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The Bias-Complexity Tradeoff

• We have seen that unless one is careful, the training 

data can mislead the learner, and result in overfitting. 

• To overcome this problem, we restricted the search 

space to some hypothesis class H. Such a hypothesis 

class can be viewed as reflecting some prior knowledge 

that the learner has about the task (a belief that one of 

the members of the class H is a low-error model for the 

task). 

• For example, in our papayas problem, on the basis of 

previous experience with other fruits, we may assume 

that some rectangle in the color-softness plane predicts 

(at least approximately) the papaya's tastiness.
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• Is such prior knowledge really necessary for the success 

of learning? 

• Maybe there exists some kind of universal learner, that is, 

a learner who has no prior knowledge about a certain 

task and is ready to be challenged by any task? 

• What is a universal learner? A specific learning task is 

defined by an unknown distribution D over X  Y, where 

the goal of the learner is to find a predictor h: X →Y, 

whose risk, LD(h), is small enough. The question is 

therefore whether there exists a learning algorithm A and 

a training set size m, such that for every distribution D, if 

A receives m i.i.d. instances from D, there is a high 

chance it outputs a predictor h that has a low risk.
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• We will study the No-Free-Lunch theorem 

which states that no such universal learner 

exists.
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Theorem (No Free Lunch)

Let A be any learning algorithm for the task

of binary classication with respect to the 0-1 loss function 

over a domain X. Let m be any number smaller than |X|/2, 

representing a training set size. Then, there exists a 

distribution D over X  {0,1} such that:

1. There exists a function f : X → {0,1} with LD(f) = 0.

2. With probability of at least 1/7 over the choice of S  Dm

we have that LD(A(S))   1/8.
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• This theorem states that for every learner, 

there exists a task on which it fails, even 

though that task can be successfully 

learned by another learner.

• In this case, a successful learner would 

be an ERMH learner w.r.t. any finite 

hypothesis class that contains f and whose 

sample size satisfies the condition 

m  8 ln(7 |H| / 6), where 𝜖 = 1

8
, 𝛿 = 6

7
.



Proof of No-Free-Lunch Theorem

1. Let C be a subset of X of size 2m. The intuition of the 

proof is that any learning algorithm that observes only 

half of the instances in C has no information on what 

should be the labels of the rest of the instances in C. 

Therefore, there exists some target function f, that 

would contradict the labels that A(S) predicts on the 

unobserved instances in C.

2. Note that there are T = 22m possible functions from C to 

{0,1}. Let us denote these functions by f1, …, fT. For 

each such function, let Di be a distribution over C  {0,1}

defined by 𝐷𝑖 𝑥, 𝑦 =  
1/|𝐶| if 𝑦 = 𝑓𝑖(𝑥)

0 otherwise
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3. That is, the probability to choose a pair (𝑥, 𝑦) is 1/|𝐶| if 

the label 𝑦 is indeed the true label according to 𝑓𝑖, and 

the probability is 0 if 𝑦 ≠ 𝑓𝑖(𝑥). Therefore, 𝐿𝐷𝑖
(𝑓𝑖) = 0.

4. We will first show that for every algorithm, A, that receives 

a training set of m instances from 𝐶 × {0,1} and returns a 

function 𝐴 𝑆 : 𝐶 → {0,1} , it holds that

max
𝑖∈[𝑇]

𝔼
𝑆~𝐷𝑖

𝑚
[𝐿𝐷𝑖

(𝐴 𝑆 )] ≥ 1

4
. (5.1)
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5. There are 𝑘 = (2𝑚)𝑚 possible sequences of 𝑚
instances from 𝐶. Let us denote these sequences by 

𝑆1, … , 𝑆𝑘. Also, for 𝑆𝑗 = (𝑥1, … , 𝑥𝑚) we denote by 𝑆𝑗
𝑖 the 

sequence containing the instances in 𝑆𝑗 labeled by the 

function 𝑓𝑖, namely, 𝑆𝑗
𝑖 = ( (𝑥1, 𝑓𝑖(𝑥1)), … , (𝑥𝑚, 𝑓𝑖(𝑥𝑚))). If 

the distribution is 𝐷𝑖 then the possible training sets that 

A can receive are 𝑆1
𝑖 , …, 𝑆𝑘

𝑖 , and all these training sets 

have the same probability of being sampled. Therefore,

𝔼
𝑆~𝐷𝑖

𝑚
[𝐿𝐷𝑖

(𝐴 𝑆 )] = 1

𝑘
 𝑗=1
𝑘 𝐿𝐷𝑖

(𝐴 𝑆𝑗
𝑖 ). (5.3)
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6. Using the facts that “maximum” is larger than “average” 

