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Approximation Factor

Definition 28.1: Constant-factor approximation c>1
In minimization problems: the solution cost < ¢ - the optimal solution cost
In maximization problems: the solution cost > % -the optimal solution cost
Approximations in polynomial time
VEerTex CovER: 2-approximation
WEeieHTED VERTEX CoOVER: 2-approximation
Metric TSP: 3/2-approximation
Low-DiameTer CLUSTERING: 2-approximation
General TSP: no constant-factor approximation unless P = NP
Cuique: no constant-factor approximation unless P = NP
INbEPENDENT SET: no constant-factor approximation unless P = NP
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NP-completeness of KNapsack

KNapPsack

Input:

Problem:

Asetl:={1,... n}of items,

each of integral value v; and weight w; for 1 <i < n;
target value r; and weight limit £

Is there T C I such that

Ziervi > tand Y w; <7

Fheorem 8.8: Knapsack is NP-complete.

Proof:

(1) Knapsack € NP: Take T to be the certificate.

(2) Knapsack is NP-hard: Sueser Sum <, Knapsack
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KnapPsack: Maximization Version

KNAPSACK

Input:  Aset/:={l,...,n} of items,
each of integral value v; and weight w; for 1 <i < n;
and weight limit £. Assume w; < ¢ for all i.
Problem: Find T C I such that
Sierwi < Cand ) cqv; is maximal

Example 28.2:

item i 1 2 3 4
valuev; | 13 10 6 5
weightw; | 12 3 14 9

® What is an optimal solution for £ = 207?
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A Pseudo-Polynomial Algorithm for Knapsack

Knapsack can be solved in time O(n{) using dynamic programming

Initialisation:
® Create an ({+ 1) x (n+ 1) matrix M
e Set M(w,0):=0foralll <w<fand M(0,i):=0forall1 <i<n

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting
from the first i items with weight limit w:

Fori=0,1,...,n—1,setM(w,i+ 1) as
M(W7 i+ 1) = max{M(W,i), M(W - Wi+l7i) + Vi+l}
Here, if w —w;; < 0, we always take M(w, i).

Solution: Take the items contributing to the value in cell M(¢, n).
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Another Pseudo-Polynomial Algorithm for KNaPsack

Knapsack can be solved in time O(n?v*), where v* = maxe; v;, using dynamic
programming
Initialisation:

® Create an (V + 1) x (n+ 1) matrix M, where V = },.; vi = O(nv*)

® Set M(v,0):=0foralll <v<VandM(,i):=0foralll <i<n

Computation: Assign further M(v, i) to be the smallest capacity needed to obtain a value

> v by selecting from the first i items:
Fori=0,1,...,n—1,set M(v,i+ 1) as +oo if /] v; < vand as

M@, i+ 1) :=min{M(v,i), M(max{0,v — vii1},i) + wis1}
otherwise.

Solution: Select the maximal v for which M(v, n) < ¢ and take the items contributing to
the value in the cell M(v, n).
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Approximate Algorithm for Knapsack

Goal: Transform the pseudo-polynomial exact algorithm into a polynomial approxi-
mate algorithm.

® For0 < e < 1, we want to obtain a (1 + &)-approximation with an algorithm whose
running time polynomially depends on the input size and on 1 /.

Idea: Use fewer values for rows.
® For example, choose some b and keep only every bth possible value.
® Alternatively, replace all v; by [v;/b] and run the algorithm as is.
o |f b = ev*/2n, then the algorithm runs in time

0(1121;*) _ O(nzv* .2n) _ 0(1’13)'
b ev* &

® The solution returned by the algorithm is feasible: it has weight < ¢.

® How valuable is it?
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Approximate Algorithm for Knapsack

Approximate algorithm: Replace every v; by 9; = [v;/b], where b = &v*/2n, and

run the second pseudo-polynomial algorithm for Knapsack.

Fheorem 28.3: The approximate algorithm finds a (1 + &)-approximate solution. \

Proof: Let S C I be our solution and let S* C I be an optimal solution.

Z P < Z Py since S is optimal for the modified values

ieS* €S
DY vb< Y b< Y i+b)<nb+ ) v
ieS* ieS* ieS ieS €S
Assume v; = v*. Then, v; = 2nb/e = ¥;b and };cg 9ib > 9;b = v; = 2nb/e.

Zv,-2Zf/ib—nbz2nb/s—nb=(2/e—l)nb = nb< Zies Vi <M

€S ieS

Zv,-Snb+Zv,-Ssti+Zvi=(1+s)Zvi

ieS* i€S €S i€S ieS
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Polynomial-Time Approximation Scheme

Definition 28.4:

® An algorithm A is an approximation scheme for an optimization problem IT if,
on input (Z, &), where [ is an instance of IT and ¢ > 0, it outputs a solution
that is a (1 + &)-approximation of an optimal solution for 1.

o |f, for every fixed &, the running time of A is bounded by a polynomial in the
size of I, then A is a polynomial-time approximation scheme (PTAS) for II.

e |f the running time of A is bounded by a polynomial in the size of I and the

value of 1/¢, then A is a fully polynomial-time approximation scheme
(FPTAS) for I1.

® \We have shown that Knapsack has an FPTAS.
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Summary and Outlook

Some NP-hard problems admit polynomial-time constant-factor approximation
algorithms.

Some others admit a PTAS, making it possible to get as close to an optimal solution as
you want in time that depends polynomially on the size of the input but arbitrarily on the
desired approximation factor.

For some problems, it is possible to obtain an FPTAS, whose running time depends
polynomially on both the input size and the approximation factor.

What’s next?
® Parameterized complexity

® Examinations
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