
COMPLEXITY THEORY

Lecture 9: Space Complexity

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 18 Nov 2024

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 2 of 21

Review: Space Complexity Classes

Recall our earlier definitions of space complexities:

Definition 9.1: Let f : N→ R+ be a function.

(1) DSpace(f (n)) is the class of all languages L for which there is an
O(f (n))-space bounded Turing machine deciding L.

(2) NSpace(f (n)) is the class of all languages L for which there is an
O(f (n))-space bounded nondeterministic Turing machine deciding L.

Being O(f (n))-space bounded requires a (nondeterministic) TM

• to halt on every input and

• to use ≤ f (|w|) tape cells on every computation path.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 3 of 21

Space Complexity Classes

Some important space complexity classes:

L = LogSpace = DSpace(log n) logarithmic space

PSpace =
⋃
d≥1

DSpace(nd) polynomial space

ExpSpace =
⋃
d≥1

DSpace(2nd
) exponential space

NL = NLogSpace = NSpace(log n) nondet. logarithmic space

NPSpace =
⋃
d≥1

NSpace(nd) nondet. polynomial space

NExpSpace =
⋃
d≥1

NSpace(2nd
) nondet. exponential space

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 4 of 21

The Power of Space

Space seems to be more powerful than time
because space can be reused.

Example 9.2: Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
one satisfies the formula.

Example 9.3: Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 5 of 21

The Power of Space

Space seems to be more powerful than time
because space can be reused.

Example 9.2: Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
one satisfies the formula.

Example 9.3: Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 5 of 21

The Power of Space

Space seems to be more powerful than time
because space can be reused.

Example 9.2: Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
one satisfies the formula.

Example 9.3: Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 5 of 21

The Power of Space

Space seems to be more powerful than time
because space can be reused.

Example 9.2: Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
one satisfies the formula.

Example 9.3: Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 5 of 21

Linear Compression

Theorem 9.4: For every function f : N → R+, for all c ∈ N, and for every f -space
bounded (deterministic/nondeterministic) Turing machine M:

there is a max{1, 1
c f (n)}-space bounded (deterministic/nondeterministic)

Turing machine M′ that accepts the same language as M.

Proof idea: Similar to (but much simpler than) linear speed-up. □

This justifies using O-notation for defining space classes.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 6 of 21

Linear Compression

Theorem 9.4: For every function f : N → R+, for all c ∈ N, and for every f -space
bounded (deterministic/nondeterministic) Turing machine M:

there is a max{1, 1
c f (n)}-space bounded (deterministic/nondeterministic)

Turing machine M′ that accepts the same language as M.

Proof idea: Similar to (but much simpler than) linear speed-up. □

This justifies using O-notation for defining space classes.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 6 of 21

Linear Compression

Theorem 9.4: For every function f : N → R+, for all c ∈ N, and for every f -space
bounded (deterministic/nondeterministic) Turing machine M:

there is a max{1, 1
c f (n)}-space bounded (deterministic/nondeterministic)

Turing machine M′ that accepts the same language as M.

Proof idea: Similar to (but much simpler than) linear speed-up. □

This justifies using O-notation for defining space classes.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 6 of 21

Tape Reduction

Theorem 9.5: For every function f : N→ R+ all k ≥ 1 and L ⊆ Σ∗:

If L can be decided by an f -space bounded k-tape Turing-machine,
then it can also be decided by an f -space bounded 1-tape Turing-machine.

Proof idea: Combine tapes with a similar reduction as for time. Compress space to
avoid linear increase. □

Note: We still use a separate read-only input tape to define some space complexities,
such as LogSpace.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 7 of 21

Tape Reduction

Theorem 9.5: For every function f : N→ R+ all k ≥ 1 and L ⊆ Σ∗:

If L can be decided by an f -space bounded k-tape Turing-machine,
then it can also be decided by an f -space bounded 1-tape Turing-machine.

Proof idea: Combine tapes with a similar reduction as for time. Compress space to
avoid linear increase. □

Note: We still use a separate read-only input tape to define some space complexities,
such as LogSpace.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 7 of 21

Time vs. Space

Theorem 9.6: For all functions f : N→ R+:

DTime(f) ⊆ DSpace(f) and NTime(f) ⊆ NSpace(f)

Proof: Visiting a cell takes at least one time step. □

Theorem 9.7: For all functions f : N→ R+ with f (n) ≥ log n:

DSpace(f) ⊆ DTime(2O(f)) and NSpace(f) ⊆ DTime(2O(f))

Proof: Based on configuration graphs and a bound on the number of possible
configurations.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 8 of 21

Time vs. Space

Theorem 9.6: For all functions f : N→ R+:

DTime(f) ⊆ DSpace(f) and NTime(f) ⊆ NSpace(f)

