
Deciding Universality of ptNFAs is
PSpace-Complete?

Tomáš Masopust 1 and Markus Krötzsch 2

1 Institute of Mathematics, Czech Academy of Sciences, masopust@math.cas.cz
2 cfaed, TU Dresden, Germany, markus.kroetzsch@tu-dresden.de

Abstract. An automaton is partially ordered if the only cycles in its
transition diagram are self-loops. We study the universality problem for
ptNFAs, a class of partially ordered NFAs recognizing piecewise testable
languages. The universality problem asks if an automaton accepts all
words over its alphabet. Deciding universality for both NFAs and partially
ordered NFAs is PSpace-complete. For ptNFAs, the complexity drops
to coNP-complete if the alphabet is fixed but is open if the alphabet
may grow. We show, using a novel and nontrivial construction, that the
problem is PSpace-complete if the alphabet may grow polynomially.

1 Introduction

Piecewise testable languages form a strict subclass of star-free languages or, in
other words, of the languages definable by the linear temporal logic. They are
investigated and find applications in semigroup theory [2, 25], in logic on words [9],
in formal languages and automata theory [17], recently mainly in applications
of separability [26], in natural language processing [10, 28], in cognitive and
sub-regular complexity [29], in learning theory [11, 18], or in database theory in
the context of schema languages for XML data [8, 14, 15, 20]. They have been
extended from words to trees [4, 12].

Simon [31] showed that piecewise testable languages are exactly those regular
languages whose syntactic monoid is J -trivial and that they are characterized
by confluent, partially ordered DFAs. An automaton is partially ordered if the
only cycles are self-loops, and it is confluent if for any state q and any two of its
successors s and t accessible from q by transitions labeled by a and b, respectively,
there is a word w ∈ {a, b}∗ such that a common state is reachable from both s
and t under w; cf. Fig. 1 (left) for an illustration.

Omitting confluence results in partially ordered DFAs (poDFAs) characterizing
R-trivial languages [6]. Lifting the notion of partial order from DFAs to NFAs,
partially ordered NFAs (poNFAs) characterize the languages of level 3

2 of the
Straubing-Thérien hierarchy [30]; hence poNFAs are strictly more powerful than
poDFAs. These languages are better known as Alphabetical Pattern Constraints,
which are regular languages effectively closed under permutation rewriting used
in algorithmic verification [5].

? Supported by DFG grants KR 4381/1-1 & CRC 912 (HAEC), and by RVO 67985840.

2 T. Masopust, M. Krötzsch

q

s

t

a

b

w ∈ {a, b}∗

w ∈ {a, b}∗

a

a

Fig. 1. Confluence (left) and the forbidden pattern of self-loop det. poNFAs (right)

In our recent work, we showed that the increased expressivity of poNFAs
is caused by self-loop transitions involved in nondeterminism. Consequently,
R-trivial languages are characterized by self-loop deterministic poNFAs (denoted
by rpoNFAs from restricted poNFAs) [19]. A poNFA is self-loop deterministic
if it does not contain the pattern of Fig. 1 (right). Our study further revealed
that complete, confluent and self-loop deterministic poNFAs (denoted by ptNFAs
from piecewise testable) characterize piecewise testable languages [21, 23]. An
NFA is complete if a transition under every letter is defined in every state.

In this paper, we study the universality problem of ptNFAs. The problem asks
if an automaton accepts all words over its alphabet. The study of universality
(and its dual, emptiness) has a long tradition in formal languages with many
applications across computer science, e.g., in knowledge representation and
database theory [3, 7, 32]. The problem is PSpace-complete for NFAs [24]. Recent
studies investigate the problem for specific types of regular languages, such as
prefixes or factors [27].

Despite a rather low expressivity of poNFAs, the universality problem for
poNFAs has the same worst-case complexity as for general NFAs, even if restricted
to binary alphabets [19]. This is because poNFAs have a powerful nondeterminism.
The pattern of Fig. 1 (right) admits an unbounded number of nondeterministic
steps—the poNFA either stays in the same state or moves to another. Forbidding
the pattern results in rpoNFAs where the number of nondeterministic steps
is bounded by the number of states. This restriction affects the complexity of
universality. Deciding universality for rpoNFAs is coNP-complete if the alphabet
is fixed but remains PSpace-complete if the alphabet may grow polynomially [19].
The growth of the alphabet thus compensates for the restriction on the number
of nondeterministic steps. The reduced complexity is also preserved by ptNFAs
if the alphabet is fixed [21] but is open if the alphabet may grow.

We solve this problem by showing that deciding universality for ptNFAs is
PSpace-complete if the alphabet may grow polynomially. To this aim, we use a
novel and nontrivial extension of the construction for rpoNFAs [19]. Consequently,
our result provides lower-bound complexities for the problems of inclusion, equiv-
alence, and k-piecewise testability [21]. The results are summarized in Table 1.

2 Preliminaries

We assume that the reader is familiar with automata theory [1]. The cardinality
of a set A is denoted by |A| and the power set of A by 2A. The empty word is

Deciding Universality of ptNFAs is PSpace-Complete 3

|Σ| = 1 |Σ| = k ≥ 2 Σ is growing

DFA L-comp. [16] NL-comp. [16] NL-comp. [16]
ptNFA NL-comp. (Thm. 1) coNP-comp. [21] PSpace-comp. (Thm. 2)

rpoNFA NL-comp. [19] coNP-comp. [19] PSpace-comp. [19]
poNFA NL-comp. [19] PSpace-comp. [19] PSpace-comp. [1]

NFA coNP-comp. [33] PSpace-comp. [1] PSpace-comp. [1]

Table 1. Complexity of deciding universality

denoted by ε. For a word w = xyz, x is a prefix, y a factor , and z a suffix of w.
A prefix (factor, suffix) of w is proper if it is different from w.

