
COMPLEXITY THEORY

Lecture 6: Nondeterministic Polynomial Time

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 30th Oct 2019

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2019/20)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en

The Class NP

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 2 of 26

Beyond PTime

• We have seen that the class PTime provides a useful model of “tractable” problems

• This includes 2-Sat and 2-Colourability

• But what about 3-Sat and 3-Colourability?

• No polynomial time algorithms for these problems are known

• On the other hand . . .

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 3 of 26

Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a “solution”
if given.

• Satisfiability – a satisfying assignment

• k-Colourability – a k-colouring

• Sudoku – a completed puzzle

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 4 of 26

Verifiers

Definition 6.1: A Turing machine M which halts on all inputs is called a verifier
for a language L if

L = {w | M accepts (w#c) for some string c}

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine M is a polynomial-time verifier for L if M is
polynomially time bounded and

L = {w | M accepts (w#c) for some string c with |c| ≤ p(|w|)}

for some fixed polynomial p.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 5 of 26

Verifiers

Definition 6.1: A Turing machine M which halts on all inputs is called a verifier
for a language L if

L = {w | M accepts (w#c) for some string c}

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine M is a polynomial-time verifier for L if M is
polynomially time bounded and

L = {w | M accepts (w#c) for some string c with |c| ≤ p(|w|)}

for some fixed polynomial p.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 5 of 26

The Class NP

NP: “The class of dashed hopes and idle dreams.”1

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is
called NP.

In other words: NP is the class of all languages L such that:

• for every w ∈ L, there is a certificate cw ∈ Σ∗, where

• the length of cw is polynomial in the length of w, and

• the language {(w#cw) | w ∈ L} is in P

1https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np
Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 6 of 26

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np

The Class NP

NP: “The class of dashed hopes and idle dreams.”1

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is
called NP.

In other words: NP is the class of all languages L such that:

• for every w ∈ L, there is a certificate cw ∈ Σ∗, where

• the length of cw is polynomial in the length of w, and

• the language {(w#cw) | w ∈ L} is in P

1https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np
Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 6 of 26

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np

The Class NP

NP: “The class of dashed hopes and idle dreams.”1

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is
called NP.

In other words: NP is the class of all languages L such that:

• for every w ∈ L, there is a certificate cw ∈ Σ∗, where

• the length of cw is polynomial in the length of w, and

• the language {(w#cw) | w ∈ L} is in P

1https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np
Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 6 of 26

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np

More Examples of Problems in NP

Hamiltonian Path

Input: An undirected graph G

Problem: Is there a path in G that contains each vertex ex-
actly once?

k-Clique

Input: An undirected graph G

Problem: Does G contain a fully connected graph (clique)
with k vertices?

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 7 of 26

More Examples of Problems in NP

Subset Sum

Input: A collection of positive integers

S = {a1, . . . , ak} and a target integer t.

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Travelling Salesperson

Input: A weighted graph G and a target number t.

Problem: Is there a simple path in G with weight ≤ t?

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 8 of 26

Complements of NP are often not known to be in NP

No Hamiltonian Path

Input: An undirected graph G

Problem: Is there no path in G that contains each vertex
exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem
to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 9 of 26

More Examples

Composite (non-prime) Number

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that u · v = n?

Prime Number

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 10 of 26

More Examples

Composite (non-prime) Number

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that u · v = n?

Prime Number

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 10 of 26

More Examples

Composite (non-prime) Number

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that u · v = n?

Prime Number

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 10 of 26

N is for Nondeterministic

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 11 of 26

Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM)M = (Q, Σ, Γ, δ, q0, qaccept) consists of

• a finite set Q of states,

• an input alphabet Σ not containing �,

• a tape alphabet Γ such that Γ ⊇ Σ ∪ { � }.

• a transition function δ : Q × Γ→ 2Q×Γ×{ L,R }

• an initial state q0 ∈ Q,

• an accepting state qaccept ∈ Q.

Note
An NTM can halt in any state if there are no options to continue
{ no need for a special rejecting state

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 12 of 26

Reprise: Runs of NTMs
An (N)TM configuration can be written as a word uqv where q ∈ Q is a state and uv ∈ Γ∗

is the current tape contents.

