Extracting Confident General Concept Inclusions from Finite Interpretations

Daniel Borchmann

Automated is a Good Idea

Goal (of AI)
Let computers do what they can do (and leave all the rest to the humans.)
Automation is a Good Idea

Goal (of AI)
Let computers do what they can do (and leave all the rest to the humans.)

Requirement
Computers must know about the real world.
Motivation and Introduction

Automation is a Good Idea

Goal (of AI)
Let computers do what they can do (and leave all the rest to the humans.)

Requirement
Computers must know about the real world.

Goal (of Knowledge Representation)
Represent knowledge in a way suitable for computers,
Motivation and Introduction

Automation is a Good Idea

Goal (of AI)
Let computers do what they can do (and leave all the rest to the humans.)

Requirement
Computers must know about the real world.

Goal (of Knowledge Representation)
Represent knowledge in a way suitable for computers, i.e. as a description logics ontology.
Ontologies contain assertional knowledge and terminological knowledge.
Ontologies contain assertional knowledge and terminological knowledge.

Example (\mathcal{EL}-Ontology)

$(\mathcal{T}, \mathcal{A})$ is an ontology, where

\[
\mathcal{T} = \{ \text{Cat} \sqsubseteq \text{Animal} \cap \exists \text{hunts}.\text{Mouse}, \\
\qquad \text{Cat} \cap \text{Mouse} \sqsubseteq \bot \} \\
\mathcal{A} = \{ \text{Cat}(\text{Tom}), \text{Mouse}(\text{Jerry}), \text{hunts}(\text{Tom}, \text{Jerry}) \}
\]
Motivation and Introduction

Description Logics Ontologies

Ontologies contain assertional knowledge and terminological knowledge.

Example (\mathcal{EL}-Ontology)

$(\mathcal{T}, \mathcal{A})$ is an ontology, where

$$
\mathcal{T} = \{ \text{Cat} \sqsubseteq \text{Animal} \land \exists \text{hunts} \cdot \text{Mouse}, \\
\quad \text{Cat} \sqcap \text{Mouse} \sqsubseteq \bot \} \\
\mathcal{A} = \{ \text{Cat}(\text{Tom}), \text{Mouse}(\text{Jerry}), \text{hunts}(\text{Tom}, \text{Jerry}) \}
$$

Definition

Terminological axioms of the form $C \sqsubseteq D$ are called general concept inclusions (GCIs.)
Problem

Construction of real world ontologies is a difficult task
Motivation and Introduction

Description Logics Ontologies

Problem

Construction of real world ontologies is a difficult task

But unstructured information is often already available (i.e. as textual publication)
Motivation and Introduction

Description Logics Ontologies

Problem

Construction of real world ontologies is a difficult task

But unstructured information is often already available (i.e. as textual publication)

Goal

Automatically construct ontologies from unstructured data
Motivation and Introduction

Description Logics Ontologies

Problem

Construction of real world ontologies is a difficult task

But unstructured information is often already available (i.e. as textual publication)

Goal

Semi-Automatically construct the terminological part of ontologies from unstructured data
Unstructured Data

Question

What is unstructured data?
Unstructured Data

Question

What is unstructured data?

Example (RDF Triples)

<http://dbpedia.org/resource/Autism>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/resource/Aristotle>
<http://dbpedia.org/ontology/influenced>
<http://dbpedia.org/resource/Western_philosophy> .
Unstructured Data

Question
What is unstructured data?

Example (RDF Triples)

<http://dbpedia.org/resource/Autism>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/resource/Aristotle>
<http://dbpedia.org/ontology/influenced>
<http://dbpedia.org/resource/Western_philosophy> .
Motivation and Introduction

Unstructured Data

Question
What is unstructured data?

Example (RDF Triples)

<http://dbpedia.org/resource/Autism>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/resource/Aristotle>
<http://dbpedia.org/ontology/influenced>
<http://dbpedia.org/resource/Western_philosophy> .

Approach

Unstructured data is given as a *finite interpretation* (finite vertex- and edge-labeled graphs)
Example (Interpretation $\mathcal{I}_{\text{pets}}$)

- **Node 1**: Cat, Mammal
- **Node 2**: Dog, Mammal
- **Node 3**: Mouse, Mammal
- **Node 4**: Cheese

Edges:
- **1 to 3**: hunts (from Cat to Mouse)
- **2 to 3**: fights (from Dog to Mouse)
- **3 to 4**: eats (from Mouse to Cheese)
- **2 to 1**: fights (from Dog to Cat)

Explanation

The elements (vertices) satisfying $C = \text{Mammal}[\text{hunts}.\text{Mouse}]$ are $C[I] = t_1u$. $C[I]$ is called the extension of C.

Daniel Borchmann
Extracting Confident GCIs
7 / 52
A Simple Example

Example (Interpretation $\mathcal{I}_{\text{pets}}$)

The elements (vertices) satisfying $C = \text{Mammal} \cap \exists \text{hunts}. \text{Mouse}$ are

$$C_\mathcal{I} = \{1\}.$$

$C_\mathcal{I}$ is called the extension of C.
Goal

Extract all *terminological knowledge*, i.e. all valid GCIs, from \mathcal{I}.
Definition

Let C, D be \mathcal{EL}^\perp-concept descriptions. Then the GCI $C \subseteq D$ holds in \mathcal{I} if and only if $C^\mathcal{I} \subseteq D^\mathcal{I}$.

Problem

The number of valid GCIs of \mathcal{I} is (normally) infinite.

Example

$\text{Cat} \subseteq \text{Mammal}$ holds in \mathcal{I}, and so do Dhunts.

$\text{Cat} \subseteq \text{Dhunts}$.

$\text{Mammal} \subseteq \text{Dhunts}$.

Dhunts. . .
Terminological Knowledge of Interpretations

Definition

Let C, D be \mathcal{EL}^\bot-concept descriptions. Then the GCI $C \sqsubseteq D$ holds in I if and only if $C^I \subseteq D^I$.

Problem

The number of valid GCIs of I is (normally) infinite.
Terminological Knowledge of Interpretations

Definition

Let C, D be \mathcal{EL}-concept descriptions. Then the GCI $C \sqsubseteq D$ holds in \mathcal{I} if and only if $C^\mathcal{I} \subseteq D^\mathcal{I}$.

Problem

The number of valid GCIs of \mathcal{I} is (normally) infinite.

Example

Cat \sqsubseteq Mammal holds in $\mathcal{I}_{\text{pets}}$.
Terminological Knowledge of Interpretations

Definition

Let C, D be $\mathcal{E}\mathcal{L}^\perp$-concept descriptions. Then the GCI $C \subseteq D$ holds in \mathcal{I} if and only if $C^\mathcal{I} \subseteq D^\mathcal{I}$.

Problem

The number of valid GCIs of \mathcal{I} is (normally) infinite.

Example

Cat \subseteq Mammal holds in $\mathcal{I}_{\text{pets}}$, and so do

\[\exists\text{hunts.Cat} \subseteq \exists\text{hunts.Mammal}, \]
\[\exists\text{hunts.}\exists\text{hunts.Cat} \subseteq \exists\text{hunts.}\exists\text{hunts.Mammal}, \ldots \]
Bases of Valid GCIs

Approach

Consider bases of valid GCIs of \mathcal{I}, i.e. sets \mathcal{B} of GCIs such that every valid GCI of \mathcal{I} already follows from \mathcal{B} (i.e., \mathcal{B} is sound) and every valid GCI of \mathcal{I} already follows from \mathcal{B} (i.e., \mathcal{B} is complete).

