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Parsing. Beim Parsing (Zerlegen) sollen mithilfe einer Grammatik syntaktische Ana-
lysen eines gegebenen Satzes berechnet werden. Eine solche syntaktische Analyse wird
üblicherweise Parsebaum genannt. Für große Grammatiken ist diese Berechnung oft
aufwendig und man versucht daher mit verschiedenen Methoden, den Suchraum zu
beschneiden. Eine dieser Methoden ist Supertagging [JS94]. Dabei wird jedem Symbol
des gegebenen Satzes zunächst ein Elementarbaum einer lexikalisierten Tree-Adjoining-
Grammatik zugeordnet. Durch Kombination dieser Elementarbäume erhält man dann
einen Parsebaum. Die Leistung von Supertagging-basierten Systemen lässt sich durch
den Einsatz neuronaler Modelle steigern [Vas+16; Kas+17].

Linear context-free rewriting systems [VWJ86]. Natürliche Sprachen weisen
Merkmale auf, die von kontextfreien Grammatiken nicht darstellbar sind, z.B. kann ein
Teilsatz eine Lücke haben, in die vom Kontext abhängiger Inhalt eingefügt wird. Um
die hohe Parsingkomplexität kontextsensitiver Grammatiken (PSPACE-complete) zu
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vermeiden, untersucht man Formalismen, die solche Lücken zwar darstellen können, aber
dennoch polynomiell parsebar sind. Man fasst solche Formalismen unter dem Begriff
mildly context-sensitive formalisms zusammen. Dazu gehören z.B. head grammars, tree
adjoining grammars, combinatory categorial grammars, linear indexed grammars, multiple
context-free grammars, und minimalist grammars. Linear context-free rewriting systems
(kurz: LCFRS) wurden eingeführt, um mildly context-sensitive formalisms einheitlich
darzustellen. Alle oben genannten (und noch einige weitere) Formalismen erzeugen eine
kleinere oder die gleiche Klasse von Stringsprachen wie LCFRS [Sek+91; VWJ86; WJ88;
Vij88; Mic01b; Mic01a]. Das Parsing von LCFRS ist daher von besonderer Bedeutung für
die Verarbeitung natürlicher Sprachen [Eva11]. Eine LCFRS wird lexikalisiert genannt,
wenn jede ihrer Regeln genau ein Terminalsymbol, den sogenannten Anker, enthält.

Aufgabe. Der Student soll ein Verfahren zur Induktion von lexikalisierten LCFRS
aus einem Dependency-Korpus [KS09] implementieren. Ein geeigneter Korpus wird zur
Verfügung gestellt.

Der Student soll einen Supertagging-basierten Parser entwickeln, der sich in zwei
Phasen unterteilt. In der ersten Phase (Supertagger) sollen, für eine gegebene LCFRS
und einen gegebenen Satz, jeder Satzposition die 𝑛 besten Grammatikregeln (Supertags)
zugeordnet werden. Die Gewichtung der Regeln erfolgt durch ein neuronales Modell. Zu
diesem Zweck soll ein geeignetes vortrainiertes neuronales Netz (z.B. BERT [Dev+18])
verwendet und für die Aufgabe angepasst werden. In der zweiten Phase (Parser) soll
für die reduzierte LCFRS aus Phase 1 und den gegebenen Satz der wahrscheinlichste
Dependency-Baum berechnet werden. Dazu soll ein geeigneter LCFRS-Parser verwendet
oder ein eigener implementiert werden.

Der Student soll experimentell gute Metaparameter seines Systems (Anzahl der Super-
tags, Vereinfachungen der Grammatik) bestimmen. Abschließend soll der Supertagging-
basierte Parser auf dem gegebenen Korpus hinsichtlich Genauigkeit und Laufzeit evaluiert
werden. Die dabei erzielten Ergebnisse sollen mit denen eines LCFRS-Parsers, der kein
Supertagging verwendet, verglichen werden.

Ende Januar 2020 soll der Student seinen aktuellen Stand im Rahmen des Freitagssemi-
nars vorstellen. Weiterhin soll er eine Projektarbeit (schriftliche Ausarbeitung) anfertigen.
Das Modul wird mit einem 45-minütigen benoteten Kolloquium (gemäß Modulbeschrei-
bung) abgeschlossen. Die Gesamtnote des Moduls entspricht dem gewichteten Durch-
schnitt der Note für die Projektarbeit und der Note für das Kolloquium im Verhältnis 3
zu 1.

Form. Die Arbeit muss den üblichen Standards wie folgt genügen. Die Arbeit muss
in sich abgeschlossen sein und alle nötigen Definitionen und Referenzen enthalten. Die
Urheberschaft von Inhalten – auch die eigene – muss klar erkennbar sein. Fremde
Inhalte, z.B. Algorithmen, Konstruktionen, Definitionen, Ideen, etc., müssen durch genaue
Verweise auf die entsprechende Literatur kenntlich gemacht werden. Lange wörtliche
Zitate sollen vermieden werden. Gegebenenfalls muss erläutert werden, inwieweit und zu
welchem Zweck fremde Inhalte modifiziert wurden. Die Struktur der Arbeit muss klar
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erkenntlich sein, und der Leser soll gut durch die Arbeit geführt werden. Die Darstellung
aller Begriffe und Verfahren soll mathematisch formal fundiert sein. Für jeden wichtigen
Begriff sollen Erläuterungen und Beispiele angegeben werden, ebenso für die Abläufe
der beschriebenen Verfahren. Wo es angemessen ist, sollen Illustrationen die Darstellung
vervollständigen. Bei Diagrammen, die Phänomene von Experimenten beschreiben, muss
deutlich erläutert werden, welche Werte auf den einzelnen Achsen aufgetragen sind, und
beschrieben werden, welche Abhängigkeit unter den Werten der verschiedenen Achsen
dargestellt ist.

Für die Implementierung soll eine ausführliche Dokumentation erfolgen, die sich
angemessen auf den Quelltext und die schriftliche Ausarbeitung verteilt. Dabei muss die
Funktionsfähigkeit des Programms glaubhaft gemacht und durch geeignete Beispielläufe
dokumentiert werden.

