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1 Introduction

The problem of understanding human reasoning processes is far from being solved. There
are many cognitive theories, such as Mental Models [JL80] or PSYCOP [Rip94], that
differ to a large degree. Unfortunately, there is no consensus on what theory is correct.

Syllogisms are a famous reasoning task that dates back to Aristotle. They have been
studied by psychologists during the last two millennia and are well understood. In a
recent meta-analysis, Khemlani and Johnson-Laird [KJL12] evaluated twelve cognitive
theories. Seven of them have been compared with the answers of humans to syllogistic
reasoning tasks. None of the tested theories was able to model human syllogistic rea-
soning adequately. It has been stated that a general theory of reasoning is of major
importance to the Cognitive Science community.

The Weak Completion Semantics is a new cognitive theory that has its roots in a
book on human reasoning by Stenning and van Lambalgen [SvL08]. The book had some
technical mistakes, which were corrected by Hölldobler and Kencana Ramli [HR09] by
using three-valued  Lukasiewicz logic. Since then, the Weak Completion Semantics has
been applied to many famous problems from Cognitive Science. These are, among others,
the suppression task [DHR12], the selection task [DHR13], the belief-bias effect [PDH14a,
PDH14b], reasoning about conditionals [DH15,DHP15], spatial reasoning [DHH15], and
syllogistic reasoning [Die15,CDHR16]. The development of a general monadic reasoning
theory based on the Weak Completion Semantics has been proposed recently [dCSH17].

The theory has assumed that all humans reason uniformly. There are, however, find-
ings in psychology that support the thesis of individual differences between reason-
ers [JLS78,BHN03,KJL16]. This work introduces an approach to model these differences
by grouping human reasoners into clusters. When looking at psychological studies on
syllogisms, such as [WS35] and [WG95], it is reasonable to assume that not all humans
use logic in reasoning task; some might apply heuristic strategies. In this work it is
shown how such heuristics can be applied to the Weak Completion Semantics.

The representation of cognitive theories using formal logics is not always suitable to
illustrate how certain conclusions are obtained in reasoning tasks and often it is difficult
to understand for people without a background in formal logics. Therefore, the usage
of multinomial processing trees to explain the outcomes of reasoning tasks has been
suggested [RSS14]. How this can be done for the predictions of the Weak Completion
Semantics is also a subject of this work.

The rest of the project report has the following structure: in Section 2, syllogisms
are explained and the necessary background information from logic programming is
given. In Section 3.1, it is explained how syllogistic reasoning tasks are solved under
the Weak Completion Semantics. The concepts of human clusters and heuristic solving
strategies will be introduced along with a proposal on how to model them under the
Weak Completion Semantics. The representation of these processes as tree models will
be illustrated in Section 4. The clustering approach is evaluated in Section 5 in terms
of how well it predicts human reasoners. The report will be concluded in Section 6 with
a summary and a discussion about future work.
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2 Preliminaries

In this chapter the necessary background information is provided. From a psychological
point of view, the syllogistic reasoning task is introduced and its importance for cognitive
science is clarified. From formal logic, the concepts of logic programming, three-valued
 Lukasiewicz logic and the Weak Completion Semantics are explained. They are the
foundation of our approach to model the syllogistic reasoning task.

2.1 Syllogistic Reasoning

Syllogisms are among the forms of reasoning that have been researched for the longest
time, they have first been defined by Aristotle in ancient Greece. Since then, they
have been investigated by both logicians [ Luk57] and psychologists [WS35, JLS78] in
theoretical work and experimental studies. Thus syllogisms have become a central point
in the attempt to formalize human reasoning.

2.1.1 Structure of Syllogisms

Definition 1 (Syllogism) A syllogism is a logical argument that consists of three parts:

• major premise,

• minor premise,

• conclusion,

each of which makes an assertion about two items.

Historically, the items were referred to as major (predicate) term, minor (subject)
term, and middle term. The major premise links the predicate term with the middle
term, the minor premise links the subject term with the middle term, and the conclusion
is deduced knowledge about the subject term and the predicate term.

The syllogistic reasoning task is then formulated as follows: given the major premise
and the minor premise, is the conclusion valid? As an example, consider the following
classical syllogism:

All men are mortal.
All Greeks are men.
Therefore, all Greeks are mortal.

Here, being mortal is the major term, Greeks is the minor term, and men is the middle
term. The premises do not contain a statement that directly connects the major and
the minor term, but they are linked via the middle term. This enables the deduction of
a valid conclusion.

Aristotle often used the Greek letters α, β, and γ as placeholders for terms instead
of concrete items. In this connection, we draw on the Latin letters a, b, and c for
abstraction, where a is the major term, b is the middle term and c is the minor term.
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Universal Existential

Affirmative All (A) Some (I)
Negative No (E) Some not (O)

Table 1: Categorization of syllogisms by moods.

2nd Premise

b-c c-b

1st Premise a-b 1 3
b-a 4 2

Table 2: Categorization of syllogisms by figures.

2.1.2 Categorizing Syllogisms

The premises and the conclusion can differ both in what quantification over the items is
used and how the terms are arranged.

Classically there are four quantifiers that are called moods: All (A), Some (I), No (E),
and Some not (O). They mirror the combinations of affirmative vs. negative and universal
vs. existential quantification as presented in Table 1. Other quantifiers, such as Few and
Most, are not considered here, although they are investigated in some studies [SMP94,
KJL12]. Premises are abbreviated with their mood, e.g. ‘All a are b’ becomes Aab.

While premises were originally defined based on the term they contain (major vs.
minor), another distinction can be made by the order of terms within such a premise.
In each premise, the middle term can be in the first or second position, leading to four
possible combinations. These combinations are called figures and assigned a number as
presented in Table 2.

Consider the syllogism from above in its abstract form:

All b are a.
All c are b.
∴ All c are a.

The short notation is AA2, obtained by first listing the moods of the premises followed
by the figure. Note that the categorization of syllogistic premises does not specify the
conclusion.

2.1.3 Empirical Approach

A benefit of using syllogisms for investigating human reasoning is that while there is an
infinite amount of possible syllogisms, there are only 512 distinct logical forms. This
number is obtained by each possible combination of moods in the premises and the
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conclusion as well as the figure of the premises and the predicate and subject term of
the conclusion (43 × 8 = 512).

However, in many studies the participants are only given the two premises and asked
which conclusions validly follow in their opinion. This reduces the number of logically
distinct syllogistic reasoning tasks to 64. The set of possible answers consists of eight
conclusions (four moods and the possibility to swap the predicate and the subject term)
and no valid conclusion (NVC), representing the opinion that all other conclusions are
invalid.

The large amount of psychological studies on syllogisms allows to retrieve representa-
tive data on how humans solve this task. Many of those studies have been accumulated
in a meta-analysis by Khemlani and Johnson-Laird in 2012 [KJL12], who seek to develop
a unified theory of reasoning [JLK13]. Syllogisms are suitable for this task, since they
are well understood (recall more than 2000 years of research) while complex enough to
be a serious cognitive task.

Khemlani and Johnson-Laird came to the conclusion that none of the twelve inves-
tigated cognitive theories could correctly predict how humans reason about syllogisms.
They close with a call for a better, comprehensive, and unified theory of human rea-
soning. Any new theory, such as our approach with the Weak Completion Semantics,
will have to prove its value by predicting the answers of the participants better than the
existing theories. How the fit of a theory to that data is computed will be described in
Section 5.

2.2 Weak Completion Semantics

This section introduces the formal concepts that are necessary to understand our ap-
proach to human reasoning. Starting with logic programs, the ideas of using a three-
valued logic and ‘weakly completing’ a program will be explained. Based on that, it will
be shown how the two reasoning forms deduction and abduction are modelled under the
Weak Completion Semantics.

2.2.1 Logic Programs

The reader is expected to be familiar with the basic notions from first-order logic, namely
constant symbol, variable, predicate, atom, literal, clause, head, body, formula, and quan-
tifier. Understanding for the semantics of the truth-value constants > and ⊥ as well as
the logic connectives ¬, ∧, ∨, ←, and ↔ is needed, too. For a broad introduction to
classical logic, see e.g. [Llo87,Höl09].

Definition 2 (Logic Program) A logic program P is a finite set of clauses. Each
clause is of one of the following forms:

1. A← > (Fact),

2. A← ⊥ (Assumption),

3. A← B1 ∧ · · · ∧Bn, (Rule),
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where n > 0, A is an atom, and Bi are literals for 1 ≤ i ≤ n.

Facts are objective knowledge, the atom in the head of a fact is equivalent to true under
the Weak Completion Semantics. Assumptions may seem like negative facts, however,
the atom in the head is only equivalent to false if there is no other clause in the program
that has the same atom in its head.1 Rules allow the inference of new knowledge from
facts and assumptions.

Only datalog programs are considered, so only constant symbols and universally quan-
tified variables, but no function symbols are allowed in terms.

For reasoning, instead of working with the logic program directly, its corresponding
ground program is used.

Definition 3 (Ground Program) A ground program gP is the set of all ground in-
stances of the clauses occurring in the logic program P.

A ground instance of a clause C is obtained by replacing all variables occurring in C
with constant symbols. Since the set of constant symbols if finite, the ground program
gP of a program P is finite as well.

In a ground program, two particular sets of ground atoms are of special interest:
defined and undefined atoms.

Definition 4 (Defined Atom) Let P be a logic program. An atom A is defined in gP
if and only if gP contains a clause with A in its head that is a fact or a rule.

Definition 5 (Undefined Atom) Let P be a logic program. An atom A is undefined
in gP if and only if it is not defined in gP.

For defined atoms, it is sometimes interesting to know the clauses that are responsible
for its definition.

Definition 6 (Definition of an Atom) Let P be a logic program and A be an atom.
The definition of A in P is the following set:

def(A,P) = {A← body | A← body is a rule or a fact in gP}

Based on these definitions, the concept of assumptions can now be formally defined.

Definition 7 (Assumed Literal) Let P be a logic program and A be an atom. ¬A is
assumed in P if and only if A is undefined in gP and gP contains an assumption with A
in its head, i.e., def(A,P) = ∅ and A← ⊥ ∈ gP.