Goal

Find a finite base of all valid GCIs of \mathcal{I}.

Theorem (Baader, Distel 2008)

Finite bases of all valid ELK-GCIs of \mathcal{I} always exist. One can be constructed effectively.
Approach

Consider *bases* of valid GCIs of \mathcal{I}, i.e. sets \mathcal{B} of GCIs such that

- \mathcal{B} contains only valid GCIs of \mathcal{I} (\mathcal{B} is *sound*).
Bases of Valid GCIs

Approach

Consider *bases* of valid GCIs of \mathcal{I}, i.e. sets \mathcal{B} of GCIs such that

- \mathcal{B} contains only valid GCIs of \mathcal{I} (*\mathcal{B} is sound*)
- every valid GCI of \mathcal{I} already *follows* from \mathcal{B} (*\mathcal{B} is complete.*)
Bases of Valid GCIs

Approach
Consider bases of valid GCIs of \mathcal{I}, i.e. sets \mathcal{B} of GCIs such that
- \mathcal{B} contains only valid GCIs of \mathcal{I} (\mathcal{B} is sound)
- every valid GCI of \mathcal{I} already follows from \mathcal{B} (\mathcal{B} is complete.)

Goal
Find a finite base of all valid GCIs of \mathcal{I}.

Theorem (Baader, Distel 2008)
Finite bases of all valid ELK-GCIs of \mathcal{I} always exists. One can be constructed effectively.
Bases of Valid GCIs

Approach
Consider bases of valid GCIs of \mathcal{I}, i.e. sets \mathcal{B} of GCIs such that

- \mathcal{B} contains only valid GCIs of \mathcal{I} (\mathcal{B} is sound)
- every valid GCI of \mathcal{I} already follows from \mathcal{B} (\mathcal{B} is complete.)

Goal
Find a finite base of all valid GCIs of \mathcal{I}.

Theorem (Baader, Distel 2008)

Finite bases of all valid \mathcal{EL}^\bot-GCIs of \mathcal{I} always exists. One can be constructed effectively.
Problem: Errors in DBpedia

Problem

Approach assumes data set \mathcal{I} to be complete and free of errors.
Problem: Errors in DBpedia

Problem

Approach assumes data set \mathcal{I} to be complete and free of errors.

Example

The GCI

$$\exists \text{child. } \top \subseteq \text{Person}$$

does not hold in $\mathcal{I}_{\text{DBpedia}}$.
Problem: Errors in DBpedia

Problem

Approach assumes data set \mathcal{I} to be complete and free of errors.

Example

The GCI

\[\exists \text{child. } \top \subseteq \text{Person} \]

does not hold in $\mathcal{I}_{DBpedia}$, but there are only four erroneous counterexamples (in 5262 individuals.)
Problem: Errors in DBpedia

Problem

Approach assumes data set \mathcal{I} to be complete and free of errors.

Example

The GCI

$$\exists \text{child. } \top \subseteq \text{Person}$$

does not hold in $\mathcal{I}_{\text{DBpedia}}$, but there are only four erroneous counterexamples (in 5262 individuals.)

Idea

Consider confident GCIs, i.e. GCIs that allow some few “exceptions.”
Formal Concept Analysis
From Mathematical Order Theory to a «Theory of Data»
Formal Concept Analysis

What is FCA?

Formal Concept Analysis is a restructuring attempt to modern lattice theory.
What is FCA?

Formal Concept Analysis is a restructuring attempt to modern lattice theory.
Motivation for FCA (back in the 1980s)

Claim: lattice theory has turned into a meaningless manipulation of symbols

Goal: (re)introduce meaning into this theory

Use a theory of concepts for this

Literature
Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts; R. Wille 1982
Formal Concept Analysis Mathematical Foundations; R. Wille and B. Ganter; 1999
Motivation for FCA (back in the 1980s)

- Claim: lattice theory has turned into a meaningless manipulation of symbols
Motivation for FCA (back in the 1980s)

- Claim: lattice theory has turned into a meaningless manipulation of symbols
- Goal: (re)introduce meaning into this theory
Motivation for FCA (back in the 1980s)

- Claim: lattice theory has turned into a meaningless manipulation of symbols
- Goal: (re)introduce *meaning* into this theory
- Use a theory of *concepts* for this
Motivation for FCA (back in the 1980s)

- Claim: lattice theory has turned into a meaningless manipulation of symbols
- Goal: (re)introduce meaning into this theory
- Use a theory of concepts for this

Literature

- Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts; R. Wille 1982
- Formal Concept Analysis Mathematical Foundations; R. Wille and B. Ganter; 1999
The fundamental notion of FCA is the one of a formal context.
The fundamental notion of FCA is the one of a *formal context*.

Definition

Let G, M be sets and let $I \subseteq G \times M$. Then the triple $\mathbf{K} = (G, M, I)$ is called a *formal context*.
The fundamental notion of FCA is the one of a *formal context*.

Definition

Let G, M be sets and let $I \subseteq G \times M$. Then the triple $\mathcal{K} = (G, M, I)$ is called a *formal context*.

Example

$$(\{1, \ldots, 5\}, \{1, \ldots, 5\}, \{(x, y) \mid x \leq y\})$$
The fundamental notion of FCA is the one of a *formal context*.

Definition

Let G, M be sets and let $I \subseteq G \times M$. Then the triple $\mathbb{K} = (G, M, I)$ is called a *formal context*.

Example

$$\left(\{1, \ldots, 5\}, \{1, \ldots, 5\}, \{(x, y) \mid x \leq y\} \right)$$

Uhm…

Meaning?
Let $K = (G, M, I)$ be a formal context. We then introduce the following interpretation:
Let $\mathbb{K} = (G, M, I)$ be a formal context. We then introduce the following interpretation:

- Elements of G are called *objects* (Gegenstände)
Let $\mathcal{K} = (G, M, I)$ be a formal context.

We then introduce the following interpretation:

- Elements of G are called *objects* (Gegenstände)
- Elements of M are called *attributes* (Merkmale)
Formal Contexts – Basic Interpretation

Let $\mathcal{K} = (G, M, I)$ be a formal context. We then introduce the following interpretation:

- Elements of G are called *objects* (Gegenstände)
- Elements of M are called *attributes* (Merkmale)
- We say that the object g has the attribute m if and only if $(g, m) \in I$
Formal Contexts – Graphical Representation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>2</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>3</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
</tr>
</tbody>
</table>
Formal Contexts – Graphical Representation

<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th></th>
<th>distance from sun</th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>medium</td>
<td>near</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Uranus</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Neptune</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Definition (Derivation Operators)
Let $A \subseteq G$, $B \subseteq M$. Then we define

\[
A' := \{ m \in M \mid \forall g \in A : g \downarrow m \},
\]

\[
B' := \{ g \in G \mid \forall m \in B : g \downarrow m \}.
\]
Formal Concepts

Definition (Derivation Operators)
Let $A \subseteq G$, $B \subseteq M$. Then we define

$$A' := \{ m \in M \mid \forall g \in A : g \perp m \},$$
$$B' := \{ g \in G \mid \forall m \in B : g \perp m \}.$$

