Runtime Verification Using a Temporal
Description Logic

Franz Baader,! Andreas Bauer,? and Marcel Lippmann’

! TU Dresden, {baader,lippmann}@tcs.inf.tu-dresden.de
2 The Australian National University, baueran@rsise.anu.edu.au

Abstract. Formulae of linear temporal logic (LTL) can be used to spec-
ify (wanted or unwanted) properties of a dynamical system. In model
checking, the system’s behavior is described by a transition system, and
one needs to check whether all possible traces of this transition system
satisfy the formula. In runtime verification, one observes the actual sys-
tem behavior, which at any time point yields a finite prefix of a trace.
The task is then to check whether all continuations of this prefix to a
trace satisfy (violate) the formula.

In this paper, we extend the known approaches to LTL runtime ver-
ification in two directions. First, instead of propositional LTL we use
ALC-LTL, which can use axioms of the description logic ALC instead
of propositional variables to describe properties of single states of the
system. Second, instead of assuming that the observed system behavior
provides us with complete information about the states of the system,
we consider the case where states may be described in an incomplete way
by ALC-ABoxes.

1 Introduction

Formulae of linear temporal logic (LTL) [11] can be used to specify (wanted
or unwanted) properties of a dynamical system. For example, assume that the
system we want to model is a TV set, and consider the properties on, turn_on,
and turn_off, which respectively express that the set is on, receives a turn-off
signal from the remote control, and receives a turn-on signal from the remote
control. The LTL formula ¢, := O (turn_off — X(off A (Xoff) Uturn_on)) says
that, whenever the set receives the turn-off signal, it is off at the next time
point, and it stays off (i.e., is off also at the next time point) until it receives the
turn-on signal.

In model checking [7,4], one assumes that the system’s behavior can be de-
scribed by a transition system. The verification task is then to check whether
all possible traces of this transition system satisfy the formula. In contrast, in
runtime verification [8], one does not model all possible behaviors of the system
by a transition system. Instead, one observes the actual behavior of the system,
which at any time point yields a finite prefix u of a trace. The task is then to
check whether all continuations of this prefix to a trace satisfy (violate) the given

LTL formula ¢. Thus, there are three possible answers' to a runtime verification
problem (u, ¢):

— T, if all continuations of u to an infinite trace satisfy ¢;

— 1, if all continuations of u to an infinite trace do not satisfy ¢;

— 7, if none of the above holds, i.e., there is a continuation that satisfies ¢, and
one that does not satisfy ¢.

For example, consider the two prefixes u := {on, —turn_on,turn_off} and v’ :=
{on, =turn_on, turn_off} {on, —turn_on, —turn_off} and the formula ¢, from above.
For the first prefix, the answer is 7, whereas for the second it is L. For our specific
formula ¢y, there is no prefix for which the answer would be T.

It should be noted, however, that runtime verification is not really about
solving a single such problem (u,). In practice, one observes the behavior of
the system over time, which means that the prefix is continuously extended
by adding new letters. The runtime verification device should not simply an-
swer the problems (g, ¢), (0q, @), (6001, P), (000102, P), . . . independently of each
other. What one is looking for is a monitoring device (called monitor in the fol-
lowing) that successively accepts as input the next letter, and then computes the
answer to the next runtime verification problem in constant time (where the size
of ¢ is assumed to be constant). This can, for example, be achieved as follows
[5]. For a given LTL formula ¢, one constructs a deterministic Moore automaton
M (i.e., a deterministic finite-state automaton with state output) such that the
state reached by processing input u gives as output the answer to the runtime
verification problem (u,¢). If u is then extended to uo by observing the next
letter o of the actual system behavior, it is sufficient to perform one transition
of My in order to get the answer for (uo,¢). Since M, depends on ¢ (which
is assumed to be constant), but not on wu, this kind of monitoring device can
answer the runtime verification question for (u,¢) in time linear in the length
of u. More importantly, the delay between answering the question for u and for
uo is constant, i.e., it does not depend on the length of the already processed
prefix u. Basically, such a monitor can be constructed from generalized Biichi
automata for the formula ¢ and its negation —¢.2

Using propositional LTL for runtime verification presupposes that (the rele-
vant information about) the states of the system can be represented using propo-
sitional variables, more precisely conjunctions of propositional literals. If the
states actually have a complex internal structure, this assumption is not realis-
tic. In order to allow for a more appropriate description of such complex states,
one can use the extension of propositional LTL to ALC-LTL introduced in [3].3
From the syntactic point of view, the difference between propositional LTL and

! There are also variants of runtime verification that work with only two or even four
possible answers [6].

2 A generalized Biichi automaton for an LTL formula 1) accepts the LTL structures
satisfying this formula, viewed as words over an appropriate alphabet [16, 4].

3 A comparison of ALC-LTL with other temporal DLs [1, 2, 10] is beyond the scope of
this introduction. It can be found in [3].

