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Recap

• For description logic knowledge bases, there are various relevant
reasoning problems.

• All can be reduced to knowledge base (in)satisfiability.
• The basic description logic ALC can be extended in various ways:

– Inverse Roles I

– (Qualified) Number Restrictions (Q) N
– Nominals O

– Role Hierarchies H

– Transitive Roles ALC⇝ S, ·R+
• Description Logics have close connections with propositional modal logic . . .
• . . . and with the two-variable fragments of first-order logic (with counting

quantifiers)
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Reasoning with Data
So far we have focused on terminological reasoning
• TBoxes represent general, conceptual domain knowledge
• Terminological reasoning is key to design error-free TBoxes

New Scenario: Ontology-based data access (OBDA)
• We have built an (error-free) TBox for our domain
• We want to populate TBox with data (add an ABox)

ABox & TBox should be compatible (no inconsistencies)
• Then, we can query the data

TBox provides vocabulary for queries
Answers reflect both TBox knowledge and ABox data
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Compatibility of Data and Knowledge
The ABox data should be compatible with the TBox knowledge

T = {GradSt⊓UnderGradSt ⊑ ⊥}
A = {John :GradSt, John :UnderGradSt}

Nothing wrong with the TBox
Nothing wrong with the ABox
There is an obvious error when putting them together

To detect these situations we use the following problem:

Knowledge Base satisfiability:
An instance is knowledge base K = (T,A).
The answer is true iff a model I |= K exists.

In a FOL setting, K is satisfiable if and only if π(K) is satisfiable.
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Tableau Algorithm for KB Consistency
Tableau-based knowledge base consistency algorithm:

• Input: Knowledge Base K = (T,A)
• Output: true iff K = (T,A) is consistent

1. Start with input ABox A

2. Apply expansion rules until completion or clash
3. Blocking only involves individuals not occurring in A

Exploit forest-model property: construct forest-shaped ABox
root (ABox) individuals can be arbitrarily connected
tree individuals (introduced by ∃-rule) form trees

Typically, we are interested in tableau algorithms that are sound and
complete w.r.t. the model theory, whence the terms satisfiable
(model-theoretic) and consistent (proof-theoretic) coincide.
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Tableau Example (Simplified)
( JRA, John) : Affects

JRA : JuvArth
( JRA,Mary) : Affects
( John,Mary) :hasChild

JuvDis ⊑ ∃Affects.Child⊓ ∀Affects.Child
∃hasChild.⊤ ⊑ Adult

Adult ⊑ ¬Child
Arth ⊑ ∃Damages.Joint

JuvArth ⊑ Arth⊓ JuvDis

Tableau expansion (simplified):

JRA

John

Maryw

Affects

Affects

hasChild

Damages

conA( JRA) = {JuvArth}, Arth, JuvDis},∃Damages.Joint},
∃Affects.Child,∀Affects.Child}

conA( John) = ∅{Child, Adult,¬Child}
conA(Mary) = ∅{Child}

conA(w) = {Joint}
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Querying the Data
It does not make sense to query an inconsistent K (previous example).
• An inconsistent (=̂ unsatisfiable) K entails all formulas.
• We (typically) fix inconsistencies before we start asking queries.

Once we have determined that K is consistent, we want to query the data:
• Which children are affected by a juvenile arthritis?
• Which drugs are used to treat JRA?
• Who is affected by an arthritis and is allergic to steroids?

Similar to the types of queries one would pose to a database.

SELECT Child.cname
FROM Child, Affects, JuvArth
WHERE Child.cname = Affects.cname AND

Affects.dname = JuvArth.dname
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Querying the Data: Simple Queries (1)
The basic data queries ask for all the instances of a concept:

q1(x) = Child(x) Set of children?
q2(x) = (Dis⊓ ∃Damages.Joint)(x) Set of diseases affecting a joint?

How to (naively) answer these queries? Try each individual name.

