Using Ontology-Based Data Access to Enable Context Recognition in the Presence of Incomplete Information

Verteidigung der Dissertation

Veronika Thost

June 19, 2017

Context Recognition Example

Example context

User Bob watches a video, but then starts working with a text editor and the video window is not visible anymore

Possible system optimization:

Save resources by decreasing quality parameters of the video

Ontology-Based Data Access

Components in user focus?

ID	APP	TYPE
w1	a1	mov
w4	a2	text

SENSOR	TYPE	USER	ITEM	TIME
s3	cam	ann	book5	20:10
s1	cam	bob	w1	20:13

Window

Observation

Components in user focus?

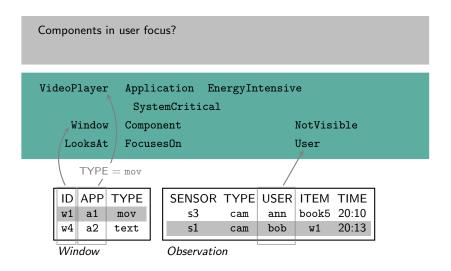
SELECT ID FROM Win WHERE Win.ID=Obs.ITEM & Obs.TYPE=cam

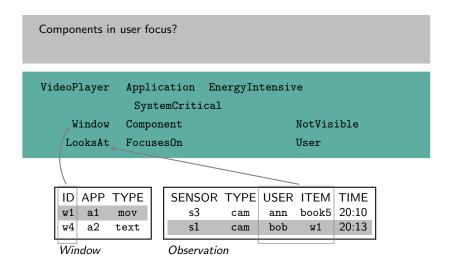
ID	APP	TYPE
w1	a1	mov
w4	a2	text

SENSOR	TYPE	USER	ITEM	TIME
s3	cam	ann	book5	20:10
s1	cam	bob	w1	20:13

Window

Observation


Components in	user focus?	
VideoPlayer	Application SystemCriti	EnergyIntensive
Window	Component	NotVisible
LooksAt	FocusesOn	User

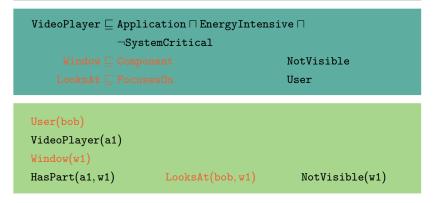

ID	APP	TYPE
w1	a1	mov
w4	a2	text

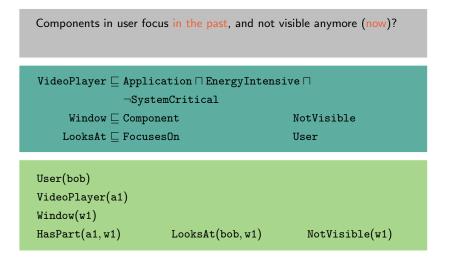
SENSOR	TYPE	USER	ITEM	TIME
s3	cam	ann	book5	20:10
s1	cam	bob	w1	20:13

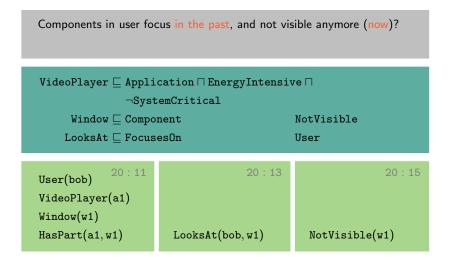
Window

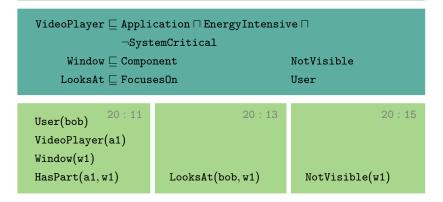
Observation

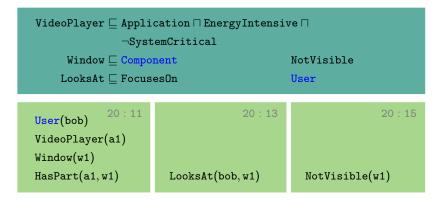
Components in	user focus?	
VideoPlayer	Application SystemCriti	EnergyIntensive
Window	Component	NotVisible
LooksAt	FocusesOn	User
User(bob) VideoPlayer(a1) Window(w1) HasPart(a1,w1) LooksAt(bob,w1) NotVisible(w1)		

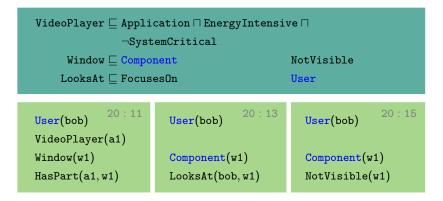

Components in $\exists y. \texttt{User}(y) \land \texttt{F}$		$\land \texttt{Component}(x)$	Answer: x
VideoPlayer	Application SystemCriti	00	ve
Window	Component		NotVisible
LooksAt	FocusesOn		User
User(bob) VideoPlayer(a Window(w1) HasPart(a1,w1	,	sAt(bob,w1)	NotVisible(w1)

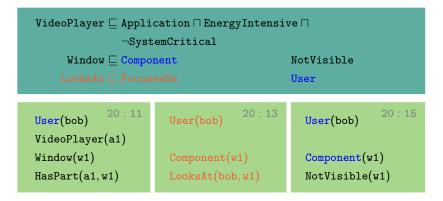

```
Components in user focus?
\exists y. User(y) \land FocusesOn(y, x) \land Component(x)
                                                  Answer: x
VideoPlayer 
Application EnergyIntensive
                  SystemCritical
      Window \sqsubseteq Component
                                                   NotVisible
     LooksAt \sqsubseteq FocusesOn
                                                   User
User(bob)
```


VideoPlayer(a1) Window(w1) HasPart(a1,w1) LooksAt(bob,w1) NotVisible(w1)


Components in user focu ∃y.User(y) ∧ FocusesOm		Answer: x
$VideoPlayer \sqsubseteq Applica eggsteen e$	ation⊓EnergyIntensi mCritical	ve⊓
Window 드 Compone	$\texttt{Window}\sqsubseteq\texttt{Component}$	
LooksAt 드 FocusesOn		User
User(bob) VideoPlayer(a1) Window(w1) HasPart(a1,w1)	LooksAt(bob,w1)	NotVisible(w1)






Ontology-Based Data Access Query Answering with Rigid Names

Ontology-Based Data Access Query Answering with Rigid Names

Ontology-Based Data Access Query Answering with Rigid Names

- Temporal data: sequence of fact bases
- Ontology: lightweight description logics (DLs)
- Temporal queries: linear temporal logic (LTL) + conjunctive queries (CQs)

- Temporal data: sequence of fact bases
- Ontology: lightweight description logics (DLs)
- Temporal queries: linear temporal logic (LTL) + conjunctive queries (CQs)

Ι

Problem:Temporal query satisfiabilityResults:Computational complexityApplication:Choose languages according
to available resources
(time and memory)

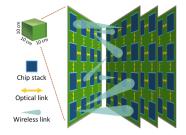
- Temporal data: sequence of fact bases
- Ontology: lightweight description logics (DLs)
- Temporal queries: linear temporal logic (LTL) + conjunctive queries (CQs)

Ι

Problem:Temporal query satisfiabilityResults:Computational complexityApplication:Choose languages according
to available resources
(time and memory)

Π

Temporal query answering Rewritability Hints for implementation (use existing tools)


- Temporal data: sequence of fact bases
- Ontology: lightweight description logics (DLs)
- Temporal queries: linear temporal logic (LTL) + conjunctive queries (CQs)

Why ...