Definition (Formal Concepts)
The pair (A, B) is called a formal concept of \mathbb{K} if and only if $A \subseteq G$, $B \subseteq M$ and

$$A' = B \quad \text{and} \quad B' = A.$$
Formal Concepts

Definition (Derivation Operators)
Let \(A \subseteq G, B \subseteq M \). Then we define

\[
A' := \{ m \in M \mid \forall g \in A : g \mid m \},
\]
\[
B' := \{ g \in G \mid \forall m \in B : g \mid m \}.
\]

Definition (Formal Concepts)
The pair \((A, B)\) is called a formal concept of \(\mathbf{K} \) if and only if \(A \subseteq G, B \subseteq M \) and

\[A' = B \quad \text{and} \quad B' = A. \]

The set of all formal contexts of \(\mathbf{K} \) is denoted by \(\mathcal{B}(\mathbf{K}) \).
Formal Concepts – Example

<table>
<thead>
<tr>
<th></th>
<th>small</th>
<th>medium</th>
<th>large</th>
<th>distance from sun</th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Jupiter</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Saturn</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Uranus</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Neptune</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Formal Concepts – Example

<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th>distance from sun</th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>near</td>
<td>yes</td>
</tr>
<tr>
<td>Mercury</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Venus</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Earth</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mars</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Uranus</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Neptune</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pluto</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Example (Formal Concepts)
Example (Formal Concepts)

- \((\{ \text{Mercury, Venus, Earth, Mars, Pluto} \}, \{ \text{small} \})\)
Formal Concepts – Example

<table>
<thead>
<tr>
<th></th>
<th>small</th>
<th>medium</th>
<th>large</th>
<th>distance from sun</th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Uranus</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Neptune</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Example (Formal Concepts)

\[
\{ \{ \text{Mercury, Venus, Earth, Mars, Pluto} \}, \{ \text{small} \} \} \models \text{small planets}
\]
Example (Formal Concepts)

- $\left(\{ \text{Mercury, Venus, Earth, Mars, Pluto} \}, \{ \text{small} \} \right) \models \text{small planets}$
- $\left(\{ \text{Pluto} \}, \{ \text{small, far, moon} \} \right)$
Formal Concepts – Example

<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th></th>
<th>distance from sun</th>
<th></th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>medium</td>
<td>large</td>
<td>near</td>
<td>far</td>
</tr>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Uranus</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Neptune</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Example (Formal Concepts)

- \(\langle \{ \text{Mercury, Venus, Earth, Mars, Pluto} \}, \{ \text{small} \} \rangle \uparrow \equiv \text{small planets} \)
- \(\langle \{ \text{Pluto} \}, \{ \text{small, far, moon} \} \rangle \uparrow \equiv \text{small planets far away from sun} \)
Concept Lattices

Observation

Concepts can be ordered by *generality*.
Concept Lattices

Observation
Concepts can be ordered by *generality*.

Example (Formal Concepts)

- \(
\{ \text{Mercury, Venus, Earth, Mars, Pluto} \}, \{ \text{small} \} \) \supseteq \text{small planets}
- \(
\{ \text{Pluto} \}, \{ \text{small, far, moon} \} \) \supseteq \text{small planets far away from sun}
Concept Lattices

Observation
Concepts can be ordered by *generality*.

Example (Formal Concepts)
- \((\{ \text{Mercury, Venus, Earth, Mars, Pluto} \}, \{ \text{small} \}) \models \text{small planets}\)
- \((\{ \text{Pluto} \}, \{ \text{small, far, moon} \}) \models \text{small planets far away from sun}\)

Definition
Let \((A_1, B_1), (A_2, B_2) \in \mathcal{B}(\mathcal{I}K)\). Then define

\[(A_1, B_1) \leq (A_2, B_2) \iff A_1 \subseteq A_2.\]
Concept Lattices

<table>
<thead>
<tr>
<th></th>
<th>small</th>
<th>medium</th>
<th>large</th>
<th>distance from sun</th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Uranus</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Neptune</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Concept Lattices

Mercury, Venus, no-moon
Mars, Earth
Jupiter, Saturn, large
Uranus, Neptune, medium
Pluto

small
moon
near
far

no-moon
Mercury, Venus
Mars, Earth
Uranus, Neptune
Pluto
Implications

FCA can also be used to examine *dependencies* between attributes of \mathcal{K}.
FCA can also be used to examine dependencies between attributes of \(\mathbb{K} \).

<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th></th>
<th>distance from sun</th>
<th></th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>medium</td>
<td>large</td>
<td>near</td>
<td>far</td>
</tr>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FCA can also be used to examine *dependencies* between attributes of \(K \).

<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th>distance from sun</th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>near</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>far</td>
<td>no</td>
</tr>
<tr>
<td>Mercury</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Jupiter</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Saturn</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Uranus</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Neptune</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Observation

Every planet, that is far away from sun has a moon.
Implications

FCA can also be used to examine *dependencies* between attributes of \(\mathbb{I} \).

<table>
<thead>
<tr>
<th></th>
<th>small</th>
<th>medium</th>
<th>large</th>
<th>distance from sun</th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>near</td>
<td>far</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Uranus</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Neptune</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

Observation

Every planet, that is far away from sun has a moon.

far planet \(\Rightarrow \)
Implications

FCA can also be used to examine *dependencies* between attributes of \mathbb{I}.

<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th></th>
<th>distance from sun</th>
<th></th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>medium</td>
<td>large</td>
<td>near</td>
<td>far</td>
</tr>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observation

Every planet, that is far away from sun has a moon.

$\text{far planet} \models \{ \{ \text{Jupiter, Saturn, Uranus, Neptune, Pluto} \},$
Implications

FCA can also be used to examine *dependencies* between attributes of \mathbb{K}.

<table>
<thead>
<tr>
<th></th>
<th>small</th>
<th>medium</th>
<th>large</th>
<th>distance from sun</th>
<th>moon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>far</td>
<td>near</td>
<td>far</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Mercury</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Venus</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Earth</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Mars</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Jupiter</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Saturn</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Uranus</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Neptune</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Pluto</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

Observation

Every planet, that is far away from sun has a moon.

$$\text{far planet} \implies (\{ \text{Jupiter, Saturn, Uranus, Neptune, Pluto} \}, \{ \text{far, moon} \}).$$
Implications

Definition (Implication (Syntax))

Let M be a set, $A, B \subseteq M$. Then the pair (A, B) may be called an *implication* on M and is written as $A \rightarrow B$.

Remark

$A \rightarrow B$ holds in K if and only if all objects that have all attributes from A also have all attributes from B.

This is a model-based semantics!
Implications

Definition (Implication (Syntax))
Let M be a set, $A, B \subseteq M$. Then the pair (A, B) may be called an *implication* on M and is written as $A \rightarrow B$.

Definition (Implication (Semantics))
Let $\mathbf{K} = (G, M, I)$ be a formal context and let $A \rightarrow B$ be an implication M. Then $A \rightarrow B$ holds if and only if $A_1 \subseteq B_1$.

Remark
$A \rightarrow B$ holds in \mathbf{K} if and only if all objects that have all attributes from A also have all attributes from B. This is a model-based semantics!
Implications

Definition (Implication (Syntax))
Let M be a set, $A, B \subseteq M$. Then the pair (A, B) may be called an implication on M and is written as $A \rightarrow B$.