NTMs produce configuration trees that contain all possible runs:

accept: reject: reject (not halting):

qstartσ1 · · ·σn

qacc

qstartσ1 · · ·σn

,qacc

qstartσ1 · · ·σn

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 13 of 26

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, �}, q0, ∆, qaccept

)
where

∆ =



(
q0,

(
−

−

)
, q0,

(
−

0

)
,

(
N
R

))
(
q0,

(
−

−

)
, q0,

(
−

1

)
,

(
N
R

))
(
q0,

(
−

−

)
, qcheck,

(
−

−

)
,

(
N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 14 of 26

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, �}, q0, ∆, qaccept

)
where

∆ =



(
q0,

(
−

−

)
, q0,

(
−

0

)
,

(
N
R

))
(
q0,

(
−

−

)
, q0,

(
−

1

)
,

(
N
R

))
(
q0,

(
−

−

)
, qcheck,

(
−

−

)
,

(
N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 14 of 26

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, �}, q0, ∆, qaccept

)
where

∆ =



(
q0,

(
−

−

)
, q0,

(
−

0

)
,

(
N
R

))
(
q0,

(
−

−

)
, q0,

(
−

1

)
,

(
N
R

))
(
q0,

(
−

−

)
, qcheck,

(
−

−

)
,

(
N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 14 of 26

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, �}, q0, ∆, qaccept

)
where

∆ =



(
q0,

(
−

−

)
, q0,

(
−

0

)
,

(
N
R

))
(
q0,

(
−

−

)
, q0,

(
−

1

)
,

(
N
R

))
(
q0,

(
−

−

)
, qcheck,

(
−

−

)
,

(
N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 14 of 26

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, �}, q0, ∆, qaccept

)
where

∆ =



(
q0,

(
−

−

)
, q0,

(
−

0

)
,

(
N
R

))
(
q0,

(
−

−

)
, q0,

(
−

1

)
,

(
N
R

))
(
q0,

(
−

−

)
, qcheck,

(
−

−

)
,

(
N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

The machineM decides if the input is a composite number:
• guess a number on the second tape
• check if it divides the number on the first tape
• accept if a suitable number exists

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 14 of 26

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?

A: To all of them!

Definition 6.4: Let M be a nondeterministic Turing machine and let f : N → R+

be a function.

(1) M is f -time bounded if it halts on every input w ∈ Σ∗ and on every
computation path after ≤f (|w|) steps.

(2) M is f -space bounded if it halts on every input w ∈ Σ∗ and on every
computation path using ≤f (|w|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape
that we do not count in measuring space complexity.)

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 15 of 26

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?
A: To all of them!

Definition 6.4: Let M be a nondeterministic Turing machine and let f : N → R+

be a function.

(1) M is f -time bounded if it halts on every input w ∈ Σ∗ and on every
computation path after ≤f (|w|) steps.

(2) M is f -space bounded if it halts on every input w ∈ Σ∗ and on every
computation path using ≤f (|w|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape
that we do not count in measuring space complexity.)

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 15 of 26

Nondeterministic Complexity Classes

Definition 6.5: Let f : N→ R+ be a function.

(1) NTime(f (n)) is the class of all languages L for which there is an O(f (n))-time
bounded nondeterministic Turing machine deciding L.

(2) NSpace(f (n)) is the class of all languages L for which there is an
O(f (n))-space bounded nondeterministic Turing machine deciding L.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 16 of 26

All Complexity Classes Have a Nondeterministic Variant

NPTime =
⋃
d≥1

NTime(nd) nondet. polynomial time

NExp = NExpTime =
⋃
d≥1

NTime(2nd
) nondet. exponential time

N2Exp = N2ExpTime =
⋃
d≥1

NTime(22nd

) nond. double-exponential time

NL = NLogSpace = NSpace(log n) nondet. logarithmic space

NPSpace =
⋃
d≥1

NSpace(nd) nondet. polynomial space

NExpSpace =
⋃
d≥1

NSpace(2nd
) nondet. exponential space

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 17 of 26

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 18 of 26

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 18 of 26

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 18 of 26

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 18 of 26

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 18 of 26

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

• Assume L has a polynomial-time verifierM with certificates of length at most p(n)
for a polynomial p.