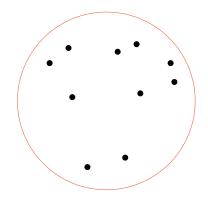
• no temporal ontology language? expensive

 $\Diamond_{\mathsf{P}} \mathtt{User} \sqsubseteq \mathtt{User}$

- DLs? user-friendly, well investigated, basis for W3C OWL standard
- lightweight DLs? allow for efficient atemporal reasoning
- CQs? describe complex networks

Symbols

- Individual names: ann, bob, w1,...
- Concept names: Component, User, Window, ...
- Role names:

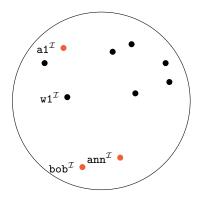

LooksAt, FocusesOn, HasPart, ...

Symbols

- Individual names: ann, bob, w1,...
- Concept names: Component, User, Window, ...
- Role names:

 ${\tt LooksAt}, {\tt FocusesOn}, {\tt HasPart}, \ldots$

Semantics: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ Interpretation domain $\Delta^{\mathcal{I}}$ and function $\cdot^{\mathcal{I}}$:

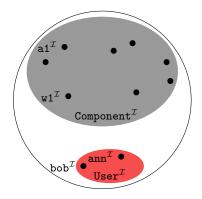


Symbols

- Individual names: ann, bob, w1,...
- Concept names: Component, User, Window, ...
- Role names:

LooksAt, FocusesOn, HasPart, ...

$$\begin{split} \textbf{Semantics:} \ \mathcal{I} &= \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}\right) \\ \text{Interpretation domain } \Delta^{\mathcal{I}} \text{ and} \\ \text{function } \cdot^{\mathcal{I}} : \end{split}$$

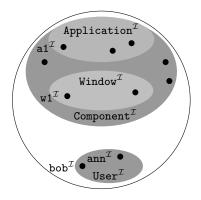


Symbols

- Individual names: ann, bob, w1,...
- Concept names: Component, User, Window, ...
- Role names:

 ${\tt LooksAt}, {\tt FocusesOn}, {\tt HasPart}, \ldots$

$$\begin{split} \textbf{Semantics:} \ \mathcal{I} &= \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}\right) \\ \text{Interpretation domain } \Delta^{\mathcal{I}} \text{ and} \\ \text{function } \cdot^{\mathcal{I}} : \end{split}$$

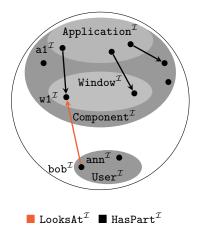


Symbols

- Individual names: ann, bob, w1,...
- Concept names: Component, User, Window, ...
- Role names:

 ${\tt LooksAt}, {\tt FocusesOn}, {\tt HasPart}, \ldots$

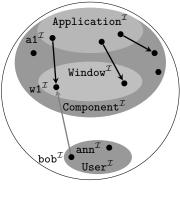
Semantics: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ Interpretation domain $\Delta^{\mathcal{I}}$ and function $\cdot^{\mathcal{I}}$:



Symbols

- Individual names: ann, bob, w1,...
- Concept names: Component, User, Window, ...
- Role names:

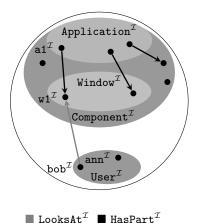
LooksAt, FocusesOn, HasPart, ...


Semantics: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ Interpretation domain $\Delta^{\mathcal{I}}$ and function $\cdot^{\mathcal{I}}$:

Symbols

- Individual names: ann, bob, w1,...
- Concept names: Component, User, Window, ...
- Role names: LooksAt,FocusesOn,HasPart,...

Fact base \mathcal{F} User(bob) LooksAt(bob,w1) Semantics: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ Interpretation domain $\Delta^{\mathcal{I}}$ and function $\cdot^{\mathcal{I}}$:

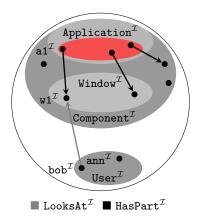


 \blacksquare LooksAt^{\mathcal{I}} \blacksquare HasPart^{\mathcal{I}}

Symbols

- Individual names: ann, bob, w1,...
- Concept names: Component, User, Window, ...
- Role names: LooksAt, FocusesOn, HasPart, ...

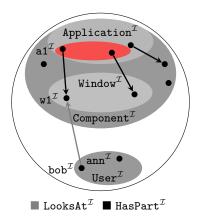
Semantics: $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$ Interpretation domain $\Delta^{\mathcal{I}}$ and function \mathcal{I} :



Fact base \mathcal{F} $\mathcal{I} \models \mathcal{F}$ User(bob) $bob^{\mathcal{I}} \in User^{\mathcal{I}}$ LooksAt(bob, w1) $(bob^{\mathcal{I}}, w1^{\mathcal{I}}) \in LooksAt^{\mathcal{I}}$

Basic concepts

- *DL-Lite*: User, ∃HasPart, ∃HasPart⁻
- \mathcal{EL} : User, \exists HasPart.Window


Semantics: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ Interpretation domain $\Delta^{\mathcal{I}}$ and function $\cdot^{\mathcal{I}}$:

Basic concepts

- *DL-Lite*: User,∃HasPart,∃HasPart⁻
- \mathcal{EL} : User, \exists HasPart.Window

Semantics: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ Interpretation domain $\Delta^{\mathcal{I}}$ and function $\cdot^{\mathcal{I}}$:

Basic concepts

- *DL-Lite*: User,∃HasPart,∃HasPart⁻
- \mathcal{EL} : User, \exists HasPart.Window

Ontology \mathcal{O} Concept inclusions Window \sqsubseteq Component VideoPlayer \sqsubseteq ¬SystemCritical Role inclusions ($\cdot^{\mathcal{H}}$) LooksAt \sqsubseteq FocusesOn

Basic concepts

- *DL-Lite*: User,∃HasPart,∃HasPart⁻
- \mathcal{EL} : User, \exists HasPart.Window

Ontology ♡ Concept inclusions Window ⊆ Component VideoPlayer ⊑ ¬SystemCritical Role inclusions (.^H) LooksAt ⊑ FocusesOn

$$\begin{split} \texttt{Window}^{\mathcal{I}} &\subseteq \texttt{Component}^{\mathcal{I}} \\ \texttt{VideoPlayer}^{\mathcal{I}} &\cap \texttt{SystemCritical}^{\mathcal{I}} = \emptyset \end{split}$$

 $\texttt{LooksAt}^\mathcal{I} \subseteq \texttt{FocusesOn}^\mathcal{I}$

Basic concepts

- *DL-Lite*: User,∃HasPart,∃HasPart⁻
- \mathcal{EL} : User, \exists HasPart.Window

Ontology \mathcal{O}	$\mathcal{I}\models\mathcal{O}$
Concept inclusions	
Window 🖵 Component	$\texttt{Window}^\mathcal{I} \subseteq \texttt{Component}^\mathcal{I}$
${\tt VideoPlayer}\sqsubseteq \neg {\tt SystemCritical}$	$\texttt{VideoPlayer}^\mathcal{I} \cap \texttt{SystemCritical}^\mathcal{I} = \emptyset$
Role inclusions ($\cdot^{\mathcal{H}}$)	
LooksAt 🔤 FocusesOn	$\texttt{LooksAt}^\mathcal{I} \subseteq \texttt{FocusesOn}^\mathcal{I}$

DLs we focus on: $DL-Lite_{core}^{\mathcal{H}}$, $DL-Lite_{horn}^{\mathcal{H}}$, $DL-Lite_{krom}^{\mathcal{H}}$, $DL-Lite_{bool}^{\mathcal{H}}$, \mathcal{EL}

Basic concepts

- *DL-Lite*: User,∃HasPart,∃HasPart⁻
- \mathcal{EL} : User, \exists HasPart.Window