Der Student verpflichtet sich, ihm im Rahmen dieser Arbeit zugänglich gemachte
Daten und Software (einschließlich Quellcode) lediglich zur Erledigung der Aufgaben zu
verwenden und ansonsten vertraulich zu behandeln.

Dresden, 5. November 2019

Unterschrift von Heiko Vogler Unterschrift von Alex Ivliev
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The software to be submitted is uploaded on https://github.com/aannleax/Supertagging.
All intermediate and end results are saved on ficus at /home/s0803460/results.
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A hearing is scheduled on the issue today
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Figure 1: Example of a non-projective dependency tree

1 Introduction
Many natural language processing tasks require a syntactic representation of the input sentence.
One way this can be done is with dependency trees. Dependency trees describe grammatical
relations between words in a sentence as a directed edge between them. Figure 1 shows a
dependency tree for the sentence “A hearing is scheduled on the issue today”. Notice how the edge
between “hearing” and “issue” crosses the edge between “scheduled” and “today”. Dependency
trees with crossing edges are called non-projective. Non-projective structures cannot be described
by context free grammars. Parsing of context sensitive grammars, however, is PSPACE-complete
and therefore not computationally feasible. Hence a number of grammar formalisms were
proposed which can represent non-projective structures occuring in natural languages while
still allowing a sentence to be parsed in polynomial time. These grammar formalisms are
summarized under the term mildly context sensitive grammars. This category includes for
example head grammars [10], tree adjoining grammars [5], combinatory categorial grammars [12],
linear indexed grammars [4], multiple context-free grammars [10] and minimalist grammars [8].
Linear context-free rewriting systems (LCFRS) are a uniform way to represent these different
grammar formalisms [14]. Therefore, parsing LCFRS grammars plays an important role for
parsing natural languages.

Parsing of LCFRS with large grammars is still computationally expensive. A method called
supertagging can be used to restrict the grammar in order to increase the speed of parsing and
ideally without losing much accuracy. This approach was originally developed for lexicalised tree
adjoining grammars [6]. It assigns a small set of so called elementary trees for each word in the
input sentence. These trees are combined to generate a parse tree of the whole sentence. It is an
open question whether, analogously, lexicalised LCFRS grammars, whose rules contain exactly
one terminal on the left hand side, can also be used for supertagging. Instead of elementary
trees, a small set of candidate rules would be selected for each input word. The selection can
for example be done with neural networks. In this paper, supertagging is done by finetuning
BERT which is a pretrained neural network developed by Google AI [3]. For that, a vector
representation of LCFRS rules was created.

The goal of this paper is to present a method for how BERT can be used for supertagging
and evaluate the impact on performance with regard to speed and precision of parsing. Sections
2-6 provide necessary background and algorithms used to implement the approach. Section 7
then descirbes the actual implemention while section 8 contains the description and discussion
of the experiments.
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2 Preliminaries
This section formally introduces the concepts needed for the rest of the paper. For a natural
number n ∈ N we define the set [n] = {1, . . . , n}. We call a finite set X ⊆ N contiguous if
x = maxX or x+ 1 ∈ X for all x ∈ X. Furthermore

(
X
n

)
= {Y ⊆ X | |Y | = n} denotes the set

of all subsets of X with n elements. In addition we introduce the span of a finite set J ⊆ N as a
tuple span(J) = (J1, . . . Jk) such that J =

⋃
i∈[k] Ji where each set Ji is contiguous and for each

i, j ∈ N it holds that i < j implies min Ji < min Jj . So for example span({1, 2, 4}) = ({1, 2}, {4}).
For a, b ∈ R we define [a, b] = {x ∈ R | a ≤ x ≤ b}.

2.1 Graphs and trees
A directed graph G = (V,E) consists of a set V of nodes and the set E ⊆ V × V of edges. Let
G = (V,E) and G′ = (V ′, E′) be graphs. The function ϕ : V → V ′ is an isomorphism between
G and G′ if it is a bijection such that (v, w) ∈ E ⇐⇒ (ϕ(v), ϕ(w)) ∈ E′. A sequence of nodes
v1, . . . , vn is a path in G if (vi, vi+1) ∈ E or (vi+1, vi) ∈ E for all i ∈ [n−1]. A node w ∈ V can be
reached from another node v ∈ V if there exists a path from v to w. Furthermore a cycle is defined
as a path v1, . . . , vn with v1 = vn. A graph which contains no cycles is called acyclic. An acyclic
graph is a tree if it contains exactly one node, called the root and denoted root(G), from which
each other node can be reached. Let v ∈ V be a node. Then succ(v) = {v′ ∈ V | (v, v′) ∈ E} is
the set of all successors to v. Also leaves(v) = {v ∈ V | ∀v′ ∈ V : (v, v′) /∈ E} is the set of leaf
nodes in G. For a tree G = (V,E), we define the subtree G|v to be the tree obtained from G by
removing all nodes v′ ∈ V (and corresponding edges) which are not reachable from v.

2.2 Dependency trees
We represent dependency trees as trees where each node is a pair containing a position in the
sentence and its incoming dependency. Let T be a set of tokens. Tokens are the smallest
units of a sentence and can be words but also punctuation marks like for a example a period.
Formally, a sentence over a token set T is considered to be a sequence s = t1, . . . , tn where
ti ∈ T for every i ∈ [n]. Now, let s = t1, . . . , tn be sentence and N be a set. A dependency
tree is a pair D = (G, s) where G = (V,E) with V ⊆ N × [n] is a tree such that the function
ord : V → [n], (d, i) 7→ i is a bijection. Let v ∈ V be a node. Then the cover of the node,
denoted cover(v), is defined as the set {j ∈ N | (v′, j) ∈ V ′} where V ′ is the set of nodes in G|v.
A finite set C of dependency trees is called a corpus. For evaluation we will have to compare
two dependency trees. For that, we define edges(D) = {(i, j) ∈ N2 | ((A, i), (B, j)) ∈ E)} and
edgeslabeled(D) = {(i, j, B) ∈ N2×N | ((A, i), (B, j)) ∈ E}. Then the precision measure between
two dependency trees Dgold and Dgiven is defined as

precisionunlabeled(Dgold, Dgiven) =
|edges(Dgold) ∩ edges(Dgiven)|

|edges(Dgiven)|

Lebeled precision is defined analogously.