1This capability of overwriting assumptions is obtained by using a completion semantics.
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¬

> ⊥
U U
⊥ ⊥

∧ > U ⊥

> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥

> > > >
U > U U
⊥ > U ⊥

← > U ⊥

> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥

> > U ⊥
U U > U
⊥ ⊥ U >

Table 3: The truth tables for the logic connectives under  L-logic.

2.2.2 Three-Valued Logic and Models

Logic programs are used with a special three-valued logic defined by  Lukasiewicz [ Luk20]
( L-logic). It contains the following truth values: true (>), false (⊥), and unknown (U).
Like in classical logic, formulae are interpreted to obtain their truth value.

Definition 8 (Three-Valued Interpretation) A three-valued interpretation I under
 L-logic is a mapping from the set of formulae to the set {>,⊥,U}. The truth value of
a formula F under I is obtained by evaluating the logic connectives occurring in F as
defined in Table 3.

Three-valued interpretations are represented as tuples. Let F be a formula, its inter-
pretation is I = 〈I>, I⊥〉, where

I> = {A | A is an atom occurring in F ∧ I(A) = >},

I⊥ = {A | A is an atom occurring in F ∧ I(A) = ⊥},

I> ∩ I⊥ = ∅.

Any atom that does not occur in I> ∪ I⊥ is implicitly mapped to U.
Logic programs are considered under a model semantics.

Definition 9 (Model) Let P be a logic program and I be a three-valued interpretation.
I is a model of P if and only if I(C) = > for every clause C in gP.

Towards Least Models Minimality properties of models are of particular interest.
Therefore, a partial order of interpretations is defined. Let I, J be three-valued in-
terpretations. I ⊆ J if and only if I> ⊆ J> and I⊥ ⊆ J⊥.

Finally, the concept of a least model that will be used for reasoning can be defined.

Definition 10 (Least Model) Let P be a logic program and I be a three-valued inter-
pretation, such that I is a model of P. I is the least model of P if and only if for every
other interpretation J that is a model of P, I ⊆ J holds.

2.2.3 Reasoning with Respect to Least Models

For modelling human reasoning processes, instead of the least model of a logic program,
the least model of its weak completion is considered.
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Definition 11 (Completion of a Program) Let P be a logic program. The comple-
tion of P, denoted by cP, is obtained from P by applying the following steps:

1. For each atom A in gP, replace all clauses of the form A ← Body in gP by the
clause A←

∨
A←Body∈gP

Body.

2. For all atoms A that are not defined in gP, add a clause A← ⊥.

3. Replace all occurrences of ← by ↔.

This completion dates back to Clark [Cla78]. The reasoning behind it is that impli-
cations are implicitly meant to be equivalences, but the inverse conditional is omitted
by the author of the logic program. Additionally, it corresponds to the concept of the
closed world assumption, which allows to assume that any undefined atom in a logic
program is false.

That is, however, inadequate for modelling human reasoning. Atoms for which no
knowledge may be derived in the program should instead be regarded as unknown. This
has been done by Hölldobler and Kencana Ramli [HR09] by introducing the concept of
the weak completion (wcP) of a program. It is obtained just as the completion, but
step 2 is omitted.

Least models of the weak completion of a program are used for forward reasoning
(deduction), one of the three forms of reasoning identified by Peirce [Pei74]. The other
forms are backward reasoning (abduction), which is introduced in Section 2.2.4, and
induction, which is not considered in this work.

It has been shown [HR09] that a least model always exists for the weak completion
of a program. This least model coincides with the least fixed point of the immediate
consequence operator defined by Stenning and van Lambalgen [SvL08].

Definition 12 (Immediate Consequence Operator (ΦP)) Let P be a logic program
and I be a three-valued interpretation. Then, ΦP(I) = 〈J>, J⊥〉, where

J> = {A | there exists a clause A← body in gP such that I(body) = >},
J⊥ = {A | there exists a clause A← body in gP and

for all clauses A← body in gP it holds that I(body) = ⊥}.

For finite datalog programs, as they are used in this work, the least fixed point of ΦP
always exists. The least model computed by ΦP when starting with the empty inter-
pretation 〈∅, ∅〉, denoted by MP , is the minimal knowledge that is inferred from the
program P. MP is the result of deduction. All formulae that are true under MP are
said to be entailed by P under the Weak Completion Semantics.

Definition 13 (Entailment Relation |=wcs) Let P be a logic program, F be a for-
mula, andMP be a three-valued interpretation, such thatMP is the least model of wcP.
Then, P |=wcs F if and only if MP(F ) = >.

9



2.2.4 Reasoning with Abduction

Backward reasoning (abduction) is the process of deriving new knowledge that is not
guaranteed by the premises. Given a logic program and an observation that does not
follow from the program, an explanation for that observation is searched. If one is found
that is consistent with the original program, it may be added to the knowledge base.

The process of abduction is formalized as an abductive framework.

Definition 14 (Abductive Framework) An abductive framework is a quadruple of
the form 〈P,A, IC, |=〉, where

P is logic program,

A is a finite set of formulae called abducibles,

IC is a set of integrity constraints (see Definition 16),

|= is a logical entailment relation.

Although any set of formulae could serve as abducibles, only a particular set is con-
sidered: the abducibles with respect to P.

Definition 15 (Abducibles) Let P be a logic program. The set of abducibles with
respect to P, denoted by AP , is defined as follows:

AP = {A← > | A is undefined in P} ∪
{A← ⊥ | A is undefined in P} ∪
{A← > | ¬A is assumed in P}

Integrity constraints are special expressions that can be use to add further restrictions
to the abduction process.

Definition 16 (Integrity Constraint) An integrity constraint is a clause of the form
U← B1∧· · ·∧Bn, where n > 0, Bi is a literal for all 1 ≤ i ≤ n, and U is the truth-value
constant denoting the unknown.

An interpretation I satisfies a set of integrity constraints IC if and only if I(C) = > for
all clauses C ∈ IC. Note that if all of the literals in the body of an integrity constraint
are mapped to true, the truth value of the integrity constraint is unknown and I does
not satisfy IC. However, it is possible that literals in the body are unknown, because
U← U is evaluated to true under  L-logic.

With the definitions from above, the abductive framework used under the Weak Com-
pletion Semantics is instantiated as 〈P,AP , ∅, |=wcs〉, given a logic program P. While
any set of literals could theoretically be used as an observation, we restrict them to
certain sets of atoms that are obtained from P. We define the set of observations in the
following way:
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Definition 17 (Observations) Let P be a logic program. The set of observations with
respect to P, denoted OP , is defined as follows:

OP = {A | A← > ∈ def(A,P) ∧ (A← B1 ∧ · · · ∧Bn) ∈ def(A,P)},

where n > 0 and Bi is a literal for all 1 ≤ i ≤ n.

Intuitively, these are the atoms that occur in the head of both a rule and a fact. The
set of observations is further restricted by considering only facts that result from certain
principles. See Section 3.2.3 for an example.

Given such an observation O ∈ OP , the task of the abductive framework is to find an
explanation for it that meets certain requirements.

Definition 18 (Explanation) Let 〈P,AP , IC, |=wcs〉 be an abductive framework and O
be a literal (observation). O is explainable in the abductive framework 〈P,AP , IC, |=wcs〉
if and only if there exists an E ⊆ A, such that:

1. P ∪ E |=wcs O,

2. P ∪ E satisfies IC.

E is then called explanation for O.

Since there may be several explanations for an observation, a guideline for drawing
conclusions from explanations is introduced. First of all, it is assumed that humans
prefer minimal explanations for reasoning.

Definition 19 (Minimal Explanation) Let 〈P,AP , IC, |=wcs〉 be an abductive frame-
work, O be a literal (observation), and E ⊆ A be an explanation for O. E is minimal if
and only if there exists no other explanation E ′ ⊆ A for O such that E ′ ⊆ E.

Among the minimal explanations, it is possible that some of them entail a certain
formula F while others do not. There exist two strategies to determine whether F is
a valid conclusion in such cases. F follows credulously, if it is entailed by at least one
explanation given P, O, and IC. F follows skeptically, if it is entailed by all explanations
given P, O, and IC.

Due to the results of [dCSH17], skeptical abduction is used.

11



3 Human Reasoning Processes

In the following the approach of modelling human reasoning under the Weak Completion
Semantics will be explained. Syllogisms are understood as monadic quantified assertions.
This means that they are formalized as universally quantified logic clauses. All predi-
cate symbols in the logic program have an arity of one and only constant symbols and
variables, but no function symbols are used in terms.

In the beginning, an overview of already known principles in human reasoning is given.
After that, it is shown how clusters of humans can be modelled with the help of such
principles and two new principles are introduced. In the end, heuristic strategies that
do not involve logic, but can still be used to solve reasoning tasks, are presented.

3.1 Common Principles of Human Reasoning

Eight principles of reasoning have already been identified from findings in Cognitive
Science and Psychology [dCSH17]. They are introduced in this section.

Definition 20 (Principle of Reasoning) A principle is a modular component of a
reasoning process that is represented as a set of clauses.

Several principles can be combined with each other to model how a reasoner solves a
reasoning task. The union of the sets of clauses representing each of it is the logic
program that encodes the reasoning task.

Based on this logic program, the reasoning forms deduction and abduction can be
simulated. Note that in [dCSH17] an additional logic program was used to obtain the
results of deduction based on the least model of the first logic program. The investigation
of the principles used for that additional logic program and how they can be combined,
however, is beyond the scope of this project. Therefore, that way of deduction is not
considered here; instead, the conclusions are entailed from the least model directly.

For an overview of principles and their representation as clauses, see Table 4. In the
following, the motivation behind each principle is described. After that, an example of
encoding a syllogism and applying deduction and abduction to obtain the conclusions is
given.

3.1.1 Quantified Assertion as Conditional

A quantified assertion, e.g. “All a are b”, contains statements about two predicates,
namely a and b. In a logic program clause, only one of them can be in the head and the
other one must be in the body, thus forming a conditional.