Let A = (Q,Σ, ·, I, F) be a nondeterministic finite automaton (NFA). The
language accepted by A is the set L(A) = {w ∈ Σ∗ | I · w ∩ F 6= ∅}. We often
omit · and write Iw instead of I ·w. A path π from a state q0 to a state qn under
a word a1a2 · · · an, for some n ≥ 0, is a sequence of states and input symbols
q0a1q1a2 . . . qn−1anqn such that qi+1 ∈ qi · ai+1, for i = 0, . . . , n − 1. Path π is

accepting if q0 ∈ I and qn ∈ F . We write q0
a1a2···an−−−−−−→ qn to denote that there is

a path from q0 to qn under the word a1a2 · · · an. Automaton A is complete if for
every state q of A and every letter a ∈ Σ, the set q · a is nonempty. An NFA A
is deterministic (DFA) if |I| = 1 and |q · a| = 1 for every q ∈ Q and every a ∈ Σ.

The reachability relation ≤ on states is defined by p ≤ q if there is a w ∈ Σ∗
such that q ∈ p · w. An NFA A is partially ordered (poNFA) if the reachability
relation ≤ is a partial order. For two states p and q of A, we write p < q if p ≤ q
and p 6= q. A state p is maximal if there is no state q such that p < q.

A restricted partially ordered NFA (rpoNFA) is a poNFA such that for every
state q and every letter a, if q ∈ q · a then q · a = {q}.

A poNFA A over Σ with the state set Q can be turned into a directed graph
G(A) with the set of vertices Q where a pair (p, q) ∈ Q×Q is an edge in G(A)
if there is a transition from p to q in A. For an alphabet Γ ⊆ Σ, we define
the directed graph G(A, Γ) with the set of vertices Q by considering only those

transitions corresponding to letters in Γ . For a state p, let Σ(p) = {a ∈ Σ | p a−→
p} denote all letters labeling self-loops in p. We say that A satisfies the unique
maximal state (UMS) property if, for every state q of A, state q is the unique
maximal state of the connected component of G(A, Σ(q)) containing q.

Definition 1. An NFA A is a ptNFA if it is partially ordered, complete and
satisfies the UMS property.

An equivalent notion to the UMS property for DFAs is confluence [17]. A
DFA D over Σ is (locally) confluent if, for every state q of D and every pair
of letters a, b ∈ Σ, there is a word w ∈ {a, b}∗ such that (qa)w = (qb)w. We
generalize this notion to NFAs as follows. An NFA A over Σ is confluent if, for
every state q of A and every pair of (not necessarily distinct) letters a, b ∈ Σ, if
s ∈ qa and t ∈ qb, then there is a word w ∈ {a, b}∗ such that sw ∩ tw 6= ∅.

Lemma 1 ([21]). Complete and confluent rpoNFAs are exactly ptNFAs.

4 T. Masopust, M. Krötzsch

3 Complexity of Universality for ptNFAs

We now study the universality problem for ptNFAs. If the alphabet is fixed,
deciding universality for ptNFAs is coNP-complete and the hardness holds even if
restricted to binary alphabets [21]. For unary alphabets, universality for ptNFAs
is decidable in polynomial time [19]. The following theorem improves this result.

Theorem 1. Deciding universality of ptNFAs over a unary alphabet is an NL-
complete problem.

If the alphabet may grow polynomially, the universality problem for ptNFAs
is open. In the rest of this paper we solve this problem by showing that the
universality problem for ptNFAs is PSpace-complete.

A typical proof showing PSpace-hardness of universality for NFAs is to take
a p-space bounded deterministic Turing machineM, for a polynomial p, together
with an input x, and to encode the computations of M on x as words over some
alphabet Σ that depends on the alphabet and the state set of M. One then
constructs a regular expression (or an NFA) Rx representing all computations
that do not encode an accepting run of M on x. That is, L(Rx) = Σ∗ if and
only if M does not accept x [1].

The form of Rx is relatively simple, consisting of a union of expressions of
the form

Σ∗KΣ∗ (1)

where K is a finite language with words of length bounded by O(p(|x|)).
Intuitively, K encodes possible violations of a correct computation of M on

x, such as the initial configuration does not contain the input x, or the step from
a configuration to the next one does not correspond to any rule of M. These
checks are local, involving at most two consecutive configurations of M, each of
polynomial size. They can therefore be encoded as a finite language with words
of polynomial length.

The initial Σ∗ of (1) then nondeterministically guesses a position in the word
where a violation encoded by K occurs, and the last Σ∗ reads the rest of the
word if the violation check was successful.

This idea cannot be directly used to prove Theorem 2 for two reasons:

(i) Although expression (1) can easily be translated to a poNFA, it is not true for
ptNFAs. The translation of the leading part Σ∗K may result in the forbidden
pattern of Fig. 1;

(ii) The constructed poNFA may be incomplete and its “standard” completion
by adding the missing transitions to a new sink state may violate the UMS
property.

