The Class NP
Beyond PTime

- We have seen that the class PTime provides a useful model of “tractable” problems.
- This includes 2-Sat and 2-Colourability.
- But what about 3-Sat and 3-Colourability?
- No polynomial time algorithms for these problems are known.
- On the other hand . . .
Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a “solution” if given.

- Satisfiability – a satisfying assignment
- k-Colourability – a k-colouring
- Sudoku – a completed puzzle
Definition 6.1: A Turing machine M which halts on all inputs is called a verifier for a language L if

$$L = \{ w \mid M \text{ accepts } (w#c) \text{ for some string } c \}$$

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.
Definition 6.1: A Turing machine M which halts on all inputs is called a verifier for a language L if

$$L = \{w \mid M \text{ accepts } (w\#c) \text{ for some string } c\}$$

The string c is called a certificate (or witness) for w.

Notation: $#$ is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine M is a polynomial-time verifier for L if M is polynomially time bounded and

$$L = \{w \mid M \text{ accepts } (w\#c) \text{ for some string } c \text{ with } |c| \leq p(|w|)\}$$

for some fixed polynomial p.
The Class NP

NP: “The class of dashed hopes and idle dreams.”

More formally: the class of problems for which a possible solution can be verified in \(P \).

Definition 6.3: The class of languages that have polynomial-time verifiers is called \(\text{NP} \).

In other words: \(\text{NP} \) is the class of all languages \(L \) such that:

- for every \(w \in L \), there is a certificate \(c_w \in \Sigma^* \), where
 - the length of \(c_w \) is polynomial in the length of \(w \), and
 - the language \(\{ (w \# c_w) \mid w \in L \} \) is in \(P \).
The Class NP

NP: “The class of dashed hopes and idle dreams.”

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called **NP**.
The Class NP

NP: “The class of dashed hopes and idle dreams.”¹

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called NP.

In other words: NP is the class of all languages L such that:

- for every $w \in L$, there is a certificate $c_w \in \Sigma^*$, where
- the length of c_w is polynomial in the length of w, and
- the language $\{(w#c_w) \mid w \in L\}$ is in P

¹https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np
More Examples of Problems in NP

Hamiltonian Path

Input: An undirected graph G

Problem: Is there a path in G that contains each vertex exactly once?

k-Clique

Input: An undirected graph G

Problem: Does G contain a fully connected graph (clique) with k vertices?
More Examples of Problems in NP

Subset Sum

Input: A collection of positive integers

\[S = \{a_1, \ldots, a_k\} \text{ and a target integer } t. \]

Problem: Is there a subset \(T \subseteq S \) such that \(\sum_{a_i \in T} a_i = t \)?

Travelling Salesperson

Input: A weighted graph \(G \) and a target number \(t \).

Problem: Is there a simple path in \(G \) with weight \(\leq t \)?
Complements of NP are often not known to be in NP

No Hamiltonian Path
- **Input:** An undirected graph G
- **Problem:** Is there no path in G that contains each vertex exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.
COMPOSITE (non-prime) NUMBER

Input: A positive integer \(n > 1 \)

Problem: Are there integers \(u, v > 1 \) such that \(u \cdot v = n \)?

PRIME NUMBER

Input: A positive integer \(n > 1 \)

Problem: Is \(n \) a prime number?
More Examples

Composite (non-prime) Number

- **Input:** A positive integer \(n > 1 \)
- **Problem:** Are there integers \(u, v > 1 \) such that \(u \cdot v = n \)?

Prime Number

- **Input:** A positive integer \(n > 1 \)
- **Problem:** Is \(n \) a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

Markus Krötzsch, 30th Oct 2019
More Examples

Composite (non-prime) Number

Input: A positive integer $n > 1$

Problem: Are there integers $u, v > 1$ such that $u \cdot v = n$?

Prime Number

Input: A positive integer $n > 1$

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P
N is for Nondeterministic
A nondeterministic Turing Machine (NTM) $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$ consists of

- a finite set Q of states,
- an input alphabet Σ not containing ω,
- a tape alphabet Γ such that $\Gamma \supseteq \Sigma \cup \{\omega\}$,
- a transition function $\delta : Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L, R\}}$,
- an initial state $q_0 \in Q$,
- an accepting state $q_{\text{accept}} \in Q$.

Note

An NTM can halt in any state if there are no options to continue

\rightarrow no need for a special rejecting state
Reprise: Runs of NTMs

An (N)TM configuration can be written as a word uqv where $q \in Q$ is a state and $uv \in \Gamma^*$ is the current tape contents.