The representation of such a conditional is as follows: if a quantified assertion estab-
lishes a relation about the terms y and z, the first term y is seen as the antecedent and
the second term z is seen as the conclusion of a conditional. The formalization as a
monadic quantified conditional is then: z(X) ← y(X). Intuitively, if we know that an
object X belongs to the term y, we also deduce that it belongs to z.

Note that in this encoding, it is impossible to determine what syllogistic mood the
assertion had. This is solved by the following principles.

12



Principle of Reasoning Corresponding Clauses

Quantified assertion as conditional + licenses z(X)← y(X) ∧ ¬abyz(X)

Existential import + licenses
abyz(o1)← ⊥
y(o1)← >

Unknown generalization + licenses y(o2)← >
No refutation + licenses abyz(X)← ⊥
Negative quantified assertion + licences z′(X)← y(X) ∧ ¬abnyz(X)
Negation by transformation + licenses z(X)← ¬z′(X) ∧ ¬abnzz(X)
No derivation by double negation + licenses abnzz(o1/2)← ⊥

Table 4: Reasoning principles and their representation as sets of clauses.

3.1.2 Licenses for Inferences

Stenning and van Lambalgen [SvL08] proposed to see conditionals as licenses for in-
ferences. A monadic quantified conditional “For all X, z(X) holds if y(X) holds” is
replaced by “For all X, z(X) holds if y(X) holds and nothing is abnormal with X”.
This is formalized by introducing an abnormality predicate abyz(X). The license is then
implemented as a conjunction in the body of the conditional: z(X)← y(X)∧¬abyz(X).
The abnormality plays an important role, because it has to be false to enable any in-
ference about z(X). This is achieved by the negative assumptions introduced by the
following principles. For such clauses, we will write that they origin from both the
licenses by inferences and the corresponding other principle.

3.1.3 Existential Import

In classical logic, a universally quantified formula is also valid if the set of objects over
which is quantified is empty. Humans do not seem to follow this logic, because a quan-
tification over some things in natural language is done with the intention that these
things exist. This phenomenon is called Gricean Implicature [Gri75], because a univer-
sal quantifier seems to imply an existential quantifier.

In the previous principles, conditionals of the form z(X) ← y(X), that are regarded
as universally quantified, have been introduced. The required existential import is en-
coded by the fact y(o) ← >, where o is a new object that does not yet appear in the
logic program. If licenses are used, it would still be impossible to infer z(o) in such a
conditional, because the abnormality of o with respect to y and z is unknown. However,
since the original assertion states that a certain relation of y and z holds, we assume
that this abnormality does not hold for the imported object o. This is formalized by the
assumption abyz(o)← ⊥.

3.1.4 Unknown Generalization

There is a logical difference between “all y are z” and “some y are z” that is also
observable in the way humans answer syllogistic reasoning tasks [KJL12]. However,
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if only the principles quantified assertion as conditional, licenses for inferences, and
existential import were used, both cases would have the same encoding and thus the
same conclusions.

This is solved by importing another object that is different from the already existing
one. Formally, if o1 was introduced by the existential import principle, a fact y(o2)← >
is added if the mood is existentially quantified. Since nothing is stated about the ab-
normality, z(o2) will remain unknown. As a consequence, there is an object in y which
is known to be in z and one for which this is unknown. Under three-valued logic, this
fits to the existentially quantified mood.

3.1.5 No Refutation

According to the Mental Models theory, counterexamples are used spontaneously for
reasoning [JL80]. This is called refutation by counterexample and covered by the use of
licenses. As a consequence, any object can be used as a counterexample, except the one
introduced by the existential import (because no abnormality is assumed for it).

However, this contradicts with universally quantified moods, as we do not want any
object to be used as a counterexample for conditional such as z(X)← y(X)∧¬abyz(X)
if y and z are in a relation like ‘all’. Therefore, the assumption abyz(X) ← ⊥ is added
for universally quantified moods.

3.1.6 Negation by Transformation

Logic program clauses may not have negated atoms in the head. This makes it impossible
to encode premises with negative moods, because the negated atom would have to be in
the head. Consider e.g. the premise “no y are z”, whose corresponding conditional with
licenses is ¬z(X)← y(X) ∧ ¬abyz(X).

To circumvent this, for each negative literal an additional atom is introduced, which
instead is placed in the head of the clause. Conditionals like the one from above are
then formulated as z′(X)← y(X) ∧ ¬abyz(X).

In order to be able to infer something about z(X), an additional clause z(X) ←
¬z′(X) ∧ ¬abnzz(X) is added. Now, if z′(X) is inferred, the body of this clause is
evaluated to false. Under the Weak Completion Semantics, z(X) also becomes false if
there is no other rule with it in the head.

Note that this principle has a technical origin and is only used to allow negative infer-
ences. The only backup from Cognitive Science is that humans indeed draw conclusions
in syllogisms with negative premises [KJL12].

3.1.7 No Derivation By Double Negation

Under the Weak Completion Semantics, derivation through double negation is possible.
From two assertions like “if not a, then b” and “if not b, then c” it is possible to conclude
that c is true, given that a is true.

The data in the meta-analysis on syllogistic reasoning [KJL12] shows that humans
do not seem to infer knowledge through double negation. This is accounted by using
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licenses for all conditionals. In negative moods, where the negation by transformation
principle must be used, the additional abnormalities abnzz(X) are only assumed to be
false for the imported objects and for no other X. Therefore, the atom z(X) in the head
of the rule introduced by that principle cannot become true.

3.1.8 Converse Interpretation

The premises “some y are z” and “some z are y” are logically equivalent. The same
holds for premises with the mood E (‘no’). If humans also reason that way, the converse
premises Izy or Ezy, respectively, must be encoded and added to the logic program.

Both cases (adding the converse interpretation for I or E) can be considered indepen-
dently from each other. There may also be syllogisms for which the converse interpre-
tation is considered and others for which it is not. Finally, while not logically correct,
humans could use the converse of premises with A and O moods for reasoning as well.

There is evidence that humans apply this principle in the experimental data [KJL12]
to solve some syllogisms, because if the principle is applied to premises with the moods I
and E, a better fit is achieved (see Section 5).

3.2 Entailment of Conclusions

It has all ready been said that the representations of all principles used to solve a
syllogism are united to form a logic program. There are several possibilities to draw
conclusions from the least model of such a program. In this work, an entailment as
defined in first-order logic is considered.

The possible conclusions are drawn if and only if the corresponding formula is evalu-
ated to true (where (y, z) is instantiated as (a, c) or (c, a)).

Ayz ∃X(P |=wcs y(X)) ∧ ∀X(P |=wcs y(X)→ P |=wcs z(X))

Eyz ∃X(P |=wcs y(X)) ∧ ∀X(P |=wcs y(X)→ P |=wcs ¬z(X))

Iyz ∃X(P |=wcs y(X) ∧ z(X)) ∧ ∃X(P |=wcs y(X) ∧ P 6|=wcs z(X)) ∧
∃X(P |=wcs z(X) ∧ P 6|=wcs y(X))2

Oyz ∃X(P |=wcs y(X) ∧ ¬z(X)) ∧ ∃X(P |=wcs y(X) ∧ P 6|=wcs ¬z(X))

NVC None of the above conclusions is entailed

3.2.1 AO3 — no valid conclusion

The syllogism AO3 consists of two premises:

All a are b.
Some c are not b.

2This third part of the conjunction is only used if the principle converse interpretation is applied.
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Each of the premises is encoded according to the principles of reasoning that are applied.
The first premise is represented as the following logic program, where for each clause
the principle which added it is written:

b(X)← a(X) ∧ ¬abab(X) conditional + licenses

a(o1)← > existential import

abab(o1)← ⊥ existential import + licenses

abab(X)← ⊥ no refutation + licenses

The quantified assertion as conditional and existential import principles must be used
for every syllogism to enable inference. The placeholders y and z are replaced by a and b,
respectively, the terms of the premise. The objects are assumed to be named oi, where i
is incremented by one with each principle introducing a new object. Since the mood A
is universally quantified, the no refutation principle is applied as well.

The second premise is encoded by:

b′(X)← c(X) ∧ ¬abcnb(X) negative conditional + licenses

abcnb(o2)← ⊥ existential import + licenses

c(o2)← > existential import

c(o3)← > unknown generalization

b(X)← ¬b′(X) ∧ ¬abnbb(X) negation by transformation + licenses

abnbb(o2)← ⊥ no derivation by double negation + licenses

abnbb(o3)← ⊥ no derivation by double negation + licenses

Since the mood is is negative, the quantified assertion as conditional principle is used
with the alternative atom in the head of the clause. Again, the placeholders are replaced
by the terms of the premise. As for all syllogisms, the existential import principle is used,
but with o2 as its object (the enumeration is continued from the previous premise).

As the mood is existential, the unknown generalization principle is applied as well
introducing a new object o3. The negative mood is accounted with the negation by
transformation principle. Finally, its abnormalities are assumed to be false for all objects
introduced by this premise, but no others. This is the result of the no derivation by double
negation.

The logic program representing the syllogism AO3, PAO3, is the union of the sets of
clauses for each premise. The least model of the weak completion of PAO3 is:

〈{ a(o1) , b(o1), c(o2) , c(o3) , b
′(o2)},

{abab(o1), abab(o2), abab(o3), abcnb(o2), abnbb(o2), abnbb(o3)}〉

Possible conclusions from this model are based on the atoms highlighted in gray. It
can be seen that no valid conclusion (NVC) follows, because there is no oi for which
anything about a(oi) and c(oi) is known at the same time. The significant answers by
the participants of the meta-analysis by Khemlani and Johnson-Laird [KJL12] are NVC
and Oca. However, even if abduction was applied, Oca could not be concluded. This
problem will be solved during this work.
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3.2.2 AO4 — conclusion by deduction

AO4 is a syllogism which is similar to AO3:

All b are a.
Some b are not c.

