EXERCISE 11

Human Reasoning and Computational Logic

 ${\it Steffen \ H\"{o}lldobler, \ Emmanuelle \ Dietz}$ European Master's Program in Computational Logic — winter semester 2016/17

Problem 11.1

- 1. (slide 27) What is computed by the network if all units are updated synchronously?
- 2. (slide 27) Specify the states of the network ignoring input and output units.
- 3. (slide 28) What is computed by this automaton?
- 4. (slide 32) Specify the automaton corresponding to the sample network from slide 27.
- 5. (slide 32) Specify a network $\mathcal N$ corresponding to the automaton presented on this slide, where the output should be a binary encoding of 1 3.
- 6. (slide 33) Specify a network $\mathcal S$ which determines whether a given network $\mathcal N$ of binary threshold units has reached a stable state. Initially, $\mathcal S$ should output 0; as soon as $\mathcal N$ has reached a stable state, $\mathcal S$ should output 1 once; thereafter $\mathcal S$ should output 0 until $\mathcal N$ after being externally perturbated reaches the next stable state.

Problem 11.2

- 1. (slide 39) Consider the simple perceptron on this slide.
 - (a) What is computed by the perceptron if 1 and -1 are the possible values for i_1 and i_2 , whereas i_3 always has value -1?
 - (b) Is this problem linearly separable?
 - (c) Now suppose that all weights have value $\,0$. What happens if we apply the learning algorithm with $\,\eta=0.15$?
- 2. (slide 41)
 - (a) Construct a McCulloch-Pitts network which computes the addition modulo 2.
 - (b) Consider the classification problem $\{(000,0),(001,1),(010,1),(011,0),(100,1),(101,0),(110,0),(111,1)\}$ and show that there is no simple perceptron which can solve it.
 - (c) Find a transformation mapping addition modulo 2 onto a classification problem $\mathcal C$ in $\mathbb R^3$ such that $\mathcal C$ is linearly separable. Construct a simple perceptron and train it until it solves $\mathcal C$.