• Then we can construct an NTMM∗ deciding L as follows:
(1) M∗ guesses a string of length p(n)
(2) M∗ checks in deterministic polynomial time if this is a certificate.

Therefore NP ⊆ NPTime. �

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 19 of 26

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

• Assume L has a polynomial-time verifierM with certificates of length at most p(n)
for a polynomial p.

• Then we can construct an NTMM∗ deciding L as follows:
(1) M∗ guesses a string of length p(n)
(2) M∗ checks in deterministic polynomial time if this is a certificate.

Therefore NP ⊆ NPTime. �

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 19 of 26

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

• Assume L has a polynomial-time verifierM with certificates of length at most p(n)
for a polynomial p.

• Then we can construct an NTMM∗ deciding L as follows:
(1) M∗ guesses a string of length p(n)
(2) M∗ checks in deterministic polynomial time if this is a certificate.

Therefore NP ⊆ NPTime. �

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 19 of 26

NP and coNP

Note: the definition of NP is not symmetric

• there does not seem to be any polynomial certificate for Sudoku unsolvability or
propositional logic unsatisfiability . . .

• converse of an NP problem is coNP

• similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:

• Deterministic classes (coP = P etc.)

• Space classes mentioned above (esp. coNL = NL)

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 20 of 26

Deterministic vs. Nondeterminsitic Time

Theorem 6.7: P ⊆ NP, and also P ⊆ coNP.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

• Put differently: “If it is easy to check a candidate solution to a problem, is it also
easy to find one?”

• Exaggerated: “Can creativity be automated?” (Wigderson, 2006)

• Unresolved since over 35 years of effort

• One of the major problems in computer science and math of our time

• 1,000,000 USD prize for resolving it (“Millenium Problem”)
(might not be much money at the time it is actually solved)

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 21 of 26

Status of P vs. NP

Many people believe that P , NP

• Main argument: “If NP = P, someone ought to have found some polynomial
algorithm for an NP-complete problem by now.”

• “This is, in my opinion, a very weak argument. The space of algorithms is very
large and we are only at the beginning of its exploration.” (Moshe Vardi, 2002)

• Another source of intuition: Humans find it hard to solve NP-problems, and hard to
imagine how to make them simpler – possibly “human chauvinistic bravado”
(Zeilenberger, 2006)

• There are better arguments, but none more than an intuition

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 22 of 26

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 23 of 26

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 23 of 26

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 23 of 26

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 23 of 26

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 23 of 26

Status of P vs. NP

Current status in research:
• Results of a poll among 152 experts [Gasarch 2012]:

– P , NP: 126 (83%)
– P = NP: 12 (9%)
– Don’t know or don’t care: 7 (4%)
– Independent: 5 (3%)
– And 1 person (0.6%) answered: “I don’t want it to be equal.”

• Experts have guessed wrongly in other major questions before

• Over 100 “proofs” show P = NP to be true/false/both/neither:
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 24 of 26

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

A Simple Proof for P = NP

Clearly L ∈ P implies L ∈ NP

therefore L < NP implies L < P

hence L ∈ coNP implies L ∈ coP

that is coNP ⊆ coP

using coP = P coNP ⊆ P

and hence NP ⊆ P

so by P ⊆ NP NP = P

q.e.d.

?

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 25 of 26

A Simple Proof for P = NP

Clearly L ∈ P implies L ∈ NP

therefore L < NP implies L < P

hence L ∈ coNP implies L ∈ coP

that is coNP ⊆ coP

using coP = P coNP ⊆ P

and hence NP ⊆ P

so by P ⊆ NP NP = P

q.e.d.?

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 25 of 26

Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic
Turing machines

Many problems are easily seen to be in NP

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be
unequal to NP

What’s next?

• NP hardness and completeness

• More examples of problems

• Space complexities

Markus Krötzsch, 30th Oct 2019 Complexity Theory slide 26 of 26

	Nondeterministic Polynomial Time
	The Class NP
	N is for Nondeterministic

