Concurrency Theory

Lecture 10: The π -Calculus

Stephan Mennicke Knowledge-Based Systems Group July 4-11, 2023

The π -Calculus – Syntax

Let \mathcal{N} be a set of names.

For names $x, y, z \in \mathcal{N}$, a *prefix* is an expression π of the form

$$\pi ::= \overline{x}\langle y \rangle \mid x(z) \mid [x=y]\pi \mid \tau.$$

The set of all process expressions of \mathcal{P}^{π} (the π -calculus) is defined by the following grammar:

$$P ::= \sum_{i \in I} \pi_i . P_i \mid P_1 \mid P_2 \mid (\nu a) P \mid !P$$

The π -Calculus – Structural Congruence

 $\mathit{Structural\ congruence} \equiv \mathsf{is\ the\ smallest\ process\ congruence}$ on \mathcal{P}^π , such that

- 1. $[x = x]\pi . P \equiv \pi . P$;
- 2. $P \equiv_{\alpha} Q$ (α -conversion) implies $P \equiv Q$;
- 3. $P + \mathbf{0} \equiv P$, $P + Q \equiv Q + P$, $P + (Q + R) \equiv (P + Q) + R$;
- **4.** $P \mid \mathbf{0} \equiv P$, $P \mid Q \equiv Q \mid P$, $P \mid (Q \mid R) \equiv (P \mid Q) \mid R$;
- 5. $(\nu x)(P \mid Q) \equiv P \mid (\nu x)Q$ if $x \notin \text{fn}(P)$, $(\nu x)\mathbf{0} \equiv \mathbf{0}$, $(\nu x)(\nu y)P \equiv (\nu y)(\nu x)P$;
- 6. $!P \equiv P|!P$.

Note: Case 2, α -conversion, is often assumed as the default case, meaning that processes P and Q are not distinguished if $P \equiv_{\alpha} Q$ holds. We refrain from doing so for the procedure of this class and keep α -conversion inside structural congruence.

The π -Calculus – Reduction Semantics

The reduction relation for \mathcal{P}^{π} is the smallest relation $\longrightarrow \subseteq \mathcal{P}^{\pi} \times \mathcal{P}^{\pi}$, satisfying the following rules:

$$(\text{tau}) \xrightarrow{\tau.P \longrightarrow P} (\text{struct}) \xrightarrow{P' \equiv P} \xrightarrow{P \longrightarrow Q} \xrightarrow{Q \equiv Q'} \\ (\text{react}) \xrightarrow{\overline{(\overline{x}\langle y\rangle.P_1 + M) \mid (x(z).P_2 + N) \longrightarrow P_1 \mid P_2\{y/z\}}} \\ (\text{par}) \xrightarrow{P \longrightarrow P'} \\ P \mid Q \longrightarrow P' \mid Q} (\text{res}) \xrightarrow{P \longrightarrow P'} \\ (\nu x) P \longrightarrow (\nu x) P'$$

Mobility – Scope Extrusion

$$Q = (\nu z)(\overline{x}\langle z \rangle.P \mid R) \mid x(y).Q$$

with $z \notin \operatorname{fn}(P) \cup \operatorname{fn}(Q)$.

Then $Q \longrightarrow P \mid (\nu z)(R \mid Q\{z/y\})$ since

- 1. $(\overline{x}\langle z\rangle.P) \mid (x(y).Q) \longrightarrow P \mid Q\{z/y\}$ due to (react) and (struct);
- 2. $(\overline{x}\langle z\rangle.P) \mid (x(y).Q) \mid R \longrightarrow P \mid Q\{z/y\} \mid R \text{ due to 1 and (par)};$
- 3. $\overline{x}\langle z\rangle.P\mid R\mid x(y).Q\longrightarrow P\mid R\mid Q\{z/y\}$ due to 2 and (struct);
- 4. $(\nu z)(\overline{x}\langle z\rangle.P \mid R \mid x(y).Q) \longrightarrow (\nu z)(P \mid R \mid Q\{z/y\})$ due to 3 and (res);
- 5. $(\nu z)(\overline{x}\langle z\rangle.P\mid R)\mid x(y).Q\longrightarrow P\mid (\nu z)(R\mid Q\{z/y\})$ due to 4 and (struct).