Definition (Implication (Semantics))
Let $\mathcal{K} = (G, M, I)$ be a formal context and let $A \rightarrow B$ be an implication M. Then $A \rightarrow b$ holds in \mathcal{K} if and only if

$$A' \subseteq B'.$$
Implications

Definition (Implication (Syntax))
Let M be a set, $A, B \subseteq M$. Then the pair (A, B) may be called an implication on M and is written as $A \rightarrow B$.

Definition (Implication (Semantics))
Let $\mathcal{K} = (G, M, I)$ be a formal context and let $A \rightarrow B$ be an implication M. Then $A \rightarrow b$ holds in \mathcal{K} if and only if

$$A' \subseteq B'.$$

Remark
$A \rightarrow B$ holds in \mathcal{K} if and only if all objects that have all attributes from A also have all attributes from B.
Implications

Definition (Implication (Syntax))
Let M be a set, $A, B \subseteq M$. Then the pair (A, B) may be called an *implication* on M and is written as $A \longrightarrow B$.

Definition (Implication (Semantics))
Let $\mathcal{K} = (G, M, I)$ be a formal context and let $A \longrightarrow B$ be an implication M. Then $A \longrightarrow b$ holds in \mathcal{K} if and only if

$$A' \subseteq B'.$$

Remark
$A \longrightarrow B$ holds in \mathcal{K} if and only if all objects that have all attributes from A also have all attributes from B.

This is a *model-based* semantics!
Bases of Implications

Recall
Want to find a finite base of all GCIs of a finite interpretation
Bases of Implications

Recall

Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA

Find all valid implications of $\mathcal{I}K$
Bases of Implications

Recall
Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA
Find a good representation of all valid implications of \(K \)
Bases of Implications

Recall
Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA
Find a *good representation* of all valid implications of \mathcal{K}

Definition
Let \mathcal{B} be a set of implications of \mathcal{K}.
Bases of Implications

Recall
Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA
Find a *good representation* of all valid implications of \mathbb{K}

Definition
Let \mathcal{B} be a set of implications of \mathbb{K}.
- \mathcal{B} is called *sound*, if all implications in \mathcal{B} hold in \mathbb{K};
Bases of Implications

Recall
Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA
Find a *good representation* of all valid implications of \mathbb{K}

Definition
Let \mathcal{B} be a set of implications of \mathbb{K}.
- \mathcal{B} is called *sound*, if all implications in \mathcal{B} hold in \mathbb{K};
- \mathcal{B} is called *complete*, if all implications valid in \mathbb{K} follow from \mathcal{B}.
Bases of Implications

Recall
Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA
Find a good representation of all valid implications of \mathcal{I}_K

Definition
Let \mathcal{B} be a set of implications of \mathcal{I}_K.
- \mathcal{B} is called sound, if all implications in \mathcal{B} hold in \mathcal{I}_K;
- \mathcal{B} is called complete, if all implications valid in \mathcal{I}_K follow from \mathcal{B}.
\mathcal{B} is called a base if it is sound and complete.
Recall
Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA
Find a *good representation* of all valid implications of \mathbb{K}

Definition
Let \mathcal{B} be a set of implications of \mathbb{K}.

- \mathcal{B} is called *sound*, if all implications in \mathcal{B} hold in \mathbb{K};
- \mathcal{B} is called *complete*, if all implications valid in \mathbb{K} follow from \mathcal{B}.

\mathcal{B} is called a *base* if it is sound and complete. \mathcal{B} is called an *irredundant base* if \mathcal{B} is a base and every proper subset $\mathcal{B}' \subsetneq \mathcal{B}$ is not a base.
Canonical Base

One can explicitly describe some bases of \mathcal{K}.
One can explicitly describe some bases of $\mathcal{I}K$

Theorem

The set

$$\{ A \rightarrow A'' \mid A \subseteq M \}$$

*is a base of $\mathcal{I}K$.***
Canonical Base

One can explicitly describe some bases of $\mathcal{I}K$

Theorem

The set

$$\{ A \rightarrow A'' \mid A \subseteq M \}$$

is a base of $\mathcal{I}K$.

This base is in general not irredundant.
Canonical Base

One can explicitly describe some bases of \mathbb{K}

Theorem

The set

$$\{ A \rightarrow A'' \mid A \subseteq M \}$$

is a base of \mathbb{K}.

This base is in general not irredundant.

Remark

One can explicitly describe a base of \mathbb{K} *with minimal cardinality*, the so-called *canonical base* of \mathbb{K}.
Description Logics
Formalizing Knowledge The Right Way
What are Description Logics about?

In a Nutshell

Description Logics are formal languages to represent knowledge that provide methods to reason about this knowledge.
What are Description Logics about?

In a Nutshell

Description Logics are formal languages to represent knowledge that provide methods to reason about this knowledge.
Description Logics are formal languages to represent knowledge that provide methods to reason about this knowledge.
What are Description Logics about?

In a Nutshell

Description Logics are formal languages to represent knowledge that provide methods to reason about this knowledge.
The Plan

- Syntax of \mathcal{ALC}
- Semantics of \mathcal{ALC}
- TBoxes, ABoxes and Ontologies
- Standard Reasoning Tasks

Literature

Syntax of \mathcal{ALC}

Fix the following sets:

- N_C of concept names
- N_R of role names
Syntax of \mathcal{ALC}

Fix the following sets:

- N_C of concept names
- N_R of role names

Example

\begin{align*}
N_C &= \{ \text{Person, Male, Female} \} \\
N_R &= \{ \text{hasChild} \}
\end{align*}
Syntax of \mathcal{AL}

Definition (Syntax of \mathcal{ALC})

The following terms form the set \mathcal{C} of all \mathcal{ALC}-concept descriptions.

Example:

Person $\{\text{Female}\}$ $\left[\text{hasChild}\right]$ $\left[\text{Male}\right]$ $\left[\text{hasChild}\right]$ $\left[\text{Male}\right]$.

A mother which has only sons.
Syntax of \(\mathcal{AL} \)

Definition (Syntax of \(\mathcal{ALC} \))

The following terms form the set \(C \) of all \(\mathcal{ALC} \)-concept descriptions:

- \(\top, \bot \) (universal and bottom concept)
- \(A \) for \(A \in N_C \) (atomic concepts)
- \(\lnot C \) for \(C \in C \) (negation)
- \(C \sqcap D \) for \(C, D \in C \) (conjunction)
- \(C \sqcup D \) for \(C, D \in C \) (disjunction)
- \(\forall r.C \) for \(r \in N_R, C \in C \) (value restriction)
- \(\exists r.C \) for \(r \in N_R, C \in C \) (existential restriction)
Syntax of \mathcal{AL}

Definition (Syntax of \mathcal{ALC})

The following terms form the set C of all \mathcal{ALC}-concept descriptions:

- \top, \bot (universal and bottom concept)
- A for $A \in N_C$ (atomic concepts)
- $\neg C$ for $C \in C$ (negation)
- $C \sqcap D$ for $C, D \in C$ (conjunction)
- $C \sqcup D$ for $C, D \in C$ (disjunction)
- $\forall r.C$ for $r \in N_R, C \in C$ (value restriction)
- $\exists r.C$ for $r \in N_R, C \in C$ (existential restriction)

Example

Person \sqcap Female \sqcap \existshasChild.\top \sqcap \forallhasChild.Male
Definition (Syntax of \mathcal{ALC})

The following terms form the set C of all \mathcal{ALC}-concept descriptions:

- \top, \bot (universal and bottom concept)
- A for $A \in N_C$ (atomic concepts)
- $\neg C$ for $C \in C$ (negation)
- $C \cap D$ for $C, D \in C$ (conjunction)
- $C \sqcup D$ for $C, D \in C$ (disjunction)
- $\forall r.C$ for $r \in N_R, C \in C$ (value restriction)
- $\exists r.C$ for $r \in N_R, C \in C$ (existential restriction)

Example

$$\text{Person} \cap \text{Female} \cap \exists \text{hasChild}. \top \cap \forall \text{hasChild}. \text{Male}$$

A mother which has only sons.
Interpretations

Semantics of description logics are defined using interpretations.
Interpretations

Semantics of description logics are defined using interpretations.