Its encoding PAO4 is exactly as for AO3, only that the symbols representing the two
terms are swapped in both premises. The weak completion of PAO4 has the following
least model:

〈{ a(o1) , a(o2) , a(o3), b(o1), b(o2), b(o3), c
′(o2)}

{abba(o1), abba(o2), abba(o3), abbnc(o2), abncc(o2), abncc(o3), c(o2) }〉

Let this model be denoted 〈I>, I⊥〉 for this paragraph. Consider the atoms highlighted
in gray: a(o1) ∈ I>, a(o2) ∈ I>, c(o2) ∈ I⊥, but c(o1) 6∈ I⊥, so the conclusion Oac
(“some are not c”) can be drawn. This corresponds to the only significant answer by
the participants.

3.2.3 AO1 — conclusion by abduction

For an example with abduction, consider the syllogism AO1:

All a are b.
Some b are not c.

Again, the encoding PAO1 is similar to PAO3, just swap the symbols representing the
terms in the second premise. The least model of the weak completion of PAO1, denoted
MPAO1

, is as follows:

〈{ a(o1) , b(o1), b(o2), b(o3), c
′(o2)},

{abab(o1), abab(o2), abab(o3), abbnc(o2), abncc(o2), abncc(o3), c(o2) }〉

Similar to the syllogism AO3, no valid conclusion follows from this model. As a conse-
quence, abduction is applied to search for alternatives.

The abductive framework is instantiated as 〈PAO1,APAO1
, ∅, |=wcs〉, where

APAO1
= {abab(oi)← > | i ∈ {1, 2, 3}} ∪
{abbnc(o2)← >} ∪
{abncc(oi)← > | i ∈ {1, 2}} ∪
{abbnc(oi)← >, abbnc(oi)← ⊥ | i ∈ {1, 3}} ∪
{abncc(o1)← >, abncc(o1)← ⊥} ∪
{a(oi)← >, a(oi)← ⊥ | i ∈ {2, 3}}

The only possible observation is b(o2), as it is both head of a fact introduced by the
existential import principle and head of a clause that is not a fact. The only explanation
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for b(o2) is a(o2), which trivially is also a minimal explanation. Therefore, a(o2) follows
both skeptically and credulously and is added to the least model. The updated least
model 〈I>, I⊥〉 =MPAO1

∪ {a(o2)} reads as follows:

〈{ a(o1) , a(o2) , b(o1), b(o2), b(o3), c
′(o2)},

{abab(o1), abab(o2), abab(o3), abbnc(o2), abncc(o2), abncc(o3), c(o2) }〉

Again, the atoms important for deduction are highlighted in gray. Since a(o1) ∈ I>,
a(o2) ∈ I>, c(o2) ∈ I⊥, but c(o1) 6∈ I⊥, the conclusion Oac is drawn instead. This is
indeed the only significant answer of the participants.

3.3 Clusters of Reasoners

Differences between individuals in reasoning have been investigated in psychology for
several times, consider [JLS78, BHN03, KJL16]. Due to differences in training in logic,
motivation or for various other reasons people behave differently when they solve a
syllogistic reasoning task and as a result, come do different conclusions.

When looking at the results of [KJL12], it can be observed that in 37 out of the 64
syllogisms NVC was a significant answer as well as another conclusion. As an example,
see the syllogism AO3 introduced above: 40 % of the participants answer Oca (Some c
are not a), while 20 % give NVC as an answer. Since these two answers contradict with
each other it must be assumed that there were at least two groups of reasoners. One of
them had the ability to draw a conclusion (Oca) that the other could not (thus answering
NVC). In addition to that, in many psychological studies on syllogisms people are only
allowed to give one answer. If all humans would reason in the same way, there would
only be one significant answer to each syllogism. However, in 48 out of the 64 syllogisms,
at least two answers are given.

It is proposed to account for that in the Weak Completion Semantics by using the
existing concept of principles of reasoning to form clusters of reasoners.

Definition 21 (Cluster) A cluster of human reasoners is a group of people that uses
the same principles of reasoning to solve a task.

The goal is to define a cluster for each answer of a syllogism that is given by a
significant amount of participants. The cluster is given as a set of principles that entails
the conclusion under the Weak Completion Semantics.

Until now, all principles have been applied in general, yielding one single model and
thus one answer (possibly containing more than one conclusion) for each syllogism.
With the introduction of clusters, this will no longer be the case. Since the principles
vary between clusters, each cluster of reasoners will now have its own logic program
representing the principles used. As a consequence, for each cluster the least model will
be computed. The resulting individual sets of answers possibly differ. Just as all the
individual answers are accumulated in psychological studies, the answers predicted for
each cluster will be united to form a general prediction under the Weak Completion
Semantics.
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The principles conditional by licenses, existential import, unknown generalization,
negation by transformation and no derivation through double negation are considered
as basic principles that still need to be applied in every case, because they form the
core of the logical inference. The converse interpretation principle is seen as one whose
application may vary between clusters.

This section introduces two new principles to illustrate how the approach can be
adapted to model clusters of reasoners.

3.3.1 The Context Operator

The context operator is a truth-functional operator extending three-valued logic pro-
grams that was introduced by Dietz, Hölldobler and Pereira [DHP17]. It is defined as
follows:

ctxt(L) =

{
> I(L) = >,
⊥ otherwise.

with respect to an interpretation I, where L is a literal.

Definition 22 (Contextual logic program) A contextual logic program is a logic
program where the context operator can occur in the body of clauses, i.e. additionally to
the original clauses, clauses of the following form are also valid:

A← L1 ∧ · · · ∧ Lm ∧ ctxt(Lm+1) ∧ · · · ∧ ctxt(Lm+n),

where m ≥ 0, n ≥ 0, m+ n > 1, A is an atom and Bi are literals for 1 ≤ i ≤ m+ n.

We also have to extend the concept of assumptions. Until now, we called clause of the
form A← ⊥, where A is an atom, assumptions. These are actually negative assumptions,
because their intended meaning is to assume ¬A. In contrast to that we introduce clauses
of the form A← U, where A is an atom, as unknown assumptions. They are needed when
we want to block that the context operator adds negative assumptions to the program.
Consider the following example:

Pctxt = {ab(X)← ctxt(c(X))}

Since nothing about c(X) is known, ab(X) will be false for all X. Imagine we do not
want that predicate to be false for a specific object o. We then add the unknown
assumption ab(X) ← U to Pctxt and obtain P ′ctxt. The weak completion of P ′ctxt is as
follows (assuming o is the only constant symbol for simplicity):

{ab(o)↔ ctxt(c(o)) ∨ U}

Since ctxt(c(o)) is false, ab(o) remains unknown under  L-logic despite the use of the
context operator.

Contextual logic programs are introduced for modelling the syllogistic reasoning task,
because otherwise the contraposition principle (introduced in Section 3.3.2) could not
be applied. Reconsider the syllogism AO3 as a motivating example:
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All a are b. (Aab)
Some c are not b. (Ocb)

These premises are represented by the logic program PAO3 defined in Section 3.1. The
least model of the weak completion of PAO3, 〈I>, I⊥〉, is:

〈{a(o1), b(o1), c(o2), c(o3), b
′(o2) },

{abab(o1), abab(o2), abab(o3), abcnb(o2), abnbb(o2), abnbb(o3)}〉

Note that b′(o2) ∈ I> (highlighted in gray), but not b(o2) ∈ I⊥, even though being
able to make conclusions about negated atoms is the whole purpose of the negation by
transformation principle. Furthermore, since ∃X : c(X) ∈ I>, but ¬∃X : b(X) ∈ I⊥,
the premise Ocb does not even follow from the least model!

It is obvious that the premises of a syllogism must be entailed by the least model of
the logic program representing it, especially if any conclusions made by the participants
shall be predicted.

The reason for the unexpected least model in this case is the following clause:

b(X)← a(X) ∧ ¬abab(X)

Since a(o2) is unknown and abab(o2) is false, the whole body of the clause is unknown
as well. However, in order for b(o2) to be false under |=wcs, the body of all clauses with
b(o2) in the head must be false. Since b′(o2) ∈ I> already indicates that b(o2) should be
false, it is more or less a technical problem that has to be solved.

The conditional by licenses principle that generates the clause in question states that

for all X, b(X) holds if a(X) holds and nothing abnormal is known.

Here, it can be considered an abnormality that b′(X) is already true, since concluding
b(X) afterwards would be a contradiction. Therefore, abab(o2) must be set to true, i.e.
the negative assumption abab(X)← ⊥ must be defeated for o2.

If the assumption would simply be defeated by adding the clause abab(X)← b′(X) to
the program, abab(X) would become unknown in cases where nothing is said about b′(X).
This would have negative impacts on other syllogism by restricting certain conclusions.
The context operator allows defeating negative assumptions without affecting such cases,
because ctxt(L) = ⊥ if I(L) = U. For premises with mood A, it is sufficient to add the
following clause to the program:

abab(X)← ctxt(b′(X))

In the weak completion, it is combined with the assumption as follows:

abab(X)↔ ctxt(b′(X)) ∨ ⊥

which is logically equivalent to:

abab(X)↔ ctxt(b′(X))
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Finally, this allows b(X) to be false if b′(X) is true and leaves all other cases unchanged.
The least model of the weak completion of P2

AO3 = PAO3 ∪ {abab(X) ← ctxt(b′(X))}
is as follows (the atoms regarding the inference of ¬b(o2) are highlighted in gray):

〈{a(o1), abab(o2) , b(o1), c(o2), c(o3), b
′(o2) },

{abab(o1), abab(o3), abcnb(o2), abnbb(o2), abnbb(o3), b(o2) }〉

The premise Ocb follows from the model as intended.
The use of the context operator can be generalized to all premises whose mood is A.

As expected, the premises then follow from the least model of their logic programs,
but no further conclusions are entailed. Instead, the contraposition principle becomes
applicable.

This approach — defeating the assumptions that the abnormalities of the conditionals
are false — can be extended to premises of the mood I using the context operator:

abab(X)← ctxt(b′(X)), (I1)

abab(o2)← U (I2)

where o2 is the object generated by the unknown generalization import principle. The
additional clause I2 is necessary for the objects that have been introduced by the prin-
ciple unknown generalization, because otherwise the abnormality may be assumed to be
false for this object as well and the premise would effectively be modelled as if it was
universally quantified.