ABox A

( JRA, John) : Affects
JRA : JuvArth

( JRA,Mary) : Affects

TBox T (K = (T,A))
JuvDis ⊑ ∃Affects.Child⊓ ∀Affects.Child
Adult ⊑ ¬Child
Arth ⊑ ∃Damages.Joint

JuvArth ⊑ Arth⊓ JuvDis

K |= JRA : Child? No. JRA is not an answer to q1
K |= John : Child? Yes! John is an answer to q1
K |= Mary : Child? Yes! Mary is an answer to q1

Description Logics – Reasoning with Data (Lecture 6)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 8 of 31 Computational
Logic ∴ Group



Querying the Data: Simple Queries (2)
So, we are interested in the following decision problem:

Concept Instance Checking:
Given individual name a, concept C and KB K,
an instance is a triple ⟨a, C,K⟩.
The answer is true iff K |= a : C

In ALC (and extensions) this problem is reducible to KB satisfiability:
(T,A) |= a : C iff (T,A∪ {a :¬C}) satisfiable

Note that we can assume, w.l.o.g., that C is a concept name:

(T,A) |= a : C iff (T ∪ {X ≡ C},A) |= a : X

where X is a concept name that does not occur in T or A.
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Querying the Data: Simple Queries (3)
What about instances of a role:

q2(x, y) = hasChild(x, y) Set of parent-child tuples?

How to (naively) answer these queries? Try each pair of individuals!

ABox A

JRA : JuvArth
( JRA,Mary) : Affects
( John,Mary) :hasChild

TBox T (K = (T,A))
JuvDis ⊑ ∃Affects.Child⊓ ∀Affects.Child
Adult ⊑ ¬Child
Arth ⊑ ∃Damages.Joint

JuvArth ⊑ Arth⊓ JuvDis

K |= ( John, John) :hasChild? No. ( John, John) is not an answer to q2
K |= ( John,Mary) :hasChild? Yes! ( John,Mary) is an answer to q2
K |= ( John, JRA) :hasChild? No. ( John, John) is not an answer to q2

· · ·
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Querying the Data: Simple Queries (4)
So, we are interested in the following decision problem:

Role Instance Checking:
Given a pair of individual names (a, b), role R and KB K,
an instance is a triple ⟨(a, b),R,K⟩.
The answer is true iff K |= (a, b) :R

Can this problem be reduced to knowledge base consistency?

(T,A) |= (a, b) :R iff (T,A∪ {a :∀R.X, b :¬X}) is inconsistent

where X is a concept name that does not occur in T or A.
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Limitations of Concept-based Queries
Some natural queries cannot be expressed using a concept:

q( y) = ∃x∃z(Affects(x, y)∧ Affects(x, z)∧ hasFriend( y, z))

Set of people ( y) affected by the same disease as a friend?

Query Graph:

x

y

z

Affects

Affects

hasFriend

We can only represent tree-like queries as
concepts
Related to the tree model property of DLs

We need a more expressive query language . . .
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Conjunctive Queries
The language of conjunctive queries:
• Generalises concept-based queries in a natural way

arbitrarily-shaped queries vs. tree-like queries
• Widely used as a query language in databases

Corresponds to Select-Project-Join fragment of relational algebra
Fragment of relational calculus using only ∃ and ∧

• Implemented in most DBMS

We next study the problem of CQ answering over DL knowledge bases

We will not study the problem of answering FOL queries over DL KBs
⇝ Corresponds to general relational calculus queries.
⇝ Leads to an undecidable decision problem.
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Conjunctive Queries – Definition
Conjunctive query

Let V be a set of variables. A term t is a variable from V or an individual
name from I.
A conjunctive query (CQ) q has the form ∃x1 · · · ∃xk (α1 ∧ · · · ∧ αn) where:
• k ≥ 0, n ≥ 1, x1, . . . , xk ∈ V;
• each αi is a concept atom A(t) or a role atom r(t, t′) with A ∈ C, r ∈ R, and

t, t′ terms;
• x1, . . . , xk are called quantified variables;

all other variables in q are called answer variables;
• the arity of q is the number of answer variables;
• q is called Boolean if it has arity zero.