2.3 LCFRS grammars
For simplicity, the syntax of range concatenation grammars are used for defining LCFRS rules [2].

Let N , T and V be pairwise disjoint sets. We call elements of N non-terminals, elements of V
variables and T is a set of tokens. An LCFRS grammar is defined as the tuple G = (N,T, V, P, S)
where S ∈ N is the start non-terminal and P a set of LCFRS rules over N,T, V . For convenience
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xj,k is written as a shorthand for xj , . . . , xk. An LCFRS rule over N,T, V is an expression of
the form

r = A(y1, . . . , yn)→ A1(x
(1)
1 , . . . , x(1)m1

) . . . Ak(x
(k)
1 , . . . , x(k)mk

)

where

• n ∈ N is the fanout of the rule and k ∈ N its rank denoted fanout(r) and rank(r)
respectively,

• A,A1, · · ·Ak ∈ N where A is the dependency of the rule denoted dependency(r),

• Each x(i)j , x
(i′)
j′ ∈ V with i, i′ ∈ [k], j ∈ [mi] and j′ ∈ [mi′ ] is pairwise distinct

• yi ∈ (V ∪ T )∗ with i ∈ [n],

• A(y1, . . . , yn) is the left hand side and A1(x
(1)
1,m1

) . . . A1(x
(k)
k,mk

) the right hand side of the
rule and

• each variable on the right hand side appears exactly once in y1 ◦ · · · ◦ yn.
Additionally, an LCFRS rule is monotone if

• for each pair of variables x(i)j , x
(i)
j′ ∈ V it holds that j < j′ implies that x(i)j appears before

x
(i)
j′ in y1 ◦ · · · ◦ yn.

And finally, r is lexicalised if

• y1 ◦ · · · ◦ yn contains exactly one element from T called the token of the rule and denoted
by token(r).

Rules of rank 0 are called ε-rules. An LCFRS grammar is called monotone or lexicalised if each
rule of the grammar is monotone or lexicalised, respectively. In the following we assume that
every LCFRS grammar is monotone and lexicalised.

A probabilistic LCFRS grammar is a tuple P = (G, p) consisting of an LCFRS grammar G
and a function p : P → [0, 1] which assigns a probability to each rule such that for each A ∈ N∑

r∈{r′∈P |dependency(r′)=A}

p(r) = 1.

We now formally introduce the concept of parsing LCFRS grammars. Let G = (N,T, V, P, S)
be an LCFRS grammar and s = t1, . . . , tn a sentence over T . Then a dependency tree D = (G, s)
with G = (V,E) and V ⊆ P × [n] is called an abstract syntax tree for G and s if

• dependency(r) = S and fanout(r) = 1 for (r, i) = root(G)

• for all v = (r, i) ∈ V it holds that token(r) = ti

• for all v = (r, i) ∈ V where

r = A(y1, . . . , yn)→ A1(x
(1)
1 , . . . , x(1)m1

) . . . Ak(x
(k)
1 , . . . , x(k)mk

)

there exists a bijection b : [k]→ succ(v) such that

– dependency(b(j)) = Aj and
– fanout(b(j)) = mj for every j ∈ [k].

A dependency tree D = (G, s) with G = (V,E) and V ⊆ N × [n] is a parse tree for the
sentence s = t1, . . . , tn and a grammar G if N is the set of non-terminals of G and if there exists
an abstract syntax tree D′ = (G′, s) with G′ = (V ′, E′) for G and s such that the bijection
π : V → V ′ : (r, i) 7→ (dependency(r), i) is a graph isomorphism between G and G′.
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Figure 2: Pipeline for parsing without supertagging

3 Parsing pipeline
This section describes the process of parsing languages without the use of supertagging. Figure
2 shows the general pipeline. We start with a corpus containing dependency trees which were
compiled by experts and are assumed to be correct. From this corpus a probabilistic LCFRS
grammar is extracted. The goal is to extract a grammar which can describe sentences which did
not appear in the original corpus. The following subsections contain the algorithms for grammar
extraction and parsing.

3.1 Grammar extraction
The algorithm for extraction (1) on page 11 is taken from [7]. It produces one rule for each
node of the dependency tree. The dependency and the token of the rule are taken from the node
itself. If the current node is a leaf node then the produced rule is simply an ε-rule. Otherwise
we introduce an expression Aj(x

(j)
1,mj

) on the right hand side for each successor of the current
node. Each variable represents a contiguous section of the input sentence which is covered by
the subtree of the successor node. The token of the rule covers the position of the token. The
variables and the token are then arranged on the left hand side in order. Gaps are seperated by
a comma. For example let (A, 3) be a node and (B, 2) and (C, 6) be its successors which cover
the positions {1, 2, 4} and {6, 7} respectively. Then the following rule is extracted:

A(x
(1)
1 t3x

(1)
2 , x

(2)
1 )→ B(x

(1)
1 , x

(1)
2 )C(x

(2)
1 ).

x
(1)
2 and x

(2)
1 are seperated because there is a gap between the {4} and {6, 7}. An LCFRS

grammar can be extracted from a corpus of dependency trees by applying algorithm 1 for every
tree in the corpus. The set of rules of this grammar is the union of the individual rule sets
extracted from each tree.

Algorithm 1 does not produce a probabilistic LCFRS grammar. Probabilities can be assigned
to rules by, for example, considering the frequency the rule has been extracted with. Details of
that will not be discussed here since the pipeline will be adjusted in section 4 so that the
probability assignment will happen in a later stage.
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Algorithm 1: Grammar extraction from a corpus of dependency trees
Input : Corpus C of dependency trees
Output: Set of LCFRS rules P

1 P = ∅
2 for (G, s) ∈ C where G = (V,E) and s = t1, . . . , tn do
3 for v = (A, i) ∈ V do
4 if v ∈ leaves(G) then
5 P ← P ∪ {A(ti)→ ε}
6 end
7 else
8 J (0) ← spans(cover(v))
9 k ← 0

10 for v′ = (A′, i′) ∈ succ(v) do
11 k ← k + 1

12 J (k) ← spans(cover(v′))
13 Ak ← A′

14 end
15 for j ← 1 to |J (0)| do
16 yj ← ε, U = J

(0)
j

17 while U 6= ∅ do
18 if minU = i then
19 yj ← yj ◦ ti
20 U ← U \ {i}
21 end
22 else
23 Let i′ ∈ [k] and j′ ∈ [|J (i′)|] such that minU = min J i