Note that using the context operator this way has an impact on the conclusions. For
some syllogisms that were previously answered with NVC or existentially quantified con-
clusions (e.g. IIX, X ∈ {1, 2, 3, 4}), now conclusions (both existentially or universally
quantified) are predicted. It is true that the second added clause (I2) inhibits inferences
about the object imported by the premise using the context operator. However, infer-
ences about all objects imported by the other premise are still allowed, because for them
the assumption is defeated.

This use of the context operator is interesting, because many of the new conclusions it
leads to are drawn by a significant amount of the participants, while a smaller portion is
not. This can be considered as a new principle which shifts the paradigm of the unknown
generalization principle. Originally, for an existentially quantified principle, inferences
about exactly one object were allowed. Now, inferences about exactly one object are
explicitly forbidden. Consequently, this more liberal reasoning approach leads to more
conclusions. Therefore, we call this principle deliberate generalization.

3.3.2 The Contraposition Principle

In classical logic, an implication of the form a → b is equivalent to its contrapositive
statement ¬b → ¬a. Therefore, given such an implication, whenever b is known to be
false, it can be deduced that a is false as well. Contraposition also holds under the
three-valued  L-logic, as it is shown in Table 5:
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y z y → z ¬y ¬z ¬z → ¬y

> > > ⊥ ⊥ >
> U U ⊥ U U
> ⊥ ⊥ ⊥ > ⊥
U > > U ⊥ >
U U > U U >
U ⊥ U U > U
⊥ > > > ⊥ >
⊥ U > > U >
⊥ ⊥ > > > >

Table 5: Truth table for contraposition under  L-logic.

Contraposition can be applied as a principle to the syllogistic reasoning task. Premises
with the mood A, e.g. All a are b, can logically be seen as an implication of the form
a→ b. Premises with the mood E, e.g. No a are b, correspond to an implication of the
form a→ ¬b. Their contrapositives are ¬b→ ¬a and b→ ¬a, respectively.

Under the Weak Completion Semantics, the premises of a syllogism are modelled as
implications with licenses and allow consequences only in one direction. For a premise
of the form All a are b, no statements about a being false can be made, even if b is
known to be false, because the contraposition is not modelled. However, the data from
the meta-analysis by Khemlani and Johnson-Laird [KJL12] gives evidence that some
humans use it as a principle of reasoning. Recall the syllogism AO3 as an example:
the participants answer both Oca and NVC significantly. Under the Weak Completion
Semantics, however, only NVC is predicted. The reason for that can be seen in the least
model of the weak completion of the logic program P2

AO3 representing the syllogism with
the deliberate generalization principle (the relevant atoms are highlighted in gray):

〈{ a(o1) , abab(o2), b(o1), c(o2) , c(o3) , b
′(o2)},

{abab(o1), abab(o3), abcnb(o2), abnbb(o2), abnbb(o3), b(o2)}〉

In order to conclude Oca, a(o2) should be interpreted as false (corresponding to c(o2)
from the existential import) and a(o3) should not be interpreted as false (as opposed to
c(o3) from the unknown generalization). That is impossible as long as no rule for ¬a(X)
is contained in the logic program. Therefore, the contraposition principle is encoded as
follows:

a′(X)← ¬b(X) ∧ ¬abnba(X) contrapositive rule + licenses

a(X)← ¬a′(X) ∧ ¬abnaa(X) transformation + licenses

abnba(X)← ⊥ negative no refutation + licenses

Since ¬a(X) is a negated atom, the negation by transformation principle must be used as
well. The no refutation principle is used because it must be assumed that the abnormality
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predicate abnba(X) is false for all X for which b(X) is true. It is universally quantified
to be consistent with the encoding of the original premise.

We consider a program P3
AO3 which consists of P2

AO3 and the encoding of the contra-
position principle. The least model of the P3

AO3 contains a(o2) as a false atom, but not
a(o3), as it was intended:

〈{ a(o1) , abab(o2), b(o1), c(o2) , c(o3) , a
′(o2), b

′(o2)},

{ a(o2) , abab(o1), abab(o3), abcnb(o2), abnba(o1), abnba(o2),

abnba(o3), abnbb(o2), abnbb(o3), b(o2), a
′(o1)}〉

Oca is the only conclusion entailed by this model. With this approach, two clusters of
human reasoners have been identified and can be modelled:

1. people that apply the contraposition principle and entail Oca (ca. 40 %)

2. people that do not apply it, answering NVC (ca. 20 %)

As the answers of the participants of the various studies are accumulated, so are the
different predictions of the Weak Completion Semantics. The resulting prediction is
that human reasoning processes can lead to the answers Oca and NVC for this particular
syllogism, taking into account the individual differences in reasoning.

The contraposition principle is generalized to all syllogisms that have an A mood in
one of their premises and a negative mood (E or O) in the other one. As a result, the syl-
logisms AE3, AO3, and EA3, whose conclusions previously were predicted incompletely
by the Weak Completion Semantics, are now solved correctly (perfect match). This does
not apply for OA3, however. Obviously, the principle only improves syllogisms of figure 3.
This has technical reasons that result from the encoding of premises as implications. The
syllogistic figure 3 consists of the premises Xab and Xcb where X ∈ {A,E, I,O}. In the
logic program, the rules representing both premises have b(X) in the head, so neither
a(X) nor c(X) can be entailed for any object, except for the ones imported. Conse-
quently, there can be no conclusion for any of these syllogisms. The contraposition
principle introduces a rule with either a(X) or c(X) in the head enabling conclusions
for figure 3. It does not affect figure 4, because it consists of the premises Xba and Xbc
(X ∈ {A,E, I,O}), so its logic program does not contain rules with b(X) in the head.
The contraposition principle adds a rule with ¬b(X) in the body, but since this cannot
be contained in the least model for any X, no additional conclusions are possible. For
the figures 1 and 2 the premises do not match either, this can be shown using a similar
argumentation as above. In summary, the premises “do not match” in a sense that the
term in the head of the negative premise is not in the body of the affirmative premise,
so no conclusions can be drawn. However, this does not hold if the converse interpre-
tation principle is applied, because then a rule with the necessary atom in the head is
part of the logic program. As a consequence, the Weak Completion Semantics predicts
too many answers for the syllogisms AE1 and EA2 if the contraposition principle is
used along with the converse interpretation principle. A possible solution is limiting the
application of the contraposition principle to figure 3.
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As mentioned above, the contraposition is also valid for premises with the mood E.
However, this case raises the problem that the contraposition of a premise of the form
“No a are b” coincides with its converse interpretation. The only difference between the
two is the existential import of an object, which also leads to slightly different results.

Although not logically valid, the contraposition can be formulated for premises with I
moods in the same way as it is applied to A moods. This leads to different conclusions,
some of which are in accordance with the results of [KJL12] and some of which are not.
Therefore, we do not assume that contraposition is applied by humans in these cases.

3.4 Heuristic Solving Strategies

Until now we have assumed that humans rely on logic when solving syllogistic reasoning
tasks. Due to the use of a non-monotonic, three-valued logic, many conclusions can be
drawn that are not possible under classical logic.

There are, however, still conclusions the Weak Completion Semantics cannot predict
with any of the known principles. For example, consider the syllogisms EEX (X ∈
{1, 2, 3, 4}): while nothing can be concluded from only negative premises, a significant
amount of participants still answers with Eac or Eca.

When assuming clusters of human reasoners that differ in the principles they apply,
it may be reasonable to assume that some of them do not use logic at all. We say that
they use certain heuristics, i.e. rules that state which conclusion to choose based on the
appearance of the premises. This section introduces two such solving strategies that are
well-known in psychology and one that results from own observation.

3.4.1 The Atmosphere Effect

The atmosphere effect was introduced in an experimental study by Woodworth and Sells
in 1936 [WS35]. They state that instead of applying logic, humans can heuristically draw
conclusions based on the moods of the given premises:

• If both premises have the same mood, the conclusion is likely to have it as well

• If the moods of the premises differ, then

1. if one mood is negative, the conclusion is very unlikely to be positive (due to
the ‘negative atmosphere’)

2. if one mood is existentially quantified, the conclusion is very unlikely to be
universally quantified (due to the ‘existential atmosphere’)

The hypothesis was tested in a study with 65 adults that had no training in logic. They
were given pairs of premises with a conclusion and should decide whether that conclusion
validly followed from the premises. 169 syllogisms were used, but only 42 of them were
valid. For the remaining cases, if participants accepted invalid conclusions, it was tested
whether they preferred the ones predicted by the atmosphere effect. The authors stated
that the experimental data supported the hypothesis. However, Wetherick and Gilhooly
have pointed out problems in the implementation of the study. Instead of the originally
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reported results, it is probable that some participants used logic while others applied an
arbitrary heuristic strategy [WG95].

Application to the Weak Completion Semantics There are two possibilities to use
the atmosphere effect for modelling clusters of human reasoners.

Generative approach Model that an individual solves a syllogism heuristically and se-
lects a conclusion based on the premises’ atmosphere.

Filtering approach Model that conclusions that are unlikely due to the atmosphere hy-
pothesis are not selected.

The generative approach is based on the assumption that a person might decide to
not apply logic at all if they have to solve a difficult reasoning task. Their evaluation
process must be modelled differently from reasoners. Instead of constructing a model, a
random conclusion that is likely under the atmosphere hypothesis is selected. By doing
so, a new cluster is formed: Guessers using this particular heuristics.

Whether or not an individual is likely to use logic or a heuristic strategy can be
expressed by a probabilistic decision. The probability can be trained from experimental
data acquired in psychological studies using an algorithm like Expectation-Maximization.
As an example on how this can be done, see the parameter training of Multinomial
Processing Trees [HB94].

The filtering approach aims at improving the combined predictions of the Weak Com-
pletion Semantics rather than explaining individual reasoners. It is assumed that a sig-
nificant subset of the participants of psychological studies indeed uses certain heuristics
instead of logic. Therefore, if a conclusion predicted by the Weak Completion Semantics
is unlikely under the atmosphere hypothesis, a significant amount of people would not
draw it. Since they have to give an answer, they select one according to the heuristics
they use or NVC.

