Review: Datalog Evaluation

A rule-based recursive query language

- father(alice, bob)
- mother(alice, carla)
 - Parent(x, y) ← father(x, y)
 - Parent(x, y) ← mother(x, y)
- SameGeneration(x, y)
 - SameGeneration(x, y) ← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Perfect static optimisation for Datalog is undecidable

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)
(R1) T(x, y) ← e(x, y)
(R2.1) T(x, z) ← Δ₁(x, y) ∧ T₁(y, z)
(R2.2’) T(x, z) ← T⁻¹(x, y) ∧ Δ₂(y, z)

How many body matches do we need to iterate over?

\[
\begin{align*}
T₀ &= \emptyset & \text{(initialisation)} \\
T₁ &= \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} & 4 \times (R1) \\
T₂ &= T₁ \cup \{T(1, 3), T(2, 4), T(3, 5)\} & 3 \times (R2.1) \\
T₃ &= T₂ \cup \{T(1, 4), T(2, 5), T(1, 5)\} & 3 \times (R2.1), 2 \times (R2.2’)
\end{align*}
\]

\[
\begin{align*}
T₄ &= T₃ = T^∞ & 1 \times (R2.1), 1 \times (R2.2’)
\end{align*}
\]

In total, we considered 14 matches to derive 11 facts
Semi-Naive Evaluation: Full Definition

In general, a rule of the form

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land I_1(\vec{z}_1) \land I_2(\vec{z}_2) \land \ldots \land I_m(\vec{z}_m) \]

is transformed into \(m \) rules:

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land I_1(\vec{z}_1) \land I_2(\vec{z}_2) \land \ldots \land I_m(\vec{z}_m) \]
\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land \Delta_{I_1}^{-1}(\vec{z}_1) \land I_2(\vec{z}_2) \land \ldots \land I_m(\vec{z}_m) \]
\[\ldots \]
\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land \Delta_{I_m}^{-1}(\vec{z}_m) \land I_1(\vec{z}_1) \land I_2(\vec{z}_2) \land \ldots \land \Delta_{I_m}^{-1}(\vec{z}_m) \]

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:

- Apply backward chaining/resolution: start with query, find rules that can derive query, evaluate body atoms of those rules (subqueries) recursively
- Evaluate intermediate results "set-at-a-time" (using relational algebra on tables)
- Evaluate queries in a "data-driven" way, where operations are applied only to newly computed intermediate results (similar to idea in semi-naive evaluation)
- "Push" variable bindings (constants) from heads (queries) into bodies (subqueries)
- "Pass" variable bindings (constants) "sideways" from one body atom to the next

Details can be realised in several ways.
Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example: if we want to derive atom \(T(2, z) \) from the rule
\(T(x, z) \leftarrow T(x, y) \land T(y, z) \), then \(x \) will be bound to 2, while \(z \) is free.

We use adornments to note the free/bound parameters in predicates.

Example:
\[
T^{bf}(x, z) \leftarrow T^{bf}(x, y) \land T^{bf}(y, z)
\]

- since \(x \) is bound in the head, it is also bound in the first atom
- any match for the first atom binds \(y \), so \(y \) is bound when evaluating the second atom (in left-to-right evaluation)

Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary relations.

When we “call” a rule with a head where some variables are bound, we need to provide the bindings as input
~ for adorned relation \(R^a \), we use an auxiliary relation \(\text{input}^{a}_{R} \)
~ arity of \(\text{input}^{a}_{R} \) = number of \(b \) in \(a \)

The result of calling a rule should be the “completed” input, with values for the unbound variables added
~ for adorned relation \(R^a \), we use an auxiliary relation \(\text{output}^{a}_{R} \)
~ arity of \(\text{output}^{a}_{R} \) = arity of \(R \) (= length of \(a \))

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

\[
R^{bbb}(x, y, z) \leftarrow R^{bf}(x, y, v) \land R^{bb}(x, v, z)
\]

\[
R^{bf}(x, y, z) \leftarrow R^{bf}(x, y, v) \land R^{bb}(x, v, z)
\]