Definition

An interpretation \mathcal{I} is a pair $(\Delta_{\mathcal{I}}, \cdot_{\mathcal{I}})$ where $\Delta_{\mathcal{I}}$ is a set and $\cdot_{\mathcal{I}}$ is mapping such that
Interpretations

Semantics of description logics are defined using *interpretations*.

Definition

An *interpretation* \(\mathcal{I} \) is a pair \((\Delta_\mathcal{I}, \cdot^\mathcal{I})\) where \(\Delta_\mathcal{I}\) is a set and \(\cdot^\mathcal{I}\) is mapping such that

- \(A^\mathcal{I} \subseteq \Delta_\mathcal{I}\) for each \(A \in N_C\)
Interpretations

Semantics of description logics are defined using interpretations.

Definition

An interpretation \mathcal{I} is a pair $(\Delta_{\mathcal{I}}, \cdot_{\mathcal{I}})$ where $\Delta_{\mathcal{I}}$ is a set and $\cdot_{\mathcal{I}}$ is mapping such that

- $A^\mathcal{I} \subseteq \Delta_{\mathcal{I}}$ for each $A \in N_C$
- $r^\mathcal{I} \subseteq \Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}}$ for each $r \in N_R$
Example

Consider $\Delta_I = \{1, 2, 3, 4\}$ and

\[
\begin{align*}
\text{Person}_I &= \{1, 2, 3, 4\} \\
\text{Male}_I &= \{2, 3\} \\
\text{Female}_I &= \{1, 4\} \\
\text{hasChild}_I &= \{(1, 3), (2, 3), (3, 4)\}.
\end{align*}
\]
Consider $\Delta_I = \{1, 2, 3, 4\}$ and

\[
\begin{align*}
\text{Person}_I &= \{1, 2, 3, 4\} \\
\text{Male}_I &= \{2, 3\} \\
\text{Female}_I &= \{1, 4\} \\
\text{hasChild}_I &= \{(1, 3), (2, 3), (3, 4)\}.
\end{align*}
\]
Semantics of \mathcal{ALC}

Definition

Let C, D be \mathcal{ALC}-concept descriptions, $r \in N_R$.

- $\top^\mathcal{I} = \Delta^\mathcal{I}$
- $\bot^\mathcal{I} = \emptyset$
- $(C \sqcap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I}$
- $(C \sqcup D)^\mathcal{I} = C^\mathcal{I} \cup D^\mathcal{I}$
- $(\forall r. C)^\mathcal{I} = \{ x \in \Delta^\mathcal{I} \mid \forall y \in \Delta^\mathcal{I} : (x, y) \in r^\mathcal{I} \implies y \in C^\mathcal{I} \}$
- $(\exists r. C)^\mathcal{I} = \{ x \in \Delta^\mathcal{I} \mid \exists y \in \Delta^\mathcal{I} : (x, y) \in r^\mathcal{I} \land y \in C^\mathcal{I} \}$
Semantics of \textit{ALC}

Example

![Diagram showing the relationships between Person, Male, Person, Female, and their hasChild connections to Person, Male and Person, Female, with an equality assertion in the center.]
Semantics of \mathcal{ALC}

Example

\[
\begin{align*}
(\text{Person} \cap \text{Female} \cap \exists \text{hasChild.} \top \sqcap \forall \text{hasChild.Male})^\mathcal{I} &=
\end{align*}
\]
Example

\[(\text{Person} \sqcap \text{Female} \sqcap \exists \text{hasChild. } \top \sqcap \forall \text{hasChild. Male})^{I} = \{ 1 \}\]
Goal

Use Description Logics to represent knowledge
Goal

Use Description Logics to represent knowledge

Different forms of knowledge:
Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

- *terminological knowledge*, i.e. “a cat is a mammal which hunts mice”
Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

- *terminological knowledge*, i.e. “a cat is a mammal which hunts mice”
 \(\rightsquigarrow\) TBoxes \(\mathcal{T}\)
Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

- *terminological knowledge*, i.e. “a cat is a mammal which hunts mice”
 \[\leadsto \ TBoxes \ T \]
- *assertional knowledge*, i.e. “Tom is a cat”
Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

- *terminological knowledge*, i.e. “a cat is a mammal which hunts mice”
 - \leadsto TBoxes \mathcal{T}
- *assertional knowledge*, i.e. “Tom is a cat”
 - \leadsto ABoxes \mathcal{A}
Goal
Use Description Logics to represent knowledge

Different forms of knowledge:
- *terminological knowledge*, i.e. “a cat is a mammal which hunts mice”
 \[\rightsquigarrow\] TBoxes \(\mathcal{T} \)
- *assertional knowledge*, i.e. “Tom is a cat”
 \[\rightsquigarrow\] ABoxes \(\mathcal{A} \)

Definition (Ontology)
An *ontology* is a pair \((\mathcal{T}, \mathcal{A})\), where \(\mathcal{T}\) is a TBox and \(\mathcal{A}\) is an ABox.
Example (\(\mathcal{EL}^\perp\)-Ontology)

\((\mathcal{T}, \mathcal{A})\) is an ontology, where

\[
\mathcal{T} = \{ \text{Cat} \sqsubseteq \text{Animal} \land \exists \text{hunts} . \text{Mouse}, \\
\text{Cat} \sqcap \text{Mouse} \sqsubseteq \bot \} \\
\mathcal{A} = \{ \text{Cat(Tom)}, \text{Mouse(Jerry)}, \text{hunts(Tom, Jerry)} \}
\]
Terminological Knowledge and TBoxes

Definition (Terminological Axioms)

Terminological Axioms are of the form

\[A \sqsubseteq C \]

where \(C \) is a concept description and \(A \) is a defined concept name (concept definition).

\[C \sqsubseteq D \]

where \(C, D \) are concept descriptions (general concept inclusion).

A TBox \(T \) is a finite set of terminological axioms, where each defined concept name appears at most once.

