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Abstract Full first order linear logic can be presented as an abstract logic programming
language in Miller’s system Forum, which yields a sensible operational interpretation
in the ‘proof search as computation’ paradigm. However, Forum still has to deal with
syntactic details that would normally be ignored by a reasonable operational semantics.
In this respect, Forum improves on Gentzen systems for linear logic by restricting the
language and the form of inference rules. We further improve on Forum by restricting
the class of formulae allowed, in a system we call G-Forum, which is still equivalent
to full first order linear logic. The only formulae allowed in G-Forum have the same
shape as Forum sequents: the restriction does not diminish expressiveness and makes
G-Forum amenable to proof theoretic analysis. G-Forum consists of two (big) inference
rules, for which we show a cut elimination procedure. This does not need to appeal to
finer detail in formulae and sequents than is provided by G-Forum, thus successfully
testing the internal symmetries of our system.

1 Introduction

Forum [8, 9] is a presentation of linear logic, conceived by Miller and based on previous work by
Andreoli [1], which only produces uniform proofs [10]. This guarantees that a sensible computa-
tional interpretation of proof search is possible. Surprisingly, Forum is complete for linear logic;
this contrasts with the situation in classical logic, where a complete presentation that only produces
uniform proofs is not possible [11]. Given linear logic’s flexibility in interpreting a broad range of
computational situations, Forum represents a major step towards practical applications.

This paper is motivated by the search for adequate operational models of Forum, especially
behavioural models like labelled event structures, which describe causal relations between events.
These are particularly important for some of the domains of application of Forum, namely the
modelling of computations in concurrency and planning.

A proof in Forum mainly consists of small, mostly deterministic steps, corresponding to
applying each of several inference rules. This determinism is not a surprise, of course, since Forum
has been designed precisely for the purpose of reducing and isolating non-determinism. However,
most of these steps do not correspond to ‘interesting’ observations in a computation. For example,
two applications of a rule for O are necessary for decomposing AO (B O C) into its constituents A,
B, C; moreover, the order of application of rules would be different for decomposing (A O B) O C,
but the result would be the same. Since in such a case one is interested only in the result A,B,C,
the detail about the order of applications of the rule for O is not necessary. This is a trivial case
of a more general phenomenon in which a result is essentially deterministic, but its computation
depends on irrelevant factors like a casual decision about associations of formulae connected by O

connectives. In other words, one might be interested in identifying derivations that differ for such
details as the ones shown above.

To get Forum, Miller imposed certain restrictions on the sequents, inference rules, and possible
connectives of linear logic, but he left formula building free. In this paper, we restrict the class of
formulae allowed, along lines already imagined by Miller in [8], and we design correspondingly a
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system called G-Forum. By doing this, we have that formulae drive the construction of proofs in a
very structured way, which allows us to individuate big chunks of derivations that essentially behave
in a deterministic way: these will be the building blocks of our desired behavioural semantics. The
restriction on formulae makes them isomorphic to the sequents in Forum. Thus, we obtain two
results: we get derivations which are closer to the operational properties we want to observe, and
we also get a clean correspondence between the object level (the language of formulae) and the
meta level (sequents). At this point one wonders whether G-Forum has any good proof-theoretic
qualities, and this is the main subject of this paper. We test the internal harmony of G-Forum
the classical way: we show a cut elimination procedure for our system, and we show that it is not
necessary to resort to Forum for it to work: the bigger granularity of G-Forum rules is enough.

We leave the development of the operational semantics to a future paper (the reader can
consult [6] for some preliminary results); in this paper we limit ourselves to defining G-Forum and
show cut elimination for it. In Sect. 2 we give a quick account of Forum, then we develop G-Forum
in Sect. 3. The cut elimination proof is in Sect. 4.

2 First Order Forum

This section is a quick account of Miller’s [8, 9], restricted to the first order case and with some
minor technical and notational changes.

We deal with first order formal systems, and the following conventions apply.

2.1 Notation The letters h, k and l denote natural numbers, and i and j are used as indices on
natural numbers. Multisets are denoted by braces as in {. . .}+; multiset union is ] and the empty

multiset is ∅+. If a belongs to multiset M we write a A M .

2.2 Definition First order variables are denoted by x, y and z; terms are denoted by t, atoms

by a, b, c, . . . , a(t1, . . . , th), b(. . .), c(. . .), . . . . Sequences are denoted in vector notation, as in
∀~x.a(~t). Formulae are denoted by F and other letters which will be introduced later on. Formulae
are considered equal under α-conversion.