Ontology \mathcal{O}	$\mathcal{I}\models\mathcal{O}$
Concept inclusions	
$\texttt{Window} \sqsubseteq \texttt{Component}$	$\texttt{Window}^\mathcal{I} \subseteq \texttt{Component}^\mathcal{I}$
${\tt VideoPlayer}\sqsubseteq \neg {\tt SystemCritical}$	$ extsf{VideoPlayer}^\mathcal{I} \cap extsf{SystemCritical}^\mathcal{I} = \emptyset$
Role inclusions ($\cdot^{\mathcal{H}}$)	
LooksAt 🖵 FocusesOn	$\texttt{LooksAt}^\mathcal{I} \subseteq \texttt{FocusesOn}^\mathcal{I}$

 $\text{DLs we focus on: } \textit{DL-Lite}_{\textit{core,}}^{\mathcal{H}}, \textit{DL-Lite}_{\textit{horn,}}^{\mathcal{H}}, \textit{DL-Lite}_{\textit{krom,}}^{\mathcal{H}}, \textit{DL-Lite}_{\textit{bool,}}^{\mathcal{H}}, \mathcal{EL}$

Temporal knowledge base (TKB) Semantics: $\mathfrak{I} = (\mathcal{I}_i)_{i \geq 0}$ $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle$

Lightweight Description Logics

Basic concepts

- *DL-Lite*: User,∃HasPart,∃HasPart⁻
- \mathcal{EL} : User, \exists HasPart.Window

Ontology \mathcal{O}	$\mathcal{I}\models\mathcal{O}$
Concept inclusions	
$window \sqsubseteq Component$	$\texttt{Window}^\mathcal{I} \subseteq \texttt{Component}^\mathcal{I}$
${\tt VideoPlayer}\sqsubseteq \neg {\tt SystemCritical}$	$ extsf{VideoPlayer}^\mathcal{I} \cap extsf{SystemCritical}^\mathcal{I} = \emptyset$
Role inclusions ($\cdot^{\mathcal{H}}$)	
LooksAt 🔤 FocusesOn	$\texttt{LooksAt}^\mathcal{I} \subseteq \texttt{FocusesOn}^\mathcal{I}$

 $\text{DLs we focus on: } \textit{DL-Lite}_{\textit{core,}}^{\mathcal{H}}, \textit{DL-Lite}_{\textit{horn,}}^{\mathcal{H}}, \textit{DL-Lite}_{\textit{krom,}}^{\mathcal{H}}, \textit{DL-Lite}_{\textit{bool,}}^{\mathcal{H}}, \mathcal{EL}$

Temporal knowledge base (TKB)Semantics: $\mathfrak{I} = (\mathcal{I}_i)_{i \ge 0}$ $\mathfrak{I} \models \mathcal{K}$ $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \le i \le n} \rangle$ $\mathcal{I}_i \models \mathcal{O}$ for all $i \ge 0$,
 $\mathcal{I}_i \models \mathcal{F}_i$ for all $i \in [0, n]$,
and \mathfrak{I} respects individual and rigid names

$$\begin{split} & \text{Components in user focus in the past, and not visible anymore (now)?} \\ & \Phi_{\text{Ex}}(x) := \Bigl(\diamondsuit_{\text{P}} \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,x) \land \texttt{Component}(x) \Bigr) \land \texttt{NotVisible}(x) \end{split}$$

$$\begin{split} & \text{Components in user focus in the past, and not visible anymore (now)?} \\ & \Phi_{\text{Ex}}(x) := \Bigl(\diamondsuit_{\text{P}} \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,x) \land \texttt{Component}(x) \Bigr) \land \texttt{NotVisible}(x) \end{split}$$

TCQ $\Phi, \Psi := \mathsf{CQ} \varphi \mid \neg \Phi \mid \Phi \land \Psi \mid \Phi \lor \Psi \mid$

$$\begin{split} & \text{Components in user focus in the past, and not visible anymore (now)?} \\ & \Phi_{\text{Ex}}(x) := \Bigl(\diamondsuit_{\text{P}} \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,x) \land \texttt{Component}(x) \Bigr) \land \texttt{NotVisible}(x) \end{split}$$

$$\mathsf{TCQ} \ \Phi, \Psi := \mathsf{CQ} \ \varphi \ | \ \neg \Phi \ | \ \Phi \land \Psi \ | \ \Phi \lor \Psi \ |$$
$$\bigcirc_F \Phi \ (\mathsf{next}) \ | \ \bigcirc_P \Phi \ (\mathsf{previous})$$

Components in user focus in the past, and not visible anymore (now)? $\Phi_{\mathsf{Ex}}(x) := \left(\Diamond_{\mathsf{P}} \exists y. \mathtt{User}(y) \land \mathtt{FocusesOn}(y, x) \land \mathtt{Component}(x) \right) \land \mathtt{NotVisible}(x)$

 $\begin{aligned} \mathbf{TCQ} \ \Phi, \Psi &:= \mathsf{CQ} \ \varphi \mid \neg \Phi \mid \Phi \land \Psi \mid \Phi \lor \Psi \mid \\ & \bigcirc_F \Phi \ (\mathsf{next}) \mid \bigcirc_P \Phi \ (\mathsf{previous}) \mid \Phi \, \mathsf{U} \, \Psi \ (\mathsf{until}) \mid \Phi \, \mathsf{S} \, \Psi \ (\mathsf{since}) \end{aligned}$

Components in user focus in the past, and not visible anymore (now)? $\Phi_{\mathsf{Ex}}(x) := \left(\Diamond_{\mathsf{P}} \exists y.\mathsf{User}(y) \land \mathsf{FocusesOn}(y, x) \land \mathsf{Component}(x) \right) \land \mathsf{NotVisible}(x)$

$$\begin{aligned} \mathsf{TCQ} \ \Phi, \Psi &:= \mathsf{CQ} \ \varphi \mid \neg \Phi \mid \Phi \land \Psi \mid \Phi \lor \Psi \mid \\ & \bigcirc_{F} \Phi \ (\mathsf{next}) \mid \bigcirc_{P} \Phi \ (\mathsf{previous}) \mid \Phi \, \mathsf{U} \, \Psi \ (\mathsf{until}) \mid \Phi \, \mathsf{S} \, \Psi \ (\mathsf{since}) \end{aligned}$$

 $\rightarrow \Diamond_{\mathsf{P}} \varphi := \mathsf{true} \, \mathsf{S} \, \varphi$ (some time in the past)

$$\begin{split} & \text{Components in user focus in the past, and not visible anymore (now)?} \\ & \Phi_{\text{Ex}} := \left(\Diamond_{\text{P}} \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y, \texttt{w1}) \land \texttt{Component}(\texttt{w1}) \right) \land \texttt{NotVisible}(\texttt{w1}) \end{split}$$

$$\begin{aligned} \mathsf{TCQ} \ \Phi, \Psi &:= \mathsf{CQ} \ \varphi \mid \neg \Phi \mid \Phi \land \Psi \mid \Phi \lor \Psi \mid \\ \bigcirc_F \Phi \ (\mathsf{next}) \mid \bigcirc_P \Phi \ (\mathsf{previous}) \mid \Phi \cup \Psi \ (\mathsf{until}) \mid \Phi \cup \Psi \ (\mathsf{since}) \\ \rightarrow \diamond_P \varphi &:= \mathsf{trueS} \ \varphi \ (\mathsf{some time in the past}) \end{aligned}$$

Semantics: sequences $\mathfrak{I} = (\mathcal{I}_i)_{i \geq 0}$ of interpretations, Boolean queries

Components in user focus in the past, and not visible anymore (now)? $\Phi_{Ex} := \left(\Diamond_{P} \exists y. User(y) \land FocusesOn(y, w1) \land Component(w1) \right) \land NotVisible(w1)$

$$\begin{aligned} \mathsf{TCQ} \ \Phi, \Psi &:= \mathsf{CQ} \ \varphi \mid \neg \Phi \mid \Phi \land \Psi \mid \Phi \lor \Psi \mid \\ & \bigcirc_{\mathit{F}} \Phi \ (\mathsf{next}) \mid \bigcirc_{\mathit{P}} \Phi \ (\mathsf{previous}) \mid \Phi \, U \, \Psi \ (\mathsf{until}) \mid \Phi \, S \, \Psi \ (\mathsf{since}) \\ & \rightarrow \diamond_{\mathsf{P}} \varphi := \mathsf{true} \, S \, \varphi \ (\mathsf{some time in the past}) \end{aligned}$$