Example

\(T = \text{Cat} \sqsubseteq \text{Animal} \)

\[\text{Mouse}, \text{Cat} \sqsubseteq \text{Ku} \]
Terminological Knowledge and TBoxes

Definition (Terminological Axioms)

Terminological Axioms are of the form

- $A \equiv C$, where C is a concept description and $A \not\equiv N_C$ is a *defined concept name* (concept definition)
Terminological Knowledge and TBoxes

Definition (Terminological Axioms)

Terminological Axioms are of the form

- \(A \equiv C \), where \(C \) is a concept description and \(A \not\equiv N_C \) is a defined concept name (concept definition)
- \(C \sqsubseteq D \), where \(C, D \) are concept descriptions (general concept inclusion)
Terminological Knowledge and TBoxes

Definition (Terminological Axioms)

Terminological Axioms are of the form

- \[A \equiv C, \text{ where } C \text{ is a concept description and } A \not\equiv N_C \text{ is a defined concept name (concept definition)} \]
- \[C \sqsubseteq D, \text{ where } C, D \text{ are concept descriptions (general concept inclusion)} \]

A TBox \(\mathcal{T} \) is a finite set of terminological axioms, where each defined concept name appears at most once.
Terminological Knowledge and TBoxes

Definition (Terminological Axioms)

Terminological Axioms are of the form

- \(A \equiv C \), where \(C \) is a concept description and \(A \not\equiv N_C \) is a defined concept name (concept definition)
- \(C \sqsubseteq D \), where \(C, D \) are concept descriptions (general concept inclusion)

A TBox \(\mathcal{T} \) is a finite set of terminological axioms, where each defined concept name appears at most once.

Example

\[\mathcal{T} = \{ \text{Cat} \sqsubseteq \text{Animal} \land \exists \text{hunts.Mouse}, \text{Cat} \sqcap \text{Mouse} \sqsubseteq \bot \} \]
TBox Semantics

Definition (Descriptive Semantics)
An interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ is a model of a TBox \mathcal{T} if and only if

$$A^\mathcal{I} = C^\mathcal{I} \quad \text{and} \quad C^\mathcal{I} \subseteq D^\mathcal{I}$$

for all $(A \equiv C), (C \sqsubseteq D) \in \mathcal{T}$.
Definition (Descriptive Semantics)

An interpretation $\mathcal{I} = (\Delta_\mathcal{I}, \cdot_\mathcal{I})$ is a model of a TBox \mathcal{T} if and only if

$$A^\mathcal{I} = C^\mathcal{I} \quad \text{and} \quad C^\mathcal{I} \subseteq D^\mathcal{I}$$

for all $(A \equiv C), (C \sqsubseteq D) \in \mathcal{T}$.

Extend the interpretation function $\cdot_\mathcal{I}$ to all defined concept names such that

$$A^\mathcal{I} \subseteq \Delta_\mathcal{I}.$$
Definition (Descriptive Semantics)

An interpretation $\mathcal{I} = (\Delta_\mathcal{I}, \cdot_\mathcal{I})$ is a model of a TBox \mathcal{T} if and only if

$$A^\mathcal{I} = C^\mathcal{I} \quad \text{and} \quad C^\mathcal{I} \subseteq D^\mathcal{I}$$

for all $(A \equiv C), (C \subseteq D) \in \mathcal{T}$.

Extend the interpretation function $\cdot_\mathcal{I}$ to all defined concept names such that

$$A^\mathcal{I} \subseteq \Delta_\mathcal{I}.$$

Other semantics:

- greatest fixpoint semantics
- least fixpoint semantics
Confident GCIs of Finite Interpretations
Handling Errors in Knowledge
Work by Baader and Distel

Theorem (Baader, Distel 2008)

Finite bases of all valid \mathcal{EL}^\perp-GCIs of \mathcal{I} always exists. One can be constructed effectively.
Work by Baader and Distel

Theorem (Baader, Distel 2008)

Finite bases of all valid \mathcal{EL}^\perp-GCIs of \mathcal{I} always exists. One can be constructed effectively.

Goal

Extend approach to also handle errors.
Work by Baader and Distel

Theorem (Baader, Distel 2008)

Finite bases of all valid $\mathcal{EL}_{\perp}\!\!\!\downarrow$-GCIs of \mathcal{I} always exists. One can be constructed effectively.

Goal

Extend approach to also handle errors.

Plan

- Introduce necessary terminology
- Define confident GCIs as an approach to handle errors
- Discuss some relevant ideas from FCA
- Present first results
Theorem

The set

\[B_2 := \{ \bigcap U \subseteq ((\bigcap U)^\mathcal{I})^\mathcal{I} \mid U \subseteq M_\mathcal{I} \} \]

is a finite base of \(\mathcal{I} \).
The set

$$B_2 := \{ \bigcap U \subseteq (\bigcap U)^I \mid U \subseteq M_I \}$$

is a finite base of I.

Questions:
In More Detail

Theorem

The set

\[\mathcal{B}_2 := \{ \bigcap U \subseteq ((\bigcap U)^I)^I \mid U \subseteq M_I \} \]

is a finite base of \(I \).

Questions:
- What is \(M_I \)?
In More Detail

Theorem

The set

\[B_2 := \{ \bigcap U \subseteq (\bigcap U)^I | U \subseteq M_I \} \]

is a finite base of \(I \).

Questions:

- What is \(M_I \)? \(\sim \) set of concept descriptions (no more details here)
Theorem

The set

$$\mathcal{B}_2 := \{ \bigcap U \subseteq ((\bigcap U)^\mathcal{I})^\mathcal{I} \mid U \subseteq M_\mathcal{I} \}$$

is a finite base of \mathcal{I}.

Questions:

- What is $M_\mathcal{I}$? \(\sim\) set of concept descriptions (no more details here)
- What is $\bigcap U$?
In More Detail

Theorem

The set

\[B_2 := \{ \bigcap U \subseteq ((\bigcap U)^\mathcal{I}^\mathcal{I})^\mathcal{I} \mid U \subseteq M_\mathcal{I} \} \]

is a finite base of \(\mathcal{I} \).

Questions:

- What is \(M_\mathcal{I} \)? \(\sim \) set of concept descriptions (no more details here)
- What is \(\bigcap U \)?
- What is \(((\bigcap U)^\mathcal{I})^\mathcal{I} \)?
In More Detail

Theorem

The set

\[\mathcal{B}_2 := \{ \prod U \subseteq ((\prod U^\mathcal{I})^\mathcal{I} \mid U \subseteq M^\mathcal{I} \} \]

is a finite base of \(\mathcal{I} \).

Questions:

- What is \(M^\mathcal{I} \)? \(\sim \) set of concept descriptions (no more details here)
- What is \(\prod U \)?
- What is \(((\prod U^\mathcal{I})^\mathcal{I})^\mathcal{I} \)?

Definition

\[\prod U := \begin{cases} \top & U = \emptyset \\ \prod_{V \in U} V & \text{otherwise.} \end{cases} \]
Let $X \subseteq \Delta_\mathcal{I}$. Then $X^\mathcal{I}$ denotes the *model-based most-specific concept description* of X in \mathcal{I}.
Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^\mathcal{I}$ denotes the \textit{model-based most-specific concept description} of X in \mathcal{I}.

\textbf{Definition}

A concept description C is a \textit{model-based most-specific concept description} of X in \mathcal{I} iff
Model-Based Most-Specific Concept Descriptions

Let $X \subseteq \Delta_I$. Then X^I denotes the *model-based most-specific concept description* of X in I.

Definition

A concept description C is a *model-based most-specific concept description* of X in I iff

- $C^I \supseteq X$,
Model-Based Most-Specific Concept Descriptions

Let $X \subseteq \Delta_I$. Then X^I denotes the *model-based most-specific concept description* of X in I.

Definition

A concept description C is a *model-based most-specific concept description* of X in I iff

- $C^I \supseteq X$,
- if D is a concept description such that $D^I \supseteq X$, then $C \subseteq D$.

Model-Based Most-Specific Concept Descriptions

Let $X \subseteq \Delta_\mathcal{I}$. Then $X^\mathcal{I}$ denotes the *model-based most-specific concept description* of X in \mathcal{I}.