Such a behavior is also called *scope extrusion*.

The Polyadic π -Calculus

Every name $n \in \mathcal{N}$ has an arity $ar(n) \in \mathbb{N}$. A polyadic input prefix is an expression $x(y_1, \ldots, y_k)$ where ar(x) = k. A polyadic output prefix is an expression $\overline{x}\langle z_1, \ldots, z_k \rangle$ where ar(x) = k.

The polyadic π -calculus $\mathcal{P}^{\pi}_{\text{poly}}$ is the π -calculus using polyadic input/output prefixes. The reduction semantics is lifted to account for polyadic reactions.

Encoding $\mathcal{P}_{\text{poly}}^{\pi} \mapsto \mathcal{P}^{\pi}$:

- 1. $x(z_1,\ldots,z_{ar(x)}).P\mapsto x(z_1).x(z_2).\cdots.x(z_{ar(x)}).P'$ and $\overline{x}(y_1,\ldots,y_{ar(x)}).Q\mapsto \overline{x}\langle y_1\rangle.\cdots.\overline{x}\langle y_{ar(x)}\rangle.Q'$ (where P' and Q' are likewise translated processes)
- 2. $x(z_1, \ldots, z_{ar(x)}).P \mapsto x(w).w(z_1).\cdots.w(z_{ar(x)}).Q'$ and $\overline{x}\langle y_1, \ldots, y_{ar(x)}\rangle \mapsto (\nu a)(\overline{x}(a).\overline{a}\langle y_1\rangle.\cdots.\overline{a}\langle y_{ar(x)}\rangle.Q')$

π -Calculus with Process Calls

Additional processes to the ones in $\mathcal{P}^{\pi}_{\text{poly}}$ are process constants $A\langle \vec{x} \rangle$. Such a process constant comes with a defining equation $A(\vec{y}) := Q_A$, for which

$$Q_A = \cdots A \langle \vec{u} \rangle \cdots A \langle \vec{v} \rangle \cdots$$

and A may be called within a process

$$P = \cdots A \langle \vec{w} \rangle \cdots A \langle \vec{z} \rangle \cdots$$

Encoding Process Calls in $\mathcal{P}_{\text{poly}}^{\pi}$:

- 1. invent new name $call_A$ for each process constant A;
- 2. in every process R, replace $A\langle \vec{w} \rangle$ by $\overline{call_A}$, yielding \widehat{R} ;
- 3. replace the definition of P by

Visible Actions

The set of π -calculus actions is given by

$$\pi ::= \overline{x}y \mid xy \mid \overline{x}(z) \mid \tau$$

where $x, y, z \in \mathcal{N}$.

Free Output: represented by action $\pi = \overline{x}y$, where x is the so-called *subject of* π

(subj
$$(\pi) = x$$
), y its object (obj $(\pi) = y$), $fn(\pi) = \{x, y\}$, $bn(\pi) = \emptyset$,

$$\mathbf{n}(\pi) = \{x, y\}, \ \pi\sigma = \overline{x\sigma}y\sigma.$$

Input: $\pi = xy$, where $\mathrm{subj}(\pi) = x$, $\mathrm{obj}(\pi) = y$, $\mathrm{fn}(\pi) = \{x,y\}$, $\mathrm{bn}(\pi) = \emptyset$, $\mathrm{n}(\pi) = \{x,y\}$, and $\pi\sigma = x\sigma y\sigma$.

Bound Output:
$$\pi=\overline{x}(z)$$
, where $\mathrm{subj}(\pi)=x$, $\mathrm{obj}(\pi)=z$, $\mathrm{fn}(\pi)=\{x\}$, $\mathrm{bn}(\pi)=\{z\}$, $\mathrm{n}(\pi)=\{x,y\}$, and $\pi\sigma=\overline{x}\overline{\sigma}(z)$.

Let us denote the set of all π -Calculus actions by \mathcal{A}^{π} .