Semantics: sequences $\mathfrak{I} = (\mathcal{I}_i)_{i \geq 0}$ of interpretations, Boolean queries

Example: $\mathfrak{I}, 2 \models \Phi_{\mathsf{Ex}}$ if

• $\mathcal{I}_2 \models \texttt{NotVisible}(\texttt{w1})$

Components in user focus in the past, and not visible anymore (now)? $\Phi_{\mathsf{Ex}} := \left(\Diamond_{\mathsf{P}} \exists y. \mathtt{User}(y) \land \mathtt{FocusesOn}(y, \mathtt{w1}) \land \mathtt{Component}(\mathtt{w1}) \right) \land \mathtt{NotVisible}(\mathtt{w1})$

Semantics: sequences $\mathfrak{I} = (\mathcal{I}_i)_{i \geq 0}$ of interpretations, Boolean queries

Example: $\mathfrak{I}, 2 \models \Phi_{\mathsf{Ex}}$ if • $\mathcal{I}_2 \models \mathsf{NotVisible}(w1)$ • there is an $i \in [0, 2]$ such that $\mathcal{I}_i \models \exists y.\mathsf{User}(y) \land \mathsf{FocusesOn}(y, w1) \land \mathsf{Component}(w1)$

${\bf I}$ Solving Satisfiability

- Given: Boolean TCQ Φ + TKB $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \le i \le n} \rangle$
- Sequences $\mathfrak{I} = (\mathcal{I}_i)_{i \geq 0}$ of interpretations
- Complexity of TCQ entailment: $\mathfrak{I}, n \models \Phi$ for all \mathfrak{I} such that $\mathfrak{I} \models \mathcal{K}$?
- Solve TCQ satisfiability: Is there an \Im such that $\Im \models \mathcal{K}$ and \Im , $n \models \neg \Phi$?

${\bf I}$ Solving Satisfiability

... good complexities for lightweight DLs and TCQs?

- Given: Boolean TCQ Φ + TKB $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \le i \le n} \rangle$
- Sequences $\mathfrak{I} = (\mathcal{I}_i)_{i \geq 0}$ of interpretations
- Complexity of TCQ entailment: ℑ, n ⊨ Φ for all ℑ such that ℑ ⊨ K?
- Solve TCQ satisfiability: Is there an \Im such that $\Im \models \mathcal{K}$ and \Im , $n \models \neg \Phi$?

... good complexities for lightweight DLs and TCQs?

- Given: Boolean TCQ Φ + TKB $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle$
- Sequences ℑ = (𝒯_i)_{i≥0} of interpretations
- Complexity of TCQ entailment: ℑ, n ⊨ Φ for all ℑ such that ℑ ⊨ K?
- Solve TCQ satisfiability: Is there an \mathfrak{I} such that $\mathfrak{I} \models \mathcal{K}$ and $\mathfrak{I}, n \models \neg \Phi$?

	Combined Complexity			Data Complexity			
	(i)	(ii)	(iii)	(i)	(ii)	(iii)	
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	$\geq PSPACE$?	?	?	?	?	
EL	$\geq PSPACE$?	?	$\geq P$?	?	
$DL-Lite^{[\ \mathcal{H}]}_{[krom bool]}$	$\geq PSPACE$?	\leq 2-EXPTIME	\geq co-NP	?	≤ExpTime	
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime	co-NP	co-NP	≤ExpTime	

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)

... good complexities for lightweight DLs and TCQs?

- Given: Boolean TCQ Φ + TKB $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle$
- Sequences ℑ = (𝒯_i)_{i≥0} of interpretations
- Complexity of TCQ entailment: ℑ, n ⊨ Φ for all ℑ such that ℑ ⊨ K?
- Solve TCQ satisfiability: Is there an \mathfrak{I} such that $\mathfrak{I} \models \mathcal{K}$ and $\mathfrak{I}, n \models \neg \Phi$?

	Combined Complexity			Data Complexity			
	(i)	(ii)	(iii)	(i)	(ii)	(iii)	
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	$\geq PSPACE$?	?	?	?	?	
EL	$\geq PSPACE$?	?	$\geq \mathbf{P}$?	?	
$DL\text{-}Lite^{[\ \mathcal{H}]}_{[krom bool]}$	\geq PSpace	?	PSpace?	\geq co-NP	?	≤ExpTime	
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime	co-NP	co-NP	≤ExpTime	

- $({\sf i}) \ \ {\sf no\ rigid\ names}$
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)

... good complexities for lightweight DLs and TCQs?

- Given: Boolean TCQ Φ + TKB $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle$
- Sequences ℑ = (𝒯_i)_{i≥0} of interpretations
- Complexity of TCQ entailment: ℑ, n ⊨ Φ for all ℑ such that ℑ ⊨ K?
- Solve TCQ satisfiability: Is there an \mathfrak{I} such that $\mathfrak{I} \models \mathcal{K}$ and $\mathfrak{I}, n \models \neg \Phi$?

	Combined Complexity			Data Complexity			
	(i)	(i) (ii) (iii)			(ii)	(iii)	
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	$\geq PSPACE$?	?	?	?	FO rewritable?	
EL	$\geq PSPACE$?	?	$\geq P$?	?	
$DL-Lite^{[\ \mathcal{H}]}_{[krom bool]}$	\geq PSpace	?	PSpace?	\geq co-NP	?	≤ExpTime	
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime	co-NP	co-NP	≤ExpTime	

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)

... good complexities for lightweight DLs and TCQs?

- Given: Boolean TCQ Φ + TKB $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle$
- Sequences ℑ = (𝒯_i)_{i≥0} of interpretations
- Complexity of TCQ entailment: ℑ, n ⊨ Φ for all ℑ such that ℑ ⊨ K?
- Solve TCQ satisfiability: Is there an \Im such that $\Im \models \mathcal{K}$ and \Im , $n \models \neg \Phi$?

	Combined Complexity			[Data Complexity			
	(i)	(i) (ii) (iii)			(ii)	(iii)		
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	$\geq PSPACE$?	?	?	?	FO rewritable?		
EL	$\geq PSPACE$?	?	$\geq \mathbf{P}$?	Tractable?		
$DL-Lite^{[\ \mathcal{H}]}_{[krom bool]}$	\geq PSpace	?	PSpace?	\geq co-NP	?	≤ExpTime		
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime	co-NP	co-NP	≤ExpTime		

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)

... good complexities for lightweight DLs and TCQs?

- Given: Boolean TCQ Φ + TKB $\mathcal{K} = \langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle$
- Sequences ℑ = (𝒯_i)_{i≥0} of interpretations
- Complexity of TCQ entailment: ℑ, n ⊨ Φ for all ℑ such that ℑ ⊨ K?
- Solve TCQ satisfiability: Is there an \Im such that $\Im \models \mathcal{K}$ and \Im , $n \models \neg \Phi$?