′

j′

24 yj → yj ◦ x(i
′)

j′

25 U ← U \ J (i′)
j′

26 end
27 end
28 end
29 P ← P ∪ {A(y1, . . . , y|J(0)|)→ A1(x

(1)
1 , . . . , x

(1)

|J(1)|) . . . Ak(x
(k)
1 , . . . , x

(k)

|J(k)|)}
30 end
31 end
32 end
33 return P
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0 A 1 hearing 2 is 3 scheduled 4 on 5 the 6 issue 7 today 8 . 9

Figure 3: Numbering of the gaps in a sentence

3.2 Parsing
In the following we assume that the “gaps” of the tokens in a sentence are numbered like shown
in figure 3. This allows us to refer to certain parts of a sentence. For example, the part “on the
issue” is located between the positions 4 and 7.

The algorithm for parsing (2) which is presented on page 13 is based on [9]. It views parsing
as a deductive process starting with axioms and using rules of inference based on the grammar
to introduce new facts. The facts are called parse items and are of the form u : [A, κ] where A is
a dependency, u ∈ [0, 1] a probability and κ = κ(1), . . . , κ(n) with n ∈ N and

κ(i) ∈ {(j, k) ∈ N× N | j < k} for every i ∈ [n]

is called a range vector. Each parse item covers certain parts of the input sentences with a
dependency. For example the parse item 0.5: [nsub, ((0, 3), (6, 7))] means that the sentence
positions between 0 and 3 and between 6 and 7 are covered by the dependency nsub. We
define the partial operation ◦ : N2 → N2 as

(i, j1) ◦ (j2, k) =

{
(i, k) if j1 = j2

undefined otherwise.

Furthermore, let r = A(y1, . . . , yn) → A1(x
(1)
1,m1

) . . . A1(x
(k)
k,mk

) be an LCFRS rule and (κ(i))i∈[k]

with κ(i) = κ
(i)
1 , . . . , κ

(i)
mi a family of range vectors. Then r(κ(1), . . . , κ(k)) is defined to be the

range vector obtained from (y1, . . . , yn) by replacing x(i)j with κ(i)j and concatenating, if possible,
all the neighboring pairs. Let s = t1, . . . , tn be a sentence. If token(r) = tl is the token of the
rule then the token is treated as the pair (l − 1, l). If concatenation is not possible, then the
operation is undefined. The deduction system has three rules

SCAN:
p(r) : [A, ((i− 1), i)]

if r = A(ti)→ ε

RULE:
u1 : [A1, κ1], . . . , uk : [Ak, κk]

p(r) ·
∏
i∈[k] ui : [A, r(κ1, . . . , κk)]

if rank(r) = k and r(κ1, . . . , κk) is defined

GOAL: u : [S, (0, n)]

Algorithm 2 manages two sets A and C where A is called the agenda and C is the chart. The
agenda is initialized with all the parse items that can be obtained from applying the SCAN rule.
Then we enter a while loop which removes the parse item with the highest probability from the
agenda and adds it to the chart. If the selected item is a GOAL item, the algorithm stops. If it is
not a goal item, new parse items are deduced using RULE which are then added to the agenda.

If n ∈ N is the length of the input sentence, k ∈ N the maximal rank of the LCFRS rules
in the grammar and f ∈ N the maximal fanout, then the algorithm has a time complexity of
O(n(k+1)·f ) [11].
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Corpus abstract
grammar
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PLCFRS

dependency
treeextraction supertagging parsing

new sentence

Figure 4: Pipeline for parsing with supertagging

Algorithm 2: Parsing of a sentence via lexicalised PLCFRS
Input : Sentence s = t1, . . . , tn, PLCFRS P = (G, p)
Output: Dependency tree D

1 A ← ∅
2 C ← ∅
3 Add each parse item genereted by SCAN to the set A
4 while A 6= ∅ do
5 (u : [A, κ])← argmax(u′ : [A′,κ′])∈A u

′

6 A ← A \ {(u : [A, κ])}
7 C ← C ∪ {(u : [A, κ])}
8 if (u : [A, κ]) ist GOAL-Item then
9 Reconstruct the dependency tree and return it

10 end
11 else
12 foreach (v : [B, η]) deduced by RULE from (u : [A, κ]) and other items in C do
13 if there is no z where (z : [B, η]) ∈ A ∪ C then
14 A ← A∪ {(v : [B, η])}
15 end
16 else
17 if (z : [B, η]) ∈ A for some z then
18 A ← (A \ {(z : [B, η])}) ∪ {max{v, z} : [B, η]}
19 end
20 end
21 end
22 end
23 end
24 return empty tree

4 Supertagging
While the algorithm presented in section 3.2 has a polynomial runtime with respect to the length
of the sentence for a fixed grammar, parsing is still expensive for the large grammars generated
in the extraction step. To speed up parsing we try to reduce the number of production rules
with which the sentence is parsed, but still obtain an accurate parse tree. One such method of
rule reduction is called supertagging and was originally developed for lexicalised tree adjoining
grammars [6]. Each token in the input sentence is assigned a small number of so called elementary
trees. These are combined into a parse tree for the whole sentence. This reduces the number of
combinations of rules the parser has to consider significantly. Hence this step is also referred to
as almost-parsing. Supertags are selected using discriminatory classifiers. In particular, neural
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A hearing was scheduled

det(A)→ ε

case(A)→ ε

advmod(hearing)→ ε

nsubj(x1hearing)→ det(x1)

cc(was)→ ε

aux(was)→ ε

root(x1x2scheduled)→ nsubj(x1)aux(x2)

case(x1, scheduledx2)→ cc(x1)aux(x2)

Figure 5: Example of supertagging with lexicalised LCFRS

networks have proven effective in this task [13]. The neural network used here will be introduced
in the the next section.