ALC-LTL is that, in the latter, ALC-axioms (i.e., concept and role assertions
as well as general concept inclusion axioms formulated in the description logic
ALC [14]) are used in place of propositional letters. From the semantic point
of view, ALC-LTL structures are infinite sequences of ALC-interpretations, i.e.,
first-order relational structures, rather than propositional valuations. In [3], the
complexity of the satisfiability problem for ALC-LTL formulae is investigated in
detail. In particular, it is shown that this complexity depends on whether rigid
concepts and roles (i.e., concepts/roles whose interpretation does not change over
time) are available or not. The algorithms for deciding satisfiability of ALC-LTL
formulae developed in [3] are not based on generalized Biichi automata. Before
we can adapt the monitor construction used for propositional LTL to the case of
ALC-LTL, we must first show how Biichi automata for ALC-LTL formulae can
be constructed. We will see that this construction becomes more complex in the
presence of rigid concepts and roles.

In runtime verification for propositional LTL, one usually assumes that the
observed prefix provides one with complete information about the relevant sys-
tem properties. In the setting of runtime verification for ALC-LTL, this com-
pleteness assumption would mean that, for every time point covered by it, the
prefix must provide full information about the status of every ALC-axiom occur-
ring in the formula, i.e., it must say whether it is true at that time point or not.
If one has only limited access to the system’s behavior, this assumption may be
too strict. In this paper we show that runtime verification is also possible under
the weaker assumption that one has (possibly) incomplete knowledge about the
system’s behavior at a time point. Technically, this means that we assume that
the prefix describing the system’s behavior is a finite sequence of ABoxes. Given
such an ABox and an axiom occurring in the formula, there are now three pos-
sible cases: the axiom may follow from the ABox, its negation may follow from
the ABox, or neither of them follows from the ABox. The third case means that
we do not know whether in this state of the system the axiom or its negation
holds. Thus, in addition to the unknown continuation of the prefix in the future,
the use of ABoxes as (possibly) incomplete descriptions of states adds another
source of uncertainty, which may cause the monitor to answer with 7.

As a possible application of this kind of monitoring, consider an emergency
ward, where the vital parameters of a patient are measured in short intervals
(sometimes not longer than 10 minutes), and where additional information about
the patient is available from the patient record and added by doctors and nurses.
Using concepts defined in a medical ontology like SNOMED CT,* a high-level
view of the medical status of the patient at a given time point can be given by an
ABox. Critical situations, which require the intervention of a doctor, can then
be described by an ALC-LTL formula (see [3] for a simple example). As long as
the monitor for this formula yields the output 7, we continue with monitoring.
If it yields T, we raise an alarm, and if it yields | we can shut off this monitor.

In the next section, we introduce the temporal description logic ALC-LTL,
and in Section 3 we show how to construct generalized Biichi automata for ALC-

% see http://www.ihtsdo.org/our-standards/

LTL formulae. These generalized Biichi automata are then used in Section 4 to
construct monitors for ALC-LTL formulae.

2 The temporal DL ALC-LTL

The temporal DL ALC-LTL introduced in [3] combines the basic DL ALC with
linear temporal logic (LTL). First, we recall the relevant definitions for ALC.

Definition 1. Let Ngo, Ng, and Np respectively be disjoint sets of concept
names, role names, and individual names. The set of ALC-concept descriptions
is the smallest set such that

— all concept names are ALC-concept descriptions;
— if C, D are ALC-concept descriptions and r € Ng, then -C, C U D, CN D,
Ir.C, and Vr.C are ALC-concept descriptions.

A general concept inclusion axiom (GCI) is of the form C C D, where C, D are
ALC-concept descriptions, and an assertion is of the form a : C or (a,b) : r
where C is an ALC-concept description, r is a role name, and a,b are individual
names. We call both GCIs and assertions ALC-axioms. A Boolean combination
of ALC-azioms is called a Boolean ALC-knowledge base, i.e.,

— every ALC-axiom is a Boolean ALC-knowledge base;
— if By and By are Boolean ALC-knowledge bases, then so are By ABs, BV Ba,
and —Bj.

An ALC-TBox is a conjunction of GCIs, and an ALC-ABox is a conjunction
of assertions.

According to this definition, TBoxes and ABoxes are special kinds of Boolean
knowledge bases. However, note that they are often written as sets of axioms
rather than as conjunctions of these axioms. The semantics of ALC is defined
through the notion of an interpretation.

Definition 2. An ALC-interpretation is a pair T = (AZ,-2) where the domain
AT is a non-empty set, and L is a function that assigns to every concept name
A a set AT C AT, to every role name r a binary relation 17 C AT x AT, and
to every individual name a an element a* € AT. This function is extended to
ALC-concept descriptions as follows:

— (cnD)f =Cc*tnD* (CuD)t =C*tuD? (-C)F = AT\ CF;
— (3r.C)t ={x € AT | there is ay € AT with (z,y) € vt and y € CT};
— (vr.C) ={x € AT | for ally € AT, (z,y) € rT implies y € CT}.

We say that the interpretation T satisfies the unique name assumption (UNA)
iff different individual names are interpreted by different elements of the domain.
The interpretation Z is a model of the ALC-azxioms C C D, a: C, and (a,b) : r
iff it respectively satisfies CT C DT, al € CT, and (a®,b) € . The notion of
a model is extended to Boolean ALC-knowledge bases as follows:

— T is a model of By A By iff it is a model of By and Bs;
— T is a model of By V B iff it is a model of By or Bs;
— T is a model of =By iff it is not a model of By.

We say that the Boolean ALC-knowledge base B is consistent iff it has a model.
We say that B implies the ALC-axiom « iff every model of B is a model of a.