Definition

A concept description C is a *model-based most-specific concept description* of X in \mathcal{I} iff

- $C^\mathcal{I} \supseteq X$,
- if D is a concept description such that $D^\mathcal{I} \supseteq X$, then $C \subseteq D$.

Observation
Model-Based Most-Specific Concept Descriptions

Let $X \subseteq \Delta_I$. Then X^I denotes the model-based most-specific concept description of X in I.

Definition

A concept description C is a model-based most-specific concept description of X in I iff

- $C^I \supseteq X$,
- if D is a concept description such that $D^I \supseteq X$, then $C \subseteq D$.

Observation

- C (as above) is a most specific concept description that describes X.
Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^\mathcal{I}$ denotes the \textit{model-based most-specific concept description} of X in \mathcal{I}.

\textbf{Definition}

A concept description C is a \textit{model-based most-specific concept description} of X in \mathcal{I} iff

\begin{itemize}
 \item $C^\mathcal{I} \supseteq X$,
 \item if D is a concept description such that $D^\mathcal{I} \supseteq X$, then $C \subseteq D$.
\end{itemize}

\textbf{Observation}

\begin{itemize}
 \item C (as above) is a \textit{most specific concept description that describes} X.
 \item C is unique up to equivalence, denoted by $X^\mathcal{I}$.
Model-Based Most-Specific Concept Descriptions

Problem

Model-based most-specific concept descriptions do not need to exist in \mathcal{EL}^\bot.

\[X \xrightarrow{r} X \]
Problem

Model-based most-specific concept descriptions do not need to exist in \mathcal{EL}^\perp.

Solution: Consider \mathcal{EL}^\perp_{gfp} concept descriptions.
Model-Based Most-Specific Concept Descriptions

Problem

Model-based most-specific concept descriptions do not need to exist in \mathcal{EL}^\perp.

Solution: Consider \mathcal{EL}_{gfp} concept descriptions.

Lemma

In \mathcal{EL}_{gfp} model-based most-specific concept descriptions always exist.
Model-Based Most-Specific Concept Descriptions

Problem

Model-based most-specific concept descriptions do not need to exist in \mathcal{EL}.

Solution: Consider \mathcal{EL}_{gfp} concept descriptions.

Lemma

In \mathcal{EL}_{gfp} *model-based most-specific concept descriptions always exist.*

Lemma

If \mathcal{B} is an \mathcal{EL}_{gfp}-base of \mathcal{I}, then one can effectively compute an \mathcal{EL}-base \mathcal{B}' from \mathcal{B}.
Ontologies from Data: an Example

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes
Ontologies from Data: an Example

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes
Take relation hasChild \leadsto interpretation $\mathcal{I}_{DBpedia}$
Ontologies from Data: an Example

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes
Take relation hasChild \sim interpretation $\mathcal{I}_{\text{DBpedia}}$
$|\Delta \mathcal{I}_{\text{DBpedia}}| = 5626$, Base of GCIs of size 1252.
Ontologies from Data: an Example

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes

Take relation hasChild \sim interpretation $\mathcal{I}_{DBpedia}$

$|\Delta \mathcal{I}_{DBpedia}| = 5626$, Base of GCIs of size 1252.

Observation

$\exists \text{hasChild}. \top \sqsubseteq \text{Person}$

does not hold in $\mathcal{I}_{DBpedia}$
Ontologies from Data: an Example

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes
Take relation hasChild \(\sim\) interpretation \(\mathcal{I}_{\text{DBpedia}}\)
\[|\Delta \mathcal{I}_{\text{DBpedia}}| = 5626, \text{Base of GCIs of size 1252.}\]

Observation

\[\exists \text{hasChild}. \top \subseteq \text{Person}\]

does not hold in \(\mathcal{I}_{\text{DBpedia}}\), but there are only 4 *erroneous* counterexamples.
Ontologies from Data: an Example

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes
Take relation hasChild \sim interpretation \mathcal{I}_{DBpedia}
|\Delta\mathcal{I}_{DBpedia}| = 5626, Base of GCIs of size 1252.

Observation

\exists \text{hasChild}. \top \sqsubseteq \text{Person}

does not hold in \mathcal{I}_{DBpedia}, but there are only 4 erroneous counterexamples.

Idea

Also consider GCIs that “almost” hold in \mathcal{I}_{DBpedia}.
Confidence of GCI

Definition

The confidence of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$
\text{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases}
1 & \text{if } C^\mathcal{I} = \emptyset, \\
\frac{|(C \cap D)^\mathcal{I}|}{|C^\mathcal{I}|} & \text{otherwise}.
\end{cases}
$$
Confidence of GCIs

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\text{conf}_\mathcal{I}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^\mathcal{I} = \emptyset, \\ \frac{|(C \cap D)^\mathcal{I}|}{|C^\mathcal{I}|} & \text{otherwise}. \end{cases}$$

Let $c \in [0, 1]$. Define $\text{Th}_c(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I}.

Confidence of GCIs

Definition

The *confidence* of $C \subseteq D$ in \mathcal{I} is defined as

$$\text{conf}_{\mathcal{I}}(C \subseteq D) := \begin{cases} 1 & \text{if } C^\mathcal{I} = \emptyset, \\ \frac{|C \cap D|^\mathcal{I}}{|C|^\mathcal{I}} & \text{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define $\text{Th}_c(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I}.

Approach

Consider $\text{Th}_c(\mathcal{I})$ as set of “almost” valid GCIs of \mathcal{I}.
Confidence of GCIs

Definition

The confidence of \(C \sqsubseteq D \) in \(\mathcal{I} \) is defined as

\[
\text{conf}_\mathcal{I}(C \sqsubseteq D) := \begin{cases}
1 & \text{if } C^\mathcal{I} = \emptyset, \\
\frac{|(C \cap D)^\mathcal{I}|}{|C^\mathcal{I}|} & \text{otherwise}.
\end{cases}
\]

Let \(c \in [0, 1] \). Define \(\text{Th}_c(\mathcal{I}) \) as the set of all GCIs having confidence of at least \(c \) in \(\mathcal{I} \).

Approach

Consider \(\text{Th}_c(\mathcal{I}) \) as set of “almost” valid GCIs of \(\mathcal{I} \).

Question

Can we find a finite base for \(\text{Th}_c(\mathcal{I}) \)?
A Base for Confident GCIs

Answer

There exist finite bases of $\text{Th}_c(\mathcal{I})$.
A Base for Confident GCIs

Answer

There exist finite bases of $\text{Th}_c(I)$.