	Combined Complexity			[Data Complexity			
	(i)	(i) (ii) (iii)			(ii)	(iii)		
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	$\geq PSPACE$?	?	?	?	FO rewritable?		
EL	$\geq PSPACE$?	?	$\geq P$?	Tractable?		
$DL-Lite^{[\ \mathcal{H}]}_{[krom bool]}$	\geq PSpace	?	PSpace?	\geq co-NP	?	co-NP?		
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime	co-NP	co-NP	≤ExpTime		

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)

Satisfiability of $\neg \Phi$ w.r.t. $\langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle \rightarrow (\mathcal{I}_i)_{i \geq 0}$?

$$\begin{split} \Phi_{\mathsf{Ex}} &= \left(\diamondsuit_{\mathsf{P}} \varphi_1 \right) \land \varphi_2 \\ \varphi_1 &:= \exists y. \texttt{User}(y) \land \texttt{FocusesOn}(y, \texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ \varphi_2 &:= \texttt{NotVisible}(\texttt{w1}) \end{split}$$

 $\neg \Phi_{\mathsf{Ex}} = (\neg \Diamond_{\mathsf{P}} \varphi_1) \lor \neg \varphi_2$

Satisfiability of $\neg \Phi$ w.r.t. $\langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle \rightarrow (\mathcal{I}_i)_{i \geq 0}$?

$$\begin{split} \Phi_{\mathsf{Ex}} &= \left(\diamondsuit_{\mathsf{P}} \varphi_1 \right) \land \varphi_2 \\ \varphi_1 &:= \exists y. \texttt{User}(y) \land \texttt{FocusesOn}(y, \texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ \varphi_2 &:= \texttt{NotVisible}(\texttt{w1}) \end{split}$$

 $\neg \Phi_{\mathsf{Ex}} = (\neg \Diamond_{\mathsf{P}} \varphi_1) \lor \neg \varphi_2$

1 Replace CQs φ_1, φ_2 by propositional variables p_1, p_2

Satisfiability of $\neg \Phi$ w.r.t. $\langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle \rightarrow (\mathcal{I}_i)_{i \geq 0}$?

$$\begin{split} \Phi_{\mathsf{Ex}} &= \left(\diamondsuit_{\mathsf{P}} \varphi_1 \right) \land \varphi_2 \\ \varphi_1 &:= \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,\texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ \varphi_2 &:= \texttt{NotVisible}(\texttt{w1}) \end{split}$$

 $\neg \Phi_{\mathsf{Ex}} = (\neg \Diamond_{\mathsf{P}} \varphi_1) \lor \neg \varphi_2$

• Replace CQs φ_1, φ_2 by propositional variables p_1, p_2 $(\neg \Diamond_P p_1) \lor \neg p_2$

Satisfiability of $\neg \Phi$ w.r.t. $\langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle \rightarrow (\mathcal{I}_i)_{i \geq 0}$?

$$\begin{split} \Phi_{\mathsf{Ex}} &= \left(\diamondsuit_{\mathsf{P}} \varphi_1 \right) \land \varphi_2 \\ \varphi_1 &:= \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,\texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ \varphi_2 &:= \texttt{NotVisible}(\texttt{w1}) \end{split}$$

 $\neg \Phi_{\mathsf{Ex}} = (\neg \Diamond_{\mathsf{P}} \varphi_1) \lor \neg \varphi_2$

- Replace CQs φ_1, φ_2 by propositional variables p_1, p_2 $(\neg \diamondsuit_P p_1) \lor \neg p_2$
- **O LTL** satisfiability problem:

Look for an LTL structure $(w_i)_{i\geq 0}$ that satisfies the formula at time point n w_i : propositions true at i

Satisfiability of $\neg \Phi$ w.r.t. $\langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle \rightarrow (\mathcal{I}_i)_{i \geq 0}$?

$$\begin{split} \Phi_{\mathsf{Ex}} &= \left(\diamondsuit_{\mathsf{P}} \varphi_1 \right) \land \varphi_2 \\ \varphi_1 &:= \exists y. \texttt{User}(y) \land \texttt{FocusesOn}(y, \texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ \varphi_2 &:= \texttt{NotVisible}(\texttt{w1}) \end{split}$$

 $\neg \Phi_{\mathsf{Ex}} = (\neg \Diamond_{\mathsf{P}} \varphi_1) \lor \neg \varphi_2$

• Replace CQs φ_1, φ_2 by propositional variables p_1, p_2 $(\neg \diamondsuit_P p_1) \lor \neg p_2$

O LTL satisfiability problem:

Look for an LTL structure $(w_i)_{i\geq 0}$ that satisfies the formula at time point n w_i : propositions true at i

Possible LTL model: $(w_i)_{i\geq 0} = \emptyset, \emptyset, \{p_2\}, \emptyset...$ (for n = 2)

Satisfiability of $\neg \Phi$ w.r.t. $\langle \mathcal{O}, (\mathcal{F}_i)_{0 \leq i \leq n} \rangle \rightarrow (\mathcal{I}_i)_{i \geq 0}$?

$$\begin{split} \Phi_{\mathsf{Ex}} &= \left(\diamondsuit_{\mathsf{P}} \varphi_1 \right) \land \varphi_2 \\ \varphi_1 &:= \exists y. \texttt{User}(y) \land \texttt{FocusesOn}(y, \texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ \varphi_2 &:= \texttt{NotVisible}(\texttt{w1}) \end{split}$$

 $\neg \Phi_{\mathsf{Ex}} = (\neg \Diamond_{\mathsf{P}} \varphi_1) \lor \neg \varphi_2$

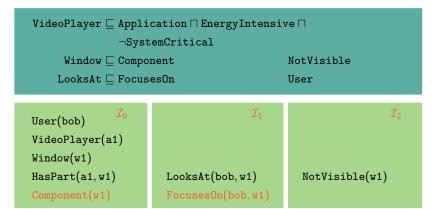
- Replace CQs φ_1, φ_2 by propositional variables p_1, p_2 $(\neg \diamondsuit_P p_1) \lor \neg p_2$
- **O LTL** satisfiability problem:

Look for an LTL structure $(w_i)_{i\geq 0}$ that satisfies the formula at time point n w_i : propositions true at i

Possible LTL model: $(w_i)_{i\geq 0} = \emptyset, \emptyset, \{p_2\}, \emptyset \dots$ (for n = 2)

- OL satisfiability problems (atemporal): Look for DL interpretations (*I_i*)_{i≥0} such that each *I_i* satisfies
 ⟨O, *F_i*⟩
 - the CQs according to w_i : $\mathcal{I}_i \models \varphi_j$ iff $p_j \in w_i$

- ${
 m I}$ Solving Satisfiability: A General Algorithm (Baader et al. 2012, 2015)
- $\mathcal{I}_i \models \langle \mathcal{O}, \mathcal{F}_i \rangle$


```
arphi_1 := \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,\texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ arphi_2 := \texttt{NotVisible}(\texttt{w1})
```

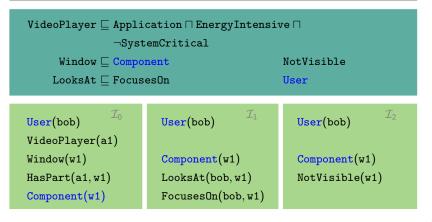

$$\mathcal{F}_0$$
 \mathcal{F}_1 \mathcal{F}_2 User(bob) \mathcal{F}_1 \mathcal{F}_2 VideoPlayer(a1) \mathcal{F}_2 \mathcal{F}_2 Window(w1) \mathcal{F}_2 \mathcal{F}_2 HasPart(a1,w1)LooksAt(bob,w1)NotVisible(w1)

- ${
 m I}$ Solving Satisfiability: A General Algorithm (Baader et al. 2012, 2015)
- $\mathcal{I}_i \models \langle \mathcal{O}, \mathcal{F}_i \rangle$


```
arphi_1 := \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,\texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ arphi_2 := \texttt{NotVisible}(\texttt{w1})
```

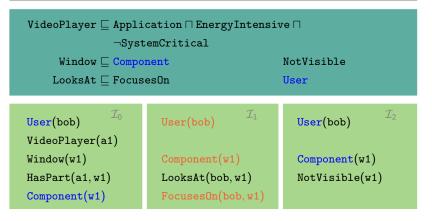

•
$$\mathcal{I}_i \models \langle \mathcal{O}, \mathcal{F}_i \rangle$$

• $(w_i)_{i\geq 0} = \emptyset, \emptyset, \{p_2\}, \ldots : \mathcal{I}_0, \mathcal{I}_1 \text{ must not satisfy } \varphi_1, \varphi_2$


```
arphi_1 := \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,\texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ arphi_2 := \texttt{NotVisible}(\texttt{w1})
```