Instead of first introducing the propositional temporal logic LTL, we directly
define its extension ALC-LTL. The difference to propositional LTL is that ALC-
axioms replace propositional letters.

Definition 3. ALC-LTL formulae are defined by induction:

— if a is an ALC-azxiom, then « is an ALC-LTL formula;
— if ¢, are ALC-LTL formulae, then so are ¢ A, =@, ¢Utp, and Xo.

As usual, we use ¢ V ¢ as an abbreviation for —(—¢ A —1)), true as an ab-
breviation for (a : A) V —=(a : A), O¢ as an abbreviation for trueU¢ (diamond,
which should be read as “some time in the future”), and ¢ as an abbrevi-
ation for =0—¢ (box, which should be read as “always in the future”). The
semantics of ALC-LTL is based on ALC-LTL structures, which are sequences
of ALC-interpretations over the same non-empty domain A (constant domain
assumption). We assume that every individual name stands for a unique element
of A (rigid individual names), and we make the unique name assumption.

Definition 4. An ALC-LTL structure is a sequence 3 = (Z;)i=0.1,... of ALC-
interpretations I; = (A, 1) obeying the UNA (called worlds) such that a¥* = a”s
for all individual names a and alli,j € {0,1,2,...}. Given an ALC-LTL formula
¢, an ALC-LTL structure 3 = (Z;)i=0,1,..., and a time point i € {0,1,2,...},
validity of ¢ in J at time i (written J,i |= ¢) is defined inductively:

J,iECLCD iffct Cc D

JyiEa:C iffati e C%

3,i = (a,b) : riff (a¥i, b)) € rFi

JiEoNYy iffJiE¢ andJiEY

J,i = ¢ iff not 3,0 = ¢

Jik=Xe iffditlEe

J,1 = Uy iff there is k > i such that 3,k =1
and J,j |E ¢ for all j,i <j <k

As mentioned before, for some concepts and roles it is not desirable that their
interpretation changes over time. For example, in a medical application, we may
want to assume that the gender and the father of a patient do not change over
time, whereas the health status of a patient may of course change. Thus, we will
assume that a subset of the set of concept and role names can be designated
as being rigid. We will call the elements of this subset rigid concept names and
rigid role names. All other concept and role names are called flezible.

Definition 5. We say that the ALC-LTL structure 3 = (Z;)i=0,1,... respects
rigid names iff A7 = A% and r%i = r%i holds for alli,j € {0,1,2,...}, all rigid
concept names A, and all rigid role names r.

The ALC-LTL formula ¢ is satisfiable w.r.t. rigid names iff there is an ALC-
LTL structure J respecting rigid names such that 3,0 = ¢. It is satisfiable
without rigid names (or simply satisfiable) iff there is an ALC-LTL structure J
such that 3,0 = ¢.

The ALC-LTL structure J is a model of the ALC-LTL formula ¢ (w.r.t. rigid

names) iff 3,0 = ¢ (and T respects rigid names).

In [3], it is shown that satisfiability w.r.t. rigid names in ALC-LTL is 2-EXP-
TIME-complete, whereas satisfiability without rigid names is “only” EXPTIME-
complete. The decision procedures developed in [3] to show the complexity upper
bounds are not based on generalized Biichi automata. In the next section, we
show, however, that the ideas underlying these decision procedures can also be
used to obtain automata-based decision procedures.

3 Generalized Biichi automata for ALC-LTL formulae

For propositional LTL, the satisfiability problem can be decided by first con-
structing a generalized Biichi automaton for the given formula, and then testing
this automaton for emptiness. Generalized Biichi automata can be used to define
w-languages, i.e., sets of infinite words. For an alphabet X', we denote the set of
all infinite words over X' by Y.

Definition 6. A generalized Biichi automaton G = (Q, X, A, Qo, F) consists
of a finite set of states Q, a finite input alphabet X', a transition relation A C
QxXxQ, aset Qo C Q of initial states, and a set of sets of final states F C 29.

Given an infinite word w = 0go102... € X¥, a run of G on w is an infinite
word qoq1qz - .. € Q¥ such that gy € Qo and (g;,04,qi+1) € A for all i > 0. This
run is accepting if, for every F € F, there are infinitely many © > 0 such that
q; € F. The language accepted by G is defined as

L,(G) :={w € X% | there is an accepting run of G on w}.

The emptiness problem for generalized Biichi automata is the problem of decid-
ing, given a generalized Biichi automaton G, whether L, (G) = 0 or not.

We use generalized Biichi automata rather than normal ones (where |F| = 1)
since this allows for a simpler construction of the automaton for a given ALC-
LTL formula. It is well-known that a generalized Biichi automaton can be trans-
formed into an equivalent normal one in polynomial time [9,4]. Together with
the fact that the emptiness problem for normal Biichi automata can be solved
in polynomial time [15], this yields a polynomial time bound for the complexity
of the emptiness problem for generalized Biichi automata.

3.1 The case without rigid names

In principle, given an ALC-LTL formula ¢, we want to construct a general-
ized Biichi automaton G4 that accepts exactly the models of ¢. However, since
there are infinitely many ALC-interpretations, we would end up with an infinite
alphabet for this automaton. For this reason, we abstract from the specific in-
terpretations, and only consider their ALC-types. We call an ALC-axiom « a
¢-axiom if it occurs in ¢. A ¢-literal is a ¢-axiom or the negation of a ¢-axiom.
For example, the formula

ez :=X(a: A)AN((AC B)U (a: -B)) (1)

has a : A,AC B,a: —B,~(a: A),~(A C B),~(a: —=B) as its literals. In the
following, we assume that an arbitrary (but fixed) ALC-LTL formula ¢ is given.