The order of body predicates matters affects the adornment:

\[
S^{bf}(x, y, z) \leftarrow T^{bf}(x, v) \land T^{bf}(y, w) \land R^{bb}(v, w, z)
\]

\[
S^{bf}(x, y, z) \leftarrow R^{bf}(v, w, z) \land T^{bf}(x, v) \land T^{bf}(y, w)
\]

~ For optimisation, some orders might be better than others

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations \(\text{sup}_i \)
~ bindings required to evaluate rest of rule after the \(i \)th body atom
~ the first set of bindings \(\text{sup}_0 \) comes from \(\text{input}^{a}_{R} \)
~ the last set of bindings \(\text{sup}_n \) go to \(\text{output}^{a}_{R} \)

Example:

\[
T^{bf}(x, z) \leftarrow T^{bf}(x, y) \land T^{bf}(y, z)
\]

\[
\text{input}^{bf}_T \Rightarrow \text{sup}_0[x] \uparrow \text{sup}_1[x, y] \downarrow \text{sup}_2[x, z] \Rightarrow \text{output}^{bf}_T
\]

- \(\text{sup}_0[x] \) is copied from \(\text{input}^{bf}_T[x] \) (with some exceptions, see exercise)
- \(\text{sup}_1[x, y] \) is obtained by joining tables \(\text{sup}_0[x] \) and \(\text{output}^{bf}_T[x, y] \)
- \(\text{sup}_2[x, z] \) is obtained by joining tables \(\text{sup}_1[x, y] \) and \(\text{output}^{bf}_T[y, z] \)
- \(\text{output}^{bf}_T[x, z] \) is copied from \(\text{sup}_2[x, z] \)

(we use “named” notation like \(\{x, y\} \) to suggest what to join on; the relations are the same)
QSQR Algorithm

Given: a Datalog program P and a conjunctive query $q[\vec{x}]$ (possibly with constants)

1. Create an adorned program P^α:
 - Turn the query $q[\vec{x}]$ into an adorned rule $Query^\alpha \leftarrow q[\vec{x}]$
 - Recursively create adorned rules from rules in P for all adorned predicates in P^α.
2. Initialise all auxiliary relations to empty sets.
3. Evaluate the rule $Query^\alpha \leftarrow q[\vec{x}]$.
 Repeat until no new tuples are added to any QSQR relation.
4. Return output $\text{output}^{\alpha}_{\text{Query}}$

Recursive QSQ

Recursive QSQ (QSQR) takes a “depth-first” approach to QSQ

Evaluation of single rule in QSQR:
Given: adorned rule r with head predicate R^α; current values of all QSQ relations

1. Copy tuples input $^\alpha_r$ (that unify with rule head) to sup $^\alpha_r$
2. For each body atom A do:
 - If A_i is an EDB atom, compute sup $^\alpha_i$ as projection of sup $^\alpha_i$ $\leadsto A_i^\alpha$
 - If A_i is an IDB atom with adorned predicate S^β:
 a) Add new bindings from sup $^\alpha_{i-1}$, combined with constants in A_i, to input $^\beta_S$
 b) If input $^\beta_S$ changed, recursively evaluate all rules with head predicate S^β
 c) Compute sup $^\alpha_i$ as projection of sup $^\alpha_{i-1} \leadsto \text{output}^\beta_S$
3. Add tuples in sup $^\alpha_n$ to output $^\alpha_R$
Magic Sets

QSQ(R) is a goal directed procedure: it tries to derive results for a specific query.

Semi-naive evaluation is not goal directed: it computes all entailed facts.