The filter is implemented after the conclusions have been drawn from the least model
of the weak completion of the logic program representing the syllogisms. It checks if
these conclusions conflict with the atmosphere of the premise. If so, NVC is added as
the answer that would likely be given by the cluster that does not use logic.

However, tests have shown that the atmosphere effect as a general filter for conclusions
is unsuitable to improve the predictions of the Weak Completion Semantics. In the basic
principles, it is already implemented that no conclusions conflict with the atmosphere
hypothesis. To illustrate this, an example for each case is presented below.

The fact that negative moods create a negative atmosphere (in which affirmative
conclusions are not drawn) follows from their representation via the negation by trans-
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formation principle (e.g. in the premise Eab):

b′(X)← a(X) ∧ ¬abnab(X) negative rule + licenses

b(X)← ¬b′(X) ∧ ¬abnbb(X) transformation + licenses

abnab(o1)← ⊥ existential import + licenses

a(o1)← > existential import

abnab(X)← ⊥ negative no refutation + licenses

Here, a(o1) is true, but b(o1) cannot be true. The other, affirmative, premise cannot
infer c(o1) to be true either, because the quantified assertion as conditional principle
relies on b(o2) being true for inference:

c(X)← b(X) ∧ ¬abbc(X)

Therefore, no affirmative conclusions about a and c are possible. An affirmative conclu-
sion in the opposite direction (i.e., about c and a) is not possible either, because in the
original case there is no rule with an a predicate in the head, hence the object imported
by the second premise can never be an element of a. If the converse interpretation prin-
ciple is used, the added premise will use the negation by transformation principle as well,
suppressing affirmative conclusions as described above.

Under the Weak Completion Semantics, existentially quantified moods suppress uni-
versally quantified conclusions by the unknown generalization principle (e.g. in the
premise Iab):

b(X)← a(X) ∧ ¬abab(X) rule + licenses

abab(o1)← ⊥ existential import + licenses

a(o1)← > existential import

a(o2)← > unknown generalization

Here, a(o2) is true, but b(o2) is always unknown. The other premise cannot infer c(o2) to
be true, because the conditionals as licences principle relies on b(o2) to be true for that
(compare with above). Therefore, no universal conclusions about a and c are possible.
Using the same argument as above, it is obvious that universal conclusion in the opposite
direction are not possible either.

The remaining statement of the atmosphere hypothesis, i.e. identical moods in the
premises likely lead to a conclusion of the same mood, is easy to show. For the mood O
it follows trivially from the arguments made above. For the moods A and E, the con-
clusions I and O, resp., are excluded by the no refutation by counterexample principle:
all objects that belong to one category automatically belong to the other, allowing only
universally quantified conclusions. For the moods A and I negated atoms do not occur
in the logic program, hence the conclusions E and O are impossible. By that, it has been
shown for all cases of identical moods in the premises that no conclusion predicted by
the Weak Completion Semantics can have a different mood than the premises. Addition-
ally, we may conclude that there is some logic underlying the atmosphere hypothesis,
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although it is a heuristic strategy. The conclusions that are unlikely due to the atmo-
sphere are not drawn by our logic approach either. However, atmosphere permits many
conclusions that do not result from logic.

3.4.2 The Matching Strategy

The matching strategy was introduced by Wetherick and Gilhooly [WG95] as an alter-
native heuristics to the atmosphere hypothesis. It defines the following order of ‘conser-
vatism’ on moods:

A < I = O < E

The higher a mood is in this order, the smaller is the number of entities it makes an
assertion about; the mood is ‘more conservative’. A conclusion with a certain mood
cannot be drawn if one of the premises has a higher mood with respect to that order.
People would reason ‘conservatively’ in the sense that the conclusions they draw do not
cover larger sets of objects than the premises.

Wetherick and Gilhooly [WG90] investigated the results of Woodworth and Sells [WS35]
to show that there are two groups of reasoners: one that uses logic and one that uses
the matching strategy. 23 of the 64 syllogisms have valid conclusions and the matching
strategy correctly predicts the conclusions of 14 of these 23 syllogisms. Here it is impos-
sible to say whether a person giving the correct answer used logic or a heuristic strategy.
For the remaining 13 syllogisms, if a person gives the correct answer they cannot have
used the matching strategy. Wetherick and Gilhooly claim that such individuals would
not use the matching strategy for other syllogisms either. They were able to justify
this hypothesis by correlating the answers to a subset of valid syllogisms which are an
obvious case for matching, but are predicted wrongly by the matching strategy, with the
answers to the remaining valid syllogisms in the study by Woodworth and Sells.

Application to the Weak Completion Semantics Similar to the atmosphere effect,
we test whether these findings can be used to improve the predictions of the Weak
Completion Semantics. The same approaches are used, the only difference is that the
predictions of the matching strategy are considered instead of the atmosphere.

It is again suggested to model individual reasoners applying heuristics instead of logic
using the generative approach. However, it is more interesting that in contrast to the
atmosphere hypothesis, the filtering approach can have an effect on the conclusions
depending on the principles used.

If the converse interpretation principle is not applied or only applied for the I premise,
the answers does not change at all. If it is applied to the E premise as well, there are
cases where conclusions are predicted which conflict with the matching strategy, namely
the IEX and EIX syllogisms (X ∈ {1, 2, 3, 4}). These syllogisms are special in the sense
that in many cases the valid conclusion Oac (or Oca, resp.) and in most cases NVC has
been chosen by a significant amount of the participants, and these answers often overlap.
When assuming two clusters of reasoners, the experimental data is matched best. Note
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that Eac and Eca are also significant answers for these syllogisms. They can be explained
as guesses according to the matching strategy (atmosphere fails in this case, because the
premise with mood I creates an existential atmosphere). In contrast to the atmosphere
hypothesis, the matching strategy leads to a significantly better fit of the predictions of
the Weak Completion Semantics to the answers of the participants presented in [KJL12].

3.4.3 Biased Conclusions for Syllogisms of Figure 1

An in-depth analysis of the participants’ answers to syllogisms with figure 1 leads to the
following observation:

• for a syllogistic premise XY 1 (X,Y ∈ {A, I,E,O}), an answer Zac is always given
by a significant amount of participants

– Z is the highest possible mood with respect to the order defined by the match-
ing strategy, given the moods X and Y

– if both the mood I and O are possible, O is preferred

• only if Zac is an invalid conclusion, other (but not necessarily correct) answers are
given

For illustration, consider the syllogism AE1:

All a are b.
No b are c.

It has Eac and Eca as valid conclusions (Oac and Oca as subsets are neglected). The
participants only concluded Eac. Compare this with the syllogism EA1:

No a are b.
All b are c.

It has only Oca as a valid conclusion, but is answered with Eac, too, and nothing else.
An example for an additional answer is the syllogism EI1:

No a are b.
Some b are c.

The majority of the participants answered Eac, which is incorrect. NVC was also a
significant answer, though Oca is the only valid conclusion.

The effect described above is true for 15 out of the 16 syllogisms with figure 1 (OE1
being the exception), so it is considered to be significant. A possible explanation for
this observation may be given by the difficulty of the reasoning process. It has been
shown [Dic78] that the figure of a syllogism determines its difficulty to a larger degree.
Syllogisms with figure 1 only involve forward reasoning and are thus very easy to solve.
We assume that in such situations many humans do not even start reason about the
syllogism and just give a rash answer, because the task seems to be so simple.
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These findings can again be taken into account when modelling the syllogistic rea-
soning task in two ways. We use an approach similar to the filtering approach for the
heuristics introduced earlier. Since so many people seem to solve syllogisms with figure
1 heuristically, all answers conflicting with the biased conclusions are suppressed (except
NVC). Instead, the heuristic conclusion is answered. In a certain sense, this approach
is also generative. However, since there is only one answer for each syllogism under this
particular heuristics, it can be modelled without assuming a probabilistic process.
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4 Representation of Reasoning Processes

Until now, the actual reasoning process of a human has not played an important role. In
the last section, it has been shown how individual reasoners can been modelled by turning
on or off certain principles. The conclusions drawn from each of the corresponding logic
programs have been combined to a single prediction. While this is suitable for showing
how good the theory fits the participants’ answers, the information on what reasoning
process leads to what conclusions gets lost.

This chapter presents an approach that is able to show how the individual reasoning
processes differ and the effects these differences have on the conclusions drawn. This
is achieved by using tree models that contain each possible reasoning process as a path
from the root to a leaf containing the conclusion.

Binary decision trees and multinomial processing trees have been selected as frame-
works for modelling the syllogistic reasoning task for the following reasons: decision
trees are well-known and widely spread in the computer science community, so much
support for creating the models and training them is available. Multinomial processing
trees have recently been suggested [RSS14] as cognitive models in order to make different
cognitive theories comparable.

4.1 Decision Trees

Definition 23 (Decision Tree) A decision tree is a tree whose nodes have a special
semantics:

Internal node decision at a certain point in the decision process

Leaf outcome of the decision process if exactly the decisions in the nodes on the branch
from the root to the leaf are made

A decision tree is binary if each inner node has exactly two successors, i.e. each decision
is between two alternatives. Each decision tree can be transformed into a binary decision
tree.

For modelling reasoning processes, the outcome of the decision process is what con-
clusions should be given as an answer. Each decision is the question whether or not a
certain principle should be applied. Note that these decisions are always binary. Each
branch of the decision tree corresponds to a possible reasoning process of an individual,
using exactly the principles for which a positive decision was made.

Note that the branches of such a tree create the impression of an implicit order of
making decisions. For two consecutive nodes in the tree, it seems that the decision
represented by the first node is also made first by the reasoner. This is wrong, because it
is not the goal to model the reasoning process like an algorithm, only what steps actually
take place. Therefore, the chronological order of the reasoning process is unknown and
the decision nodes might be changed in order. This becomes clear when considering the
semantics of the tree: each branch is encoded as a logic program consisting of a common
part (principles used by all reasoners) and the encoding of all principles for which a
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Basic Principles

NVC Oca

do not apply
contraposition

apply contraposition

Figure 1: Decision tree for the syllogism AO3

Basic Principles + converse interpretation (E)

Eca Eca, Eac

do not apply
contraposition

apply contraposition

Figure 2: Decision tree for the syllogism EA3 (converse interpretation for E assumed)

positive decision was made. The conclusions entailed by the least model of this logic
program form the leaf of the branch. Since the least model of the weak completion of a
logic program does not depend on the order of the rules, the predicted conclusions are
invariant with respect to the order of decisions.