Definition 7. The set of ¢-literals T is an ALC-type for ¢ iff the following two
properties are satisfied:

1. For every ¢-ariom o we have a € T iff ~a ¢ T.

2. The Boolean ALC-knowledge base By := \ « is consistent.
aeT

We denote the set of all ALC-types for ¢ with X¢.

For example, {a : A, A C B,—(a : =B)} is an ALC-type for ¢., whereas {a :
A,AC B,a:-B} is not (since it violates the second condition).

Given an ALC-interpretation Z, we define its ¢-type 74(Z) as the set of all
¢-literals that Z is a model of. It is easy to see that 74(Z) is an ALC-type
for ¢. Conversely, given an ALC-type T for ¢, the model Z of Br is such that
T4(Z) = T. The evaluation of ¢ in an ALC-LTL structure only depends on the
¢-types of the ALC-interpretations in this structure. To be more precise, given
an ALC-LTL structure J = (Z;);=0,1,..., its ¢-type is the following infinite word
over X 7,(3) := 74(Z0) 74 (11)75(Z2)

If 3,3 are two ALC-LTL structures whose ¢-types coincide, then we have
J,i = ¢ iff J,i = ¢ for all ¢ > 0. In particular, J is a model of ¢ iff J is a model
of ¢. Instead of accepting the models of ¢, the generalized Biichi automaton G
will accept their ¢-types.

The states of G, are types that also take the structure (and not just the
axioms) of the ALC-LTL formula ¢ into account. A sub-literal of ¢ is a sub-
formula or its negation. For example, the formula ¢., in (1) has the sub-literals
Gez, X(a : A)ya : A,(AC B)U(a: -B),AC B,a: =B, " ¢es,X(a : A),~(a :
A),~(AC B)U(a: ~B)),~(AC B),~(a: -B).

Definition 8. The set T' of sub-literals of ¢ is an ALC-LTL-type for ¢ iff the
following properties are satisfied:

1. For every sub-formula v of ¢ we have € T iff p & T.
2. For every sub-formula Y1 A e of ¢ we have 1 ANipg € T iff {11,192} CT.
8. For every sub-formula v Uy of ¢ we have

- ¢2€T:>’¢1U’(/JQET,
— U €T a’I’de)QgTﬁdJlET.
4. The restriction of T to its ¢-literals is an ALC-type for ¢.

We denote the set of all ACC-LTL-types for ¢ by Q%.

For example, {¢ey,X(a: A),a: A,(AC B)U(a:-B),AC B,=(a:-B)} is an
ALC-LTL-type for ¢es.

The conditions for until in the definition of an ALC-LTL-type T allow an
until-formula 1 Us € T to be satisfied either now (¢2 € T') or later (¢, € T).
The automaton G4 uses the generalized Biichi-acceptance condition to prevent
that satisfaction of until formulae is deferred indefinitely. This automaton has
the set of all ALC-types for ¢ as its alphabet and the set of all ALC-LTL-types
for ¢ as its set of states.

Definition 9. Given an ALC-LTL formula ¢, the corresponding generalized
Biichi automaton Gy = (Q%, X%, A?, Qg),]:¢) is defined as follows:

— A% C Q% x X x Q% is defined as follows: (q,0,q") € A? iff

e o is the restriction of q to its ¢-literals;

o Xvp € q implies 1 € ¢';

o Uty € q implies that (i) e € q or (ii) 1 € q and ¥1Uthy € ¢';
- Q) ={9eQ’|peq};
— F? = {Fy,uyp, | 11Uo is a sub-formula of ¢} where

Fyuys ={q € Q% | ¥1Uths € q or s € ¢}

The following proposition states in which sense this construction of G, is
correct. Its proof is similarly to the one for correctness of the automaton con-
struction for propositional LTL [16, 15].

Proposition 1. For every infinite word w € (X%)*, we have w € L, (Gg) iff
there exists an ALC-LTL structure J such that 74(J) = w and 3,0 |= ¢.

As an immediate consequence of this proposition, we obtain that the ALC-
LTL formula ¢ is satisfiable iff L,,(G4) # 0. Thus, we have reduced the satisfia-
bility problem in ALC-LTL (without rigid names) to the emptiness problem for
generalized Biichi automata. It remains to analyze the complexity of the decision
procedure for satisfiability obtained by this reduction.

The size of the automaton G, is obviously exponential in ¢. In addition, this
automaton can be computed in exponential time. Indeed, to compute the set
X¢, we consider all the exponentially many subsets of the set of ¢-literals. Each
such set T has a size that is polynomial in the size of ¢. The only non-trivial test
needed to check whether T is an ALC-type for ¢ is the consistency test for Br.
Since the consistency problem for Boolean ALC-knowledge bases is EXPTIME-
complete [3], this test can be performed in exponential time. A similar argument
can be used to show that Q? can be computed in exponential time. Obviously,

given the exponentially large sets ¢ and Q?, the remaining components of G,
can also be computed in exponential time.

