length.

Proof: Suppose L to be decidable, and letM be a TM that decides L.

• Define a TMM′ that generates, on some scratch tape, all words over Σ in some
order of non-decreasing length. (Exercise!)

• An enumerator E works as follows:
(1) Print the first # to initialise the output.
(2) RunM′ (enumerating words), followed byM (to check if the current word is

accepted). IfM accepts w, then print w followed by #.

Then E enumerates exactly the words of L in some order of non-decreasing length.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 24 of 27

Enumerators

Theorem 2.15: A language L is decidable if and only if there exists an enumer-
ator for L that outputs exactly the words of L in some order of non-decreasing
length.

Proof: Suppose L to be decidable, and letM be a TM that decides L.

• Define a TMM′ that generates, on some scratch tape, all words over Σ in some
order of non-decreasing length. (Exercise!)

• An enumerator E works as follows:
(1) Print the first # to initialise the output.
(2) RunM′ (enumerating words), followed byM (to check if the current word is

accepted). IfM accepts w, then print w followed by #.

Then E enumerates exactly the words of L in some order of non-decreasing length.

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 24 of 27

Enumerators

Now suppose L can be enumerated by some TM E in some order of non-decreasing
length.

• If L is finite, then L is accepted by a finite automaton.

• If L is infinite, then we define a deciderM for it as follows.

M B On input w
– Simulate E until it either outputs w or some word longer than w
– If E outputs w, then accept, else reject.

Observation: since L is infinite, for each w ∈ Σ∗ the TM E will eventually generate
w or some word longer than w. Therefore,M always halts and thus decides L.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 25 of 27

Enumerators

Now suppose L can be enumerated by some TM E in some order of non-decreasing
length.

• If L is finite, then L is accepted by a finite automaton.

• If L is infinite, then we define a deciderM for it as follows.

M B On input w
– Simulate E until it either outputs w or some word longer than w
– If E outputs w, then accept, else reject.

Observation: since L is infinite, for each w ∈ Σ∗ the TM E will eventually generate
w or some word longer than w. Therefore,M always halts and thus decides L.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 25 of 27

Enumerators

Now suppose L can be enumerated by some TM E in some order of non-decreasing
length.

• If L is finite, then L is accepted by a finite automaton.

• If L is infinite, then we define a deciderM for it as follows.

M B On input w
– Simulate E until it either outputs w or some word longer than w
– If E outputs w, then accept, else reject.

Observation: since L is infinite, for each w ∈ Σ∗ the TM E will eventually generate
w or some word longer than w. Therefore,M always halts and thus decides L.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 25 of 27

Enumerators

Now suppose L can be enumerated by some TM E in some order of non-decreasing
length.

• If L is finite, then L is accepted by a finite automaton.

• If L is infinite, then we define a deciderM for it as follows.

M B On input w
– Simulate E until it either outputs w or some word longer than w
– If E outputs w, then accept, else reject.

Observation: since L is infinite, for each w ∈ Σ∗ the TM E will eventually generate
w or some word longer than w. Therefore,M always halts and thus decides L.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 25 of 27

Enumerators

Now suppose L can be enumerated by some TM E in some order of non-decreasing
length.

• If L is finite, then L is accepted by a finite automaton.

• If L is infinite, then we define a deciderM for it as follows.

M B On input w
– Simulate E until it either outputs w or some word longer than w
– If E outputs w, then accept, else reject.

Observation: since L is infinite, for each w ∈ Σ∗ the TM E will eventually generate
w or some word longer than w.

Therefore,M always halts and thus decides L.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 25 of 27

Enumerators

Now suppose L can be enumerated by some TM E in some order of non-decreasing
length.

• If L is finite, then L is accepted by a finite automaton.

• If L is infinite, then we define a deciderM for it as follows.

M B On input w
– Simulate E until it either outputs w or some word longer than w
– If E outputs w, then accept, else reject.

Observation: since L is infinite, for each w ∈ Σ∗ the TM E will eventually generate
w or some word longer than w. Therefore,M always halts and thus decides L.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 25 of 27

Enumerators

Now suppose L can be enumerated by some TM E in some order of non-decreasing
length.

• If L is finite, then L is accepted by a finite automaton.

• If L is infinite, then we define a deciderM for it as follows.

M B On input w
– Simulate E until it either outputs w or some word longer than w
– If E outputs w, then accept, else reject.

Observation: since L is infinite, for each w ∈ Σ∗ the TM E will eventually generate
w or some word longer than w. Therefore,M always halts and thus decides L.

□

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 25 of 27

Summary and Outlook

Turing Machines are a simple model of computation

Recognisable (semi-decidable) = recursively enumerable

Decidable = computable = recursive

Many variants of TMs exist – they normally recognise/decide the same languages

What’s next?

• A short look into undecidability

• Recursion and self-referentiality

• Actual complexity classes

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 26 of 27

Looking for Project or Thesis Topics?

On Thursday, 24 Oct 2024 at 1pm in APB 3027 we will present possible topics
to conduct in the Knowledge-Based Systems group as a study project (many
suitable modules) or final thesis (BSc, MSc, Diploma).

Not only theoretical topics but also implementation work.

We also have student job opportunities (SHK/WHK).

You are especially welcome if you are eager to work with Rust or LEAN :)

See also: https://iccl.inf.tu-dresden.de/web/Projekte_und_
Studienarbeiten_Wissensbasierte_Systeme/en

Markus Krötzsch; 15th Oct 2024 Complexity Theory slide 27 of 27

https://iccl.inf.tu-dresden.de/web/Projekte_und_Studienarbeiten_Wissensbasierte_Systeme/en
https://iccl.inf.tu-dresden.de/web/Projekte_und_Studienarbeiten_Wissensbasierte_Systeme/en

	Turing Machines and Languages
	Deterministic Turing Machines
	Recognisability and Decidability
	Variants of Turing Machines