To indicate that the answer variables in a CQ q are x⃗, we often write q(x⃗ )
instead of just q.
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Example Conjunctive Queries
1. Return all pairs of individual names (a,b) such that a is a professor who

supervises student b:
q1(x1, x2) = Professor(x1)∧ supervises(x1, x2)∧ Student(x2).

2. Return all individual names a such that a is a student supervised by some
professor:

q2(x) = ∃y (Professor( y)∧ supervises( y, x)∧ Student(x)).
3. Return all pairs of students supervised by the same professor:

q3(x1, x2) = ∃y (Professor( y)∧ supervises( y, x1)∧ supervises( y, x2)∧
Student(x1)∧ Student(x2)).

4. Return all students supervised by professor smith (an individual name):
q4(x) = supervises(smith, x)∧ Student(x).
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Answers on an Interpretation
We first define query answers on a given interpretation I.
Definition
Let q be a conjunctive query and I an interpretation. We use term(q) to
denote the terms in q.
Amatch of q in I is a mapping π : term(q) → ΔI such that
• π(a) = aI for all a ∈ term(q)∩ I,
• π(t) ∈ AI for all concept atoms A(t) in q, and
• (π(t1),π(t2)) ∈ rI for all role atoms r(t1, t2) in q.
Let x⃗ = x1, . . . , xk be the answer variables in q and a⃗ = a1, . . . ,ak be individual
names from I. We call the match π of q in I an a⃗-match if π(xi) = aI

i
for

1 ≤ i ≤ k.
We say that a⃗ is an answer to q on I if there is an a⃗-match π of q in I.
We use ans(q, I) to denote the set of all answers to q on I.
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Answers on Interpretation I (1)
q2(x):

y

Professor

x

Student

supervises

I:

smith

Professor

jones

Professor

mark

Student

alex

Student

lily

Student

supervises

supervises

supervises

supervises

q2(x) = ∃y(Professor( y)∧ supervises( y, x)∧ Student(x))

There are 3 answers to q2(x) on I: mark, alex, and lily.
Note that a match is a homomorphism from the query to the interpretation
(both viewed as a graphs).
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Answers on Interpretation I (2)
q3(x):

y

Professor

x1

Student

x2

Student

supervises

supervises

I:

smith

Professor

jones

Professor

mark

Student

alex

Student

lily

Student

supervises

supervises

supervises

supervises

q3(x1, x2) = ∃y (Professor( y)∧ supervises( y, x1)∧ supervises( y, x2)∧
Student(x1)∧ Student(x2)).

There are 7 answers to q3(x1, x2) on I, including (mark, alex), (alex, lily),
(lily, alex) and (mark,mark). Note that a match need not be injective.
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Certain Answers
Usually we are interested in answers on a KB, which may have many models.
In this case, so-called certain answers provide a natural semantics.

Definition
Let q be a CQ and K = (T,A) be a KB.
We say that a⃗ is a certain answer to q on K if
• all individual names from a⃗ occur in A, and
• a⃗ ∈ ans(q, I) for every model I of K.
We use cert(q,K) to denote the set of all certain answers to q on K:

cert(q,K) =
⋂
I |=K

ans(q, I)
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Certain Answers: Examples
Consider the ALCI KB K = (T,A):

T = {Student ⊑ ∃supervises–.Professor},
A = {smith : Professor,mark : Student, alex : Student, lily : Student,

(smith,mark) : supervises, (smith, alex) : supervises}.
• q4(x) = supervises(smith, x)∧ Student(x); cert(q4,K) = {mark, alex}: there

are models of K in which smith supervises other students, but only mark
and alex are supervised by smith in allmodels.

