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Abstract. If an agent’s belief in a proposition is represented by im-
precise probabilities, i.e. intervals of probability values, a phenomenon
called dilation can occur, where updating the agent’s belief with a new
observation can only widen the probability interval, thus making the
agent more uncertain, regardless of the observation acquired. Similar to
standard updating, dilation can also occur in the context of imprecise
opinion pooling, where the imprecise beliefs of multiple agents are aggre-
gated. In this work, we provide the first formal investigation of dilation
and its counterpart, contraction, in the context of imprecise opinion pool-
ing. To this end, we use a recently defined voting rule, Voting for Bins
(VfB), as a means to handle dilation and contraction, consistent with
intuitions about the quality of additional opinions. VfB, inspired by the
Condorcet Jury Theorem (CJT), is extended to account for correlation
by an opinion leader. This model is further generalized to account for
average correlation.
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1 Introduction

Combining the probabilistic beliefs of multiple agents regarding a particular
event is commonly known as probabilistic opinion pooling. In contexts where
events entail significant uncertainty, such as forecasting the occurrence of criti-
cal climate tipping points [14], it is frequently presumed that the agents’ beliefs
are most accurately captured by imprecise probabilities. These imprecise proba-
bilities denote intervals of probability values assigned to an event.

Aggregating probabilistic beliefs across a group of agents, and representing
beliefs using imprecise probabilities, are central topics in the field of multi-agent
systems. Recent studies on pooling explore the interplay between direct eviden-
tial updating and probability aggregation in multi-agent systems [16], develop
a Bayesian approach to probability pooling, employing copulas to capture de-
pendencies among agents [15], or delve into consensus formation for multi-agent
systems where agents’ beliefs are both vague and uncertain [6]. Additionally,
researchers have demonstrated the utility of imprecise probabilities in model-
checking multi-agent systems [23] and in defining a decidable multi-agent logic
[7]. Furthermore, there is emerging interest in imprecise pooling itself within the
context of multi-agent systems [16].
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Arguably, the most significant concern associated with imprecise probabili-
ties, also referred to as "the specter [that] is haunting the theory of imprecise
probabilities [is] the specter of dilation" [21]. Intuitively, dilation occurs when the
acquisition of a new observation unavoidably leads to an increase in uncertainty.
Within the framework of imprecise probabilities, this implies that the interval
representing an agent’s belief necessarily expands when updating that belief with
a new observation. This phenomenon stands in stark contrast to a fundamental
principle in precise probability theory, namely, that it is always advantageous
for an agent to seek free evidence [4, 10]. Departing from this principle, dilation
is sometimes regarded as disconcerting [11] and serves as grounds for general
objections against the imprecise framework as a whole [24].

While dilation has predominantly been examined within the realm of up-
dating imprecise beliefs held by individual agents, it can also manifest in the
context of imprecise opinion pooling. In this regard, it has been noted, albeit
not explicitly termed as "dilation", that when incorporating the beliefs of ad-
ditional agents into an existing group, the resulting aggregate—represented by
a probability interval—may only broaden, thereby increasing uncertainty, under
certain pooling functions [17].

To deal with dilation in this context, we resort to a recently developed voting
method inspired by the Condorcet Jury Theorem and known as Voting for Bins
[12], which operates on imprecise probabilities and can serve as an imprecise
pooling function. Notably, it distinguishes itself through its close correlation
between the overall quality of a group’s expertise and the precision, or width, of
the aggregated belief.

Contribution. In this paper, our primary objective is twofold: Firstly, we
develop the first formal treatment of dilation within the realm of imprecise prob-
abilistic pooling. Secondly, we harness the Voting for Bins framework to tame
dilation in that we not only delineate precise conditions under which dilation is
anticipated to occur but also derive a concrete bound that enables the compu-
tation of the extent of dilation based on estimations of the group’s expertise.

To achieve this aim, we extend an existing generalization of the Condorcet
Jury Theorem, which models dependence among agents by influence through an
Opinion Leader (OL), to encompass average OL influence.

2 Preliminaries

In this section, we introduce the basic terminology necessary to treat dilation in
our framework, and describe the assumptions necessary for our analysis. Because
we study dilation within the framework of Voting for Bins, an imprecise pooling
method rooted in the Condorcet Jury Theorem (CJT), our discussion requires
incorporating elements from five different frameworks: (i) imprecise beliefs, (ii)
imprecise opinion pooling, (iii) the CJT, (iv) Voting for Bins, and (v) dilation.

Imprecise Beliefs. The conventional approach to representing an agent’s prob-
abilistic belief involves employing a single probability function, denoted as P,
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which adheres to the Kolmogorov axioms. This function maps events to real
numbers between 0 and 1, reflecting the agent’s confidence in the truth of those
propositions: P : A → R. Here, A signifies an algebra of events over the event
space Ω, defined as a set of subsets of Ω that is closed under complement and
finite unions [22]. The value assigned to an event represents the agent’s degree
of belief in that proposition [14].

However, for certain applications, it may be unrealistic to expect agents to
maintain precise degrees of belief. Consider, for instance, the event predicting
a global sea level rise of at least 1.5 meters by the year 2100 relative to the
2000 level. To address such events characterized by significant uncertainty, the
standard representation has been extended to encompass what are known as
Imprecise Probabilities:

Definition 1 (Imprecise Probabilities). Imprecise probabilities are sets of
probability functions [3].

We denote a specific set of probability functions by P. To represent the set of
values P assigns to a specific proposition more compactly, we define the imprecise
degree of belief in an event as follows:

Definition 2 (Imprecise Degree of Belief). An agent’s imprecise degree of
belief in a proposition A is represented by a function, P(A), where P(A) =
{P(A) : P ∈ P} [2].

Throughout this work, and as is common in the imprecise pooling literature,
we presume the imprecise degree of belief to be convex. In essence, this implies
that if the set of probability functions assigns differing values to an event, all
values between those are also within the imprecise degree of belief. Consequently,
the belief in a proposition is denoted by an interval of values of the form [a, b],
where a, b ∈ [0, 1], with a denoted as the lower probability of the interval and b
as the upper probability.