•
$$\mathcal{I}_i \models \langle \mathcal{O}, \mathcal{F}_i \rangle$$

• $(w_i)_{i\geq 0} = \emptyset, \emptyset, \{p_2\}, \ldots : \mathcal{I}_0, \mathcal{I}_1 \text{ must not satisfy } \varphi_1, \varphi_2$


```
arphi_1 := \exists y. \mathtt{User}(y) \land \mathtt{FocusesOn}(y, \mathtt{w1}) \land \mathtt{Component}(\mathtt{w1}) \\ arphi_2 := \mathtt{NotVisible}(\mathtt{w1})
```


•
$$\mathcal{I}_i \models \langle \mathcal{O}, \mathcal{F}_i \rangle$$

• $(w_i)_{i\geq 0} = \emptyset, \emptyset, \{p_2\}, \ldots : \mathcal{I}_0, \mathcal{I}_1 \text{ must not satisfy } \varphi_1, \varphi_2$

```
arphi_1 := \exists y.\texttt{User}(y) \land \texttt{FocusesOn}(y,\texttt{w1}) \land \texttt{Component}(\texttt{w1}) \\ arphi_2 := \texttt{NotVisible}(\texttt{w1})
```


${\rm I}$ Solving Satisfiability: First Results for TCQ Entailment

	Combined Complexity			Data Complexity			
	(i)	(ii)	(iii)	(i)	(ii)	(iii)	
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	$\geq PSPACE$?	≤co-NExpTime	?	?	\leq co-NP	
EL	$\geq PSPACE$?	\leq co-NExpTime	$\geq P$?	\leq co-NP	
$DL-Lite^{[\mathcal{H}]}_{[krom bool]}$	$\geq PSPACE$?	\leq 2-EXPTIME	\geq co-NP	?	\leq ExpTime	
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime	co-NP	co-NP	\leq ExpTime	

- (i) no rigid concept or role names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)

I Solving Satisfiability: PSPACE Combined Complexity

LTL satisfiability algorithm

(Sistla and Clarke 1985): If LTL model exists, then there is a periodic one

I Solving Satisfiability: PSPACE Combined Complexity

LTL satisfiability algorithm Model $(w_i)_{i\geq 0}$ for $(\neg \diamondsuit_P p_1) \lor \neg p_2$? (Sistla and Clarke 1985): If LTL model exists, then there is a periodic one

I Solving Satisfiability: PSPACE Combined Complexity

LTL satisfiability algorithm Model $(w_i)_{i\geq 0}$ for $(\neg \diamondsuit_P p_1) \lor \neg p_2$? (Sistla and Clarke 1985): If LTL model exists, then there is a periodic one

- **Guess** start *s* and end *e* of the period
- Memory: LTL formula sets W_{i-1}, W_i, W_s representing w_{i-1}, w_i, w_s

I Solving Satisfiability: PSPACE Combined Complexity

LTL satisfiability algorithm Model $(w_i)_{i\geq 0}$ for $(\neg \diamondsuit_P p_1) \lor \neg p_2$? (Sistla and Clarke 1985): If LTL model exists, then there is a periodic one

- **Guess** start *s* and end *e* of the period
- Memory: LTL formula sets W_{i-1}, W_i, W_s representing w_{i-1}, w_i, w_s
- Iterate over time t and always
 - $W_{i-1} := W_i$ $W_i :=$ **guess** a set of subformulas
 - Check if W_i may follow after W_{i-1} $p_1 \in W_{i-1} \Rightarrow \Diamond_P p_1 \in W_i$

- At s: W_s := W_i
- At e: check if \mathcal{W}_s may follow after \mathcal{W}_i

I Solving Satisfiability: PSPACE Combined Complexity

LTL satisfiability algorithm Model $(w_i)_{i\geq 0}$ for $(\neg \Diamond_P p_1) \lor \neg p_2? \to (\mathcal{I}_t)_{t\geq 0}$? (Sistla and Clarke 1985): If LTL model exists, then there is a periodic one

- **Guess** start *s* and end *e* of the period
- Memory: LTL formula sets W_{i-1}, W_i, W_s representing w_{i-1}, w_i, w_s
- Iterate over time t and always

•
$$\mathcal{W}_{i-1} := \mathcal{W}_i$$

 $\mathcal{W}_i :=$ **guess** a set of subformulas

Check if
$$\mathcal{W}_i$$
 may follow after \mathcal{W}_{i-1} $p_1 \in \mathcal{W}_{i-1} \Rightarrow \Diamond_P p_1 \in \mathcal{W}_i$

- At s: W_s := W_i
- At e: check if \mathcal{W}_s may follow after \mathcal{W}_i

I Solving Satisfiability: PSPACE Combined Complexity

LTL satisfiability algorithm Model $(w_i)_{i\geq 0}$ for $(\neg \Diamond_P p_1) \lor \neg p_2? \to (\mathcal{I}_t)_{t\geq 0}$? (Sistla and Clarke 1985): If LTL model exists, then there is a periodic one

- Guess start s and end e of the period
- Memory: LTL formula sets W_{i-1}, W_i, W_s representing w_{i-1}, w_i, w_s
- Iterate over time t and always
 - $W_{i-1} := W_i$ $W_i :=$ **guess** a set of subformulas
 - **Check** if \mathcal{W}_i may follow after \mathcal{W}_{i-1}
 - DL satisfiability testing on the fly:
 - Look for \mathcal{I}_t such that

•
$$\mathcal{I}_t \models \langle \mathcal{O}, \mathcal{F}_t \rangle$$

• $\mathcal{I}_t \models \varphi_j \text{ iff } p_j \in w_t \text{ (given by } \mathcal{W}_i \text{)}$

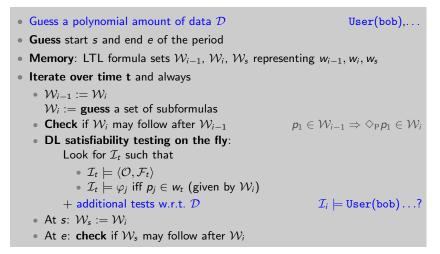
- At s: W_s := W_i
- At e: check if \mathcal{W}_s may follow after \mathcal{W}_i

 $p_1 \in \mathcal{W}_{i-1} \Rightarrow \Diamond_P p_1 \in \mathcal{W}_i$

I Solving Satisfiability: PSPACE Combined Complexity with Rigid Names

LTL satisfiability algorithm Model $(w_i)_{i\geq 0}$ for $(\neg \diamond_P p_1) \lor \neg p_2? \rightarrow (\mathcal{I}_t)_{t\geq 0}$? (Sistla and Clarke 1985): If LTL model exists, then there is a periodic one

- **Guess** start *s* and end *e* of the period
- Memory: LTL formula sets W_{i-1} , W_i , W_s representing w_{i-1} , w_i , w_s
- Iterate over time t and always
 - $W_{i-1} := W_i$ $W_i :=$ **guess** a set of subformulas
 - **Check** if \mathcal{W}_i may follow after \mathcal{W}_{i-1}
 - DL satisfiability testing on the fly:
 - Look for \mathcal{I}_t such that


•
$$\mathcal{I}_t \models \langle \mathcal{O}, \mathcal{F}_t \rangle$$

• $\mathcal{I}_t \models \varphi_j \text{ iff } p_j \in w_t \text{ (given by } \mathcal{W}_i \text{)}$

- At s: $W_s := W_i$
- At e: check if \mathcal{W}_s may follow after \mathcal{W}_i