A first observation to overcome these problems is that the length of the
encoding of a computation of M on x is at most exponential with respect to
the size of M and x. It would therefore be sufficient to replace the initial Σ∗

in (1) by prefixes of an exponentially long word. However, such a word cannot
be constructed by a polynomial-time reduction. Instead, we replace Σ∗ with a

Deciding Universality of ptNFAs is PSpace-Complete 5

Substitute for initial Σ∗ Substitute for ending Σ∗

The ptNFA An,n

A copy of the ptNFA for KA copy of the ptNFA for K

Fig. 2. Const. of an rpoNFA (solid edges) solving prob. (i), illustrated for two copies
of the ptNFA for K, and its completion to a ptNFA (dashed edges) solving prob. (ii)

ptNFA encoding such a word, which exists and is of polynomial size as shown in
Lemma 2. There we construct, in polynomial time, a ptNFA An,n that accepts
all words but a single one, Wn,n, of exponential length.

Since the language K of (1) is finite, and hence piecewise testable, there is a
ptNFA for K. For every state of An,n, we make a copy of the ptNFA for K and
identify its initial state with the state of An,n if it does not violate the forbidden
pattern of Fig. 1; see Fig. 2 for an illustration. We keep track of the words read
by both An,n and the ptNFA for K by taking the Cartesian product of their
alphabets. A letter is then a pair of symbols, where the first symbol is the input
for An,n and the second is the input for the ptNFA for K. A word over this
alphabet is accepted if the first components do not form Wn,n or the second
components form a word that is not a correct encoding of a run of M on x. This
results in an rpoNFA that overcomes problem (i).

However, this technique is not sufficient to resolve problem (ii). Although
the construction yields an rpoNFA that is universal if and only if the regular
expression Rx is [19], the rpoNFA is incomplete and its “standard” completion
by adding the missing transitions to an additional sink state violates the UMS
property. According to Lemma 1, to construct a ptNFA from the rpoNFA, we
need to complete the latter so that it is confluent. This is not possible for every
rpoNFA, but it is possible for our case because the length of the input that is of
interest is bounded by the length of Wn,n. The maximal state of An,n is accepting,
and therefore all the missing transitions can be added so that the paths required
by confluence meet in the maximal state of An,n. Since all words longer than
|Wn,n| are accepted by An,n, we could complete the rpoNFA by adding paths
to the maximal state of An,n that are longer than |Wn,n|. However, this cannot
be done by a polynomial-time reduction, since the length of Wn,n is exponential.
Instead, we add a ptNFA to encode such paths in the formal definition of An,n
as given in Lemma 2 below. We then ensure confluence by adding the missing
transitions to states of the ptNFA An,n from which the unread part of Wn,n is
not accepted and from which the maximal state of An,n is reachable under the
symbol of the added transition (cf. Corollary 1). The second condition ensures
confluence, since all the transitions meet in the maximal state of An,n. The idea
is illustrated in Fig. 2. The details follow.

6 T. Masopust, M. Krötzsch

0; 1 1; 1 . . . k − 1; 1 k; 1

0; 2 1; 2 . . . k − 1; 2 k; 2 k + 1; 2 k + 2; 2 . . . 2k; 2

0; 3 1; 3 . . . k − 1; 3 k; 3 k + 1; 3 k + 2; 3 . . . 2k; 3

max

k + 1; 1 k + 2; 1 . . . 2k; 1
a1 a1 a1 a1

a1

a2

a1

a2 a2

a1

a2

a1
a 2 a 2

a 2 a 2
a
2

a1

a2

a1

a2 a2

a1

a2

a1, a2 a1, a2 a1, a2 a1, a2

a
1 , a

2 , a
3

a3 a3 a3 a3

a 3

a 3

a 3

a 3

a 3

a 3

a 3

a 3

a1, a2

a1, a2 a1, a2

a3 a3 a3

a 3

a
3

a
3

a
3 a3 a3

a3

a1 a1 a1

a
1a
2 a2 a2

a2

a
3

a
3

a
3

a
3

Fig. 3. The ptNFA Ak,3 with 3(2k + 1) + 1 states; all undefined transitions go to state
max; dotted lines depict arrows from (k + i, 1) to (k + 1, 3) under a3, for i = 2, 3, . . . , k

By this construction, we do not get the same language as defined by the
regular expression Rx, but the language of the constructed ptNFA is universal if
and only if Rx is, which suffices for universality.

Thus, the first step of the construction is to construct the ptNFA An,n that
accepts all words but Wn,n of exponential length. This automaton is the core
of the proof of Theorem 2. The language considered there is the same as in our
previous work [19, Lemma 17], where the constructed automaton is not a ptNFA.

Lemma 2. For all integers k, n ≥ 1, there exists a ptNFA Ak,n over an n-letter
alphabet with n(2k + 1) + 1 states, such that the unique non-accepted word of
Ak,n is of length

(
k+n
k

)
− 1.

Proof. For positive integers k and n, we recursively define words Wk,n over the
alphabet Σn = {a1, a2, . . . , an} as follows. For the base cases, we set Wk,1 = ak1
and W1,n = a1a2 . . . an. The cases for k, n > 1 are defined recursively by setting

Wk,n = Wk,n−1 anWk−1,n = Wk,n−1 anWk−1,n−1 an · · · anW1,n−1 an .

The length of Wk,n is
(
k+n
n

)
− 1 [23]. Notice that letter an appears exactly k

times in Wk,n. We further set Wk,n = ε whenever kn = 0, since this is useful for
defining Ak,n below.