Imprecise Pooling. An imprecise pooling function, denoted as F , operates by
taking as input a profile comprising sets of probability functions, wherein each
agent is represented by a set of probability functions, denoted as (P1, ...,Pn).
These sets collectively form a set of sets of probability functions. Subsequently,
the pooling function maps this profile to a single set of probability functions,
known as the aggregate or pool of F . When profiles are pooled event-wise, i.e.
with respect to a given proposition A, the input to F consists of sets of imprecise
degrees of belief, i.e., intervals of probability values, with the output being a
single such interval.

A plethora of pooling functions have been defined in the literature. In this
work, we exclusively introduce convex pooling and pooling by intersection from
among the standard pooling methods. These two methods will serve as our cor-
ner cases for our analysis of dilation. Convex pooling, in particular, has gar-
nered recent support as a superior pooling method compared to alternative ap-
proaches, either due to its adherence to more desirable pooling properties [19] or



4 Jonas Karge

its ability to prevent group members from making regretful bets [8]. To define
these two pooling functions, and throughout this paper, we define a finite set
N = {a1, . . . , an} consisting of n agents.

Let H denote the convex hull of a set, representing the smallest set that
contains the original set and all elements in between. Convex pooling is defined
as follows [19]:

Definition 3 (Convex Pooling). F(P1, ...,Pn)(A) = H(
⋃n

i=1 Pi(A)).

In essence, for a given proposition A, convex pooling takes as input n impre-
cise degrees of belief and yields a single interval. The lower probability of the
interval corresponds to the smallest endpoint from the input profile, while the
upper probability corresponds to the greatest endpoint from the profile. Pooling
by Intersection, on the other hand, produces as output interval precisely the set
of values that exists in all input beliefs, which could potentially be empty and
is defined as [19]:

Definition 4 (Pooling by Intersection). F(P1, ...,Pn)(A) =
⋂n

i=1 Pi(A).

The Condorcet Jury Theorem. As a foundational theorem in voting theory, the
Condorcet Jury Theorem (CJT) offers probabilistic assurances for determining
the presumed correct alternative among a set of alternatives under specific con-
ditions. Originally, the CJT assumes agents to be equally competent (homogene-
ity), to be more likely to vote for the correct alternative than for a competitor
(reliability), to not influence one another, or to be influenced by an external
factor, in the voting process (independence), and to choose exactly one (com-
pleteness) from two alternatives only (dichotomy) under majority voting. With
that, the classical CJT [5] states the following.

Theorem 1. For odd-numbered, homogeneous groups of independent and reli-
able agents in a dichotomic voting setting, the probability that majority voting
identifies the correct alternative (1) increases monotonically with the number of
agents and (2) converges to 1 as the number of agents goes to infinity.

Since most real-world applications cannot guarantee adherence to these ideal
conditions, it is essential in CJT research to seek generalizations that maintain
the asymptotic part under weakened assumptions. However, the monotonic in-
crease fails to hold as soon as heterogeneously competent agents are allowed
[18].

Recently, a novel generalization of the CJT has been proposed that success-
fully relaxes all original assumptions simultaneously [13]. In this generalization,
agents are permitted to vote for any finite number of alternatives while accom-
modating heterogeneous competence levels and a degree of correlation among
the electorate, which is modeled through an opinion leader (OL), the classical
dependence model in the CJT literature [1]. The opinion leader (OL) serves as an
abstract external influence in the voting process, without actively participating
in it. Instead, the OL approves or disapproves presented alternatives based on
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her own competency p̂, representing the probability of approving the correct al-
ternative. Subsequently, her choice influences the agents’ votes: each agent votes
according to the OL’s preference rather than their own "inner voice" with a
certain probability π. In the standard OL model, this probability π is identical
across all agents, i.e. it is uniformly distributed. For convenience, we refer to this
case as uniform π. In this paper, we harness this specific generalization of the
CJT to address dilation within the Voting for Bins framework.

For this purpose, we now introduce the underlying voting and probabilistic
framework, following the presentation by Karge et al. (2024) [13]. Let W =
{ω1, . . . , ωm} denote a finite set of m alternatives. With the previously defined
set of agents, N , we can then represent a single approval voting (instance) by V ⊆
N×W where (ai, ωj) ∈ V means that agent ai approves choice ωj . Subsequently,
we define the score #V ω of some choice ω ∈ W as: #V ω = |{ai ∈ Nn | (ai, ω) ∈
V }|. Finally, the winner of V is defined to be the alternative that receives a
strictly higher score than any alternative: #V ω > maxω′∈W\{ω} #V ω′.

The described voting scenario is modeled by a random process that gener-
ates the correct alternative, ω∗, the OL’s choice as well as V and is govenerd
by a joint probability distribution P over the Bernoulli (i.e., {0, 1}-valued) ran-
dom variables Xω1

∗ , ..., Xωm
∗ , Xω1

o , ..., Xωm
o as well as Xω1

i , ..., Xωm
i for all agents

1, ..., i, ..., n and all alternatives 1, ..., j, ...,m such that the values taken by these
random variables represent the outcome of a voting event as follows:

– X
ωj
∗ is 1 if ωj is the true world state (i.e., ωj = ω∗), else 0,

– X
ωj
o is 1 if the OL approves ωj , and 0 otherwise,

– X
ωj

i represents the private signal of the ith agent regarding his approval of
the jth world state: it is 1 if ai privately approves ωj and otherwise 0.

Given this joint distribution, we introduce the random variable V
ωj

i repre-
senting the final outcome of an agent’s vote, i.e. after the OL potentially exerted
influence. According to our assumption, V ωj

i is the probabilistic mixture of Xωj
o

with probability π and of Xωj

i with probability 1− π. From this, we obtain for
any x ∈ {0, 1} that

P(V
ωj

i = x) = πP(Xωj
o = x) + (1− π)P(X

ωj

i = x).