Proof: Visiting a cell takes at least one time step. □

Theorem 9.7: For all functions f : N→ R+ with f (n) ≥ log n:

DSpace(f) ⊆ DTime(2O(f)) and NSpace(f) ⊆ DTime(2O(f))

Proof: Based on configuration graphs and a bound on the number of possible
configurations.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 8 of 21

Time vs. Space

Theorem 9.6: For all functions f : N→ R+:

DTime(f) ⊆ DSpace(f) and NTime(f) ⊆ NSpace(f)

Proof: Visiting a cell takes at least one time step. □

Theorem 9.7: For all functions f : N→ R+ with f (n) ≥ log n:

DSpace(f) ⊆ DTime(2O(f)) and NSpace(f) ⊆ DTime(2O(f))

Proof: Based on configuration graphs and a bound on the number of possible
configurations.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 8 of 21

Number of Possible Configurations
LetM := (Q,Σ,Γ, q0, δ, qstart) be a 2-tape Turing machine

(1 read-only input tape + 1 work tape)

Recall: A configuration ofM is a quadruple (q, p1, p2, x) where

• q ∈ Q is the current state,

• pi ∈ N is the head position on tape i, and

• x ∈ Γ∗ is the tape content.

Let w ∈ Σ∗ be an input toM and n := |w|.
• Then also p1 ≤ n.

• IfM is f (n)-space bounded we can assume p2 ≤ f (n) and |x| ≤ f (n)

Hence, there are at most

|Q| · n · f (n) · |Γ|f (n) = n · 2O(f (n)) = 2O(f (n))

different configurations on inputs of length n (the last equality requires f (n) ≥ log n).

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 9 of 21

Number of Possible Configurations
LetM := (Q,Σ,Γ, q0, δ, qstart) be a 2-tape Turing machine

(1 read-only input tape + 1 work tape)

Recall: A configuration ofM is a quadruple (q, p1, p2, x) where

• q ∈ Q is the current state,

• pi ∈ N is the head position on tape i, and

• x ∈ Γ∗ is the tape content.

Let w ∈ Σ∗ be an input toM and n := |w|.
• Then also p1 ≤ n.

• IfM is f (n)-space bounded we can assume p2 ≤ f (n) and |x| ≤ f (n)

Hence, there are at most

|Q| · n · f (n) · |Γ|f (n) = n · 2O(f (n)) = 2O(f (n))

different configurations on inputs of length n (the last equality requires f (n) ≥ log n).
Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 9 of 21

Configuration Graphs

The possible computations of a TMM (on input w) form a directed graph:

• Vertices: configurations thatM can reach (on input w)

• Edges: there is an edge from C1 to C2 if C1 ⊢M C2

(C2 reachable from C1 in a single step)

This yields the configuration graph:

• Could be infinite in general.

• For f (n)-space bounded 2-tape TMs,
there can be at most 2O(f (n)) vertices and (2O(f (n)))2 = 2O(f (n)) edges

A computation ofM on input w corresponds to a path in the configuration graph from
the start configuration to a stop configuration.

Hence, to test ifM accepts input w,

• construct the configuration graph and

• find a path from the start to an accepting stop configuration.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 10 of 21

Configuration Graphs

The possible computations of a TMM (on input w) form a directed graph:

• Vertices: configurations thatM can reach (on input w)

• Edges: there is an edge from C1 to C2 if C1 ⊢M C2

(C2 reachable from C1 in a single step)

This yields the configuration graph:

• Could be infinite in general.

• For f (n)-space bounded 2-tape TMs,
there can be at most 2O(f (n)) vertices and (2O(f (n)))2 = 2O(f (n)) edges

A computation ofM on input w corresponds to a path in the configuration graph from
the start configuration to a stop configuration.

Hence, to test ifM accepts input w,

• construct the configuration graph and

• find a path from the start to an accepting stop configuration.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 10 of 21

Time vs. Space

Theorem 9.6: For all functions f : N→ R+:

DTime(f) ⊆ DSpace(f) and NTime(f) ⊆ NSpace(f)

Proof: Visiting a cell takes at least one time step. □

Theorem 9.7: For all functions f : N→ R+ with f (n) ≥ log n:

DSpace(f) ⊆ DTime(2O(f)) and NSpace(f) ⊆ DTime(2O(f))

Proof: Build the configuration graph (time 2O(f (n))) and find a path from the start to an
accepting stop configuration (time 2O(f (n))). □

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 11 of 21

Basic Space/Time Relationships

Applying the results of the previous slides, we get the following relations:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ NPSpace ⊆ ExpTime ⊆ NExpTime

We also noted P ⊆ coNP ⊆ PSpace.

Open questions:

• What is the relationship between space classes and their co-classes?