 $p_1 \in \mathcal{W}_{i-1} \Rightarrow \Diamond_P p_1 \in \mathcal{W}_i$

I Solving Satisfiability: PSPACE Combined Complexity with Rigid Names

LTL satisfiability algorithm Model $(w_i)_{i\geq 0}$ for $(\neg \diamond_P p_1) \lor \neg p_2? \rightarrow (\mathcal{I}_t)_{t\geq 0}$? (Sistla and Clarke 1985): If LTL model exists, then there is a periodic one

	(i)	(ii)	(iii)
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	PSpace	PSpace	PSpace
EL	PSpace	PSpace	\geq co-NExpTime
DL-Lite _[krom bool]	$\geq PSPACE$?	\leq 2-EXPTIME
$\textit{DL-Lite}_{[krom bool]}^{\mathcal{H}}$	$\geq PSPACE$?	\leq 2-EXPTIME
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)

	(i)	(ii)	(iii)
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	PSpace	PSpace	PSpace
EL	PSpace	PSpace	CO-NEXPTIME
DL-Lite[krom bool]	$\geq PSPACE$?	\leq 2-EXPTIME
$\textit{DL-Lite}_{[krom bool]}^{\mathcal{H}}$	$\geq PSPACE$?	\leq 2-EXPTIME
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)
 - \blacklozenge PSpace: rigid roles critical if DL powerful enough

	(i)	(ii)	(iii)
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	PSpace	PSpace	PSpace
EL	PSpace	PSpace	CO-NEXPTIME
DL-Lite _[krom bool]	ExpTime	?	≤2-ExpTime
$\textit{DL-Lite}_{[krom bool]}^{\mathcal{H}}$	2-ExpTime	2-ExpTime	2-ExpTime
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)
 - \blacklozenge PSpace: rigid roles critical if DL powerful enough
 - TCQ satisfiability in DL-Litebool reducible to DL-Litekrom

```
\begin{array}{l} \texttt{User}\sqsubseteq\texttt{Male} \sqcup \texttt{Female} \\ \texttt{Cls} \top \sqsubseteq\texttt{Male} \sqcup \overline{\texttt{Male}}, \ \texttt{Male}\sqsubseteq \neg \overline{\texttt{Male}}, \ \ldots \\ \texttt{TCQ} \neg \exists x.\texttt{User}(x) \land \overline{\texttt{Male}}(x) \land \overline{\texttt{Female}}(x) \end{array}
```

```
<sup>1</sup>(Baader et al. 2015)
```

	(i)	(ii)	(iii)
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	PSpace	PSpace	PSpace
EL	PSpace	PSpace	CO-NEXPTIME
DL-Lite _[krom bool]	ExpTime	CO-NEXPTIME	2-ExpTime
$\textit{DL-Lite}_{[krom bool]}^{\mathcal{H}}$	2-ExpTime	2-ExpTime	2-ExpTime
\mathcal{ALCHQ}^1	ExpTime	CO-NEXPTIME	2-ExpTime

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)
 - \blacklozenge PSpace: rigid roles critical if DL powerful enough
 - TCQ satisfiability in DL-Litebool reducible to DL-Litekrom

```
\begin{array}{l} \texttt{User}\sqsubseteq\texttt{Male} \sqcup \texttt{Female} \\ \texttt{Cls} \top \sqsubseteq\texttt{Male} \sqcup \overline{\texttt{Male}}, \ \texttt{Male}\sqsubseteq \neg \overline{\texttt{Male}}, \ \ldots \\ \texttt{TCQ} \neg \exists x.\texttt{User}(x) \land \overline{\texttt{Male}}(x) \land \overline{\texttt{Female}}(x) \end{array}
```

```
<sup>1</sup>(Baader et al. 2015)
```

Select a literal in the TCQ

$$\Box_{\mathsf{P}}\left(\mathsf{C}(c)\to\left(\mathsf{L}(c)\vee_{\mathsf{F}}\mathsf{L}(c)\vee_{\mathsf{F}}\circ_{\mathsf{F}}\mathsf{L}(c)\right)\right)$$

Select a literal in the TCQ

$$\Box_{\mathsf{P}}\left(\mathsf{C}(c) \rightarrow \left(\mathsf{L}(c) \lor \bigcirc_{\mathit{F}} \mathsf{L}(c) \lor \bigcirc_{\mathit{F}} \bigcirc_{\mathit{F}} \mathsf{L}(c)\right)\right)$$

Transfer choice of TCQ to literal individuals. A to express assignment

 $\exists \mathsf{R}.\mathsf{L}\sqsubseteq\mathsf{A}$

Select a literal in the TCQ, and ensure valid assignments: $A(\bar{x})$ iff $\neg A(x)$

$$\Box_{\mathsf{P}}\left(\mathsf{C}(c) \to \left(\mathsf{L}(c) \lor \bigcirc_{\mathsf{F}} \mathsf{L}(c) \lor \bigcirc_{\mathsf{F}} \mathsf{L}(c)\right)\right) \land$$
$$\Box_{\mathsf{P}} \neg \exists u, v.\mathsf{S}(u, v) \land \mathsf{A}(u) \land \mathsf{A}(v)$$

Transfer choice of TCQ to literal individuals. A to express assignment

$\exists \mathsf{R}.\mathsf{L}\sqsubseteq\mathsf{A}$

$$\begin{array}{c} \mathcal{F}_{0} & \mathcal{F}_{1} & \mathcal{F}_{2} \\ \mathbf{C}(\boldsymbol{c}) & & \\ \mathbf{R}(\overline{\boldsymbol{x}}, \boldsymbol{c}) & & \\ \mathbf{R}(\overline{\boldsymbol{y}}, \boldsymbol{c}) & & \\ \mathbf{S}(\overline{\boldsymbol{x}}, \boldsymbol{x}) & & \\ \mathbf{S}(\overline{\boldsymbol{y}}, \boldsymbol{y}) & & \\ \mathbf{S}(\boldsymbol{z}, \overline{\boldsymbol{z}}) \end{array}$$

	(i)	(ii)	(iii)
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	AlogTime	ALOGTIME	AlogTime
EL	$\geq P$	co-NP	co-NP
$DL\text{-}Lite^{[\ \mathcal{H}]}_{[krom bool]}$	\geq co-NP	?	≤ExpTime
\mathcal{ALCHQ}^1	co-NP	co-NP	≤ExpTime

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)
 - DL-Lite: no FO rewritability
 - ALOGTIME: efficient parallel algorithms exist!

	(i)	(ii)	(iii)
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	AlogTime	AlogTime	AlogTime
EL	Р	co-NP	co-NP
$DL\text{-}Lite^{[\ \mathcal{H}]}_{[krom bool]}$	\geq co-NP	?	≤ExpTime
\mathcal{ALCHQ}^1	co-NP	co-NP	≤ExpTime

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)
 - DL-Lite: no FO rewritability
 - ALOGTIME: efficient parallel algorithms exist!
 - *EL*: best result possible if no rigid symbols, but already rigid concepts critical

 ${\bf I}$ Solving Satisfiability: Results for TCQ Entailment Data Complexity

	(i)	(ii)	(iii)
$DL-Lite^{[\mathcal{H}]}_{[core horn]}$	AlogTime	AlogTime	AlogTime
EL	Р	co-NP	co-NP
$DL\text{-}Lite^{[\ \mathcal{H}]}_{[krom bool]}$	co-NP	co-NP	≤ExpTime
\mathcal{ALCHQ}^1	co-NP	co-NP	≤ExpTime

- (i) no rigid names
- (ii) rigid concept names
- (iii) rigid role names (and rigid concept names)
 - DL-Lite: no FO rewritability
 - ALOGTIME: efficient parallel algorithms exist!
 - *EL*: best result possible if no rigid symbols, but already rigid concepts critical
 - Upper bounds: apply general approach

${f II}$ Rewritability of Temporal Query Answering

- Positive Temporal \mathcal{QL} queries: LTL without negation + \mathcal{QL} queries
- Temporal KB with ontology in some lightweight logic $\ensuremath{\mathcal{L}}$
- \mathcal{QL} and $\mathcal L$ must satisfy certain requirements
 - \rightarrow Rewritability of \mathcal{QL} queries w.r.t. KBs in $\mathcal L$