We denote by pω1 , . . . , p
ω
n the Bernoulli parameters of the “inner voice” random

variables Xω
1 , . . . , X

ω
n , for all ω ∈ W, that is, pωj

i = P(X
ωj

i = 1). In a similar
vein, for every ω ∈ W, we let p̂ω1 , . . . , p̂ωm denote the Bernoulli parameters
of the random variables Xω1

o , . . . , Xωm
o . Whether the OL approves the correct

alternative, i.e. whether Xω∗
o = 1, is governed by the parameter, p̂ = P(Xω∗

o = 1).
For convenience, the choice of the correct alternative, or correct world state,
being unknown to the agents, will be abbreviated by [ω∗ = ωj ].

In the following, we define the two central assumptions regarding the joint
distribution. Conditioning upon the actual world state, we may define private
agent approval independence as follows:
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Definition 5. A joint distribution satisfies private agent approval independence
if, conditioned on the actual world state, the private decision to approve any
given ωj is made independently across all agents, i.e., for any ω, ωj ∈ W and
any sequence v1, ..., vn of values from {0, 1} the following holds:

P
( n∧

i=1

X
ωj

i = vi | [ω∗=ω]
)
=

n∏
i=1

P
(
X

ωj

i = vi | [ω∗=ω]
)
.

A further central assumption deals with the “internal competency” pωk of the
kth agent regarding his capacity to identify the true world state among any num-
ber of alternatives if no influence is exerted. This assumption can be formalized
as follows, where we denote the average over these “internal competencies” with

p̄ω = 1
n

n∑
k=1

pωk .

Definition 6. A joint probability distribution satisfies ∆p-group reliability for
some ∆p > 0, if the probability, with respect to the agent’s inner voice, to approve
the true world state, averaged across all agents, is at least by ∆p higher than the
averaged probability for approving any other state, i.e., for every n and ω† ∈
W \ {ω∗} holds p̄ω∗ ≥ ∆p+ p̄ω† .

From these assumptions, an implicit bound on the number of agents necessary
to achieve a minimal success probability, Pmin, can be derived [13]. This bound
will later be utilized to derive a bound on the achievable precision in pooling by
Voting for Bins. Intuitively, throughout the paper, we interpret an increase in
∆p as an increase in average competency, and an increase in π as an increase in
correlation among the agents.

Theorem 2. Consider an approval voting setting with m > 1 alternatives, sat-
isfying private agent approval independence and ∆p-group reliability for some
∆p ∈ (0, 1], influenced by an opinion leader with π ∈ [0, ∆p

∆p+1 ) and p̂ ∈ [0, 1].
Then, given a probability Pmin < 1, it is guaranteed that the success probability of
the approval voting process is greater than Pmin if the number n of agents obeys
the following condition

p̂e−
n
2 ∆p2(1−π)2 + (1−p̂)e−

n
2 (∆p(1−π)−π)2 ≤ 1− Pmin

m−1
.

Voting for Bins. Voting for Bins (VfB), a recently introduced voting method
[12], can also be viewed as an imprecise pooling function. The overarching idea is
to incorporate the imprecise beliefs of a given number of agents and to interpret
the set of alternatives, within the framework of the CJT as described above, as
partitions of the unit interval called bins. This approach allows to exploit the
probabilistic guarantees provided by the CJT. An underlying crucial assumption
is that for a given proposition A about which beliefs are to be pooled, there ex-
ists a presumed true probability p∗ for A to occur, such that p∗ falls into exactly
one of these bins. That particular bin then represents the correct alternative, or
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ground truth, in the voting process. The number of bins directly correlates with
the precision achievable in the voting process, thereby translating straightfor-
wardly into the precision attainable in opinion pooling by VfB. To the best of
our knowledge, VfB is the only imprecise pooling function where the pooled be-
lief is directly dependent on parameters that quantify the quality of the opinions
to be aggregated. This makes it an ideal pooling mechanism for taming dilation.
Consequently, it is crucial to formally define the set of bins and elucidate how
agents vote based on their imprecise beliefs, following the exposition by Karge
(2023) [12].

Consider an approval voting setting as described in Theorem 2. In VfB, each
alternative is interpreted as a subinterval of the unit interval of equal length,
where each subinterval is referred to as a bin:

Definition 7 (Bin). Each ωk ∈ W = {ω1, . . . , ωm} represents a subinterval
(bin) of the form [a1, a2), obtained by partitioning the unit interval ensuring
that each ωk has equal Lebesgue measure. The final subinterval is of the form
[am, 1].

Note that the Lebesgue measure is the standard method for measuring the
length of an interval: For any closed [a, b], open (a, b), or half-open (a, b] or [a, b)
interval, its Lebesgue measure is defined as the length l = b − a. Moreover, it’s
important to note that the number of bins in the voting process depends on the
desired precision. As the winner of the approval vote is a single bin, the smaller
its Lebesgue measure—indicating more bins—the more precise the outcome of
the election. Next, we explore how agents vote for bins and denote a particular
set of bins as B = {B1, ..., Bm}. Intuitively, each agent votes for the set of bins
they are predominantly confident in:

Definition 8 (Predominant Confidence - Bins). Let A be a proposition,
and P(A) = [a, b] represent an agent’s imprecise degree of belief in A. Given
a set of bins, B, we say that an agent is predominantly confident in Bj if the
intersection of P(A) and Bj has a greater Lebesque measure than the intersection
of P(A) and any other bin, Bk, denoted as l(P(A)∩Bj) ≥ maxBk∈B\Bj

l(P(A)∩
Bk) for all Bj , Bk ∈ B.

From this, it is straightforward to define how agents vote in VfB:

Definition 9 (Voting for Bins). We say that an agent ai votes for an alter-
native ωj if she is predominantly confident in that alternative.