The common part of the logic program (basic program) consists of an encoding of
both premises with the basic principles that are necessary for the particular mood.
For a single syllogism, other principles may be added via decision nodes. If adding a
principle would lead to conclusions that are not drawn by the participants, it may be
omitted. If a decision against a principle would lead to conclusions that are not drawn
by the participants, its encoding may be added to the basic logic program without
introducing a decision node. As an example, see the decision tree for the syllogism AO3
in Figure 1. It consists of the basic principles for all syllogisms and the option to apply
the contraposition principle, all leaves explain the significant answers by the participants.

In many cases, the Weak Completion Semantics predicts more than one conclusion for
the principles described by a branch in the decision tree. While leaves can contain sets
of conclusions from a theoretical point of view, in many experiments, the participants
are only allowed to give one answer. In order to model this, additional decision nodes
representing the choice between possible alternatives are introduced. See Figure 2 and
Figure 3 for comparison.

As it is possible that the prediction without a principle is a subset of the prediction with
that principle applied, the decision tree may become a directed acyclic graph (DAG),
cf. Figure 3. There are two possibilities to handle this:

1. Relabel the leaves with the same conclusions, e.g. to ‘Eca without contraposition’
and ‘Eca by choice’ for the syllogism EA3 in Figure 3.

2. Instead of branches from the root to a leaf, consider paths from the source to a
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Basic Principles + converse interpretation (E)

Eca

Eca or Eac?

Eca Eac

do not apply
contraposition

apply contraposition

choose
first

choose
second

Figure 3: Decision tree for the syllogism EA3 (converse interpretation for E assumed)
with choice between alternatives

sink. Since there is exactly one source (the former root) and the only nodes with
multiple ingoing edges are the former leaves, the DAG is still suitable for modelling
decisions.

The goal for a decision tree is that it contains a branch for each answer given by a
participant, the principles used in this branch then explain the reasoning process of the
person. Since at the time of writing only accumulated data from studies are available,
the goal is that the tree’s branches explain exactly the significant answers given by the
participants.

If for each of the 64 syllogisms a decision tree is build by hand, the result may be a
perfect match of the participants’ answers that is subject to overfitting to a large degree.
Instead, the goal should be a theory for generating the trees uniformly based on figure
and mood of the premises.

4.2 Multinomial Processing Trees

Multinomial processing trees are an established model for modelling cognitive pro-
cesses [RB88] that is also very well suited for quantitative methods from statistics and
computer science. Recently, they have been introduced as a generalizing approach for
cognitive theories to model the syllogistic reasoning task [RSS14].

Definition 24 (Multinomial Processing Tree) A Multinomial Processing Tree (MPT)
is a directed acyclic graph with a finite set of response categories as leaves (actually sinks)
and a finite set of cognitive processes as inner nodes. Each edge has a parameter as-
signed corresponding to the probability that its preceding process node is followed by its
successor.

A MPT for a syllogism is similar to the corresponding decision tree. Each inner node
represents a principle that may or may not be used by an individual reasoner. Only
binary MPTs are considered, so that the ‘outcome’ of the process represented by the
node is just whether the principle was used or not.
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The probabilistic parameters are assigned to each outgoing edge of a node as follows:
if the process represented by the node leads to using a principle with probability p, then
the positive outgoing edge is assigned the parameter p and the negative outgoing edge is
assigned the parameter 1− p. These probabilities can be learnt from experimental data
using algorithms such as Expectation-Maximization [HB94].

Following a branch of a MPT from the source to the sink the reasoning process rep-
resented by this branch is obtained. As for decision trees, the actual order of nodes
does not have a meaning. The answer in the leave is just a conclusion entailed by the
least model of the weak completion logic program that encodes all principles used at this
branch. The probability of a branch is the product of the parameter values at its edges.
The probability of an answer is the sum of the probabilities of all branches leading to it.

The goal of building a MPT is that the distribution of answers predicted by it deviates
from the prediction of answers among the participants as little as possible. Various
quantitative quality measures exist for MPTs, for details consider [Aka74,S+78].

For use in quantitative models, a MPT must have exactly 9 sinks, one for each of
the possible conclusions and NVC3. Leaves must not contain multiple conclusions; such
predictions must be split by introducing choice decisions as shown for decision trees.

Guessing Trees The Weak Completion Semantics cannot explain all 9 answers for each
syllogism. Consequently, many MPTs would have missing sinks and would not meet the
requirement from above. In many cases, these missing conclusions cannot by entailed by
logic and are not given by a significant amount of participants. In some cases, however,
the reason is that the participants apply a principle yet unknown or do not use logic at
all. As a solution for both situations, guessing trees are introduced.

Definition 25 (Guessing Tree) A guessing tree is a MPT whose nodes are not cog-
nitive processes, but rather stochastic trials determining the path to be taken. The leaves
are the set of conclusions out of which a guess is made.

Guessing can be totally random, allowing all conclusions, or educated, allowing only the
conclusions predicted by a heuristic strategy, e.g. matching. See Figure 4 as an example
for a guessing tree under the matching strategy whose corresponding syllogism does not
have a premise with the mood E. Among others, this guessing tree is appropriate for the
syllogism AO3.

Since some individuals may use logic while others guess in the same syllogistic reason-
ing task, the guessing tree is combined with the reasoning tree by adding a new source
node with both former trees as successors. The meaning of the source node is to repre-
sent the distribution between reasoners and guessers among the participants. This can
again be modelled as a stochastic trial. See Figure 5 as a possible MPT for the syllogism
OI1, where Iac is a significant answer that is not predicted by the Weak Completion Se-
mantics. This shows how the syllogism can be modelled using a both logic and heuristic

3Although sets of conclusions are theoretically possible, they are impractical: there are 29 possible
answers, most of which are not present in the training data. The quantitative methods used to train
MPTs do not produce good results if the contribution is that sparse.
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g0

NVC

g2

g21 g22

Eac Eca

g221 g222

Iac Ica Oac Oca

1− a

a

1− b b
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1− d d

1− e e 1− f f

Figure 4: Example MPT for guessing under the matching strategy

strategies, although we will later only use the biased conclusions in figure 1 heuristics
to model it.
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Reasoning vs. Guessing

Basic Principles

NVC Oac

g0

NVC

g2

g21 g22

Eac Eca

g221 g222

Iac Ica Oac Oca

1− a

a

1− b b

1− c c

1− d d

1− e e 1− f f

1− g

g

1− pdelGen pdelGen

Figure 5: MPT for the syllogism OI1 (pdelGen corresponds to the probability of applying
the deliberate generalization principle).

5 Evaluation

In this section it will be shown how the accuracy of predictions of cognitive theories
with respect to experimental data is calculated. After that, it will be presented how
well the Weak Completion Semantics fits the data accumulated in the meta-analysis on
syllogisms [KJL12] and how it performs compared to other cognitive theories.

5.1 Accuracy of Predictions

Khemlani and Johnson-Laird [KJL12] used the following representation of answers to
syllogistic reasoning tasks: for each of the 64 syllogisms, give the answer as a vector
answer ∈ {0, 1}9. The nine positions of the vector correspond to the possible conclusions
in the order Aac, Eac, Iac, Oac, Aca, Eca, Ica, Oca, and NVC. Each position of the
vector contains a 1 if and only if the corresponding answer is given, and a 0 otherwise.

Such vectors are created for both the answers of the participants of the studies and
the predictions of the cognitive theory. However, the answers of the participants are
accumulated data; for each possible conclusion the percentage of participants answering
it is given. Therefore, Khemlani and Johnson-Laird have introduced a threshold of
statistical significance. Conclusions that have been given by more than 16 % of the
participants are assigned a 1 and others are assigned a 0. The accuracy of the predictions
is based on the Hamming distance between the two vectors. Intuitively, a single answer
is rewarded if the participants and the theory coincide. The predicted answers for a
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Principle of reasoning Applicability

Quantified assertion as conditional All syllogisms
Licenses for inferences All syllogisms
Existential import All syllogisms
Unknown generalization Premises with an existential mood
No refutation Premises with a universal mood
Negation by transformation Premises with a negative mood
No derivation by double negation Premises with a negative mood

Converse interpretation Premises with the mood E or I

Deliberate generalization Premises with mood I
Contraposition Premises with a universal mood

Matching strategy All syllogisms
Biased conclusions in figure 1 Premises with figure 1

Table 6: Reasoning principles under the Weak Completion Semantics.

syllogism are scored as follows:

score(vtheory, vparticipants) =
1

9
×

9∑
i=1

[vtheory(i) = vparticipants(i)]

The division by 9 is performed to obtain the percentage of matching numbers.
The accuracy of predictions for all 64 syllogisms is the average over the scores of each

single prediction.

5.2 Results of the Weak Completion Semantics

Table 6 gives an overview on all principles that have been introduced in this and pre-
vious work [dCSH17]. The principles quantified assertion as conditional, licenses for
inferences, existential import, unknown generalization, no refutation, negation by trans-
formation, no derivation by double negation, and the converse interpretation of premises
with mood I are regarded as basic principles and assumed to be used by every reasoner
where applicable. The remaining principles are the foundation for modelling clusters.

When clusters of reasoners are to be introduced, the first decision is the number
of clusters to model. The second decision is for each cluster, which subset of principles
should define that cluster. The quality of such a clustering is then evaluated as described
above. However, the combinatorial explosion when considering all possible subsets of
principles makes this optimization problem difficult to solve. Therefore, only the best
clustering approach that has been found so far is presented here.