Since the emptiness problem for generalized Biichi automata can be solved in
polynomial time, this yields an alternative proof for the fact (originally shown
in [3]) that satisfiability of ALC-LTL formulae (without rigid names) can be
decided in exponential time.

3.2 The case with rigid names

If rigid concept and role names must be taken into account, Proposition 1 is not
sufficient to reduce satisfiability of ¢ w.r.t. rigid names to the emptiness problem
for G4. The proposition says that, for any infinite word ToThT5 ... € L, (Gy),
there is a model J = (Z;);=o,1,... of ¢ with 74(Z;) = T; for i > 0. However, without
additional precautions, there is no guarantee that the ALC-interpretations Z;
interpret the rigid concept and role names in the same way. In order to enforce
this, the automaton has to keep track of which ALC-types it has already read,
and check the set of these types for consistency w.r.t. rigid names.

Definition 10. The set T = {T1,...,Ti} of ALC-types for ¢ is r-consistent iff
there are ALC-interpretations Iy,...,Iy that share the same domain, coincide
on the rigid concept and role names, and satisfy 74(Z;) =T; fori=1,...,k.

The r-consistency of a set of ALC-types can be decided using the renaming
technique for flexible symbols introduced in [3]. Given a set 7 = {T1,...,T}}
of ALC-types for ¢, we introduce renamed variants A® and r®) (i =1,... k)
for every flexible concept name A and every flexible role name r. For a ¢-literal
a, its renamed variant o(? is obtained by replacing the flexible concept and
role names occurring in « by the corresponding renamed variants. The following
proposition is an easy consequence of the proof of Lemma 10 in [3].

Proposition 2. Let T = {Ty,...,Tx} be a set of ALC-types for ¢. Then T is
r-consistent iff the Boolean ALC-knowledge base Br is consistent, where

Br= AN ot

i=1,...,k a€T;
The set of all r-consistent sets of ALC-types for ¢ will be denoted by C?.

The automaton Q\gb that also takes care of rigid names has tuples (q1,¢q2) as
states, where ¢; is a state of Gy and go is an r-consistent set of ALC-types for ¢.
In the first component, @, works like Gy, and in the second it simply collects all
the ALC-types it has read. The fact that the set in the second component must
be r-consistent ensures that the semantics of rigid names is taken into account.

Definition 11. For an ALC-LTL formula ¢ with rigid names, the corresponding
generalized Biichi automaton G, = (Q?, X0 A%, Qg,]-'d’) is defined as follows:

- @¢ Z:Q¢XC,?;

- A% C @‘15 x X x @¢ is defined as follows: ((q1,q2),0,(q},q5)) € A¢ iff
(/(\]170, q)) € A% and ¢, = @2 U {c};

- Qf={(a1,0) | 1 € QF};

— .7-'¢::{FXC,?\F€.7:¢}.

The following proposition states in which sense the construction of QA¢ is cor-
rect. It is an easy consequence of Proposition 1 and the definition of r-consistency.

Proposition 3. For every infinite word w € (X%)* we have w € Lw(§¢) iff
there exists an ALC-LTL structure J respecting rigid names such that 7,(3) = w
and 3,0 E ¢.

As an immediate consequence of this proposition, we obtain that the ALC-
LTL formula ¢ is satisfiable w.r.t. rigid names iff L,(Gy) # 0. Thus, we have
reduced the satisfiability problem w.r.t. rigid names in ALC-LTL to the empti-
ness problem for generalized Biichi automata. However, the complexity of this
reduction is higher than for the case of satisfiability without rigid names.

The size of the automaton G, is double-exponential in the size of ¢. In
fact, the set C? of all r-consistent sets of ALC-types for ¢ may contain double-
exponentially many elements since there are exponentially many ALC-types for
¢. Each element of C? may be of exponential size.

Next, we show that the automaton QA¢ can be computed in double-exponential
time. In addition to computing Gg, i.e., the automaton working in the first
component of §¢, one must also compute the set C¢. For this, one considers all
sets of ALC-types for ¢. There are double-exponentially many such sets, each
of size at most exponential in the size of ¢. By Proposition 2, testing such a set
T for r-consistency amounts to testing the Boolean ALC-knowledge base By for
consistency. Since the size of By is exponential in the size of ¢ and the consistency
problem for Boolean ALC-knowledge bases is EXPTIME-complete, this test can
be performed in double-exponential time. Overall, the computation of C# requires
double-exponentially many tests each requiring double-exponential time. This
shows that C?, and thus also Gs, can be computed in double-exponential time.

Since the emptiness problem for generalized Biichi automata can be solved in
polynomial time, this yields an alternative proof for the fact (originally shown in
[3]) that satisfiability w.r.t. rigid names in ALC-LTL can be decided in double-
exponential time.

4 The monitor construction

The construction of the monitor is basically identical for the two cases (with-
out rigid names, with rigid names) considered in the previous section since it
only depends on the properties of the automata G4 and §¢ respectively stated
in Proposition 1 and Proposition 3, and not on the actual definitions of these
automata. For this reason, we treat only the more complex case with rigid names
in detail. However, we distinguish between two cases according to whether the
monitor has complete or incomplete knowledge about the current state of the
system.