NTMs produce configuration trees that contain all possible runs:

- **accept**: $q_{\text{start}} \sigma_1 \cdots \sigma_n \xrightarrow{\text{nondet. choice}} q_{\text{acc}}$
- **reject**: $q_{\text{start}} \sigma_1 \cdots \sigma_n \xrightarrow{\text{comp. path}} \neg q_{\text{acc}}$
- **reject (not halting)**: $q_{\text{start}} \sigma_1 \cdots \sigma_n \xrightarrow{\text{infinite run}}$
Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \omega\}, q_0, \Delta, q_{\text{accept}})$ where

$$
\Delta = \left\{
(q_0, (_), q_0, (0), (N)_R) \\
(q_0, (_), q_0, (1), (N)_R) \\
(q_0, (_), q_{\text{check}}, (_), (N)_N) \\
\ldots \\
\text{transition rules for } \mathcal{M}_{\text{check}}
\right\}
$$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.
Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \omega\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases}
(q_0, _), q_0, (_), (N^0_R) \\
(q_0, _), q_0, (_), (N^1_R) \\
(q_0, _), q_{\text{check}}, (_), (N^N_R) \\
\ldots \\
\end{cases}$$

transition rules for $\mathcal{M}_{\text{check}}$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 14 of 26
Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \omega\}, q_0, \Delta, q_{\text{accept}})$ where

$$
\Delta = \begin{cases}
(q_0, (_), q_0, (0), (N_R)) \\
(q_0, (_), q_0, (1), (N_R)) \\
(q_0, (_), q_{\text{check}}, (_), (N)) \\
\ldots \\
\text{transition rules for } M_{\text{check}}
\end{cases}
$$

and where M_{check} is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.
Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \omega\}, q_0, \Delta, q_{\text{accept}})$ where

\[
\Delta = \begin{cases}
(q_0, \bot, q_0, (\bot)_0, (\bot)_R) \\
(q_0, \bot, q_0, (\bot)_1, (\bot)_R) \\
(q_0, \bot, q_{\text{check}}, \bot, (\bot)_N) \\
\vdots
\end{cases}
\]

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

![Diagram of the multi-tape NTM](image-url)
Example: Multi-Tape NTM

Consider the NTM $M = (Q, \{0, 1\}, \{0, 1, \omega\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, (-), q_0, (0), (\frac{N}{R})) \\ (q_0, (-), q_0, (1), (\frac{N}{R})) \\ (q_0, (-), q_{\text{check}}, (-), (\frac{N}{N})) \\ \ldots \end{cases}$$

and where M_{check} is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

The machine M decides if the input is a composite number:

- guess a number on the second tape
- check if it divides the number on the first tape
- accept if a suitable number exists
Q: Which of the nondeterministic runs do time/space bounds apply to?

Definition 6.4:
Let M be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

1. M is f-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.

2. M is f-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)
Q: Which of the nondeterministic runs do time/space bounds apply to?
A: To all of them!

Definition 6.4: Let M be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

1. M is f-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.
2. M is f-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)
Definition 6.5: Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

(1) $\text{NTime}(f(n))$ is the class of all languages L for which there is an $O(f(n))$-time bounded nondeterministic Turing machine deciding L.

(2) $\text{NSpace}(f(n))$ is the class of all languages L for which there is an $O(f(n))$-space bounded nondeterministic Turing machine deciding L.
All Complexity Classes Have a Nondeterministic Variant

\[
\text{NPTime} = \bigcup_{d \geq 1} \text{NTime}(n^d) \quad \text{nondet. polynomial time}
\]

\[
\text{NExp} = \text{NExpTime} = \bigcup_{d \geq 1} \text{NTime}(2^{n^d}) \quad \text{nondet. exponential time}
\]

\[
\text{N2Exp} = \text{N2ExpTime} = \bigcup_{d \geq 1} \text{NTime}(2^{2^{n^d}}) \quad \text{nond. double-exponential time}
\]

\[
\text{NL} = \text{NLogSpace} = \text{NSpace}(\log n) \quad \text{nondet. logarithmic space}
\]

\[
\text{NPSpace} = \bigcup_{d \geq 1} \text{NSpace}(n^d) \quad \text{nondet. polynomial space}
\]

\[
\text{NExpSpace} = \bigcup_{d \geq 1} \text{NSpace}(2^{n^d}) \quad \text{nondet. exponential space}
\]
Theorem 6.6: NP = NPTime.

Proof:

We first show NP \supseteq NPTime:

• Suppose $L \in$ NPTime.
• Then there is an NTM M such that $w \in L \iff$ there is an accepting run of M of length $O(n^d)$ for some d.
• This path can be used as a certificate for w.
• A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP \supseteq NPTime.
Equivalence of NP and NPTIME

Theorem 6.6: NP = NPTIME.

Proof: We first show NP \supseteq NPTIME:

- Suppose $L \in \text{NPTime}$.
- Then there is an NTM M such that $w \in L \iff$ there is an accepting run of M of length $O(n^d)$ for some d.
- This path can be used as a certificate for w.
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP \supseteq NPTIME.
Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

- Suppose \(L \in \text{NPTime}. \)
- Then there is an NTM \(M \) such that
 \[
 w \in L \iff \text{there is an accepting run of } M \text{ of length } O(n^d)
 \]
 for some \(d \).
Theorem 6.6: \(\text{NP} = \text{NPTime} \).