• q2(x) = ∃y(Professor( y)∧ supervises( y, x)∧ Student(x));
cert(q2,K) = {mark, alex, lily}: note that lily is included because she is a
student and thus the TBox enforces that in every model of K she has a
supervisor who is a professor.

• q1(x1, x2) = Professor(x1)∧ supervises(x1, x2)∧ Student(x2);
cert(q1,K) = {(smith,mark), (smith, alex)}: lily always has a supervisor,
but there is no supervisor (known by name) on which all models agree.
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Boolean Conjunctive Query Answering
(Arbitrary) CQ answering reduces to Boolean CQ answering.
Given query q of arity n and K = (T,A) in whichm individual names occur:
• Iterate throughmn tuples of arity n.
• For each tuple a⃗ = (a1, . . . ,an) create a Boolean query qa⃗ by replacing the

ith answer variable with ai.
• a⃗ ∈ cert(q,K) iff K |= qa⃗.

Boolean Conjunctive Query Entailment:
An instance is a pair ⟨K,q⟩
with K a KB and q a Boolean CQ.
The answer is true iff I |= q for each I |= K.

This problem is not trivially reducible to knowledge base satisfiability.
It is ExpTime-complete for ALC, the same as satisfiability.
(A proof is beyond the scope of this course.)
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Boolean Conjunctive Query Answering
Many types of query can be reduced to KB satisfiability:
• Concept and role instance queries, e.g., q() = C(a) and q() = r(a,b).
• Fully ground queries, e.g., q() = C(a)∧D(b)∧ r(a,b)

(idea: check each atom independently).
• Forest shaped queries, e.g., q() = ∃x(C(a)∧D(x)∧ r(a, x))

(idea: roll up the tree parts of the query).
Reduction may or may not be possible in general (possible for SHIQ; open
problem for SHOIQ).

Description Logics – Reasoning with Data (Lecture 6)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 22 of 31 Computational
Logic ∴ Group



Conjunctive Query Answering (1)
How to interpret the answer to a Boolean Query? (K = (T,A))

ABox A:
( JRA, John) : Affects

JRA : JuvArth
( JRA,Mary) : Affects

TBox T:
JuvDis ⊑ ∃Affects.Child⊓ ∀Affects.Child
Adult ⊑ ¬Child
Arth ⊑ ∃Damages.Joint

JuvArth ⊑ Arth⊓ JuvDis

q1 = Affects( JRA,Mary)
q2 = Child(Mary)
q3 = Adult(Mary)
q4 = ∃y(Damages( JRA, y)∧Organ( y))

A |= q1 Yes
A ̸|= q2,A ̸|= ¬q2 ???

K |= q2 Yes
A ̸|= q3,A ̸|= ¬q3 ???

K |= ¬q3 No
A ̸|= q4,A ̸|= ¬q4 ???
K ̸|= q4,K ̸|= ¬q4 ???
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Conjunctive Query Answering (2)
A is seen as a FOL knowledge base, but D is seen as a FOL model:

ABox A

( JRA, John) : Affects

JRA : JuvArth
( JRA,Mary) : Affects

Database D

Affects JuvArthritis
JRA John JRA
JRA Mary

q1 = Affects( JRA,Mary)
q2 = Child(Mary)
q3 = Adult(Mary)
q4 = ∃y(Damages( JRA, y)∧Organ( y))

A |= q1 Yes
D |= q1 Yes

A ̸|= q2,A ̸|= ¬q2 ???
D ̸|= q2 No

A ̸|= q3,A ̸|= ¬q3 ???
D ̸|= q3 No

A ̸|= q4,A ̸|= ¬q4 ???
D ̸|= q4 No
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Ontologies vs. Database Systems
Conceptual DB-Schema:
• Typically formulated as an ER or UML diagram (used in DB design)
• Schema leads to a set of FOL-based constraints
• Constraints are used to check conformance of the data
• Constraints are disregarded for query answering
⇝ In databases, query answering is a FOLmodel checking problem.