4.1 The case of complete knowledge

In this case, it is assumed that, at every time point, the monitor has complete
information about the status of every ALC-axiom occurring in the formula ¢.
To be more precise, assume that Z; is the ALC-interpretation at time point 7.
Then the monitor receives its ALC-type 74(Z;) as input at this time point.
Before showing how a monitor for an ALC-LTL formula ¢ can actually be
constructed, let us first define how we expect it to behave. As mentioned in the
introduction, such a monitor is a deterministic Moore automaton.

Definition 12. A deterministic Moore automaton M = (S, X, 4, so, [, \) con-
sists of a finite set of states S, a finite input alphabet X, a transition function
0: 8 x X — S, an initial state sg € S, a finite output alphabet I', and an output
function A : S — I.

__ The transition function and the output function can be extended to functions
6: 8 x X" = Q and \: X* — I as follows:

~

— d(s,e) := s where € denotes the empty word;

~ ~

— 0(s,uo) :=8(6(s,u),0) where u € X* and o € X;
and X(u) = M(8(s0,u)) for every u € X*.

Given a finite sequence J = Zy,74,...,Z; of ALC-interpretations, we say
that it respects rigid names if these interpretations share the same domain and
coincide on the rigid concept and role names. The ¢-type of J is defined as
T6(J) == 16(Zo) - . . Ty (Z;). We say that the ALC-LTL structure J = (J;)i=o01,...
extends J iff T, = J; for i = 0, ..., t. In principle, a monitor for ¢ needs to realize
the following monitoring function mg:

T i 3,0 | ¢ for all ACC-LTL structures J
that respect rigid names and extend J,

my(J) =4 L if J,0 | =¢ for all ACC-LTL structures J
that respect rigid names and extend J,

? otherwise.

Definition 13. Let ¢ be an ALC-LTL formula. The deterministic Moore au-
tomaton M = (S, Ed’,élso, {T,L,?},A) is a monitor w.r.t. rigid names for ¢ ff
Jor all finite sequences J of ALC-interpretations respecting rigid names we have

N

Mr(3)) = my(3).

Intuitively, this definition assumes that the system observed by the monitor re-
spects rigid names, i.e., its states are ALC-interpretations over the same domain
and these interpretations coincide on the rigid concept and role names. At ev-
ery time point, the monitor sees the ALC-type of the current interpretation.
Thus, if the states that the system successively entered up to time point ¢ were
Zo,T1,- ., I, then the monitor has received the word 7,4(Zp) . .. 74(Z;) over X¢
as input. The monitor now needs to tell (by its output) whether all possible

extensions of the observed behavior satisfy ¢ (output T, which says that the
property ¢ will definitely be satisfied by this run of the system) or —¢ (out-
put L, which says that the property ¢ will definitely be violated by this run of
the system); if neither is the case, then both satisfaction and violation are still
possible, depending on the future behavior of the system. Since we assume that
the system respects rigid names, only finite sequences Zy, 71, . .., Z; that respect
rigid names can actually be observed, and thus Definition 13 does not formu-
late any requirements for sequences not satisfying this restriction. Likewise, only
ALC-LTL structures respecting rigid names need to be considered as possible
extensions in the definition of m.

We will show now that a monitor w.r.t. rigid names for ¢ can in principle be
obtained by first making the automata G, and G-, (viewed as automata working
on finite words) deterministic and then building the product automaton of the
deterministic automata obtained this way. The output for each state of this
product automaton is determined through emptiness tests for generalized Biichi
automata derived from Q¢, and g—|¢ by varying the initial states. If ¢ is a state of

g¢ (gw) then G b (g‘f) denotes the generalized Biichi automaton obtained from

g¢ (Qﬂ(ﬁ) by replacmg its set of initial states with the singleton set {q}. Note

that Q¢ and gﬁqj are actually automata over the same alphabet (i.e., ¢ = X 7%)
since ¢ and —¢ obviously contain the same ALC-axioms.

Definition 14. Let ¢ be an ALC-LTL formula with rigid names, and let @, =
(@¢,E¢,AA¢,@8>,.7?¢) be the generalized Biichi automaton corresponding to ¢
and ng; = (Qﬁ‘i’, X, A\W, ngs,]?“ﬁ) be the generalized Biichi automaton cor-
responding to —@.

The deterministic Moore automaton My = (S, X?,8,50,{T, L, ?},A) is de-
fined as follows:

— §:=2Q" x 2077
= (@5, Q0°)
For all (P1,P,) € S and o € X%, we have 0((P1, P»),0) := (P[, P;), where:
o Pi= U {61 €Q?|(n,0q) € A%
q1EP

o Pi= U {#h€Q(a2,0.05) € A7)
q2€ P>
- A:Q — {T,L,?} is defined as

T 4f (i)Lo(G iij) = for all g2 € P> and
(1) L, (G gl) # () for some q1 € P,
APy, P2))i=q L if (4) Lw(égl)) =0 for all ¢, € P, and

>

(i1) Lo (G2) # 0 for some go € P
? otherwise
Note that the conditions (ii) are necessary to have a unique output for every

state of My, and not just for the ones reachable from sg. In fact, for the reach-
able ones, condition (i) implies condition (ii) (see the third and fourth item

in Lemma 1 below). Let My = (S, 2%, §,s0,{T,L,?},\) be the deterministic
Moore automaton defined above. Given a state s € S, we define d;(s) to be the

first and 05 (s) to be the second component of g(s) The following lemma easily
follows from Proposition 3.