We construct a ptNFA Ak,n over Σn that accepts the language Σ∗n \ {Wk,n}.
For n = 1 and k ≥ 0, let Ak,1 be a DFA for {a1}∗ \ {ak1} with k additional
unreachable states used to address problem (ii) and included here for uniformity
(see Corollary 1). Ak,1 consists of 2k + 1 states of the form (i; 1) and a state
max, as shown in the top-most row of states in Fig. 3, together with the given
a1-transitions. All states but (i; 1), for i = k, . . . , 2k, are accepting, and (0; 1) is
initial. All undefined transitions in Fig. 3 go to state max.

Given a ptNFA Ak,n−1, we recursively construct Ak,n as defined next. The
construction for n = 3 is illustrated in Fig. 3. We obtain Ak,n from Ak,n−1 by
adding 2k + 1 states (0;n), (1;n), . . . , (2k;n), where (0;n) is added to the initial
states, and all states (i;n) with i < k are added to the accepting states. The
automaton Ak,n therefore has n(2k + 1) + 1 states. The additional transitions of
Ak,n consist of the following groups:

Deciding Universality of ptNFAs is PSpace-Complete 7

1. Self-loops (i;n)
aj−→ (i;n) for i ∈ {0, 1, . . . , 2k} and aj = a1, a2, . . . , an−1;

2. Transitions (i;n)
an−−→ (i+ 1;n) for i ∈ {0, 1, . . . , 2k − 1} \ {k};

3. Transitions (k, n)
an−−→ max, (2k, n)

an−−→ max, and the self-loop max
an−−→ max;

4. Transitions (i;n)
an−−→ (i+ 1;m) for i = 0, 1, . . . , k − 1 and m = 1, . . . , n− 1;

5. Transitions (i;m)
an−−→ max for every accepting state (i;m) of Ak,n−1;

6. Transitions (i;m)
an−−→ (k+1, n) for every non-accepting state (i;m) of Ak,n−1.

By construction, Ak,n is complete and partially ordered. It satisfies the UMS
property because if there is a self-loop in a state q 6= max under a letter a, then
there is no other incoming or outgoing transition of q under a. This means that
the component of the graph G(Ak,n, Σ(q)) containing q is only state q, which
is indeed the unique maximal state. Hence, it is a ptNFA. Equivalently, to see
that the automaton is confluent, the reader may notice that the automaton has
a single sink state.

We show that Ak,n accepts Σ∗n \ {Wk,n}. The additional states of Ak,n and
transitions 1, 2, and 3 ensure acceptance of every word that does not contain
exactly k occurrences of an. The transitions 4 and 5 ensure acceptance of all words
in (Σ∗n−1an)iL(Ak−i,n−1)anΣ

∗
n, for which the longest factor before the (i+ 1)th

occurrence of an is not of the form Wk−i,n−1, and hence not a correct factor of
Wk,n = Wk,n−1an · · · anWk−i,n−1an · · · anW1,n−1an. Together, these conditions
ensure that Ak,n accepts every input other than Wk,n.

It remains to show that Ak,n does not accept Wk,n, which we do by induction
on (k, n). We start with the base cases. For (0, n) and any n ≥ 1, the word
W0,n = ε is not accepted by A0,n, since the initial states (0;m) = (k;m) of A0,n

are not accepting. Likewise, for (k, 1) and any k ≥ 0, we find that Wk,1 = ak1 is
not accepted by Ak,1 (cf. Fig. 3).

For the inductive case (k, n) ≥ (1, 2), assume that Ak′,n′ does not accept
Wk′,n′ for any (k′, n′) < (k, n). We have Wk,n = Wk,n−1anWk−1,n, and Wk,n−1
is not accepted by Ak,n−1 by induction. Therefore, after reading Wk,n−1an,
automaton Ak,n must be in one of the states (1;m), 1 ≤ m ≤ n, or (k + 1;n).
However, states (1;m), 1 ≤ m ≤ n, are the initial states of Ak−1,n, which does
not accept Wk−1,n by induction. Assume that Ak,n is in state (k + 1;n) after
reading Wk,n−1an. Since Wk−1,n has exactly k− 1 occurrences of letter an, Ak,n
is in state (2k;n) after reading Wk−1,n. Hence Wk,n is not accepted by Ak,n. ut

The last part of the previous proof shows that the suffix Wk−1,n of the word
Wk,n = Wk,n−1anWk−1,n is not accepted from state (k + 1;n). This can be
generalized as follows.

Corollary 1. For any suffix aiw of Wk,n, w is not accepted from state (k + 1; i)
of Ak,n.

The proof of Lemma 2 also shows that the transitions of 6 are redundant.

Corollary 2. Removing from Ak,n the non-accepting states (k+ 1, i), . . . , (2k, i),
for 1 ≤ i ≤ n, and the corresponding transitions results in an rpoNFA that accepts
the same language.

8 T. Masopust, M. Krötzsch

A deterministic Turing machine (DTM) is a tuple M = (Q,T, I, δ, xy, qo, qf),
where Q is the finite state set, T is the tape alphabet, I ⊆ T is the input alphabet,
xy ∈ T \ I is the blank symbol, qo is the initial state, qf is the accepting state,
and δ is the transition function mapping Q× T to Q× T ×{L,R, S}; see Aho et
al. [1] for details.

We now prove the main result, whose proof is a nontrivial generalization of our
previous construction showing PSpace-hardness of universality for rpoNFAs [19].

Theorem 2. The universality problem for ptNFAs is PSpace-complete.