II Rewritability of Temporal Query Answering

- Positive Temporal \mathcal{QL} queries: LTL without negation + \mathcal{QL} queries
- Temporal KB with ontology in some lightweight logic $\ensuremath{\mathcal{L}}$
- \mathcal{QL} and $\mathcal L$ must satisfy certain requirements
 - \rightarrow Rewritability of \mathcal{QL} queries w.r.t. KBs in $\mathcal L$

Answers to Φ' over $\mathcal{F} =$ Answers to Φ w.r.t. $\langle \mathcal{O}, \mathcal{F} \rangle$

${f II}$ Rewritability of Temporal Query Answering


- Positive Temporal \mathcal{QL} queries: LTL without negation + \mathcal{QL} queries
- Temporal KB with ontology in some lightweight logic $\ensuremath{\mathcal{L}}$
- \mathcal{QL} and \mathcal{L} must satisfy certain requirements \rightarrow Rewritability of \mathcal{QL} queries w.r.t. KBs in \mathcal{L}
- Generic rewritability result for PTQ answering

Answers to Φ w.r.t. $\langle \mathcal{O}, (\mathcal{F})_{0 \le i \le n} \rangle$

II Rewritability of Temporal Query Answering

- Positive Temporal \mathcal{QL} queries: LTL without negation + \mathcal{QL} queries
- Temporal KB with ontology in some lightweight logic $\ensuremath{\mathcal{L}}$
- *QL* and *L* must satisfy certain requirements
 → Rewritability of *QL* queries w.r.t. KBs in *L*
- Generic rewritability result for PTQ answering
- Many formalisms satisfy our requirements
 → Tools for answering *QL* queries often exist

Answers to Φ w.r.t. $\langle \mathcal{O}, (\mathcal{F})_{0 \le i \le n} \rangle$

${f II}$ Rewritability of Temporal Query Answering

L	\mathcal{QL}	\mathcal{QL}'
\mathcal{EL}^{++}	subs.	subs.
DL -Lite $_{\mathcal{R}}$	CQ	UCQ
${\cal ELH}^{dr}_{ot}$	CQ	$FO_{=}$
$\textit{DL-Lite}_{\textithorn}^{\mathcal{N}}$	CQ	$FO_{=}$
DL -Lite $_{\mathcal{R}}$	UCQ	PEQ
DL-Lite	CQ	UCQ
\mathcal{ELHI}^{\neg}	CQ	Datalog
DL -Lite $_{\mathcal{R}}$	CQ	UCQ
DL -Lite $^+$	CQ	UCQ^+
$Horn\text{-}\mathcal{ALCHIQ}$	CQ	UCQ
\mathcal{LDL}^+	IQ	IQ
$\mathcal{SROEL}(\sqcap, \times)$	IQ	IQ
$Datalog^\pm$ family	CQ	UCQ

- Ontology-based data access: common domain terminology and knowledge
- We need extensions for recognizing complex contexts
- Temporal query answering w.r.t. ontologies in lightweight logics

- Ontology-based data access: common domain terminology and knowledge
- We need extensions for recognizing complex contexts
- Temporal query answering w.r.t. ontologies in lightweight logics

- Ontology-based data access: common domain terminology and knowledge
- We need extensions for recognizing complex contexts
- Temporal query answering w.r.t. ontologies in lightweight logics

Combined and data complexity of TCQ satisfiability

Rewritability of TQ answering

- Ontology-based data access: common domain terminology and knowledge
- We need extensions for recognizing complex contexts
- Temporal query answering w.r.t. ontologies in lightweight logics

Combined and data complexity of TCQ satisfiability

- Description logics *DL-Lite* and *EL*
- Solutions inherently exponential
- New algorithms: PS_{PACE} combined complexity in many cases
- Feasible data complexity for *DL-Lite^H_{horn}*
- Similar results for TQs where $\mathcal{QL} = \mathsf{DL}$ axioms (not in this talk)

Rewritability of TQ answering

- Ontology-based data access: common domain terminology and knowledge
- We need extensions for recognizing complex contexts
- Temporal query answering w.r.t. ontologies in lightweight logics

Combined and data complexity of TCQ satisfiability

- Description logics *DL-Lite* and *EL*
- Solutions inherently exponential
- New algorithms: PS_{PACE} combined complexity in many cases
- Feasible data complexity for *DL-Lite^H_{horn}*
- Similar results for TQs where $\mathcal{QL} = \mathsf{DL}$ axioms (not in this talk)

Rewritability of TQ answering

- · Generic rewritability result for positive TQs
- Conditions are satisfied by many existing formalisms
- Hints at implementations

- Ontology-based data access: common domain terminology and knowledge
- We need extensions for recognizing complex contexts
- Temporal query answering w.r.t. ontologies in lightweight logics Metric temporal logic operators? Other DLs?

Combined and data complexity of TCQ satisfiability

- Description logics *DL-Lite* and *EL*
- Solutions inherently exponential
- New algorithms: PSPACE combined complexity in many cases
- Feasible data complexity for *DL-Lite^H_{horn}* The CO-NP/ExpTIME gap?
- Similar results for TQs where $\mathcal{QL} = \mathsf{DL}$ axioms (not in this talk)

Rewritability of TQ answering Implementations? Use cases?

- Generic rewritability result for positive TQs
 Other restrictions?
- Conditions are satisfied by many existing formalisms
- Hints at implementations

- S. Borgwardt, M. Lippmann, and T.: Temporalizing Rewritable Query Languages over Knowledge Bases. Journal of Web Semantics, 2015.
- S. Borgwardt and T.: Temporal Query Answering in DL-Lite with Negation. In Proc. of GCAI, EasyChair, 2015. Temporal Query Answering in the Description Logic *EL*. In Proc. of IJCAI, AAAI Press, 2015.
- S. Borgwardt, M. Lippmann, and T.: Temporal Query Answering in the Description Logic DL-Lite. In Proc. of FroCoS, LNCS, 2013.
- T. and E. Zenker: Temporal Query Answering in a Fuzzy World. In Proc. of the Posters and Demos Track of SEMANTICS, CEUR WS, 2015.
- S. Borgwardt and T.: Temporal Query Answering in the Description Logic *EL* (ext. abstract). In Proc. of DL, CEUR WS, 2015.
- T., J. Holste, and Ö. Özçep: On Implementing Temporal Query Answering in DL-Lite (ext. abstract). In Proc. of DL, CEUR WS, 2015.
- S. Borgwardt, M. Lippmann, and T.: Temporal Query Answering in DL-Lite (best student paper). In Proc. of DL, CEUR WS, 2013.

- F. Baader, S. Borgwardt, P. Koopmann, A. Ozaki, and T.: Metric Temporal Description Logics with Interval-Rigid Names. In Proc. of FroCoS, LNCS, 2017.
- F. Baader, S. Borgwardt, P. Koopmann, A. Ozaki, and T.: Metric Temporal Description Logics with Interval-Rigid Names (ext. abstract). In Proc. of DL, CEUR WS, 2017.

Thank you!

Stefan Borgwardt Franz Baader Marcel Lippmann Markus Krötzsch Anni-Yasmin Turhan Ana Ozaki Kerstin Achtruth Carsten Lutz

My family and friends

(Baader et al. 2015)

F. Baader, S. Borgwardt, and M. Lippmann: Temporal Query Entailments in the Description Logic \mathcal{SHQ} . Journal of Web Semantics, 2015.

(Baader et al. 2012)

F. Baader, S. Ghilardi, and C. Lutz:

LTL over Description Logic Axioms.

ACM Transactions on Computational Logic, 2012.

(Sistla and Clarke 1985)

A. P. Sistla and E. M. Clarke:

The Complexity of Propositional Linear Temporal Logics,

Journal of the ACM, 1985.