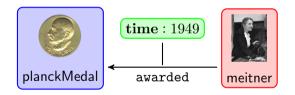
Attributed Description Logics: Reasoning on Knowledge Graphs

Markus Krötzsch¹ Maximilian Marx¹ Ana Ozaki² Veronika Thost³

¹Knowledge-Based Systems Group, TU Dresden

²KRDB Research Centre for Knowledge and Data, Free University of Bolzano

³MIT-IBM Watson AI Lab, IBM Research


27th International Joint Conference on Artificial Intelligence

Full paper: https://iccl.inf.tu-dresden.de/web/Inproceedings3045/en

Knowledge Graphs

Wikidata: the free and open Knowledge Graph of the Wikimedia Foundation

Knowledge Graphs

Wikidata: the free and open Knowledge Graph of the Wikimedia Foundation

Knowledge Graphs

Wikidata: the free and open Knowledge Graph of the Wikimedia Foundation

awarded(meitner, planckMedal)@[time : 1949] awarded(lawrence, fermiAward)@[time : 1957, for : cyclotron]

DL_@: Reasoning on Knowledge Graphs

Description Logics:

- decidable fragments of First-Order Logic
- variable-free syntax
- theoretical foundation of the Web Ontology Language (OWL)

Description Logics:

- decidable fragments of First-Order Logic
- variable-free syntax
- theoretical foundation of the Web Ontology Language (OWL)

Example

"Everybody who has received an award should be known for something"

Description Logics:

- decidable fragments of First-Order Logic
- variable-free syntax
- theoretical foundation of the Web Ontology Language (OWL)

Example

"Everybody who has received an award should be known for something"

 $\exists awarded. Award \sqsubseteq \exists knownFor. \top$

Description Logics:

- decidable fragments of First-Order Logic
- variable-free syntax
- theoretical foundation of the Web Ontology Language (OWL)

Example

"Everybody who has received an award should be known for something"

 $\exists awarded. Award \sqsubseteq \exists knownFor. \top$ Award(planckMedal)

Description Logics:

- decidable fragments of First-Order Logic
- variable-free syntax
- theoretical foundation of the Web Ontology Language (OWL)

Example

"Everybody who has received an award should be known for something"

 $\exists awarded. Award \sqsubseteq \exists knownFor. \top$ Award(planckMedal)

But what about the annotations?

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Example

"Everybody who has received an award should be known for something, keeping the same annotation"

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Example

"Everybody who has received an award should be known for something, keeping the same annotation"

 $\exists awarded@S. Award \sqsubseteq \exists knownFor@S. \top$

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Example

"Everybody who has received an award should be known for something, with a new annotation that has the same \mathbf{for} value"

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Example

"Everybody who has received an award should be known for something, with a new annotation that has the same \mathbf{for} value"

 $\exists awarded@S. Award \sqsubseteq \exists knownFor@[for : S.for]$

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Example

"Everybody who has received an award in 1949 should be known for something, with a new annotation that has the same values for \mathbf{for} "

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Example

"Everybody who has received an award in 1949 should be known for something, with a new annotation that has the same values for \mathbf{for} "

```
S: [\texttt{time}: 1949] (\exists \texttt{awarded} @S. \mathsf{Award} \sqsubseteq \exists \texttt{knownFor} @[\texttt{for}: S.\texttt{for}])
```

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Example

"Everybody who has received an award in 1949 should be known for something, with a new annotation that has the same values for ${\bf for}$ "

```
S: [\texttt{time}: 1949] (\exists \texttt{awarded} @S. \mathsf{Award} \sqsubseteq \exists \texttt{knownFor} @[\texttt{for}: S.\texttt{for}])
```

Reasoning:

- Ground all axioms
- Treat all annotated concepts and annotated roles as new names

Attributed Description Logics:

- Add annotations to concept names and role names
- Allow variables as placeholders for annotations

Example

"Everybody who has received an award in 1949 should be known for something, with a new annotation that has the same values for ${\bf for}$ "

```
S: [time: 1949] (\exists awarded@S. Award \sqsubseteq \exists knownFor@[for: S.for])
```

Reasoning:

- Ground all axioms
- Treat all annotated concepts and annotated roles as new names
- Add auxiliary axioms that handle inclusions of annotations

Complexities

Theorem

Combined complexity of satisfiability for attributed Knowledge Bases					
non-attributed		attributed			
	DL	ground	restricted	unrestricted	
P-complete	$\mathcal{ELH}_{@}$	P-complete	P-complete ¹	Exp- <i>complete</i>	
Exp- <i>complete</i>	$\mathcal{ALCH}_{@}$	Exp- <i>complete</i>	Exp- <i>complete</i>	2Exp- <i>complete</i>	
N2Exp- <i>complete</i>	$\mathcal{SROIQ}_{@}$	N2Exp-complete	N2Exp- <i>complete</i>	N2Exp- <i>complete</i>	

 \sim . . 1

Complexities

Theorem

	Combined complexity of satisfiability for attributed Knowledge Bases					
1	non-attributed		attributed			
		DL	ground	restricted	unrestricted	
	P-complete	$\mathcal{ELH}_{@}$	P-complete	P-complete ¹	Exp-complete	
	Exp- <i>complete</i>	$\mathcal{ALCH}_{@}$	Exp- <i>complete</i>	Exp- <i>complete</i>	2Exp- <i>complete</i>	
N2	Exp- <i>complete</i>	$\mathcal{SROIQ}_{@}$	N2Exp- <i>complete</i>	N2Exp- <i>complete</i>	N2Exp- <i>complete</i>	

..

Grounding is exponential in the size of the Knowledge Base

Complexities

Theorem

	Combined complexity of satisfiability for attributed Knowledge Bases					
	non-attributed		attributed			
		DL	ground	restricted	unrestricted	
	P-complete	$\mathcal{ELH}_{@}$	P-complete	P-complete ¹	Exp- <i>complete</i>	
	Exp-complete	$\mathcal{ALCH}_{@}$	Exp- <i>complete</i>	Exp- <i>complete</i>	2Exp- <i>complete</i>	
N	2Exp- <i>complete</i>	$\mathcal{SROIQ}_{@}$	N2Exp- <i>complete</i>	N2Exp- <i>complete</i>	N2Exp- <i>complete</i>	

-

- Grounding is exponential in the size of the Knowledge Base
- Three syntactic restrictions ensure polynomial groundings
- ¹: Except when violating one (specific) condition, where we show PSpace-hardness

Conclusion & Outlook

Conclusion:

- First-class support for annotations in Knowledge Bases
- Reasoning via translation into standard DLs
- \blacktriangleright \rightsquigarrow Existing tools can be used for attributed reasoning

Outlook:

- Further Extensions push DLs even closer to rule languages
- ▶ ~→ Focus on adapting rules for Knowledge Graphs?
- MARPL [Krötzsch, M., Thost IJCAI'17] is "Attributed Datalog"
- ► ~ · · · Attributed Existential Rules'?