and that “average” is larger than “minimum,” we have
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7. Next, we fix some 𝑗 ∈ [𝑘]. Denote 𝑆𝑗 = (𝑥1, … , 𝑥𝑚) and 

let 𝑣1, … , 𝑣𝑝 be the instances in 𝐶 that do not appear in 

𝑆𝑗. We have that 𝑝 ≥ 𝑚. Therefore, for every function 

ℎ: 𝐶 → {0,1} and every 𝑖 we obtain

where 1[boolean expression] denotes indicator function (equals 

1 if boolean expression is true and 0 otherwise).
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8. Hence,
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9. Next, we fix some 𝑟 ∈ [𝑝]. We can partition all the 

functions in 𝑓1, … , 𝑓𝑇 into T/2 disjoint pairs, where for a 

pair (𝑓𝑖, 𝑓𝑖’ ) we have that for every 𝑐 ∈ 𝐶, 𝑓𝑖 (𝑐) ≠ 𝑓𝑖’ (𝑐)
if and only if 𝑐 = 𝑣𝑟. Since for such a pair we must have 

𝑆𝑗
𝑖 = 𝑆𝑗

𝑖′, it follows that

which yields
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10. Combining the previous equation with Equation (5.6), 

Equation (5.4) and  Equation (5.3), we obtain Equation 

(5.1):

max
𝑖∈[𝑇]

𝔼
𝑆~𝐷𝑖

𝑚
[𝐿𝐷𝑖

(𝐴 𝑆 )] ≥ 1

4
.

This means that for every algorithm 𝐴’ that receives a 

training set of m instances from 𝑋 × {0,1} there exists a 

function 𝑓: 𝑋 → {0,1} and a distribution 𝐷 over 𝑋 × {0,1}, 
such that 𝐿𝐷(𝑓) = 0 and

𝔼
𝑆~𝐷𝑚

[𝐿𝐷(𝐴′ 𝑆 )] ≥ 1

4
. (*)
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11.Applying Markov’s Inequality from the Theory of 

Probability to Equation (*), we obtain

ℙ[𝐿𝐷(𝐴’(𝑆)) ≥ 1/8] ≥ 1/7

which is what we need to prove.

Q.E.D
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Markov’s Inequality
Let 𝑋 be a non-negative random variable and suppose that 

𝐸(𝑋) exists. For any 𝑡 > 0,

ℙ[𝑋 > 𝑡] ≤
𝐸(𝑋)

𝑡
.

• Let Z be a random variable that takes values in [0,1]. 

Assume that E[Z] = . Let Y = 1 - Z. Then Y is a non-

negative random variable with E[Y ] = 1 – E(Z) = 1- . 

Applying Markov's inequality on Y with 𝑎 ∈ (0,1), we obtain

ℙ[𝑍 < 1 – 𝑎] = ℙ[1 − 𝑍 > 𝑎] = ℙ[𝑌 > 𝑎] ≤
𝐸(𝑌)

𝑎
=

1 − 𝜇

𝑎

Therefore, ℙ[𝑍  1 – 𝑎]  1 −
1−𝜇

𝑎
=

𝑎+𝜇−1

𝑎
, which implies that

ℙ[𝑍  𝑎] 
𝜇 − 𝑎

1 − 𝑎
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No-Free-Lunch Theorem and Prior 

Knowledge

• How does the No-Free-Lunch result relate to the need 

for prior knowledge? 

• Let us consider an ERM predictor over the hypothesis 

class H of all the functions f from X to {0,1}. This class 

represents lack of prior knowledge: Every possible 

function from the domain to the label set is considered a 

good candidate. 

• According to the No-Free-Lunch theorem, any algorithm 

that chooses its output from hypotheses in H, and in 

particular the ERM predictor, will fail on some learning 

task. Therefore, this class is not PAC learnable.
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• How can we prevent such failures? 

• We can escape the hazards foreseen by the No-Free-

Lunch theorem by using our prior knowledge about a 

specific learning task, to avoid the distributions that will 

cause us to fail when learning that task.

• Such prior knowledge can be expressed by restricting 

our hypothesis class.

• But how should we choose a good hypothesis class? 
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• On one hand, we want to believe that this class includes 

the hypothesis that has no error at all (in the PAC 

setting), or at least that the smallest error achievable by 

a hypothesis from this class is rather small (in the 

agnostic setting). On the other hand, we have just seen 

that we cannot simply choose the richest class (the class 

of all functions over the given domain). 
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