Lexicalised LCFRS grammars allow for a similar method. But instead of elementary trees,
each token is assigned a small number of lexicalised LCFRS rules. The selected rules form a
smaller grammar with which the sentence can then be parsed. Figure 5 shows an example of
supertagging for the sentence “A hearing was scheduled”. Here, two rules per token are selected.
All the selected rules form the grammar with which this sentence would be parsed. Notice how
there is no point in assigning the rule nsubj(x1issue) → det(x1) to the token “hearing” since
“issue” does not even appear in the sentence. In fact, we can restrict rules which can be assigned
to a token to those who contain the token. This allows the supertagger to only deal with abstract
rules which contain a placeholder token instead of a real one. Formally, we define an abstract
LCFRS grammar G = (N,T, V, P, S) as an LCFRS grammar whose token set T = {〈Token〉}
only contains a placeholder element. For parsing, the placeholder is replaced with the actual
token.

Figure 4 shows the adjusted pipeline for parsing with supertagging. First we extract an
abstact LCFRS grammar from the corpus. This is done by applying a slightly altered version
of algorithm 1 which replaces the actual token with the placeholder. The supertagger selects a
small number of abstract rules for each token in the input sentence, fixes the token and assigns
them probabilities. The resulting grammar is used to parse the sentence with algorithm 2.

5 Using BERT for Supertagging
BERT stands for Bidirectional Encoder Representations from Transformers and was published
by the Google AI team in 2018 [3]. It is a pre-trained neural network based NLP model which
uses the architecture of the so called transformer. We skip the details of how transformers
work and consider BERT to be a blackbox which transforms one vector of real numbers into
another. More formally, we represent BERT as a function bert : Rm → Rh where m ∈ N is
the input dimension and h ∈ N is the output dimension. In order to input a sentence into a
neural network, the sequence of tokens first has to be tranformed into a sequence of vectors.
We call a function e : X → Rn which maps an arbitrary set X into set of n-dimensional vectors
an n-dimensional embedding. BERT uses the WordPiece embeddings [15]. This is a subtoken
embedding meaning tokens can be split into multiple subtokens. The token “playing” for example
might be split up into the subtokens “play” and “##ing”. Since subtokens can be combined freely
it reduces the chance of encountering an out of vocabulary token. So each input token is first
split into its subtokens each of which are assigned an m-dimensional vectors. These are added
with embeddings for positions and sections and are used as input for BERT. The neural network
is applied to each of the input vectors in parallel. This produces one output vector of dimension
h for each of the input tokens.
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The actual training can be divided into two stages:

1. pre-training and

2. finetuning.

5.1 Pre-training
The pre-training step involves training the neural network on the following language tasks

• Masked language model and

• Next sentence prediction.

The Masked language model randomly replaces a small amount of the input tokens with a blank
token. The network is then tasked with guessing what the original token was. For Next sentence
prediction BERT is given a pair of sentences. The task is to determine whether or not the second
one is a logical continuation of the first one.

In this step the neural network is supposed to obtain a general understanding of language.
During finetuning the network can then be adapted to a specific NLP task.1

5.2 Finetuning
In the finetuning step BERT is initialized with the parameters learned from the pre-training. A
simple fully connected neural network finetune : Rh → Rn with (h+ 1) · n parameters is applied
to the output of BERT to learn the specific NLP task which in out case would be supertagging.
So overall we get the network bertfinetuned = finetune ◦ bert

Since the final output of the finetuned bert network is a vector for each of the input tokens,
we have to translate them into a set of candidate rules. There are multiple conceiveable ways to
achieve this. The first option would be to output a vector which has an entry for each rule in
the trained grammar. For supertagging, the rules with the highest values in the corresponding
vector positions would be picked. The problem with this is that it results in a huge number of
parameters which would have to be learned during the finetuning step. The pretrained network
used here has an output dimension of h = 768. The abstract grammar extracted from the training
corpus consists of over 40.000 rules. This would equal over 30 million parameters. BERT itself
was trained on 110 million parameters. The second option would be to modify the first approach
by combining several rules into rule classes in order to reduce the number of parameters. The
third option, which is the option explorered here, is to use an small dimensional embedding for
the abstact rules. The vector which is outputted by BERT is compared to the embedding vectors
of the rules extracted from the training corpus. From them the ones with the smallest distances
are picked.

6 Embedding of LCFRS rules
To reduce the amount of parameters that have to be learned during finetuning the rules of
the extracted grammar are embedded into a vector space. BERT assigns an output vector for
each of the input tokens. The rules embedded into the vectors closest to the outputted vector
are used as supertags. It is therefore beneficial to embed each rule in such a way that the

1Here we use the pre-trained model from https://deepset.ai/german-bert. It has roughly 110 million
parameters and was trained on latest german Wikipedia dump, the OpenLegalData dump and news articles.
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rules corresponding to the nearby embeddings are in some sense similar. So if BERT were to
accidentally pick a neighboring vector the rules of resulting grammar would still be related to
the actual rules. This is achieved by defining a similarity measure on the production rules.

6.1 Similarity measures
A function µ : P × P → [0, 1] is called a similarity measure on the LCFRS grammar
G = (N,T, V, P, S). There are several possible ways of defining similarity between rules.

6.1.1 N-gram

This similarity measure treats LCFRS rules as strings and defines similarity through the amount
of n-grams shared between two rules viewed as strings. An n-gram is a sequence of symbols of size
n which appears in a word. Formally, let Σ be an alphabet and w ∈ Σ∗. We define a function
ngramn(w) : Σn → N such that (ngramn(w))(a1, . . . , an) is the number of times the n-gram
a1, . . . , an appears in w. To apply this to LCFRS-rules we define the string str(r) ∈ (N ∪ {, })∗
of an LCFRS rule

r = A(y1, . . . , yn)→ A1(x
(1)
1 , . . . , x(1)m1

) . . . Ak(x
(k)
1 , . . . , x(k)mk

)

as the sequence obtained from y0, . . . , yn by replacing each x(i)j with Ai for i ∈ [k] and j ∈ [mi].
The rule r = A(x1x3, tx2) → B(x1, x2)C(x3) would be assigned the string str(r) = BC,tC. It
contains the bigrams “BC”, “C,”, “,t” and “tC”. The n-gram distance of two LCFRS-rules r1 and
r2 is then calculated as follows

d(n)ngram(r1, r2) = 2 · δ(r1, r2) +
∑

v∈(N∪{,})∗,|v|=n

|(ngramn(str(r1))(v1,n)− ngramn(str(r2))(v1,n)|

where

δ(r1, r2) =

{
0 if dependency(r1) = dependency(r2)

1 otherwise.