Can a bottom-up technique be goal-directed?
\[\leadsto \text{yes, by magic} \]

Magic Sets

- "Simulation" of QSQ by Datalog rules
- Can be evaluated bottom up, e.g., with semi-naive evaluation
- The "magic sets" are the sets of tuples stored in the auxiliary relations
- Several other variants of the method exist

Magic Sets as Simulation of QSQ

Idea: the information flow in QSQ(R) mainly uses join and projection \[\leadsto \text{can we just implement this in Datalog?} \]

Example:

\[
\begin{align*}
T^{bf}(x, z) & \leftarrow T^{bf}(x, y) \land T^{bf}(y, z) \\
\text{input}^{bf} & \Rightarrow \text{sup}_{0}[x] \quad \text{sup}_{1}[x, y] \quad \text{sup}_{2}[x, z] \Rightarrow \text{output}^{bf}
\end{align*}
\]

Could be expressed using rules:

\[
\begin{align*}
\text{sup}_{0}(x) & \leftarrow \text{input}^{bf}(x) \\
\text{sup}_{1}(x, y) & \leftarrow \text{sup}_{0}(x) \land \text{output}^{bf}_{T}(x, y) \\
\text{sup}_{2}(x, z) & \leftarrow \text{sup}_{1}(x, y) \land \text{output}^{bf}_{T}(y, z) \\
\text{output}^{bf}_{T}(x, z) & \leftarrow \text{sup}_{2}(x, z)
\end{align*}
\]

A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

Example: the following rule is correctly adorned

\[R^{bf}(x, y) \leftarrow T^{bf}(x, a, z) \]

This leads to the following rules using Magic Sets:

\[
\begin{align*}
\text{output}^{bf}_{R}(x, y) & \leftarrow \text{input}^{bf}_{R}(x) \land \text{output}^{bf}_{T}(x, a, y) \\
\text{input}^{bf}_{T}(x, a) & \leftarrow \text{input}^{bf}_{R}(x)
\end{align*}
\]

Note that we do not need to use auxiliary predicates \text{sup}_{0} or \text{sup}_{1} here, by the simplification on the previous slide.
Magic Sets: Summary

A goal-directed bottom-up technique:
- Rewritten program rules can be constructed on the fly
- Bottom-up evaluation can be semi-naive (avoid repeated rule applications)
- Supplementary relations can be cached in between queries

Nevertheless, a full materialisation might be better, if
- Database does not change very often (materialisation as one-time investment)
- Queries are very diverse and may use any IDB relation (bad for caching supplementary relations)

\(\Rightarrow\) semi-naive evaluation is still very common in practice

Datalog as a Special Case

Datalog is a special case of many approaches, leading to very diverse implementation techniques.
- Prolog is essentially “Datalog with function symbols” (and many built-ins).
- Answer Set Programming is “Datalog extended with non-monotonic negation and disjunction”
- Production Rules use “bottom-up rule reasoning with operational, non-monotonic built-ins”
- Recursive SQL Queries are a syntactically restricted set of Datalog rules

\(\Rightarrow\) Different scenarios, different optimal solutions
\(\Rightarrow\) Not all implementations are complete (e.g., Prolog)

Datalog Implementation in Practice

Dedicated Datalog engines as of 2015:
- DLV Answer set programming engine with good performance on Datalog programs (commercial)
- LogicBlox Big data analytics platform that uses Datalog rules (commercial)
- Datomic Distributed, versioned database using Datalog as main query language (commercial)

Several RDF (graph data model) DBMS also support Datalog-like rules, usually with limited IDB arity, e.g.:
- OWLIM Disk-backed RDF database with materialisation at load time (commercial)
- RDFox Fast in-memory RDF database with runtime materialisation and updates (academic)

\(\Rightarrow\) Extremely diverse tools for very different requirements

Summary and Outlook

Several implementation techniques for Datalog
- bottom up (from the data) or top down (from the query)
- goal-directed (for a query) or not

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Bottom-up:
- naive evaluation (not goal-directed)
- semi-naive evaluation (not goal-directed)
- Magic Sets (goal-directed)

Next topics:
- Graph databases and path queries
- Applications