Proof. Membership follows since universality is in PSpace for NFAs [13].
To prove PSpace-hardness, we consider a polynomial p and a p-space-bounded

DTM M = (Q,T, I, δ, xy, qo, qf). Without loss of generality, we assume that
qo 6= qf . A configuration ofM on x consists of a current state q ∈ Q, the position
1 ≤ ` ≤ p(|x|) of the read/write head, and the tape contents θ1, . . . , θp(|x|) with
θi ∈ T . We represent it by a sequence

〈θ1, ε〉 · · · 〈θ`−1, ε〉〈θ`, q〉〈θ`+1, ε〉 · · · 〈θp(|x|), ε〉

of symbols from ∆ = T × (Q ∪ {ε}). A run of M on x is represented as a word
#w1#w2# · · ·#wm#, where wi ∈ ∆p(|x|) and # /∈ ∆ is a fresh separator symbol.
One can construct a regular expression recognizing all words over ∆∪{#} that do
not correctly encode a run ofM (in particular are not of the form #w1#w2# · · ·
#wm#) or that encode a run that is not accepting [1]. Such a regular expression
can be constructed in the following three steps: we detect all words that

(A) do not start with the initial configuration;
(B) do not encode a valid run since they violate a transition rule;
(C) encode non-accepting runs or runs that end prematurely.

If M has an accepting run, it has one without repeated configurations. For
an input x, there are C(x) = (|T × (Q ∪ {ε})|)p(|x|) distinct configuration words
in our encoding. Considering a separator symbol #, the length of the encoding
of a run without repeated configurations is at most 1 + C(x)(p(|x|) + 1), since
every configuration word ends with # and is thus of length p(|x|) + 1. Let n be
the least number such that |Wn,n| ≥ 1 + C(x)(p(|x|) + 1), where Wn,n is the
word constructed in Lemma 2. Since |Wn,n|+ 1 =

(
2n
n

)
≥ 2n, it follows that n is

smaller than dlog(1 + C(x)(p(|x|) + 1))e, and hence polynomial in the size of M
and x.

Consider the ptNFA An,n over the alphabet Σn = {a1, . . . , an} of Lemma 2,
and define the alphabet ∆#$ = T × (Q∪{ε})∪{#, $}. We consider the alphabet
Π = Σn ×∆#$ where the first letter is an input for An,n and the second letter
is used for encoding a run as described above. Recall that An,n accepts all words
different from Wn,n. Therefore, only those words over Π are of our interest, where
the first components form the word Wn,n. Since the length of Wn,n may not be
a multiple of p(|x|) + 1, we add $ to fill up any remaining space after the last
configuration.

Deciding Universality of ptNFAs is PSpace-Complete 9

For a word w = 〈ai1 , δ1〉 · · · 〈ai` , δ`〉 ∈ Π`, we define w[1] = ai1 · · · ai` ∈ Σ`
n

as the projection of w to the first component and w[2] = δ1 . . . δ` ∈ ∆`
#$ as

the projection to the second component. Conversely, for a word v ∈ ∆∗#$, we

write enc(v) to denote the set of all words w ∈ Π |v| with w[2] = v. Similarly,
for v ∈ Σ∗n, enc(v) denotes the words w ∈ Π |v| with w[1] = v. We extend this
notation to sets of words.

Let enc(An,n) denote the automaton An,n with each transition q
ai−→ q′

replaced by all transitions q
π−→ q′ with π ∈ enc(ai). Then enc(An,n) accepts the

language Π∗ \ {enc(Wn,n)}. We say that a word w encodes an accepting run of
M on x if w[1] = Wn,n and w[2] is of the form #w1# · · ·#wm#$j such that
there is an i ∈ {1, 2, . . . ,m} for which #w1# · · ·#wi# encodes an accepting run
ofM on x, wk = wi for all k ∈ {i+ 1, . . . ,m}, and j ≤ p(|x|). That is, we extend
the encoding by repeating the accepting configuration until we have less than
p(|x|) + 1 symbols before the end of |Wn,n| and fill up the remaining places with
symbol $.

For (A), we want to detect all words that do not start with the word

w[2] = #〈x1, q0〉〈x2, ε〉 · · · 〈x|x|, ε〉〈xy, ε〉 · · · 〈xy, ε〉#

of length p(|x|) + 2. This happens if (A.1) the word is shorter than p(|x|) + 2,
or (A.2) at position j, for 0 ≤ j ≤ p(|x|) + 1, there is a letter from the alphabet
∆#$ \{xj}. Let Ēj = Σn× (∆#$ \{xj}) where xj is the jth symbol on the initial
tape of M. We can capture (A.1) and (A.2) in the regular expression(

ε+Π +Π2 + . . .+Πp(|x|)+1
)

+
∑

0≤j≤p(|x|)+1

(Πj · Ēj ·Π∗) (2)

Expression (2) is polynomial in size. It can be captured by a ptNFA as follows.
Each of the first p(|x|) + 2 expressions defines a finite language and can easily
be captured by a ptNFA (by a confluent DFA) of size of the expression. The
disjoint union of these ptNFAs then form a single ptNFA recognizing the language
ε+Π +Π2 + . . .+Πp(|x|)+1.

To express the language Πj ·Ēj ·Π∗ as a ptNFA, we first construct the minimal
incomplete DFA recognizing this language (states 0, 1, . . . , j, j+ 1,max in Fig. 4).
However, we cannot complete it by simply adding the missing transitions to a
new sink state because it results in a DFA with two maximal states, max and
the sink state, violating the UMS property. Instead, we use a copy of the ptNFA
enc(An,n) and add the missing transitions from state j under enc(xj) to state
(n+ 1; i) if enc(xj)[1] = ai; see Fig. 4. Notice that states (n+ 1; i) are the states
(k + 1; i) in Fig. 3. The resulting automaton is a ptNFA, since it is complete,
partially ordered, and satisfies the UMS property—for every state q different from
max, the component co-reachable and reachable under the letters of self-loops in
q is only state q itself. The automaton accepts all words of Πj · Ēj ·Π∗.