Example 1. Let there be two bins for proposition A with B1 = [0, 0.5) and
B2 = [0.5, 1] and two agents with P1(A) = [0.3, 0.9] and P2(A) = [0, 1]. We have
P1(A)∩B1 = [0.3, 0.5) and P(A)1∩B2 = [0.5, 0.9] as well as P2(A)∩B1 = [0, 0.5)
and P2(A) ∩B2 = [0.5, 1]. This yields l(P1(A) ∩B1) = 0.2, l(P1(A) ∩B2) = 0.4
as well as l(P2(A)∩B1) = l(P2(A)∩B2) = 0.5. Thus, agent 1 votes for B2 only,
whereas agent 2 votes for both bins. Hence, B2 wins the approval vote with 2
votes.

Note that if there is a tie among alternatives with no bin having strictly more
votes than any other, there is no winning bin in the approval vote.
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3 Contributions

This section outlines our contributions to dilation in imprecise pooling. Firstly,
we utilize Theorem 2 to establish a bound on the number of alternatives permis-
sible for VfB, akin to the work by Karge (2023) [12], but with the integration of
OL influence. Secondly, we formally define the problem of dilation, along with its
counterpart, contraction, within the imprecise pooling framework. Subsequently,
we expand upon the generalization proposed by Karge et al. (2024) [13] to incor-
porate average OL influence, allowing for a meaningful discussion regarding the
potential increase in correlation within a group of agents when adding an addi-
tional agent. Specifically, while it may not be meaningful to discuss an increase
in correlation when employing a uniform distribution of π, extending the result
to average π-values provides a context where such discussions are relevant and
informative. We then present a series of corollaries, each delineating conditions
under which dilation or contraction is anticipated, and illustrate the method for
computing the resultant change in dilation or contraction.

3.1 Voting for Bins and the OL

By establishing a direct correspondence between the alternatives and subinter-
vals of the unit interval, the bins, we can determine a bound on the maximum
number of bins permissible for a given set of input parameters [12]. This ap-
proach is extended to accommodate an opinion leader by solving the bound in
Theorem 2 for the number of alternatives.

Corollary 1. Consider an approval voting setting as described in Theorem 2.
Then, given a probability Pmin < 1, it is guaranteed that the success probability
of the approval voting process is greater than Pmin if the number m of bins is at
most

m ≤ 1−Pmin

(p̂(e−
1
2
n(1−π)2∆p2 )+(1−p̂)e−

1
2
n(∆p(1−π)−π)2

+ 1.

Finally, this translates directly into the maximum allowed precision in per-
cent, denoted by C, which is the fraction of the unit interval covered by a subin-
terval given by the formula: C = 100

m [12].
In real-world scenarios involving the aggregation of imprecise probabilistic

beliefs, it is not uncommon to have large expert panels comprising, for example,
50 climate scientists [14] or 140 epidemiologists [20].

Example 2. Suppose ∆p = 0.4, Pmin = 0.9, p̂ = 0.7, π = 0.1, and n = 150.
Then, we may allow for 52 bins of equal Lebesque measure. This translates to a
precision of 1.9%.

With these definitions in hand, we can now interpret VfB as a pooling
method. Initially, we compute the maximal permissible number of bins, denoted
as m, based on parameters n, Pmin, ∆p, π, and p̂. Subsequently, we partition the
unit interval into a maximum of m subintervals of equal width, known as bins.
In conclusion, we utilize the input profile of imprecise beliefs, (P1(A), ...,Pn(A)),
along with B, to compute VfB(P1, ...,Pn) based on Definition 9.
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3.2 Dilation and Contraction in Imprecise Pooling

Dilation, within the context of an agent’s imprecise belief in a proposition A,
denoted as P(A), refers to the phenomenon where updating the belief by condi-
tionalizing on an outcome B from the event space results in P(A | B), whereby
the belief interval P(A) is necessarily contained within P(A | B) [9]. In other
words, regardless of the outcome learned from the event space, the belief interval
expands, leading to increased uncertainty regarding the proposition. Updating
rules that allow for dilation are often viewed as unsettling, as one would ex-
pect that learning new evidence would, at least in some instances, decrease an
agent’s uncertainty. Similarly, an opposing effect, known as contraction, can also
occur in a manner analogous to that of dilation. Contraction entails that, irre-
spective of the new observation acquired, the belief interval can only diminish,
thereby consistently reducing uncertainty [9]. Just as with dilation, contraction
intuitively should not occur, regardless of the evidence presented to the agent.
Interpreting a smaller aggregated belief interval as a reduction in uncertainty,
and reduced uncertainty as an increase in knowledge, suggests that not every
observation should augment the agent’s knowledge. In this paper, we explore the
phenomena of dilation and contraction within the context of imprecise opinion
pooling.

Considering the two most extreme pooling functions, we examine convex
pooling, where the pooled interval expands solely by incorporating more opin-
ions, thereby becoming less informative, and pooling by intersection, where the
pooled interval contracts exclusively, becoming more informative [17]. Given
these extreme points of imprecise pooling, we proceed to define the process of
updating an imprecise pooled belief within our framework, followed by a formal
definition of dilation and contraction in this context.

Definition 10 (Updated Opinion Pool). Suppose we are given the impre-
cise beliefs P1(A), ...,Pn(A) of n agents for some proposition A as well as their
pooled belief F(P1(A), ...,Pn(A)) according to some pooling function F . Upon
receiving an additional opinion Pn+1(A), the updated opinion pool is simply
F(P1(A), ...,Pn+1(A)).

We define dilation in imprecise pooling as follows:

Definition 11 (Dilation in Imprecise Pooling). Given P1(A), ...,Pn(A) and
F(P1(A), ...,Pn(A)), dilation occurs if for every possible Pn+1(A), the Lebesgue
measure of the updated pool is greater than that of the original pool, i.e.
l(F(P1(A), ...,Pn+1(A))) ≥ l(F(P1(A), ...,Pn(A))).