This work is founded on linear logic; we are mainly interested in its first order sequent calculus
presentation. We refer to the literature for details, especially to Girard’s [5].

2.3 Definition The formal system of full first order linear logic, in its Gentzen’s sequents pre-
sentation, and its language, are both denoted by FOLL. Formulae in FOLL are freely built from
first order atoms and constants 1, ⊥, >, 0 by using binary connectives �, O, N, �, (, modalities !,
?, negation ⊥ and the quantifiers ∀ and ∃. Constants 1, ⊥ and connectives �, O and ( are called
the multiplicatives; >, 0, N and � are called the additives. Equivalence is written ≡. In linear
logic F ≡ F ′ iff (F ( F ′) N (F ′ ( F ) is provable.

Intuitionistic implication ⇒ admits the well-known decomposition F ⇒ F ′ ≡ !F ( F ′; we
can consider ⇒ part of our language.

2.4 Definition The binary connective ⇒ is introduced such that F ⇒F ′ is equivalent to !F (F ′.

2.5 Definition Multiplicative connectives, except for (, take precedence over additive ones;
implications are the weakest connectives; modalities and quantifiers are stronger than binary con-
nectives; negation takes precedence over everything. Implications associate to the right. Whenever
possible, we omit parentheses.

For example, !∀x.a⊥ ( b N c O d ⇒ e stands for
(
!(∀x.(a⊥))

)
(

(
(b N (c O d)) ⇒ e

)
.

We briefly introduce the Forum formal system. The presentation corresponds to the one in
[8], restricted to the first order case and with some minor modifications. An alternative and more
detailed exposition can be found in [9].
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2.6 Definition The language of first order Forum is the subset of FOLL freely built over atoms
and the constants ⊥ and > by use of the binary connectives O, N, ( and ⇒ and of the quantifier
∀. We will say ‘Forum’ instead of ‘first order Forum.’ Generic Forum formulae are denoted by A

and B.

So, Forum presents fewer connectives than FOLL, by getting rid of some of the redundant
ones. It is not difficult to prove the following equivalences in FOLL:

1 ≡ ⊥⊥,

F � F ′ ≡ (F⊥
O F ′⊥)⊥,

!F ≡ (F ⇒⊥)⊥,

0 ≡ >⊥,

F � F ′ ≡ (F⊥
N F ′⊥)⊥,

?F ≡ F⊥ ⇒⊥,

∃x.F ≡ (∀x.F⊥)⊥,

F⊥ ≡ F ( ⊥.

Then, one can equivalently write any FOLL formula into the Forum language.

2.7 Definition Sequents are expressions of the form

[

Ψ
Γ

]

A `

[

Λ

]

or

[

Ψ
Γ

]

`

[

Ξ
Λ

]

,

where all formulae are Forum formulae and

• Ψ is a finite multiset of formulae (the left classical context or classical program);

• Γ is a finite multiset of formulae (the left linear context or linear program);

• A is a formula (the left focused formula);

• Ξ is a finite sequence of formulae (the right linear context);

• Λ is a finite multiset of atoms (the atomic context).

Γ , Ξ and Λ are collectively referred to as the linear context. Ψ and Γ together are called the
program. In the following Ψ , Γ , Ξ and Λ respectively stand for multisets, multisets and sequences
of formulae and multisets of atoms. We write ‘Γ,A’, or ‘A,Γ ’, instead of Γ ] {A}+ and ‘Γ, Γ ′’
instead of Γ ] Γ ′. Sequents are denoted by Σ. Sequents where no focused formula is present and
Ξ is empty are called state sequents and are written

[

Ψ
Γ

]

`

[

Λ

]

.

2.8 Definition An inference rule is an expression of the form
Σ1 . . . Σh

r
Σ

, where h > 0,

sequents Σ1, . . . , Σh are the premises of the rule, Σ is its conclusion and r is the name of the rule.
An inference rule with no premises is called an axiom.

2.9 Definition Let Forum be the first order proof system defined by inference rule schemes in
Fig. 1. Structural rules are: i (identity), dL (decide linear), dC (decide classical), a (atom). Logical
rules, divided into left and right ones, are: ⊥L, ⊥R (bottom); >R (top, there is no left rule); OL, OR

(par); NLL, NLR, NR (with); (L, (R (linear implication); ⇒L, ⇒R (intuitionistic implication); ∀L,
∀R (universal quantification).