• What is the relationship between deterministic and non-deterministic space
classes?

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 12 of 21

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when
given the same amount of time than a deterministic TM:

Most believe that P ⊊ NP

How about nondeterminism in space-bounded TMs?

Theorem 9.8 (Savitch’s Theorem, 1970): For any
function f : N→ R+ with f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

That is: nondeterminism adds almost no power to space-bounded TMs!

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 13 of 21

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when
given the same amount of time than a deterministic TM:

Most believe that P ⊊ NP

How about nondeterminism in space-bounded TMs?

Theorem 9.8 (Savitch’s Theorem, 1970): For any
function f : N→ R+ with f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

That is: nondeterminism adds almost no power to space-bounded TMs!

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 13 of 21

Consequences of Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem, 1970): For any function f : N → R+ with
f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

Corollary 9.9: PSpace = NPSpace.

Proof: PSpace ⊆ NPSpace is clear. The converse follows since the square of a
polynomial is still a polynomial. □

Similarly for “bigger” classes, e.g., ExpSpace = NExpSpace.

Corollary 9.10: NL ⊆ DSpace(O(log2 n)).

Note that log2(n) < O(log n), so we do not obtain NL = L from this.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 14 of 21

Consequences of Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem, 1970): For any function f : N → R+ with
f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

Corollary 9.9: PSpace = NPSpace.

Proof: PSpace ⊆ NPSpace is clear. The converse follows since the square of a
polynomial is still a polynomial. □

Similarly for “bigger” classes, e.g., ExpSpace = NExpSpace.

Corollary 9.10: NL ⊆ DSpace(O(log2 n)).

Note that log2(n) < O(log n), so we do not obtain NL = L from this.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 14 of 21

Consequences of Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem, 1970): For any function f : N → R+ with
f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

Corollary 9.9: PSpace = NPSpace.

Proof: PSpace ⊆ NPSpace is clear. The converse follows since the square of a
polynomial is still a polynomial. □

Similarly for “bigger” classes, e.g., ExpSpace = NExpSpace.

Corollary 9.10: NL ⊆ DSpace(O(log2 n)).

Note that log2(n) < O(log n), so we do not obtain NL = L from this.

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 14 of 21

Proving Savitch’s Theorem

Simulating nondeterminism with more space:

• Use configuration graph of nondeterministic space-bounded TM

• Check if an accepting configuration can be reached

• Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!
What to do?

Things we can do:
• Store one configuration:

– one configuration requires log n + O(f (n)) space
– if f (n) ≥ log n, then this is O(f (n)) space

• Store f (n) configurations (remember we have f 2(n) space)

• Iterate over all configurations (one by one)

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 15 of 21

Proving Savitch’s Theorem

Simulating nondeterminism with more space:

• Use configuration graph of nondeterministic space-bounded TM

• Check if an accepting configuration can be reached

• Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!
What to do?

Things we can do:
• Store one configuration:

– one configuration requires log n + O(f (n)) space
– if f (n) ≥ log n, then this is O(f (n)) space

• Store f (n) configurations (remember we have f 2(n) space)

• Iterate over all configurations (one by one)

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 15 of 21

Proving Savitch’s Theorem

Simulating nondeterminism with more space:

• Use configuration graph of nondeterministic space-bounded TM

• Check if an accepting configuration can be reached

• Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!
What to do?

Things we can do:
• Store one configuration:

– one configuration requires log n + O(f (n)) space
– if f (n) ≥ log n, then this is O(f (n)) space

• Store f (n) configurations (remember we have f 2(n) space)

• Iterate over all configurations (one by one)

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 15 of 21

Proving Savitch’s Theorem: Key Idea

To find out if we can reach an accepting configuration,
we solve a slightly more general question:

Yieldability

Input: TM configurations C1 and C2, integer k

Problem: Can TM get from C1 to C2 in at most k steps?

Approach: check if there is an intermediate configuration C′ such that

(1) C1 can reach C′ in k/2 steps and

(2) C′ can reach C2 in k/2 steps

{ Deterministic: we can try all C′ (iteration)
{ Space-efficient: we can reuse the same space for both steps

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 16 of 21

Proving Savitch’s Theorem: Key Idea

To find out if we can reach an accepting configuration,
we solve a slightly more general question:

Yieldability

Input: TM configurations C1 and C2, integer k

Problem: Can TM get from C1 to C2 in at most k steps?