Contraction in imprecise pooling is defined analogously:

Definition 12 (Contraction in Imprecise Pooling). Given P1(A), ...,Pn(A)
and F(P1(A), ...,Pn(A)), contraction occurs if for every possible Pn+1(A),
l(F(P1(A), ...,Pn+1(A))) ≤ l(F(P1(A), ...,Pn(A))).

With these definitions in hand, we are now ready to formulate the central
problem addressed in this paper:
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Given: P1(A), ...,Pn(A),Pn+1(A) and F(P1(A), ...,Pn(A)).
Question: Under what conditions and to what extent should
F(P1(A), ...,Pn+1(A)) dilate or contract compared to F(P1(A), ...,Pn(A))?

Intuitively, dilation is expected to occur when the additional opinion is of
poor quality, consequently increasing uncertainty. Conversely, contraction is an-
ticipated when the opinion is of high quality, leading to an increase in knowledge
and a decrease in uncertainty among the group of agents.

As a general strategy to address this central problem, we demonstrate how
Voting for Bins (VfB) aligns with this intuition. To illustrate this, we fix a
minimal success probability, Pmin, for VfB to identify the bin containing the un-
derlying probability of the event in question. By fixing Pmin and striving for the
maximum number of permissible bins, we illustrate that if the additional agent’s
opinion is of poor quality, we anticipate dilation of the pooled belief. Conversely,
if the opinion is of good quality, we expect the pooled belief to contract. In our
framework, we define a ’good quality opinion’ as one that either elevates the
average competence level of the group of agents or diminishes correlation among
them. Similarly, a ’bad quality opinion’ is characterized by a decrease in average
competence or an increase in correlation.

Notice that the current opinion leader (OL) model exclusively accounts for
a uniform probability π for each agent to adhere to the OL. However, if we
introduce an additional agent to an established group, it is conceptually unclear
how correlation could increase for a uniform π. It is not reasonable to expect
that every agent follows the OL with a higher probability simply because an
additional agent is added. To address this limitation, we extend the OL model
to accommodate average correlation.

3.3 Average Opinion Leader Influence

As a preliminary step towards incorporating average OL influence, we introduce
the allowance for a finite number of distinct π-values (π1, ..., πk, ...πs), where
1 ≤ s ≤ n, instead of a single uniform value. This means that the maximum
number of π-values corresponds to having one unique value for each agent. It
is worth noting that if there are multiple πk values within a given electorate,
we can delineate the group of voters into distinct subgroups. Each subgroup
comprises individuals who share the same π-value, meaning they follow the OL
with an equal probability.

We denote each subgroup as Gπk
where πk represents the precise π-value of

that subgroup, such that

Gπ1
∪ ...Gπk

... ∪ Gπs
= N = {a1, ..., an}.

Finally, for each subgroup Gπk
, we refer to the number of agents in that

subgroup as |Gπk
|. From this, we define the average π-value, π̄ as follows:

π̄ =

s∑
k=1

|Gπk
|

n πk.
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Now that we have defined a notion for average correlation based on the OL
influence, we proceed to derive a bound on the maximal number of alternatives
in the next step.

Theorem 3. Consider an approval voting setting as described in Theorem 2,
but allowing for different πk-values as defined above. Then, given a probability
Pmin < 1, it is guaranteed that the success probability of the approval voting
process is greater than Pmin if the number m of bins is at most

1 + 1−Pmin

p̂e
− 2

4n
(

s∑
k=1

|Gπk
|(1−πk)∆p)2

+(1−p̂)e
− 2

4n
(

s∑
k=1

|Gπk
|(∆p(1−πk)−πk))2

.

Proof. The proof parallels that of Karge et al. (2024) [13] for uniformly dis-
tributed π and can be found in the appendix. In essence, the proof proceeds by
distinguishing between two cases: one where the OL is correct and another where
the OL is incorrect. Within each case, the underlying marginal probabilities may
be treated as independent once conditioned on the OL’s selection. Utilizing Ho-
effding’s inequality, we aggregate both cases to derive the aforementioned bound.

We proceed to demonstrate that having a uniform π is equivalent to having
the average OL influence π̄, in the sense that the worst-case bound on the number
of bins remains the same if π = π̄. Let mπ denote the maximal number of
permissible bins under uniform π, as derived by Corollary 1, and let mπ̄ refer to
the maximal number of bins derived from Theorem 3.

Theorem 4. If π = π̄, then mπ = mπ̄.

Proof. Assume, π = π̄. Observe that the denominator of Theorem 3 and Corol-
lary 1 respectively consist of two parts: one where the OL endorses the correct
alternative, and one where this is not the case. Consider the first case in Theo-
rem 3, (e−

2
4n (

∑s
k=1 |Gπk

|(1−πk)∆p)2). By definition of
∑s

k=1 |Gπk
|,
∑s

k=1 |Gπk
| = n.

Moreover, by definition of π̄,
∑s

k=1

|Gπk
|

n πk = π̄. Thus, as π = π̄ by assumption,∑s
k=1

|Gπk
|

n πk = π. Finally,
∑s

k=1 |Gπk
|(1−πk) = n(1−π) when

∑s
k=1

|Gπk
|

n πk =
π and

∑s
k=1 |Gπk

| = n. As ∆p is fixed, we have that (
∑s

k=1 |Gπk
|(1− πk)∆p)2 =

(n(1− π)∆p)2.

By algebra, we obtain (e−
2
4n (

∑s
k=1 |Gπk

|(1−πk)∆p)2) = (e−
1
2n(1−π)2∆p2

). An
analogous argument can be made for the subcase where the OL is wrong. Hence,
we conclude that mπ = mπ̄.