Consider proofs in Forum in a bottom-up reading. In the absence of a left focused formula,
the right linear context is acted upon by right rules until it is empty; at that point a formula
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Structural Rules

i [
Ψ

]

a `

[

a

]

[

Ψ
Γ

]

A `

[

Λ

]

dL [

Ψ
Γ, A

]

`

[

Λ

]

[

Ψ, A
Γ

]

A `

[

Λ

]

dC [

Ψ, A
Γ

]

`

[

Λ

]

[

Ψ
Γ

]

`

[

Ξ
a, Λ

]

a [

Ψ
Γ

]

`

[

a, Ξ
Λ

]

Left Rules

⊥L [

Ψ
]

⊥ `

[ ]

[

Ψ
Γ

]

A `

[

Λ

] [

Ψ
Γ ′

]

B `

[

Λ′

]

OL [

Ψ
Γ, Γ ′

]

A O B `

[

Λ, Λ′

]

[

Ψ
Γ

]

A `

[

Λ

]

NLL [

Ψ
Γ

]

A N B `

[

Λ

]

[

Ψ
Γ

]

B `

[

Λ

]

NLR [

Ψ
Γ

]

A N B `

[

Λ

]

[

Ψ
Γ

]

`

[

A
Λ

] [

Ψ
Γ ′

]

B `

[

Λ′

]

(L [

Ψ
Γ, Γ ′

]

A ( B `

[

Λ, Λ′

]

[

Ψ
]

`

[

A
] [

Ψ
Γ

]

B `

[

Λ

]

⇒L [

Ψ
Γ

]

A ⇒ B `

[

Λ

]

[

Ψ
Γ

]

A[t/x] `

[

Λ

]

∀L [

Ψ
Γ

]

∀x.A `

[

Λ

]

Right Rules
[

Ψ
Γ

]

`

[

Ξ
Λ

]

⊥R [

Ψ
Γ

]

`

[

⊥, Ξ
Λ

]

>R [

Ψ
Γ

]

`

[

>, Ξ
Λ

]

[

Ψ
Γ

]

`

[

A, B, Ξ
Λ

]

OR [

Ψ
Γ

]

`

[

A O B, Ξ
Λ

]

[

Ψ
Γ

]

`

[

A, Ξ
Λ

] [

Ψ
Γ

]

`

[

B, Ξ
Λ

]

NR [

Ψ
Γ

]

`

[

A N B, Ξ
Λ

]

[

Ψ
Γ, A

]

`

[

B, Ξ
Λ

]

(R [

Ψ
Γ

]

`

[

A ( B, Ξ
Λ

]

[

Ψ, A
Γ

]

`

[

B, Ξ
Λ

]

⇒R [

Ψ
Γ

]

`

[

A ⇒ B, Ξ
Λ

]

[

Ψ
Γ

]

`

[

A[y/x],Ξ
Λ

]

∀R [

Ψ
Γ

]

`

[

∀x.A, Ξ
Λ

]

where y is not free in the conclusion

Fig. 1 The first order Forum proof system

becomes focused, in a dL or dC rule. Then left rules only are applicable, until new formulae reach
the right linear context, through (L and ⇒L rules. Proofs in Forum are said to be uniform [10, 8,
9].

Our system’s major differences with Forum as presented in [8] are: 1) our classical context
is a multiset while in [8] it is a set; 2) our atomic context is a multiset while in [8] it is a sequence.
These differences do not affect provability (and uniformity of proofs), as it can be proved trivially.

Representing derivations as directed trees whose nodes are sequents is typographically ad-
vantageous, especially in the cut elimination proof. The direction of the arrows corresponds to the
tree growth during the search for a proof. It should be clear that there is no difference between our
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non-standard notation and the usual one.

2.10 Definition To every instance of an inference rule
Σ1 . . . Σh

r
Σ

, when h > 0, an elementary

derivation
Σ1 · · · Σh

Σ

r r

corresponds, i.e., a labelled directed tree whose root is labelled Σ, whose leaves are labelled Σ1,
. . . , Σh and whose arcs are labelled r; when h = 0 the corresponding elementary derivation is

◦

Σ

r ,

where ◦ is a mark distinct from every sequent. Derivations are non-empty, finite directed trees
whose root is labelled by a sequent and whose other nodes are labelled by sequents or ◦ marks and
such that every maximal subtree of depth 1 is an elementary derivation. Derivations are denoted
by ∆. Given a derivation ∆, its premises are the labels of the leaves of ∆ other than the ◦ ones;
its conclusion is the sequent labelling the root of ∆. A derivation ∆ such that its premises are Σ1,
. . . , Σh and its conclusion is Σ can be represented as

Σ1 · · · Σh

∆

Σ

.