We now show that any word w that is accepted by this automaton and that
does not belong to Πj · Ēj ·Π∗ is such that w[1] 6= Wn,n, that is, it belongs to
Π∗ \ {enc(Wn,n)}. Assume that w[1] = Wn,n = uaiv, where ai is the position

10 T. Masopust, M. Krötzsch

0 . . . j

j + 1 n + 1; 1 n + 2; 1 . . . 2n; 1

n + 1; 2 n + 2; 2 . . . 2n; 2

n + 1; 3 n + 2; 3 . . . 2n; 3

max

Π Π

Ē j enc
(xj)[

1] = a1

enc(
xj)[1

] = a2

enc(xj)[1] = a3

enc(a1)

enc(a2)

enc(a1)

enc(a2) enc(a2)

enc(a1)

enc(a2)

enc({a
1 , a

2 , a
3 })

enc({a1, a2})

enc({a1, a2}) enc({a1, a2})

enc(a3) enc(a3) enc(a3)

en
c(
a 3

)

en
c(a

3)

enc
(a3

)
enc(a3)

enc(a3)

enc(a1) enc(a1) enc(a1)

enc(a
1)en

c(a
2)

enc
(a2

)
enc(a2)

enc(a2)

en
c(a

3)

en
c(a

3)

en
c(a

3)

en
c(a

3)

Π

Fig. 4. A ptNFA accepting the language Πj · Ēj ·Π∗ + (Π∗ \ {enc(Wn,n)} illustrated
for Σn = {a1, a2, a3}; only the relevant part of An,n is depicted

and the letter under which the state (n+ 1; i) of An,n is reached. Then v is not
accepted from (n+ 1; i) by Corollary 1. Thus, the ptNFA accepts the language
Πj · Ēj ·Π∗ + (Π∗ \ {enc(Wn,n)}). Constructing such a ptNFA for polynomially
many expressions Πj · Ēj ·Π∗ and taking their union results in a polynomially

large ptNFA accepting the language
∑p(|x|)+1
j=0 (Πj · Ēj ·Π∗)+(Π∗ \{enc(Wn,n)}).

Notice that we ensure that the surrounding # in the initial configuration are
present.

For (B), we check for incorrect transitions. Consider again the encoding
#w1# . . .#wm# of a sequence of configurations with a word over ∆ ∪ {#}.
We can assume that w1 encodes the initial configuration according to (A).
In an encoding of a valid run, the symbol at any position j ≥ p(|x|) + 2 is
uniquely determined by the symbols at positions j − p(|x|) − 2, j − p(|x|) − 1,
and j − p(|x|), corresponding to the cell and its left and right neighbor in the
previous configuration. Given symbols δ`, δ, δr ∈ ∆∪{#}, we can therefore define
f(δ`, δ, δr) ∈ ∆ ∪ {#} to be the symbol required in the next configuration. The
case where δ` = # or δr = # corresponds to transitions applied at the left
and right edge of the tape, respectively; for the case that δ = #, we define
f(δ`, δ, δr) = #, ensuring that the separator # is always present in successor
configurations as well. We extend f to f : ∆3

#$ → ∆#$. For allowing the last
configuration to be repeated, we define f as if the accepting state qf of M
had a self loop (a transition that does not modify the tape, state, or head
position). Moreover, we generally permit $ to occur instead of the expected next
configuration symbol. We can then check for invalid transitions using the regular
expression

Π∗
∑

δ`,δ,δr∈∆#$

enc(δ`δδr) ·Πp(|x|)−1 · f̂(δ`, δ, δr) ·Π∗ (3)

Deciding Universality of ptNFAs is PSpace-Complete 11

0; 1 1; 1 . . . n− 1; 1 n; 1

0; 2 1; 2 . . . n− 1; 2 n; 2 n+ 1; 2 n+ 2; 2 . . . 2n; 2 max

n+ 1; 1 n+ 2; 1 . . . 2n; 1

. . .

· · ·

. . .

qδ`δδr

A copy of B1 for state (0; 1)

enc(a1) enc(a1) enc(a1) enc(a1)

enc(a1)

enc(a2)

enc(a1)

enc(a2) enc(a2)

enc(a1)

enc(a2)

enc(a1)

enc({a
1 , a

2 })

en
c(
a 2

)

en
c(
a 2

)

en
c(
a 2

)

en
c(
a 2

)

enc(a
2)

enc(a1)

enc(a2)

enc(a1)

enc(a2) enc(a2)

enc(a1)

enc(a2)

enc(a1) enc(a1) enc(a1)

enc(a
1)

en
c(a

2)

en
c(
a 2

)

enc(a2
)

enc(a2)

en
c(
δ̀

)

en
c(
δ)

enc(δ
r)

Π Π Π

enc(f̂(δ̀ , δ, δ
r))

z
[1

]
=
a
1

z
[1

]
=
a
2

Fig. 5. ptNFA B consisting of enc(An,n), n = 2, with, for illustration, only one copy of
ptNFA B1 for the case the initial state of B1 is identified with state (0; 1) and state
max′ with state max

where f̂(δ`, δ, δr) is Π \ enc({f(δ`, δ, δr), $}). Note that (3) only detects wrong
transitions if a long enough next configuration exists. The case that the run stops
prematurely is covered in (C).