This result suggests that irrespective of how competence levels and π-values
are distributed among agents, in the worst-case, having a uniform π is equivalent
to having different π-values across subgroups. Moreover, this finding enables us
to leverage the bound for uniform π, which is slightly easier to work with, when
discussing an increase in π̄ as long as only the worst-case bound is of interest.
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3.4 Taming Dilation and Contraction

With the direct correspondence between the number of alternatives and the per-
missible width of the aggregate interval computed by VfB, we can deduce a series
of corollaries from Corollary 1. These corollaries not only elucidate how dilation
and contraction align with our intuitions regarding incoming observations but
also enable us to directly compute the change in dilation or contraction that may
occur. For each corollary, we examine a specific scenario involving the addition
of an extra agent to the group of agents, along with the corresponding updated
opinion pool.

Corollary 2. If the addition of agent an+1 does not alter the average correlation
or average competence, the maximal number of bins increases, resulting in the
contraction of the pooled interval.

Proof. Let Pmin, ∆p, p̂, and π̄ be fixed. Recall Corollary 1. As the denominator
is of the form p̂e−nx+(1− p̂e−ny), it decreases for any fixed set of input parame-
ters as n, causing nx and ny to become larger. Consequently, as the denominator
decreases, the overall expression increases. Therefore, a larger number of maxi-
mal alternatives can be accommodated. Translated to VfB, this implies that the
aggregate interval becomes smaller, thereby becoming more informative.

Intuitively, this effect stems from the wisdom of the crowds effect underlying
the Condorcet Jury Theorem. As long as the group of agents is ∆p-group reliable
and all parameters remain fixed, the addition of an extra agent with the same
expertise enhances the group’s ability to identify the ground truth.

Example 3. Consider the following parameters: Pmin = 0.9, ∆p = 0.4, p̂ = 0.5,
π̄ = 0.1, and n = 200. This yields a maximal number of 173 bins. Now, if
we increase n to 201, we obtain 179 bins. Consequently, the aggregate interval
contracts.

Corollary 3. If agent an+1 raises the average competence level, the maximal
number of bins increases, resulting in a contraction of the pooled interval.

Proof. Consider adding an agent an+1 such that an+1 ∈ Gπj . Let ∆p and ∆p′

be specific values such that ∆p < ∆p′. We claim that mn < mn+1. By a similar
argument as above, it is evident that the denominator, of the form p̂e−∆px +
(1 − p̂)e−∆py), decreases for any fixed set of input parameters and increasing
∆p, causing ∆px and ∆py to become larger. With decreased denominator, the
overall expression increases.

In scenarios where the average correlation increases upon adding an addi-
tional agent, the underlying intuition is less straightforward. Typically, an in-
crease in correlation suggests that the electorate may be less effective in identi-
fying the correct bin. However, as we’ve observed, simply adding an extra agent
enhances the group’s capabilities. Therefore, the informativeness, regarded as
the counterpart of uncertainty, of the aggregate should only decrease when the
increase in correlation outweighs the impact of adding a new member. Let’s
consider the following two examples:
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Example 4 (Increase in Informativeness). Consider the parameters Pmin = 0.2,
∆p = 0.9, p̂ = 0.5, π̄ = 0.1, and n = 20. With these parameters, we obtain
204 bins. Now, by slightly increasing π to π′ = 0.11 and considering n = 21, we
obtain 205 bins. Thus, informativeness increases despite the increase in average
correlation.

Example 5 (Decrease in Informativeness). Let Pmin = 0.2, ∆p = 0.9, p̂ = 0.5,
π̄ = 0.2, and n = 40. With these parameters, we obtain 355 bins. Now, with a
slight increase in π to π′ = 0.21 and considering n = 41, we obtain 274 bins.
Thus, informativeness decreases despite the addition of an extra agent.

Next, we aim to determine the threshold for increased average correlation that
disrupts the enhanced group capabilities due to the new agent. To determine
this threshold we introduce the parameter ϵ, which represents the amount by
which the average correlation increases by adding the new agent. We claim that
adding a new agent is outweighed by increased correlation as soon as the group
of agents without the new one allows for more alternatives than the larger group.
That is, as soon as:

1−Pmin

(p̂(e−
1
2
n(1−π)2∆p2 )+(1−p̂)e−

1
2
n(∆p(1−π)−π)2

+ 1 > 1+

1−Pmin

(p̂(e−
1
2
(n+1)(1−(π+ϵ))2∆p2 )+(1−p̂)e−

1
2
(n+1)(∆p(1−(π+ϵ))−(π+ϵ))2

.

Instead of determining the threshold for the general case, we observe that
increasing π has the most detrimental effect on the group’s capacity to identify
the correct bin when p̂ is low. In the worst-case scenario, p̂ = 0. Therefore,
to derive the threshold at which increased correlation outweighs adding a new
member, we consider this worst case and assume p̂ = 0. In this scenario, the
above expression simplifies to

1−Pmin

e−
1
2
n(∆p(1−π)−π)2

+ 1 > 1−Pmin

e−
1
2
(n+1)(∆p(1−(π+ϵ))−(π+ϵ))2

+ 1.

We simplify this problem further by noting that both expressions only differ
in the exponent of their denominators. As the denominators are of the form
e−x and e−y respectively, they increase as x and y decrease. With an increased
denominator, the overall number of bins, and thereby, informativeness, decreases.
Therefore, to derive the exact threshold, we investigate under what conditions

n(∆p(1− π)− π)2 > (n+ 1)(∆p(1− (π + ϵ))− (π + ϵ))2.

By solving for ϵ, we can derive the following bound:

ϵ > ∆p(1−π)−π
∆p+1 −

√
n(∆p(π−1)+π)2

(∆p+1)2(n+1) . (1)

This leads directly to the following corollary:
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Corollary 4. If agent an+1 increases the average correlation level and inequality
1 is true, then the maximal number of bins decreases, resulting in a dilation of
the pooled interval.

We illustrate the change in number of bins in subfigure (a) of Figure 1 where
dilation occurs as soon as the threshold for ϵ is surpassed.