To obtain a similarity measure, the n-gram distance is linearilly mapped into the range [0, 1].
Hence

µ(n)
ngram(r1, r2) = 1− d

(n)
ngram(r1, r2)−m

M −m

whereM = max d
(n)
ngram(P×P ), m = min d

(n)
ngram(P×P \∆P ) and ∆P = {(p, q) ∈ P × P | p 6= q}.

6.1.2 Damerau-Levenshtein distance

The Damerau-Levenshtein distance is analogous to the n-gram distance in the sense that it also
considers LCFRS rules as strings. It represents the amount of edit operations (insertion, deletion,
substitution or transposition of nearby characters) to transform one string into another. Given
two words a = a1, . . . , am and b = b1, . . . , bm we define

da,b(i, j) = min



0 if i = j = 0

da,b(i− 1, j) + 2 if i > 0

da,b(i, j − 1) + 2 if j > 0

da,b(i− 1, j − 1) + 2(ai 6=bj) if i, j > 0

da,b(i− 2, j − 2) + 0.5 if i, j > 1, ai = bj−1 and ai−1 = bj
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where 2ai 6=bj equals if 0 if ai = bj and 2 otherwise. We have chosen 2 as the punishment for
insertions, replacements and deletions and only 0.5 for transpositions. The Levenshtein distance
of two LCFRS rules r1 and r2 is calculated as follows

dleven(r1, r2) = δ(r2, r2) + dstr(r1),str(r2)(|str(r1)|, |str(r2)|).

This distance is again mapped into the range [0, 1] with

µleven(r1, r2) = 1− dleven(r1, r2)−m
M −m

.

where M = max dleven(P × P ) and m = min dleven(P × P \∆P ).

6.2 Embedding algorithm
A gradient descent algorithm is used to find a n dimensional embedding e : P → Rn of the rules
P from the abstract grammar G = (N,T, V, P, S) obtained during grammar extraction of the
training corpus. The loss function is defined as follows

L(e) =
∑

{r1,r2}∈(P
2)

(1− µ(r1, r2)− ||e(r1)− e(r2)||22)2

where ||x||2 =
√

(
∑n
i=1(xi)

2) for x ∈ Rn is the L2-norm of a vector. The algorithm requires the
gradient of the inner term of the sum w.r.t. e(r1) denoted grad(r1, r2) ∈ Rn which is given by

grad(r1, r2)i = −4 · (1− µ(r1, r2)− ||e(r1)− e(r2)||22) · (e(r1)i − e(r2)i)

for every i ∈ [n]. Differentiating the inner term w.r.t. e(r2) simply yields −grad(r1, r2).
Algorithm 3 on page 18 describes the training of the rule embedding. It is done over multiple

iterations which are called epochs. The number of epochs is given by the hyperparameter E ∈ N.
In each iteration, the set of rules is partitioned into subsets of size b ∈ N called batches. For each
rule r1 in a batch a set of size s ∈ N of rules is randomly chosen from the whole set P . This is done
to reduce the time of training. For each sampled rule r2 the gradient grad(r1, r2) is calculated.
After this is completed for each pair of rules in a batch the embedding is updated according to
AdaDelta [16]. This is an adaptive learning rate method which determines the magnitude of the
update to the embedding (the direction of the updates is given by the gradient) based on past
gradients and updates. AdaDelta introduces the hyperparameters δ and ε. The former, which
is called decay, determines how quickly the the magnitude of the updates decreases. The latter
affects the initial size of the updates.
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Algorithm 3: Training embedding
Input : Similarity function µ : P × P → [0, 1], hyperparameters n, s, b, E, δ, ε
Output: Embedding e : P → Rn

1 Initialize e(r) ∈ [−1, 1]n randomly for each r ∈ P
2 Initialize g(r) and u(r) with zeros for each r ∈ P
3 for Epoch← 1 to E do
4 B ← |P | ÷ b
5 Create random bijection σ : [|P |]→ P
6 FirstRule = 0
7 for Batch← 1 to B do
8 Initialize d(r) with zeros for each r ∈ P
9 for j ← 1 to b do

10 FirstRule← FirstRule + 1
11 r1 ← σ(FirstRule)
12 Create a random set S ⊆ P with s elements s.t. r1 /∈ S
13 for r2 ∈ S do
14 d(r1)i ← d(r1)i + grad(r1, r2)i for all i ∈ [n]
15 d(r2)i ← d(r1)i − grad(r1, r2)i for all i ∈ [n]

16 end
17 end
18 AdaDelta(e, g, u, d, δ, ε)
19 end
20 end

Algorithm 4 shows the updating procedure in detail.

Algorithm 4: Update embedding according to AdaDelta
Input : Embedding e, past gradients g, past updates u, current gradients d, dimension

n, decay δ, ε
Output: Update to e

1 Function RMS(x, ε):
2 return

√
x+ ε

3

4 for r ∈ P do
5 for i ∈ [n] do
6 g(r)i ← δ · g(r)i + (1− δ) · (d(r)i)

2

7 x← −1 · RMS(u(r)i,ε)
RMS(g(r)i,ε)

· d(r)i

8 u(r)i ← δ · u(r)i + (1− δ) · x2
9 end

10 end

6.3 Decoding of vectors into LCFRS rules
We have established a method of encoding LCFRS rules of some grammar into embeddings.
BERT returns a vector for each of input tokens. The following algorithm constructs a probabilistic
LCFRS grammar from that output. It works by finding the n ∈ N closest rule vectors the
outputted vectors. The probabilities are assigned with the softmax function. The parameter
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β ∈ R is used to determine how much the resulting distribution is skewed towards the minimum
value. A higher value for β means that the distribution will be more concentrated around the
minimum value.