Lemma 1. Let J be a finite sequence of ALC-interpretations respecting rigid
names. Then the following equivalences hold:

s(3) # L iff there exists q1 € 61(s0,74(3)) such that L, (G gl) +
me(J) # T iff there exists qa € d2(s0,74(J)) such that L, (G* Ga2 w) #
- Lw(/\) =0 for all ¢ € 61 (sO,T¢(§)) implies that there exists

g2 € 52(80,T¢()) with L, (G® %) #0;

L (G* %) =10 for all g2 € 52(50,T¢(3)) zmplzes that there exists
@1 € 61(s0,75(3)) such that L,,(G?) #

0;
0;

The next theorem shows that this construction really yields a monitor ac-
cording to Definition 13. Its proof is an easy consequence of Lemma 1.

Theorem 1. The deterministic Moore automaton Mgy introduced in Defini-
tion 14 is a monitor w.r.t. rigid names for ¢.

Since the size of the generalized Biichi automata @5 and (/j\ﬁ¢ is double-
exponential in the size of ¢, the size of the monitor M, is triple-exponential
in the size of ¢, and it is easy to see that M, can actually be computed in
triple-exponential time.

4.2 The case of incomplete knowledge

Instead of presupposing that, at every time point, the monitor has complete
information about the status of every ALC-axiom occurring in the formula ¢, we
now assume that the monitor receives incomplete information about the states
of the system at different time points in the form of ALC-ABoxes.® Given such
an ABox A and an ALC-axiom « occurring in ¢, there are now three possible
cases: (i) A implies «; (ii) A implies —ay; (iii) A implies neither a nor —a. Under
the assumption that all we know about the current state Z of the system is that
it is a model of A, then in the third case we do not know whether @ or —«
holds in Z. This adds an additional source of uncertainty, which may cause the
monitor to answer with 7. R

In the following, we thus assume that the input alphabet X for our monitor
consists of all consistent ALC-ABoxes. Formally speaking, a monitor over this al-
phabet can no longer be a deterministic Moore automaton since we have required
the alphabet of such an automaton to be finite. It should be clear, however, that
Definition 12 can trivially be extended to cover also the case of an infinite input
alphabet. From a practical point of view, this means, of course, that one cannot

5 Instead of ABoxes we could also use arbitrary Boolean ALC-knowledge bases here.

precompute such an infinite monitor. Instead, one precomputes only the states of
the monitor. Given such a state and an input ABox, one then needs to compute
the transition (i.e., the successor state in the monitor) on-the-fly.

Before constructing the actual monitor, we formally define how we expect it
to behave. Given a (finite) word @ over X, i.e., a finite sequence of ALC-ABoxes
W = Ao, ..., A, the finite sequence J=17o,14,...,I; of ACC-interpretations is
called a model of @ (written J = w) iff Z; is a model of A; for ¢ = 1,... ¢ If
J additionally respects rigid names, then we say that it is a model w.r.t. rigid
names. The monitor w.r.t. partial knowledge for ¢ needs to realize the following

monitoring function mg : X* — {T, L, 7}

T if my(3) = T for all models w.r.t. rigid names of @,
mg(W) =13 L if my(J) = L for all models w.r.t. rigid names of @,

? otherwise.

Definition 15. Let ¢ be an ALC-LTL formula. The deterministic Moore au-
tomaton M = (S, X,6,80,{T,L,?},A) is a monitor w.r.t. rigid names and in-
complete knowledge for ¢ iff for all finite sequences w of ALC-ABozes, we have
W) = My(W).

The monitor w.r.t. rigid names and incomplete knowledge for ¢ constructed
in the following is almost identical to the monitor w.r.t. rigid names Mgy con-
structed in the previous subsection. The only difference can be found in the defi-
nition of the transition functions. In My, transitions are of the form §(s,o) = ¢’
where o is an ALC-type for ¢. In the monitor w.r.t. incomplete knowledge, the
input symbol is a consistent ALC-ABox A instead of an ALC-type. Intuitively, A
stands for all its models since all we know about the current state of the system
is that it is a model of .A. The monitor must consider all the transitions (in the
generalized Biichi automata g¢ and gﬁ¢ for ¢ and —\(;5) that can be induced by
such models. To be more precise, the transitions in Q¢, and gw are made with
the ¢-types of these models as input symbols. In the following definition, we use
the fact that o is the ¢-type of a model of A iff AN A, a is consistent.

Definition 16. Let ¢ be an ALC-LTL formula with rigid names, and let QA¢ =
(@d’,E‘z’,A\‘z’,@g,ﬁd’) be the generalized Biichi automaton corresponding to ¢
and éﬁ(z, = (@ﬁd’, X, A\“i’, @aqb,]?ﬂ’) be the generalized Biichi automaton cor-
responding to —@. R

The deterministic Moore automaton Mé"c = (8, 2,87 50, {T, L, 7}, \) is
defined as follows:

— S, so, and A are defined as in Definition 14
— Forall (P,P) € Sand A € X, we have §"°((Py1, P2),0) := (P, P}),
where:

Pl= U U {4 <€Q?|(q,0,d) € A% and AN Naco @ is consistent}
ceX¢ qiepP

Po= U U {heQ | (qo,q)ec A and AN Naco @ is consistent}
cEX® g2€P>

Lemma 1 from the previous subsection can also be used to show correctness
of the monitor construction in the case of incomplete knowledge.