0.000 0.005 0.010 0.015 0.020
epsilon

9

10

11

12
Number of Bins

Plot of Bound on Bins for n and n+1

Threshold: 0.0078

n

n+1

(a) Threshold for corollary 3.

n

n+1

(b) Threshold for corollary 5.

Fig. 1: Number of Bins depending on ϵ and for ∆p = 0.6, Pmin = 0.4, n = 20, π = 0.05 (left), and
depending on ϵ and λ for Pmin = 0.2, ∆p = 0.4, n = 25, π = 0.05 (right).

Corollary 5. If the additional agent decreases the average correlation, the max-
imal number of bins increases. This results in a contraction of the aggregate.

In this case, the terms e−x and e−y in the denominator increase as π de-
creases, resulting in a larger overall expression and thus increasing the number
of bins.

Finally, we address the scenario in which both average competency and av-
erage correlation increase. We derive a threshold indicating when the increase
in average competency outweighs the increase in correlation. Introducing λ as
a parameter for the increase in average competency, we determine the point at
which an increase in competency leads to a larger number of bins, despite the
simultaneous increase in average correlation:

1−Pmin

e−
1
2
n(∆p(1−π)−π)2

+ 1 1−Pmin

e−
1
2
(n+1)((∆p+λ)(1−(π+ϵ))−(π+ϵ))2

+ 1.

As before, we further simplify this problem and demonstrate the conditions
under which:

n(∆p(1− π)− π)2 < (n+ 1)((∆p+ λ)(1− (π + ϵ))− (π + ϵ))2.

By solving for ϵ, we obtain a bound for how much increase in correlation can
be tolerated for a given increase in competency:
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ϵ < (∆p(−π)+∆p−π(λ+1)+λ)
(∆p+λ+1) −

√
(n(∆p(π−1)+π)2)
((n+1)(∆p+λ+1)2) . (2)

This yields the following corollary:

Corollary 6. If the average correlation increases and Inequality 2 is true, the
overall number of bins increases. In this case, the pooled interval contracts.

We illustrate the maximal permissible number of bins for n and n+1 agents
with Pmin = 0.2, ∆p = 0.4, n = 25, and π = 0.05 for different λ and ϵ values
in subfigure (b) of Figure 1. The orange surface area illustrates the combina-
tions of values where the threshold is surpassed, indicating where the increase
in competence does not outweigh the increase in correlation.

In this subsection, we discussed a series of corollaries, each illustrating how
pooling by Voting for Bins manages dilation and contraction precisely as one
would intuitively expect, depending on the quality of the additional opinion.
Furthermore, it is now clear how to compute the extent to which the updated
aggregate dilates or contracts compared to the original pool: it is simply the
difference in the width of both pools, assuming we always choose the maximal
number of bins according to Corollary 1.

4 Conclusion

In this work, we delved into the phenomena of dilation and contraction within
the framework of imprecise opinion pooling. Through our analysis, we presented
the first formal treatment of both effects within imprecise pooling and demon-
strated how they can be managed using a specific pooling technique known as
Voting for Bins. This approach enabled us to establish precise conditions under
which dilation or contraction is expected to occur, aligning with our intuitive
expectations based on the quality of the additional opinion being incorporated.
Moreover, we illustrated how to compute the extent to which dilation or contrac-
tion is expected to occur. In addition, we extended the OL model to account for
the average correlation among agents, allowing us to study the interplay between
the increase in average correlation and the quality of additional opinions.

Looking ahead, we aim to derive translations between the opinion leader
model and standard correlation measures used in multi-agent systems such as co-
variance, the correlation coefficient, and mutual information. These translations
would provide a bridge between the abstract notion of opinion leader influence
and more familiar correlation metrics, enhancing the applicability to real-world
scenarios with complex dependence structures among agents.

Acknowledgments. This work is partly supported by BMBF in DAAD project
57616814 (SECAI).
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5 Appendix

Proof, Theorem 3.
We now derive a lower bound on the minimum probability of success for

identifying the correct alternative for an electorate across different subgroups.
Recall the aggregated random variable V ω∗−ω† defined by

V ω∗−ω† =

n∑
k=1

(V ω∗
k −V

ω†
k ) =

n∑
k=1

V ω∗
k −

n∑
k=1

V
ω†
k = V ω∗−V ω†

and observe that ω∗ wins against ω† exactly if V ω∗−ω† > 0.
For the derivation, we extend the definition of V ω∗−ω† to include the sub-

groups. Suppose the subgroups are ordered from the lowest π − value, denoted
by π1, to the highest π − value, denoted by πs. Moreover, we refer to V

ωj

|Gπk
| as

the score ωj received from the subgroup Gπk
with size |Gπk

|.

V ω∗−ω† =

n∑
k=1

(V ω∗
k −V

ω†
k )

=

n∑
k=1

V ω∗
k −

n∑
k=1

V
ω†
k

=

s∑
k=1

V ω∗
|Gπk

| − V
ω†
|Gπk

|

= V ω∗−V ω†

To find good probability estimates, we use Hoeffding’s inequality, which pro-
vides a tail estimate for the sum of independent random variables with the
property of having zero probability outside a finite interval.

Lemma 1 (Hoeffding 1963). Let X1, . . . , Xn be independent random variables
satisfying P(li ≤ Xi ≤ ui) = 1 for reals li, ui. Consider the sum of these random
variables, X =

∑n
i=1 Xi. Then for every real number t > 0 holds

P(X − E(X) ≥ t) ≤ e
− 2∑n

i=1(ui−li)2
t2

.

We recall that the agent-wise distributions of V ω∗
i −V

ω†
i discussed above are of

this type with li = −1 and ui = 1.

The OL is right. We start by conditioning on the OL approving the correct
alternative. To correctly reflect the worst case, we assume that for any number
of alternatives, the OL always approves all competitors of ω∗. In the following,
we consider an arbitrarily chosen but fixed competing alternative ω† ∈ W \{ω∗}
in the approval vote. In a first step, we derive a lower bound on the probability
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that ω∗ wins against this fixed competitor, ω†. In a next step, we can derive a
lower bound for the probability of winning against all competitors.