Algorithm 5: LCFRS rules from vectors
Input : Sentence s = (t1, . . . , tk), vectors (o1, . . . , ok), grammar G = (N,T, V, P, S),

embedding e : P → Rn, n ∈ N, β ∈ R
Output: PLCFRS P = (G′, p) with G′ = (N,T, V, P ′, S)

1 P ′ ← ∅
2 for i ∈ [k] do
3 Temp← P
4 for j ← 1 to n do
5 r ← argminr′∈Temp ||oj − e(r′)||2
6 r ← replace_token(r, tj)
7 dist(r) = ||oj − e(r)||2
8 Temp← Temp \ {r}
9 P ′ ← P ′ ∪ {r}

10 end
11 end
12 D ← {dependency(r) ∈ N | r ∈ P ′}
13 for d ∈ D do
14 Md = max{dist(r) | r ∈ P ′,dependency(r) = d}
15 for r ∈ {r′ ∈ P ′ | dependency(r′) = d} do
16 p(r) = exp(β·(Md−dist(r)))∑

r′∈P ′,dependency(r′)=d

exp(β·(Md−dist(r′)))

17 end
18 end
19 return P

7 Program
As part of the task a software was developed. It includes an implemention of the grammar
extraction algorithm and parsing algorithm from section 3 and also the gradient descent algorithm
for training the LCFRS rule embeddings from section 6. Code for reading .conllu files is found
in Corpus.cpp while the extraction of the grammar from the corpus takes place in Grammar.cpp.
SimilarityFunctions.cpp implements the similarity function used in the embedding algorithm.
The algorithm for the hyperparameter search is found in HyperParameters.cpp while the actual
training is done in Training.cpp. The parsing algorithm is implemented in Parse.cpp.

As an implemention for BERT, the python library simpletransformers2 was chosen. This
library contains transformer models for many different NLP tasks such as Token Classification.
Token Classification seeks to categorise tokens of the input sentence into predefined categories.
It is therefore similar to our task of assigning each token a vector representing an LCFRS rule.
Hence the model was adjusted to work with rule embeddings instead of token categories. In
addition, python scripts have been written to train the model and test its results which interface
with the software.

2https://github.com/ThilinaRajapakse/simpletransformers
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7.1 Installation and setup
To install the simpletransformers library follow the instructions from the setup section of their
readme. To make it work for LCFRS embeddings, replace the file simpletransformers/ner/
ner_model.py with Python/ner_model.py. To compile the C++ program run make. The only
dependency needed is OpenMP. The compiled executable will be placed in Build/supertag.

Running the executable for the first time starts a setup process. The program will ask you to
input the paths to the training, test and development corpus. The last one is used for determining
hyperparameters for the LCFRS rule embedding. If one corpus consists of multiple files you can
enter multiple paths seperated by a new line. Entering an empty line confirms the input. From
now on, everytime you need to input a path to a corpus you can use the abbreviation “train”,
“test” or “dev” instead. Also it asks you to enter an output path. All outputted files will be saved
relative to this path. Running the program without parameters returns a list of all subprograms
while running it with the subprogram as the only parameter shows you how to use it.

The setup process creates a file settings.json where all the information is stored. It
also contains the hyperparameters for the hyperparameter search. They are initialized to the
combinations tried during the experiments.

7.2 Training LCFRS rule embeddings
Before training BERT, an embedding for the LCFRS rules extracted from the training corpus
must be obtained. This process is divided into three parts

1. computing a similarity matrix,

2. finding hyperparameters and

3. training the embedding.

The first step computes a matrix representing the chosen similarity measure. This is done in
order to save time during training. It is created by calling the matrix subprogram like so

$ supertag matrix output_path t r a i n function_name cu t o f f

Function name is the name of the similarity function and can either be 2gram, 3gram or leven.
The optional parameter cutoff clamps the similarity distance to the cutoff value.

The next step is to find the best hyperparameters to use for the training. You can skip this
step and simply select the hyperparameters used during the experiments. In order to do that
use

$ supertag hyper d e f au l t out_path function_name

The output file contains the hyperparameters. If you want to perform the search yourself use
the command

$ supertag hyper search out_path function_name dev devmatrix epochs

For that you will have to create a similarity matrix for the dev corpus by replacing train with
dev in the first command. This command iterates over all combinations of hyperparameters
set in the settings file. The output file will contain information of how well the embedding is
representing the similarity measure for each combination. An finally, to run the training use

$ supertag embedding out_path matrix_path hyperparameter s_f i l e 1

The last parameter determines after how many epochs the current loss is displayed. Set it to 0
to turn this off.
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7.3 BERT
This section describes how to train BERT and use it to tag the test sentences. For that we first
have to create a file containing all the training sentences together with the correct LCFRS rules.

$ supertag tagcorpus out_path t r a i n

Also we need to create a file containing all of the test sentences.

$ supertag savecorpus out_path t e s t

Now, to train BERT simply run

$ python3 t r a i n . py train_sentence_path embedding_path

This will train the BERT model and save it in the folder outputs. To change the output folder
you can provide an additional argument. To run the trained model on the test sentences use

$ python3 t e s t . py out_path test_sentence_path embedding_path

If you changed the output path during training you have to provide the new folder as an additional
argument. The file outputted by this command needs to be entered to the parse subprogram as
the bert_result argument.

7.4 Parsing
For parsing you have to input the path to the embedding of the grammar and the file outputted
by test.py. The parameter N determines the number of supertags per token while beta sets the
value for β in algorithm 5.

$ supertag parse output_path t r a i n embedding_path ber t_re su l t N beta

8 Experiments
For the experiments, the UD German-HDT3 treebank was used which includes a training, test
and development corpus [1]. For training, only part A of the training corpus was used. The
1115th test sentence has been removed because the BERT implementation used was unable to
tokenize it correctly for unknown reasons. To do this automatically, run

$ supertag remove output_path t e s t 1115

Remember to set the path in the settings.py to the new file.
The experiments were done with the bigram, trigram and Levenshtein similarity measure for

which the cutoffs 24, 22 and 19 were chosen, respectively. This corresponds to roughly 0.01% of
all rule pairs which receive the minimum similarity for the respective similarity measure.

8.1 Choosing hyperparameters for embedding
Before training the embedding, suitable hyperparameters must be chosen. For the decay δ the
values 0.9, 0.95 and 0.99, for ε the values 10−4, 10−5 and 10−6 and for the sample size the values
10 and 100 were considered. The dimension has been set to 512 and the batch size to 128. Each
combination has been trained on the development corpus for 50 epochs and evaluated using the
Top10 metric. The Top10 metric averages the similarity distance between each rule and the
10 closest rules to it (in the embedding). Table 1 shows the hyperparameters chosen for each
similarity measure.