Expression (3) is not readily encoded in a ptNFA because of the leading Π∗.
To address this, we replace Π∗ by the expression Π≤|Wn,n|−1, which matches
every word w ∈ Π∗ with |w| ≤ |Wn,n| − 1. Clearly, this suffices for our case
because the computations of interest are of length |Wn,n| and a violation of a
correct computation must occur. As |Wn,n| − 1 is exponential, we cannot encode
it directly and we use enc(An,n) instead.

In detail, let E be the expression obtained from (3) by omitting the initial Π∗,
and let B1 be an incomplete DFA that accepts the language of E constructed as
follows. From the initial state, we construct a tree-shaped DFA corresponding to
all words of length three of the finite language

∑
δ`,δ,δr∈∆#$

enc(δ`δδr). To every

leaf state, we add a path under Π of length p(|x|)− 1. The result corresponds
to the language

∑
δ`,δ,δr∈∆#$

enc(δ`δδr) ·Πp(|x|)−1. Let qδ`δδr denote the states

uniquely determined by the words in enc(δ`δδr) ·Πp(|x|)−1. We add the transitions

qδ`δδr
enc(f̂(δ`,δ,δr))−−−−−−−−−→ max′, where max′ is a new accepting state. The automaton

is illustrated in the upper part of Fig. 5, denoted B1. It is an incomplete DFA
for language E of polynomial size. It is incomplete only in states qδrδδ` due to
the missing transitions under enc(f(δ`, δ, δr)) and enc($). We complete it by
adding the missing transitions to the states of the ptNFA An,n. Namely, for

z ∈ {enc(f(δ`, δ, δr)), enc($)}, we add qδ`δδr
z−−→ (n+ 1; i) if z[1] = ai.

We construct a ptNFA B accepting the language (Π∗ \ {enc(Wn,n)}) +
(Π≤|Wn,n|−1 · E) by merging enc(An,n) with at most n(n + 1) copies of B1,
where we identify the initial state of each such copy with a unique accepting
state of enc(An,n), if it does not violate the property of ptNFAs (Fig. 1). This

12 T. Masopust, M. Krötzsch

is justified by Corollary 2, since we do not need to consider connecting B1 to
non-accepting states of An,n and it is not possible to connect it to state max.
We further identify state max′ of every copy of B1 with state max of An,n. The
fact that enc(An,n) alone accepts (Π∗ \ {enc(Wn,n)}) was shown in Lemma 2.
This also implies that it accepts all words of length ≤ |Wn,n| − 1 as needed to
show that (Π≤|Wn,n|−1 · E) is accepted. Entering states of (a copy of) B1 after
accepting a word of length ≥ |Wn,n| is possible but all such words are longer
than Wn,n and hence in (Π∗ \ {enc(Wn,n)}).

Let w be a word that is not accepted by (a copy of) B1. Then, there are
words u and v such that u leads enc(An,n) to a state from which w is read in a
copy of B1. Since w is not accepted, there is a letter z and a word v such that
uwz goes to state (n+ 1; i) of An,n (for z[1] = ai) and v leads enc(An,n) from
state (n + 1; i) to state max. If u[1]w[1]aiv[1] = Wn,n,, then v is not accepted
from (n+ 1; i) by Corollary 1, and hence uwzv[1] 6= Wn,n.

It remains to show that for every proper prefix wn,n of Wn,n, there is a state
in An,n reached by wn,n that is the initial state of a copy of B1, and hence the
check represented by E in Π≤|Wn,n|−1 · E can be performed. In other words,
if an,n denotes the letter following wn,n in Wn,n, then there must be a state
reachable by wn,n in An,n that does not have a self-loop under an,n. However,
this follows from the fact that An,n accepts everything but Wn,n, since then
the DFA obtained from An,n by the standard subset construction has a path of
length

(
2n
n

)
− 1 labeled with Wn,n without any loop. Moreover, any state of this

path in the DFA is a subset of states of An,n, therefore at least one of the states
reachable under wn,n in An,n does not have a self-loop under an,n.

The ptNFA B thus accepts the language Π≤|Wn,n|−1 ·E+ (Π∗ \{enc(Wn,n)}).
Finally, for (C), we detect all words that (C.1) end in a configuration that is

incomplete (too short), (C.2) end in a configuration that is not in the accepting
state qf , (C.3) end with more than p(|x|) trailing $, or (C.4) contain $ not only
at the last positions, that is, we detect all words where $ is followed by a different
symbol. For a word v, we use v≤i to abbreviate ε+ v + . . .+ vi, and we define
Ēf = (T × (Q \ {qf})).
(C.1) Π∗ enc(#)(Π + . . .+Πp(|x|)) enc($)≤p(|x|) +
(C.2) Π∗ enc(Ēf)(ε+Π + . . .+Πp(|x|)−1) enc(#) enc($)≤p(|x|) + (4)
(C.3) Π∗ enc($)p(|x|)+1 +
(C.4) (Π \ enc($))∗ enc($) enc($)∗(Π \ enc($))Π∗

As before, we cannot encode the expression directly as a ptNFA, but we can
perform a similar construction as the one used for encoding (3).