The optimal clustering consists of three clusters of reasoners using logic and two
clusters of heuristic strategies. The clusters are defined as follows:

Basic: basic principles
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Deliberate Generalitaion: basic principles + deliberate generalization

Contraposition + Converse E: basic principles + converse rule in premises with mood
E + contraposition in premises with mood A

Matching filter the answers of the Weak Completion Semantics according to the match-
ing strategy

Biases conclusions in figure 1 filter the answers of the Weak Completion Semantics
according to the biased conclusions

Note that there are some differences from the definitions from above. The deliberate
generalization principle is used for premises with mood A in the cluster using contra-
position. This does not allow new conclusion by itself, but is necessary to be able to
draw conclusions from the contrapositive. The contraposition is only used for premises
with mood A. Premises with mood E are handled by the converse rule, which gives very
similar, but slightly better results.

Abduction is not modelled as a principle, because it is a different form of reasoning
and the assumptions made for deduction may hold for it. It is assumed to be done by
all reasoners uniformly.

The heuristic strategies that are modelled are the matching strategy and the biased
conclusions in syllogisms with figure 1. Matching is modelled by applying the filtering
approach to the answers of each cluster; each answer not predicted by matching is
suppressed and NVC is answered if no other conclusions remain. The results would
be slightly better (ca. 0.3 %) if for the contraposition + converse E cluster the original
answers were kept. However, this has not been done because of the danger to become
subject to overfitting. The bias in figure 1 is implemented according to the approach
described in Section 3.4.3.

This clustering is backed by achieving an accuracy of 92.2 %. 32 of the syllogisms
are solved perfectly, 20 have one wrong prediction, 11 have two wrong predictions, and
OE1 is the worst case with three mismatches. A detailed comparison of the predictions
with the answers of the humans is presented in Table 7. The accuracy of the Weak
Completion Semantics is significantly higher than those of other cognitive theories, such
as the Mental Models theory (78 %) and the Verbal Models theory (84 %).
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Syllogism Premises Aac Eac Iac Oac Aca Eca Ica Oca NVC Match

AA1 Aab, Abc 1 0 0 0 0 0 0 0 0 100 %
AA2 Aba, Acb 0 0 0 0 1 0 0 0 0 89 %
AA3 Aab, Acb 0 0 0 0 0 0 0 0 1 89 %
AA4 Aba, Acb 1 0 0 0 1 0 0 0 0 78 %

AI1 Aab, Ibc 0 0 1 0 0 0 0 0 0 100 %
AI2 Aba, Icb 0 0 1 0 0 0 1 0 0 100 %
AI3 Aab, Icb 0 0 1 0 0 0 1 0 0 78 %
AI4 Aba, Icb 0 0 1 0 0 0 1 0 0 100 %

AE1 Aab, Ebc 0 1 0 0 0 0 0 0 0 100 %
AE2 Aba, Ecb 0 1 0 0 0 1 0 0 0 100 %
AE3 Aab, Ecb 0 1 0 0 0 1 0 0 1 89 %
AE4 Aba, Ecb 0 1 0 0 0 1 0 0 0 78 %

AO1 Aab, Obc 0 0 0 1 0 0 0 0 0 100 %
AO2 Aba, Ocb 0 0 0 0 0 0 0 1 0 78 %
AO3 Aab, Ocb 0 0 0 0 0 0 0 1 1 100 %
AO4 Aba, Ocb 0 0 0 1 0 0 0 0 0 100 %

IA1 Iab, Abc 0 0 1 0 0 0 0 0 0 100 %
IA2 Iba, Acb 0 0 1 0 0 0 1 0 0 100 %
IA3 Iab, Acb 0 0 1 0 0 0 1 0 0 78 %
IA4 Iba, Acb 0 0 1 0 0 0 1 0 0 100 %

II1 Iab, Ibc 0 0 1 0 0 0 0 0 1 100 %
II2 Iba, Icb 0 0 1 0 0 0 1 0 1 100 %
II3 Iab, Icb 0 0 1 0 0 0 1 0 1 89 %
II4 Iba, Icb 0 0 1 0 0 0 1 0 1 89 %

IE1 Iab, Ebc 0 1 0 0 0 0 0 0 1 78 %
IE2 Iba, Ecb 0 0 0 0 0 1 0 0 1 100 %
IE3 Iab, Ecb 0 0 0 0 0 1 0 0 1 89 %
IE4 Iba, Ecb 0 0 0 1 0 0 0 0 1 100 %

IO1 Iab, Obc 0 0 0 1 0 0 0 0 1 100 %
IO2 Iba, Ocb 0 0 0 0 0 0 0 1 1 89 %
IO3 Iab, Ocb 0 0 0 0 0 0 0 1 1 89 %
IO4 Iba, Ocb 0 0 0 1 0 0 0 0 1 100 %

EA1 Eab, Abc 0 1 0 0 0 0 0 0 0 100 %
EA2 Eba, Acb 0 0 0 0 0 1 0 0 0 89 %
EA3 Eab, Acb 0 0 0 0 0 1 0 0 1 78 %
EA4 Eba, Acb 0 1 0 0 0 1 0 0 0 100 %

EI1 Eab, Ibc 0 1 0 0 0 0 0 0 1 100 %
EI2 Eba, Icb 0 0 0 0 0 0 0 1 1 100 %
EI3 Eab, Icb 0 1 0 0 0 0 0 0 1 89 %
EI4 Eba, Icb 0 0 0 0 0 0 0 1 1 78 %

EE1 Eab, Ebc 0 1 0 0 0 0 0 0 1 100 %
EE2 Eba, Ecb 0 0 0 0 0 0 0 0 1 78 %
EE3 Eab, Ecb 0 0 0 0 0 0 0 0 1 89 %
EE4 Eba, Ecb 0 0 0 0 0 0 0 0 1 89 %

EO1 Eab, Obc 0 1 0 0 0 0 0 0 1 89 %
EO2 Eba, Ocb 0 0 0 0 0 0 0 0 1 100 %
EO3 Eab, Ocb 0 0 0 0 0 0 0 0 1 89 %
EO4 Eba, Ocb 0 0 0 0 0 0 0 0 1 100 %

OA1 Oab, Abc 0 0 0 1 0 0 0 0 0 78 %
OA2 Oba, Acb 0 0 0 0 0 0 0 1 0 100 %
OA3 Oab, Acb 0 0 0 0 0 0 0 0 1 78 %
OA4 Oba, Acb 0 0 0 0 0 0 0 1 0 100 %

OI1 Oab, Ibc 0 0 0 1 0 0 0 0 1 89 %
OI2 Oba, Icb 0 0 0 0 0 0 0 1 1 100 %
OI3 Oab, Icb 0 0 0 1 0 0 0 0 1 100 %
OI4 Oba, Icb 0 0 0 0 0 0 0 1 1 89 %

OE1 Oab, Ebc 0 1 0 0 0 0 0 0 1 67 %
OE2 Oba, Ecb 0 0 0 0 0 0 0 0 1 89 %
OE3 Oab, Ecb 0 0 0 0 0 0 0 0 1 100 %
OE4 Oba, Ecb 0 0 0 0 0 0 0 0 1 100 %

OO1 Oab, Obc 0 0 0 1 0 0 0 0 1 100 %
OO2 Oba, Ocb 0 0 0 0 0 0 0 0 1 89 %
OO3 Oab, Ocb 0 0 0 0 0 0 0 0 1 89 %
OO4 Oba, Ocb 0 0 0 0 0 0 0 0 1 89 %

Overall 92 %

Table 7: Predictions of the Weak Completion Semantics for each syllogism in the clus-
tering approach. Matches with the participants’ data are highlighted in light
gray, mismatches in dark gray.
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6 Conclusion

The cognitive theory based on the Weak Completion Semantics has already been ap-
plied to the suppression task [DHR12], the selection task [DHR13], the belief-bias ef-
fect [PDH14a, PDH14b], reasoning about conditionals [DH15, DHP15], spatial reason-
ing [DHH15], and syllogistic reasoning [Die15, CDHR16]. Recently, a general monadic
reasoning theory has been proposed and applied to the syllogistic reasoning task [dCSH17].
The theory is modular in the sense that several principles of reasoning have been iden-
tified. They allow the encoding of monadic quantified assertions as logic programs and
reasoning on them under the Weak Completion Semantics.

Until now, the theory did not consider individual differences in reasoning, nor did
any of the cognitive theories compared in the meta-analysis of syllogistic reasoning by
Khemlani and Johnson-Laird [KJL12]. However, when looking at the experimental data
provided by the study, such differences can be observed. They were accounted in this
work by introducing the concept of clusters of reasoners to the Weak Completion Se-
mantics.

Clusters are modelled using the flexible nature of principles. The differences in reason-
ing are explained by the fact that the application of principles can vary between clusters.
This leaves the approach open for the introduction of new principles as the result of fu-
ture research. Additionally, it has been shown that some individuals might not use logic
at all to solve reasoning tasks. Therefore, heuristics that are well-known in psychology,
such as the atmosphere hypothesis [WS35] and the matching strategy [WG95] have been
analyzed and it has been suggested how to apply them under the Weak Completion
Semantics. The clustering approach based on the Weak Completion Semantics achieved
an accuracy of 92 % with respect to the answers of the participants reported in [KJL12].

Although the clusters explain the overall answers of humans quite well, they are un-
suitable for illustrating what principle enables or inhibits what conclusions in detail.
Therefore, tree models have been introduced. Decision trees model to what cluster a
human belongs as the decision which principles they apply or do not apply. Multinomial
Processing Trees are a probabilistic model that allows quantitative predictions about the
distribution of answers.

There are, however, some issues with accumulating the data like Khemlani and Johnson-
Laird did. First, the information on individual reasoners gets lost. It is impossible to
reconstruct what principles define a cluster from the accumulated data. Second, the ac-
cumulation does not make a difference between answers given by 20 % and answers given
by 90 % of the participants. It is, however, of particular interest for modelling clusters if
a conclusion is drawn by almost all humans or a small, but significant minority. Third,
the threshold of 16 % has a high impact on the conclusions drawn by ‘the participants’.
There are many answers in the study that have been given by an amount of participants
close to 16 %. Since the number of participants per study in the meta-analysis is quite
small, the significance may vary between studies.

Therefore, it is suggested for future research to concentrate on modelling individual
reasoners using e.g. Multinomial Processing Trees. This eliminates the dependence on
the 16 % threshold and allows quantified hypothesis about clusters.
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