3https://github.com/UniversalDependencies/UD_German-HDT
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Parameter Bigram Trigram Levenshtein

δ 0.95 0.9 0.9
ε 10−6 10−6 10−6

s 100 100 100
E 100 30 35

Table 1: Hyperparameters chosen for each similarity measure

Bigram Trigram Levenshtein

Top10 3.69 5.52 3.13
Percentile 0.05% 1.45% 5.53%

Table 2: Evaluation of the trained embedding

8.2 Training the embeddings
Using the hyperparameters from table 1, an embedding for each similarity measure was trained.
In order to evaluate how well the embedding represents its similarity measure, Top10 values
were computed for each embedding which are shown in table 2. The precentile row shows the
percentage of rule pairs with a smaller similarity distance than the top10 value. So for example,
0.05% of all rule pairs in the training set have a smaller bigram distance than 3.69. This can be
used to compare the embeddings against each other. We can observe that the bigram embedding
performs significantly better than both the embedding for trigram and Levenshtein.

8.3 Training BERT
Before evaluating the parse trees we can evaluate the quality of the rules BERT picked for the
test sentences by comparing them to the correct rules using the respective similarity measure.
We distinguish between correct rules that appeared during training and the ones who did not.
In table 3, the first row shows the average placement of the correct rule in the list obtained by
sorting the distances of the vector outputted by BERT to the embedding vectors of the grammar
extracted from the training corpus. For reference, the grammar has 40.569 rules in total. The
other rows show how similar the rule corresponding to the vector closest to the outputted vector
are to the correct rule according to the respective similarity distance.

All measures perform significantly worse if the correct rule was not extracted during training.
This happens 2.08% of the time. Bigram and trigram measures behave quite similarly. Levenshtein
performs worst and even manages to guess worse than random on rules only appearing in the
test sentences.

Bigram Trigram Levenshtein

Average Placement 1454 1415 8034

Similarity training Top1 2.98 2.27 3.52
0.01% 0.03% 6.68%

Similarity test Top1 8.38 7.07 8.95
6.31% 8.14% 74.52%

Table 3: Quality of rules outputted by BERT
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Bigram Trigram Levenshtein
β = 1 β = 5 β = 1 β = 5 β = 1 β = 5

N = 25

Failure [%] 66.61 66.61 95.76 95.76 99.57 99.31
Timeout [%] 0.00 0.00 0.00 0.00 0.00 0.26
Time (Average) [ms] 44 42 30 27 6 165
Time (Median) [ms] 19 19 17 15 1 1
Precision (labeled) [%] 66.21 76.14 42.22 44.46 90.45 90.79
Precision (unlabeled) [%] 77.83 82.00 62.14 64.32 96.65 96.65

N = 50

Failure [%] 13.15 13.15 10.11 10.09 98.84 90.00
Timeout [%] 0.80 0.98 0.12 0.12 0.00 8.84
Time (Average) [ms] 1781 1965 958 922 15 5401
Time (Median) [ms] 185 189 191 191 5 3
Precision (labeled) [%] 43.39 60.74 5.62 8.82 89.91 90.42
Precision (unlabeled) [%] 54.79 67.54 19.23 21.51 96.58 96.64

N = 75

Failure [%] 1.37 1.33 0.76 0.75 97.86 71.72
Timeout [%] 7.89 8.6 0.94 1.52 0.01 26.16
Time (Average) [ms] 8407 8468 2849 3344 29 15691
Time (Median) [ms] 627 422 436 540 14 4
Precision (labeled) [%] 37.46 60.44 4.48 10.77 89.46 90.10
Precision (unlabeled) [%] 49.37 67.95 19.76 23.59 96.98 97.00

N = 100

Failure [%] 0.08 0.07 0.42 0.38 96.94 52.56
Timeout [%] 20.23 19.53 1.09 3.69 0.07 44.53
Time (Average) [ms] 17679 16725 3400 4923 77 27170
Time (Median) [ms] 2743 1815 633 705 18 14
Precision (labeled) [%] 31.19 61.98 3.80 12.49 88.73 89.91
Precision (unlabeled) [%] 42.85 69.76 17.72 25.15 96.22 96.35

Table 4: Evaluation of the parse trees
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8.4 Parsing
Table 4 compiles the results of parsing the sentences from the test corpus using 25, 50, 75 and
100 supertags per token and a value for β of 1 and 5. Parsing was canceled if it took longer
than 60 seconds. The first row of each section shows how often the parser failed to parse the
sentence with the given grammar without reaching the timeout. The next row shows how often
the timout has been reached. Rows 3 and 4 of each section contain the average and medium run
time respectively. The last two rows show the precision of the parse tree as defined in section
2.2.

The similarity measure Levenshtein which performed worst in all previous measures also
proves to be unsuitable for parsing as it fails to parse over 96% percent of the sentences with
each parameter. Bigram and trigram, although performing similarly in previous measures, differ
in the quality of the parse trees and in runtime. While trigram is able to output a result faster,
bigram is way more accurate.

A higher β value of 5 improves the precision in every experiment. This is because a higher
value of β means that lower probabilities are assigned to rules whose vetors are farther away
from the vector outputted by BERT (which are presumably worse).

9 Conclusion and future work
This work examined whether supertagging could be used for lexicalised LCFRS grammars.
The pre-trained neural network BERT was finetuned to select candidate rules. For that, a
representation as vectors of real numbers for LCFRS rules has been trained using different
similarity measures. Out of the three tested similarity measures bigram performed the best
having a precision value of 67.95% (unlabeled) and 60.44% (labeled) while being able to successfully
parse 91.07% of the sentences (N = 75).

The work can be extended in the future by trying different similarity measures to train the
embedding. One could also consider to develope a general vector representation for arbitrary
LCFRS rules. This would remove one limition of the current approach which is only able to
supertag tokens with rules that already appeared during training. Also adjustments to algorithm
5 could be explored. Right now the probability assignment only considers the distance of the
embedded rules to outputted vector but not how likely the rule should be by itself. This could
further improve the precision. Lastly, as mentioned in section 5.2, an approach where rules are
categorized into rule classes could be examined.
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