The expressions (2)–(4) together then detect all non-accepting or wrongly
encoded runs ofM. In particular, if we start from the correct initial configuration
((2) does not match), then for (3) not to match, all complete future configurations
must have exactly one state and be delimited by encodings of #. Expressing the
regular expressions as a single ptNFA of polynomial size, we have thus reduced the
word problem of polynomially space-bounded Turing machines to the universality
problem for ptNFAs. ut

All missing proofs can be found in the full version of this paper [22].

Deciding Universality of ptNFAs is PSpace-Complete 13

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Almeida, J., Costa, J.C., Zeitoun, M.: Pointlike sets with respect to R and J. Journal
of Pure and Applied Algebra 212(3), 486–499 (2008)

3. Barceló, P., Libkin, L., Reutter, J.L.: Querying regular graph patterns. Journal of
the ACM 61(1), 8:1–8:54 (2014)

4. Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages.
Logical Methods in Computer Science 8(3) (2012)

5. Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algorithmic
verification. Information and Computation 205(2), 199–224 (2007)

6. Brzozowski, J.A., Fich, F.E.: Languages of R-trivial monoids. Journal of Computer
and System Sciences 20(1), 32–49 (1980)

7. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular
path queries. ACM SIGMOD Record 32(4), 83–92 (2003)

8. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Internation Colloquium on Automata,
Languages and Programming. LNCS, vol. 7966, pp. 150–161. Springer (2013)

9. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order
logic over finite words. Int. Journal of Foundations of Computer Science 19(3),
513–548 (2008)

10. Fu, J., Heinz, J., Tanner, H.G.: An algebraic characterization of strictly piecewise
languages. In: Theory and Applications of Models of Computation, LNCS, vol.
6648, pp. 252–263. Springer (2011)

11. Garćıa, P., Ruiz, J.: Learning k-testable and k-piecewise testable languages from
positive data. Grammars 7, 125–140 (2004)

12. Garćıa, P., Vidal, E.: Inference of k-testable languages in the strict sense and
application to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 12(9), 920–925 (1990)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

14. Hofman, P., Martens, W.: Separability by short subsequences and subwords. In:
International Conference on Database Theory. LIPIcs, vol. 31, pp. 230–246. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

15. Holub, Š., Jirásková, G., Masopust, T.: On upper and lower bounds on the length
of alternating towers. In: Mathematical Foundations of Computer Science. LNCS,
vol. 8634, pp. 315–326. Springer (2014)

16. Jones, N.D.: Space-bounded reducibility among combinatorial problems. Journal of
Computer and System Sciences 11(1), 68–85 (1975)

17. Kĺıma, O., Polák, L.: Alternative automata characterization of piecewise testable
languages. In: Developments in Language Theory. LNCS, vol. 7907, pp. 289–300.
Springer (2013)

18. Kontorovich, L., Cortes, C., Mohri, M.: Kernel methods for learning languages.
Theoretical Computer Science 405(3), 223–236 (2008)

19. Krötzsch, M., Masopust, T., Thomazo, M.: Complexity of universality and related
problems for partially ordered NFAs. Information and Computation (2017), accepted.
Preprint available at http://arxiv.org/abs/1609.03460

20. Martens, W., Neven, F., Niewerth, M., Schwentick, T.: Bonxai: Combining the
simplicity of DTD with the expressiveness of XML schema. In: Principles of Database
Systems. pp. 145–156. ACM (2015)

14 T. Masopust, M. Krötzsch

21. Masopust, T.: Piecewise testable languages and nondeterministic automata. In:
Mathematical Foundations of Computer Science. LIPIcs, vol. 58, pp. 67:1–67:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

22. Masopust, T., Krötzsch, M.: Universality of confluent, self-loop deterministic par-
tially ordered NFAs is hard (2017), http://arxiv.org/abs/1704.07860

23. Masopust, T., Thomazo, M.: On boolean combinations forming piecewise testable
languages. Theoretical Computer Science 682, 165–179 (2017)

24. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with
squaring requires exponential space. In: Symposium on Switching and Automata
Theory. pp. 125–129. IEEE Computer Society (1972)

25. Perrin, D., Pin, J.E.: Infinite words: Automata, semigroups, logic and games, Pure
and Applied Mathematics, vol. 141. Academic Press (2004)

26. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise
testable and unambiguous languages. In: Mathematical Foundations of Computer
Science. LNCS, vol. 8087, pp. 729–740. Springer (2013)

27. Rampersad, N., Shallit, J., Xu, Z.: The computational complexity of universality
problems for prefixes, suffixes, factors, and subwords of regular languages. Funda-
menta Informatica 116(1–4), 223–236 (2012)

28. Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., Wibel,
S.: On languages piecewise testable in the strict sense. In: The Mathematics of
Language. LNAI, vol. 6149, pp. 255–265. Springer (2010)

29. Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., Wibel, S.: Cognitive and
sub-regular complexity. In: Formal Grammar. LNCS, vol. 8036, pp. 90–108. Springer
(2013)

30. Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: A
new characterization of DA. In: Developments in Language Theory. LNCS, vol.
2295, pp. 239–250. Springer (2001)

31. Simon, I.: Hierarchies of Events with Dot-Depth One. Ph.D. thesis, University of
Waterloo, Canada (1972)

32. Stefanoni, G., Motik, B., Krötzsch, M., Rudolph, S.: The complexity of answering
conjunctive and navigational queries over OWL 2 EL knowledge bases. Journal of
Artificial Intelligence Research 51, 645–705 (2014)

33. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Prelim-
inary report. In: ACM Symposium on the Theory of Computing. pp. 1–9. ACM
(1973)