LTS Semantics of the π -Calculus

 \mathcal{P}^{π} defines an LTS $(\mathcal{P}^{\pi}, \mathcal{A}^{\pi}, \rightarrow)$ where \rightarrow is the smallest transition relation, satisfying the following rules.

$$(\text{out}) \xrightarrow{\overline{x} \langle y \rangle. P \xrightarrow{\overline{x} y} P} \qquad (\text{inp}) \xrightarrow{x(z). P \xrightarrow{xy} P\{y/z\}} \qquad (\text{tau}) \xrightarrow{\tau. P \xrightarrow{\tau} P} P$$

$$(\text{mat}) \xrightarrow{\pi. P \xrightarrow{\alpha} P'} \qquad (\text{sum-I}) \xrightarrow{P \xrightarrow{\alpha} P'} P' \xrightarrow{P + Q \xrightarrow{\alpha} P'} P' \xrightarrow{P + Q \xrightarrow{\alpha} P'} P' \xrightarrow{P + Q \xrightarrow{\alpha} Q'} P' \xrightarrow{P + Q \xrightarrow{\alpha} Q'} P' \xrightarrow{P + Q \xrightarrow{\alpha} P' | Q} P' \xrightarrow{P + Q \xrightarrow{\alpha} P' | Q$$

LTS Semantics of the π -Calculus (cont'd)

Properties of LTS

Theorem 1

The LTS $(\mathcal{P}^{\pi}, \mathcal{A}^{\pi}, \rightarrow)$ is image-finite.

The following result is known as the *Harmony Lemma*:

Theorem 2

(1) $P \equiv \xrightarrow{\alpha} P'$ implies $P \xrightarrow{\alpha} \equiv P'$. (2) $P \longrightarrow P'$ if, and only if, $P \xrightarrow{\tau} \equiv P'$.

Proof Structure: For (1), we show that $Q \equiv R$ and $Q \xrightarrow{\alpha} Q'$ implies there is an R' with $R \xrightarrow{\alpha} R'$ and $Q' \equiv R'$.

For (2) and (\Rightarrow), $P \longrightarrow P'$ implies a standard form. For (2) and (\Leftarrow), argue by the inference rules for $P \xrightarrow{\tau} P'$ that $P \longrightarrow P'$.

Observations in the π -Calculus

Definition 3

For each name or co-name μ , define the observability predicate \downarrow_{μ} by

- 1. $P \downarrow_x$ if $P \xrightarrow{xy}$ for some $u \in \mathcal{N}$:
- 2. $P \downarrow_{\overline{x}} \text{ if } P \xrightarrow{\overline{x}y} \text{ or } P \xrightarrow{\overline{x}(z)} \text{ for some } u, z \in \mathcal{N}$.

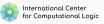
Definition 4

Theorem 5

Strong barbed bisimilarity is the largest symmetric relation \sim^{\bullet} , such that $P \sim^{\bullet} Q$ implies

- 1. $P \downarrow_{\mu}$ implies $Q \downarrow_{\mu}$ and
- 2. $P \xrightarrow{\tau} P'$ implies $Q \xrightarrow{\tau} \sim^{\bullet} P'$.

Strong barbed congruence is the largest relation $\sim^c \subset \sim^{\bullet}$, such that $P \sim^c Q$ implies



The Asynchronous π -Calculus

The asynchronous π -calculus \mathcal{P}_a^{π} is the following fragment of \mathcal{P}^{π} :

$$P ::= \overline{x}\langle y \rangle. \mathbf{0} \mid M \mid P \mid P' \mid (\nu z)P \mid !P$$

$$M ::= \mathbf{0} \mid x(z).P \mid \tau.P \mid M+M'$$

Definition 6

Asynchronous barbed bisimilarity is the largest symmetric process relation \sim_a^{\bullet} , such that $P \sim_a^{\bullet} Q$ implies

- 1. $P \downarrow_{\overline{x}}$ implies $Q \Downarrow_{\overline{x}}$ and
- 2. $P \xrightarrow{\tau} P'$ implies $Q \Rightarrow \sim_a^{\bullet} P'$.