Proof: We first show \(\text{NP} \supseteq \text{NPTime} \):

- Suppose \(L \in \text{NPTime} \).
- Then there is an NTM \(M \) such that
 \[
 w \in L \iff \text{there is an accepting run of } M \text{ of length } O(n^d)
 \]
 for some \(d \).
- This path can be used as a certificate for \(w \).
Theorem 6.6: NP = NPTime.

Proof: We first show NP \supseteq NPTime:

- Suppose \(L \in \text{NPTime}. \)
- Then there is an NTM \(M \) such that
 \[
 w \in L \iff \text{there is an accepting run of } M \text{ of length } O(n^d)
 \]
 for some \(d. \)
- This path can be used as a certificate for \(w. \)
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP \(\supseteq \) NPTime.
Theorem 6.6: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

• Assume L has a polynomial-time verifier M with certificates of length at most \(p(n) \) for a polynomial \(p \).

• Then we can construct an NTM \(M^* \) deciding L as follows:

 (1) \(M^* \) guesses a string of length \(p(n) \)

 (2) \(M^* \) checks in deterministic polynomial time if this is a certificate.

Therefore NP ⊆ NPTime. □
Theorem 6.6: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

- Assume L has a polynomial-time verifier M with certificates of length at most $p(n)$ for a polynomial p.
Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We now show \(\text{NP} \subseteq \text{NPTime} \):

- Assume \(L \) has a polynomial-time verifier \(M \) with certificates of length at most \(p(n) \) for a polynomial \(p \).
- Then we can construct an NTM \(M^* \) deciding \(L \) as follows:
 1. \(M^* \) guesses a string of length \(p(n) \)
 2. \(M^* \) checks in deterministic polynomial time if this is a certificate.

Therefore \(\text{NP} \subseteq \text{NPTime} \). \(\square \)
NP and coNP

Note: the definition of NP is not symmetric

• there does not seem to be any polynomial certificate for Sudoku unsolvability or propositional logic unsatisfiability . . .
• converse of an NP problem is coNP
• similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:

• Deterministic classes (coP = P etc.)
• Space classes mentioned above (esp. coNL = NL)
Theorem 6.7: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: “If it is easy to check a candidate solution to a problem, is it also easy to find one?”
- Exaggerated: “Can creativity be automated?” (Wigderson, 2006)
- Unresolved since over 35 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for resolving it (“Millenium Problem”)
 (might not be much money at the time it is actually solved)
Many people believe that $P \neq NP$

- Main argument: “If $NP = P$, someone ought to have found some polynomial algorithm for an NP-complete problem by now.”
- “This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration.” (Moshe Vardi, 2002)
- Another source of intuition: Humans find it hard to solve NP-problems, and hard to imagine how to make them simpler – possibly “human chauvinistic bravado” (Zeilenberger, 2006)
- There are better arguments, but none more than an intuition
Status of P vs. NP

Many outcomes conceivable:

• $P = NP$ could be shown with a non-constructive proof
• The question might be independent of standard mathematics (ZFC)
• Even if $NP \neq P$, it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist . . .
• The problem might never be solved
Status of P vs. NP

Many outcomes conceivable:

- $P = NP$ could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if $NP \neq P$, it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist
- The problem might never be solved
Status of P vs. NP

Many outcomes conceivable:

- $P = NP$ could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
Many outcomes conceivable:

- $P = NP$ could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if $NP \neq P$, it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist ...
Many outcomes conceivable:

- \(P = NP \) could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if \(NP \neq P \), it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist . . .
- The problem might never be solved
Status of P vs. NP

Current status in research:

• Results of a poll among 152 experts [Gasarch 2012]:
 – P \neq NP: 126 (83%)
 – P = NP: 12 (9%)
 – Don’t know or don’t care: 7 (4%)
 – Independent: 5 (3%)
 – And 1 person (0.6%) answered: “I don’t want it to be equal.”

• Experts have guessed wrongly in other major questions before

• Over 100 “proofs” show P = NP to be true/false/both/neither:
 https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
A Simple Proof for P = NP

Clearly
therefore
hence
that is
using coP = P
and hence
so by P ⊆ NP

$L \in P$ implies $L \in NP$

$L \notin NP$ implies $L \notin P$

$L \in coNP$ implies $coNP \subseteq coP$

$L \in coNP$ implies $L \in coP$

$L \in coNP$ implies $coNP \subseteq P$

$L \in coNP$ implies $NP \subseteq P$

$L \in coNP$ implies $NP = P$

q.e.d.
A Simple Proof for $P = NP$

Clearly

therefore

hence

that is

using $coP = P$

and hence

so by $P \subseteq NP$

$L \in P$ implies

$L \notin NP$ implies

$L \in coNP$ implies

$coNP \subseteq coP$

$coNP \subseteq P$

$NP \subseteq P$

$NP = P$

$q.e.d.$?
Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic Turing machines

Many problems are easily seen to be in NP

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be unequal to NP

What's next?

• NP hardness and completeness
• More examples of problems
• Space complexities