Description Logic TBoxes:
• Formulated in a Description Logic (fragment of FOL)
• TBox axioms are used to check conformance of the data

The way this is done differs from DBs
• TBox axioms participate in query answering
⇝ In description logics, query answering is a FOL entailment problem.
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KB Consistency: Practicality Issues
• Addition of ABox may greatly exacerbate practicality problems

– No obvious limit to size of data – could be millions or even billions of
individuals

– Tableau algorithm applied to whole ABox
• Optimisations can ameliorate but not eliminate the problem
• Can exploit decomposition of an ABox:

– A can be decomposed into a set of disjoint connected components
{A1, . . . ,An} such that:

A = A1 ∪ . . . ∪An

∀1≤i<j≤n ind(Ai)∩ ind(Aj) = ∅

where ind(Ai) is the set of individuals (constants) occurring in Ai

• An ALC KB (T,A) is consistent iff (T,Ai) is consistent for each Ai in a
decomposition {A1, . . . ,An} of A
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ABox Decomposition: Example
JRA : JuvArth

( JRA,Mary) : Affects
( John,Mary) :hasChild

(Paul,Miranda) :hasChild
Paul : Adult

JuvDis ⊑ ∃Affects.Child⊓ ∀Affects.Child
∃hasChild.⊤ ⊑ Adult

Adult ⊑ ¬Child
Arth ⊑ ∃Damages.Joint

JuvArth ⊑ Arth⊓ JuvDis

Perform separate consistency tests on the disjoint connected components:

JRA

JuvArth

John

Maryw

Affects

hasChild

Damages

Paul

Adult

Miranda

hasChild
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Query Answering: Practicality Issues
• Recall our example query

q( y) = ∃x∃z(Affects(x, y)∧ Affects(x, z)∧ hasFriend( y, z))

• To answer this query we have to:
– check for each individual a occurring in A if (T,A) |= q[ y/a], where q[ y/a] is the

Boolean CQ

q() = ∃x∃z(Affects(x,a)∧ Affects(x, z)∧ hasFriend(a, z))

– checking (T,A) |= q[ y/a] involves performing (possibly many) consistency tests
– each test could be very costly

• And what if we change the query to

q(x, y, z) = Affects(x, y)∧ Affects(x, z)∧ hasFriend( y, z)?

• In general, there are nm “candidate” answer tuples, where n is the
number of individuals occurring in A andm the arity of the query
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Optimised Query Answering
Many optimisations are possible, for example:
• Exploit the fact that we cannot entail ABox roles in ALC, that is:

(T,A) |= R(a,b) iff R(a,b) ∈ A

• Only check candidate tuples with relevant relational structure
• So for

q( y, z) = ∃x ( JuvArth(x)∧ Affects(x, y)∧ hasFriend( y, z))
only check tuples (a,b) such that

hasFriend(a,b) ∈ A

and for these we only need to check the Boolean CQ:

∃x ( JuvArth(x)∧ Affects(x,a)∧ Affects(x,b))
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Conflicting Requirements
Ontology-based data access applications require:
1. Very expressive ontology languages

As large fragment of FOL as possible
2. Powerful query languages

As large fragment of SQL as possible
3. Efficient query answering algorithms

Low complexity, easy to optimise

The requirements are in conflict!

⇝We need to make compromises.
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Conclusion

• DL KB consistency can be decided using tableau algorithms
⇝ Idea: Make implicit inconsistencies explicit/construct model

• Query answering for DL KBs is understood as FOL entailment
• Conjunctive Queries (CQs) constitute natural query language
• CQs induce answers on a single interpretation, and certain answers on a KB
• Boolean CQ Entailment is not trivially reducible to KB consistency
• In contrast, CQ Entailment in databases is understood as FOLmodel

checking
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