P(V ω∗ > V ω† | Xω∗
o = 1)

= P(
s∑

k=1

V ω∗
|Gπk

| − V
ω†
|Gπk

| > 0 | Xω∗
o = 1)

= 1− P(
s∑

k=1

V ω∗
|Gπk

| − V
ω†
|Gπk

| ≤ 0 | Xω∗
o = 1)

= 1− P(
s∑

k=1

V ω∗
|Gπk

| − V
ω†
|Gπk

| − E(
s∑

k=1

V ω∗
|Gπk

| − V
ω†
|Gπk

| | X
ω∗
o = 1) ≤

− E(
s∑

k=1

V ω∗
|Gπk

| − V
ω†
|Gπk

| | X
ω∗
o = 1) | Xω∗

o = 1)

= 1− P(
s∑

k=1

V
ω†
|Gπk

| − V ω∗
|Gπk

| − E(
s∑

k=1

V
ω†
|Gπk

| − V ω∗
|Gπk

| | X
ω∗
o = 1) ≥

E(
s∑

k=1

(V
ω†
Gπk

− V ω∗
Gπk

) | Xω∗
o = 1) | Xω∗

o = 1)

= 1− P(
s∑

k=1

V
ω†
|Gπk

| − V ω∗
|Gπk

| − E(
s∑

k=1

V
ω†
|Gπk

| − V ω∗
|Gπk

| | X
ω∗
o = 1) ≥

E(
s∑

k=1

V ω∗
|Gπk

| | X
ω∗
o = 1)− E(

s∑
k=1

V
ω†
|Gπk

| | X
ω∗
o = 1) | Xω∗

o = 1)

In the worst case, p̄ω∗ = p̄
ω† + ∆p.

≥ 1− P((V ω† − V ω∗)− E(V ω† − V ω∗ | Xω∗
o = 1) ≥

s∑
k=1

∆p(|Gπk
|(1− πk) | Xω∗

o = 1)

Hoeffding noting that ui − li = 2 for all i

≥ 1− e−
2
4n (

∑s
k=1 ∆p|Gπk

|(1−πk))
2

Then we obtain for the winning against all competitors:

P(
∧

ω† ∈ W \ {ω∗}V ω∗ > V ω† | Xω∗
o = 1)

≥ 1−
∑m−1

i=1 (1− P(V ω∗ > V ωi | Xω∗
o = 1))

= 1−
∑m−1

i=1 (1− (1− e−
2
4n (

∑s
k=1 ∆p|Gπk

|(1−πk))
2

))

= 1− (m− 1)e−
2
4n (

∑s
k=1 ∆p|Gπk

|(1−πk)))
2

The OL is wrong. In a similar vein, we consider the case of Xω∗
o = 0.
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P(V ω∗ > V ω† | Xω∗
o = 0)

= 1− P((V ω† − V ω∗)− E(V ω† − V ω∗ | Xω∗
o = 0) ≥

s∑
k=1

(|Gπk
|(1− πk)p̄

ω∗)−
s∑

k=1

(|Gπk
|(πk + (1− πk)p̄

ω†)) | Xω∗
o = 0)

In the worst case, p̄ω∗ = p̄
ω† + ∆p.

≥ 1− P((V ω† − V ω∗)− E(V ω† − V ω∗ | Xω∗
o = 0) ≥

s∑
k=1

(−∆p− 1)|Gπk
|πk + |Gπk

|∆p | Xω∗
o = 0)

= 1− P((V ω† − V ω∗)− E(V ω† − V ω∗ | Xω∗
o = 0) ≥

s∑
k=1

|Gπk
|(∆p(1− πk)− πk) | Xω∗

o = 0)

Hoeffding with ui − li = 2 for all i, assuming π ≤ ∆p
∆p+1

= 1− e−
2
4n

(∑s
k=1 |Gπk

|(∆p(1−πk)−πk)
)2

Then we obtain for the winning against all competitors:

P(
∧

ω† ∈ W \ {ω∗}V ω∗ > V ω† | Xω∗
o = 0)

= 1− (m− 1)e−
2
4n

(∑s
k=1 |Gπk

|(∆p(1−πk)−πk)
)2

Aggregating the Cases. Finally, we aggregate the cases where the OL is right
and where the OL is wrong.

P(
∧

ω† ∈ W \ {ω∗}Xω∗ > Xω†)

= P(Xω∗
o = 1) · P(

∧
ω† ∈ W \ {ω∗}V ω∗ > V ω† | Xω∗

o = 1)

+ P(Xω∗
o = 0) · P(

∧
ω† ∈ W \ {ω∗}V ω∗ > V ω† | Xω∗

o = 0)

≥ p̂
(
1− (m− 1)e−

2
4n (

∑s
k=1 ∆p(|Gπk

|(1−πk))
2)

+ (1− p̂)
(
1− (m− 1)e−

2
4n

(∑s
k=1 |Gπk

|(∆p(1−πk)−πk)
)2)

= 1− (m− 1)(p̂(e−
2
4n (∆p(

∑s
k=1 |Gπk

|(1−πk)))
2

) + (1− p̂)e−
2
4n

(∑s
k=1 |Gπk

|(∆p(1−πk)−πk)
)2

)

Solving for for the number of alternatives (m):

Pmin ≤ 1− (m− 1)(p̂(e−
2
4n (∆p(

∑s
k=1 |Gπk

|(1−πk)))
2

) + (1− p̂)e−
2
4n

(∑s
k=1 |Gπk

|(∆p(1−πk)−πk)
)2

)

m ≤ 1−Pmin

(p̂(e
− 2

4n
(∆p(

∑s
k=1

|Gπk
|(1−πk)))2

)+(1−p̂)e
− 2

4n

(∑s
k=1

|Gπk
|(∆p(1−πk)−πk)

)2

)

+ 1