Approach: check if there is an intermediate configuration C′ such that

(1) C1 can reach C′ in k/2 steps and

(2) C′ can reach C2 in k/2 steps

{ Deterministic: we can try all C′ (iteration)
{ Space-efficient: we can reuse the same space for both steps

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 16 of 21

An Algorithm for Yieldability

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 ⊢M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• We only call CanYield only with k a power of 2, so k/2 ∈ N

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 17 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 ⊢M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))
• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 18 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 ⊢M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))

• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 18 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 ⊢M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))
• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 18 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 ⊢M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))
• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 18 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 ⊢M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))
• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 18 of 21

Simulating Nondeterministic Space-Bounded TMs

Input: TMM that runs in NSpace(f (n)); input word w of length n

Algorithm:

• ModifyM to have a unique accepting configuration Caccept:
when accepting, erase tape and move head to the very left

• Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)

• Return CanYield(Cstart,Caccept,k) with k = 2df (n)

Space requirements:
CanYield runs in space

O
(
f (n) · log k

)
= O
(
f (n) · log 2df (n)

)
= O(f (n) · df (n)) = O(f 2(n))

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 19 of 21

Simulating Nondeterministic Space-Bounded TMs

Input: TMM that runs in NSpace(f (n)); input word w of length n

Algorithm:

• ModifyM to have a unique accepting configuration Caccept:
when accepting, erase tape and move head to the very left

• Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)

• Return CanYield(Cstart,Caccept,k) with k = 2df (n)

Space requirements:
CanYield runs in space

O
(
f (n) · log k

)
= O
(
f (n) · log 2df (n)

)
= O(f (n) · df (n)) = O(f 2(n))

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 19 of 21

Did We Really Do It?

“Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)”

How does the algorithm actually do this?

• f (n) was not part of the input!

• Even if we knew f , it might not be easy to compute!

Solution: replace f (n) by a parameter ℓ and probe its value

(1) Start with ℓ = 1

(2) Check ifM can reach any configuration with more than ℓ tape cells
(iterate over all configurations of size ℓ + 1; use CanYield on each)

(3) If yes, increase ℓ by 1; goto (2)

(4) Run algorithm as before, with f (n) replaced by ℓ

Therefore: we don’t need to know f at all. This finishes the proof. □

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 20 of 21

Did We Really Do It?

“Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)”

How does the algorithm actually do this?

• f (n) was not part of the input!

• Even if we knew f , it might not be easy to compute!

Solution: replace f (n) by a parameter ℓ and probe its value

(1) Start with ℓ = 1

(2) Check ifM can reach any configuration with more than ℓ tape cells
(iterate over all configurations of size ℓ + 1; use CanYield on each)

(3) If yes, increase ℓ by 1; goto (2)

(4) Run algorithm as before, with f (n) replaced by ℓ

Therefore: we don’t need to know f at all. This finishes the proof. □

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 20 of 21

Did We Really Do It?

“Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)”

How does the algorithm actually do this?

• f (n) was not part of the input!

• Even if we knew f , it might not be easy to compute!

Solution: replace f (n) by a parameter ℓ and probe its value

(1) Start with ℓ = 1

(2) Check ifM can reach any configuration with more than ℓ tape cells
(iterate over all configurations of size ℓ + 1; use CanYield on each)

(3) If yes, increase ℓ by 1; goto (2)

(4) Run algorithm as before, with f (n) replaced by ℓ

Therefore: we don’t need to know f at all. This finishes the proof. □

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 20 of 21

Did We Really Do It?

“Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)”

How does the algorithm actually do this?

• f (n) was not part of the input!

• Even if we knew f , it might not be easy to compute!

Solution: replace f (n) by a parameter ℓ and probe its value

(1) Start with ℓ = 1

(2) Check ifM can reach any configuration with more than ℓ tape cells
(iterate over all configurations of size ℓ + 1; use CanYield on each)

(3) If yes, increase ℓ by 1; goto (2)

(4) Run algorithm as before, with f (n) replaced by ℓ

Therefore: we don’t need to know f at all. This finishes the proof. □

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 20 of 21

Summary: Relationships of Space and Time

Summing up, we get the following relations:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime ⊆ NExpTime

We also noted P ⊆ coNP ⊆ PSpace.

Open questions:

• Is Savitch’s Theorem tight?

• Are there any interesting problems in these space classes?

• We have PSpace = NPSpace = coNPSpace.
But what about L, NL, and coNL?

{ the first: nobody knows (YCTBF); the others: see upcoming lectures

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 21 of 21

Summary: Relationships of Space and Time

Summing up, we get the following relations:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime ⊆ NExpTime

We also noted P ⊆ coNP ⊆ PSpace.

Open questions:

• Is Savitch’s Theorem tight?

• Are there any interesting problems in these space classes?

• We have PSpace = NPSpace = coNPSpace.
But what about L, NL, and coNL?

{ the first: nobody knows (YCTBF); the others: see upcoming lectures

Markus Krötzsch; 18 Nov 2024 Complexity Theory slide 21 of 21

	Space Complexity