Use ideas from Formal Concept Analysis for this!
Implications with Confidence

Definition

For an implication $A \rightarrow B$ of a formal context \mathbf{K} define its confidence to be

$$conf_{\mathbf{K}}(A \rightarrow B) := \begin{cases} 1 & A' = \emptyset \\ \frac{|(A \cup B)'|}{|A'|} & \text{otherwise.} \end{cases}$$
Implications with Confidence

Definition
For an implication $A \rightarrow B$ of a formal context \mathcal{K} define its confidence to be

$$\text{conf}_{\mathcal{K}}(A \rightarrow B) := \begin{cases} 1 & A' = \emptyset \\ \frac{|(A \cup B)'|}{|A'|} & \text{otherwise.} \end{cases}$$

Goal
Find “small” representation of all implications with confidence at least $c \in [0, 1]$.
Implications with Confidence

Definition

For an implication $A \rightarrow B$ of a formal context IK define its confidence to be

$$\text{conf}_{IK}(A \rightarrow B) := \begin{cases} 1 & A' = \emptyset \\ \frac{|(A \cup B)'|}{|A'|} & \text{otherwise}. \end{cases}$$

Goal

Find “small” representation of all implications with confidence at least $c \in [0, 1]$. More precisely, let

$$\text{Th}_c(IK) := \{ A \rightarrow B \mid \text{conf}_{IK}(A \rightarrow B) \geq c \}.$$
Implications with Confidence

Definition
For an implication $A \rightarrow B$ of a formal context \mathbb{K} define its confidence to be

$$\text{conf}_{\mathbb{K}}(A \rightarrow B) := \begin{cases} 1 & \text{if } A' = \emptyset \\ \frac{|(A \cup B)'|}{|A'|} & \text{otherwise} \end{cases}$$

Goal
Find “small” representation of all implications with confidence at least $c \in [0, 1]$. More precisely, let

$$\text{Th}_c(\mathbb{K}) := \{ A \rightarrow B \mid \text{conf}_{\mathbb{K}}(A \rightarrow B) \geq c \} ,$$

Then: find a set $\mathcal{B} \subseteq \text{Th}_c(\mathbb{K})$ that is complete for $\text{Th}_c(\mathbb{K})$, i.e. that entails all implications from $\text{Th}_c(\mathbb{K})$.
Implications with Confidence

Observation

Plan (Luxenburger)
Implications with Confidence

Observation

Plan (Luxenburger)

- Restrict attention to implications with confidence < 1
Implications with Confidence

Observation

Plan (Luxenburger)

- Restrict attention to implications with confidence < 1
- Consider only implications of the form $A'' \rightarrow B''$, where $B'' \supseteq A''$
Implications with Confidence

Observation

Plan (Luxenburger)

- Restrict attention to implications with confidence < 1
- Consider only implications of the form $A'' \rightarrow B''$, where $B'' \supseteq A''$
- Consider only implications $A'' \rightarrow B''$ where A'' and B'' are directly neighbored

Lemma

For $A \subseteq B \subseteq C \subseteq M$ it is true that $\text{conf}(A \rightarrow C) = \text{conf}(A \rightarrow B) \cdot \text{conf}(B \rightarrow C)$.
Implications with Confidence

Observation

Plan (Luxenburger)

- Restrict attention to implications with confidence < 1
- Consider only implications of the form $A'' \rightarrow B''$, where $B'' \supseteq A''$
- Consider only implications $A'' \rightarrow B''$ where A'' and B'' are directly neighbored

Lemma

For $A \subseteq B \subseteq C \subseteq M$ it is true that

$$\text{conf}_K(A \rightarrow C) = \text{conf}_K(A \rightarrow B) \cdot \text{conf}_K(B \rightarrow C).$$
Implications with Confidence

Theorem

Let $\mathcal{K} = (G, M, I)$ be a finite non-empty formal context and $c \in [0, 1]$. Let \mathcal{B} be a base of \mathcal{K} and define

$$C := \{ A'' \rightarrow C'' \mid A \subseteq C \subseteq M, \text{conf}_\mathcal{K}(A'' \rightarrow C'') \in [c, 1), \exists B' : A'' \not\subseteq B'' \not\subseteq C'' \}.$$

Then $\mathcal{B} \cup C$ is a base of $\text{Th}_c(\mathcal{K})$.
An Order Isomorphism
An Order Isomorphism

$(\text{Int}(K_\mathcal{I}), \subseteq) \cong \emptyset''$

$(\text{mmsc}(\mathcal{I}), \equiv) \cong \bigcap \emptyset''$

$\text{pr}_{M_\mathcal{I}}$
An Order Isomorphism

\[(\text{Int}(K_I), \subseteq), \varnothing'' \]
\[\text{conf}_{K_I}(P'' \rightarrow Q'') \in [c, 1)\]

\[(\text{mmsc}(I), \equiv), \prod \varnothing''\]
An Order Isomorphism

\[
\begin{align*}
\text{(Int}(K_I), \subseteq) & \quad \varnothing'' \\
\text{conf}_{K_I}(P'' \rightarrow Q'') & \in [c, 1)
\end{align*}
\]

\[
\begin{align*}
\text{(mmsc}(I), \equiv) & \quad \bigcap \varnothing'' \\
\text{pr}_{M_I} & \\
\text{pr}_{M_I}
\end{align*}
\]
An Order Isomorphism

\[(\text{Int}(K_I), \subseteq) \overset{\varnothing''}{\triangleright} \text{conf}_{K_I}(P'' \rightarrow Q'') \in [c, 1) \]

\[(\text{mmsc}(I), \equiv) \overset{\prod \varnothing''}{\triangleright} \prod P'' \]

\[\text{pr}_{M_I} \]
An Order Isomorphism

$M_\mathcal{I}$

$\text{pr}_{M_\mathcal{I}}((Y^\mathcal{I})^\mathcal{I})$

$\text{pr}_{M_\mathcal{I}}((X^\mathcal{I})^\mathcal{I})$

$(\text{Int}(\mathbb{K}_\mathcal{I}), \subseteq) \quad \emptyset''$

$(\text{mmsc}(\mathcal{I}), \sqsupseteq) \prod \emptyset''$

$\text{conf}_\mathcal{I}((X^\mathcal{I})^\mathcal{I} \sqsubseteq (Y^\mathcal{I})^\mathcal{I}) \in [c, 1)$
A Base for Confident GCIs

Theorem (B. 2012)

Let \mathcal{B} be a finite base of \mathcal{I}, $c \in [0, 1]$ and

$$\text{Conf}(\mathcal{I}, c) := \{ X^\mathcal{I} \sqsubseteq Y^\mathcal{I} \mid Y \subseteq X \subseteq \Delta^\mathcal{I}, 1 > \text{conf}_\mathcal{I}(X^\mathcal{I} \sqsubseteq Y^\mathcal{I}) \geq c \}.$$

Then $\mathcal{B} \cup \mathcal{C}$ is a finite base of $\text{Th}_c(\mathcal{I})$.
A Base for Confident GCIs

Theorem (B. 2012)

Let \(B \) be a finite base of \(\mathcal{I} \), \(c \in [0, 1] \) and

\[
\text{Conf}(\mathcal{I}, c) := \{ X^\mathcal{I} \subseteq Y^\mathcal{I} \mid Y \subseteq X \subseteq \Delta_\mathcal{I}, 1 > \text{conf}_\mathcal{I}(X^\mathcal{I} \subseteq Y^\mathcal{I}) \geq c \}.
\]

Then \(B \cup C \) is a finite base of \(\text{Th}_c(\mathcal{I}) \).

Theorem (B. 2012)

The set

\[
\mathcal{D} := \{ (X^\mathcal{I} \subseteq Y^\mathcal{I}) \in \text{Conf}(\mathcal{I}, c) \mid \exists Z \subseteq \Delta_\mathcal{I} : Y^\mathcal{I} \nsubseteq Z^\mathcal{I} \nsubseteq X^\mathcal{I} \}
\]

is complete for \(C \). In particular, \(B \cup \mathcal{D} \) is a finite base for \(\text{Th}_c(\mathcal{I}) \).
Thank You for Your Attention!