Theorem 2. The deterministic Moore automaton be"c introduced in Defini-
tion 16 is a monitor w.r.t. rigid names and incomplete knowledge for ¢.

Since the input alphabet Y of Mé,”c is infinite, it only makes sense to measure
the size of Mfg‘c in terms of the size of its set of states. This set is identical to the
set of states S of My, and we have already seen that S is of triple-exponential
size. Regarding the on-the-fly computation of the transitions in ./\/lgw, for a given
input ABox A, one needs to consider the exponentially many ALC-types for ¢,
and, for each such type o, check the Boolean ALC-knowledge base AN A, a
for consistency. This test is exponential in the size of this knowledge base, and
thus exponential in the size of ¢ and in the size of A.

5 Conclusion

We have shown that the three-valued approach to runtime verification in propo-
sitional LTL [5] can be extended to ALC-LTL and the case where states of the
observed system may be described in an incomplete way by ALC-ABoxes. The
complexity of the monitor construction is quite high. We have seen that the size
of our monitors is triple-exponential in the size of the formula ¢. However, the
size of the formula is usually quite small, whereas the system is monitored over
a long period of time. If we assume the size of the formula to be constant (an
assumption often made in model checking and runtime verification), then our
monitor works in time linear in the length of the observed prefix. Moreover, each
input symbol (i.e., ALC-type or consistent ABox) can be processed in constant
time.

It should also be noted that the triple-exponential complexity of the monitor
construction is a worst-case complexity. Minimization of the intermediate gen-
eralized Biichi automata and the monitor may lead to much smaller automata
than the ones defined above. We have observed this behavior on several small
example formulae. A more thorough empirical evaluation will be part of our
future research.

From a worst-case complexity point of view, the large size of the monitor can
probably not be avoided. In fact, the complexity lower bounds for the satisfiabil-
ity problem in ALC-LTL (ExpTiME-hard without rigid names and 2-EXpPTIME-
hard with rigid names) imply that our construction of the generalized Biichi
automata G4 and §¢ is optimal. Regarding complexity lower bounds for the
size of the monitor, it is known [13,12] that, in the case of propositional LTL,
the monitor must in general be of size at least exponential in the size of the
formula. However, the constructions in the literature [5] actually yield moni-
tors of double-exponential size, i.e., one exponential higher than the size of the
generalized Biichi automata for propositional LTL.

5 For the case without rigid names it is “only” double-exponential since the generalized
Biichi automata are then smaller.

References

10.

11.

12.

13.

14.

15.

16.

. Alessandro Artale and Enrico Franconi. A survey of temporal extensions of de-

scription logics. Ann. of Mathematics and Artificial Intelligence, 30:171-210, 2000.
Alessandro Artale and Enrico Franconi. Temporal description logics. In D. Gabbay,
M. Fisher, and L. Vila, editors, Handbook of Time and Temporal Reasoning in
Artificial Intelligence. The MIT Press, 2001.

Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description logic ax-
ioms. In Gerhard Brewka and Jérome Lang, editors, Proc. of the 11th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR 2008), pages 684-694.
Morgan Kaufmann, Los Altos, 2008.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, Cambridge, Massachusetts, 2008.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring of real-time
properties. In S. Arun-Kumar and N. Garg, editors, F'STTCS ’06: Proceedings
of the 26th Conference on Foundations of Software Technology and Theoretical
Computer Science, volume 4337 of Lecture Notes in Computer Science, Berlin,
Heidelberg, December 2006. Springer-Verlag.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL se-
mantics for runtime verification. Journal of Logic and Computation, 2009.
Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, Cambridge, Massachusetts, 1999.

Séverine Colin and Leonardo Mariani. Run-time verification. In Manfred Broy,
Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner,
editors, Model-Based Testing of Reactive Systems, volume 3472 of Lecture Notes
in Computer Science, pages 525-555. Springer, 2004.

Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Proceedings of the Fifteenth IFIP
WG6.1 International Symposium on Protocol Specification, Testing and Verifica-
tion XV, pages 318, London, UK, 1996. Chapman & Hall, Ltd.

Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description
logics: A survey. In Stéphane Demri and Christian S. Jensen, editors, Proc. of
the 15th Int. Symp. on Temporal Representation and Reasoning (TIME’08), pages
3-14. IEEE Computer Society Press, 2008.

Amir Pnueli. The temporal logic of programs. In Proc. of the 18th Annual Symp.
on the Foundations of Computer Science (FOCS’77), pages 46-57, 1977.

Grigore Rosu. On safety properties and their monitoring. Technical Report
UIUCDCS-R-~2007-2850, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2007.

Grigore Rosu and Klaus Havelund. Rewriting-based techniques for runtime verifi-
cation. Automated Software Engineering, 12(2):151-197, 2005.

Manfred Schmidt-Schaufl and Gert Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1-26, 1991.

Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. In-
formation and Computation, 115(1):1-37, 1994.

Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite
computation paths. In Proc. of the 24th Annual Symp. on the Foundations of
Computer Science (FOCS’83), pages 185-194. IEEE Computer Society Press, 1983.