Sometimes the name of the derivation is not shown. If ∆ is the derivation

~Σ1

∆1

Σ1 · · ·

~Σh

∆h

Σh

Σ

r r

,

where h ≥ 0, we define its depth d(∆) as the depth of the corresponding tree, i.e., d(∆) =
max{d(∆1), . . . ,d(∆h)} + 1, where, for every sequent Σ, it holds d(Σ) = d(◦) = 0. If ∆ has
no premises we say that ∆ is a proof. Proofs are denoted by Π. We say that Π proves (or is a

proof of ) its conclusion. We say that a formula A is provable in Forum, or that Forum proves A,

if a proof of

[ ]

`

[

A
]

exists.

For example, the premises of the derivation in Fig. 2 are
{[ ]

a `

[

a

]

,

[ ]

a `

[

a

]}

+ and its

conclusion is

[ ]

a O (b O a) `

[

a, a, b

]

. This derivation can be completed into a proof by applying

two identity rules to its premises.

Please note that arcs are not ‘independent’ in the growth process of a derivation: all arcs
propagating from a node correspond to the application of the same inference rule.

By looking at Fig. 1 it is clear that if we make the classical context a set (as Miller does),
derivability is not affected. In fact, the only impact is on the ⇒R rule, but things do not change,
because the classical context is implicitly subject to weakening in all axioms.
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◦

[ ]

b `

[

b

]

i

[ ]

a `

[

a

]

[ ]

a `

[

a

] [ ]

b O a `

[

a, b

]

OL OL

[ ]

a O (b O a) `

[

a, a, b

]

OL
OL

Fig. 2 Example of derivation

2.11 Theorem Every Forum formula is provable in Forum if and only if it is provable in FOLL.

(Miller [8, 9])

Since for every formula in FOLL an equivalent formula in Forum can be found, the Forum
formal system can be used to prove formulae in FOLL.

3 Derivations at a Higher Level of Abstraction

Consider a formula δ = G1 ⇒ · · · ⇒ Gk′′ ⇒ H1 ( · · · ( Hk′ ( a1 O · · · O ak. In Forum, in a

bottom-up construction of a derivation, from

[ ]

`

[

δ
]

we are always led to the state sequents
[

G1, . . . , Gk′′

H1, . . . ,Hk′

]

`

[

a1, . . . , ak

]

. Let us call clauses formulae like δ, where formulae Gi and Hj ,

called goals, are of the form ∀~x.(δ1 N · · · N δh), and where in the N conjunction only clauses are
allowed.

In this section we derive a proof system equivalent to FOLL. The new proof system is in
fact the old Forum proof system seen at a coarser abstraction level: rules are essentially macro
derivations composed of many Forum rules, and the only formulae allowed are goals and clauses.

3.1 Goals and Clauses

We define goals and clauses, which are Forum formulae of a constrained shape; then we show that
their language is equivalent to Forum and then to FOLL. We borrow from Miller the terminology
on goals and clauses, and the reader should be aware that their use is more general than in standard
logic programming, where clauses operate on goals in a clear hierarchical relation. In our formalism,
goals and clauses are mutually recursive objects that only superficially bear a resemblance to goals
and clauses of traditional logic programming.

3.1.1 Definition Goals and clauses are recursively defined this way:

1) A goal is a formula of the form

∀~x.(δ1 N · · · N δh),

where ~x can be empty, h > 0 and every δi is a clause. When h = 0 a goal is ∀~x.>.

2) A clause δ is a formula of the form

G1 ⇒ · · · ⇒ Gk′′ ⇒ H1 ( · · · ( Hk′ ( a1 O · · · O ak,
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where k, k′, k′′ > 0, formulae Gi and Hi are goals and formulae ai are atoms. Goals Gi

are called the classical premises of δ, goals Hi are its linear premises and a1 O · · · O ak

is the head of the clause. We define hd(δ) = {a1, . . . , ak}+, lp(δ) = {H1, . . . ,Hk′}+ and
cp(δ) = {G1, . . . , Gk′′}+. When k = 0 the head is ⊥. When k′ = 0 and k′′ = 0 clauses assume
the following special forms, respectively:

G1 ⇒ · · · ⇒ Gk′′ ⇒ a1 O · · · O ak and

H1 ( · · · ( Hk′ ( a1 O · · · O ak.

The letters G and H always denote goals and the letter δ always denotes clauses.

Clearly, a clause is also a goal.

The shape of goals and clauses is not due to chance, of course. On a technical level, it is
motivated by the desire of keeping the cut elimination procedure inside the system we are going to
define. This means that we would not consider acceptable eliminating cuts by resorting to the more
primitive level of abstraction in which generic formulae and Forum inference rules are available.
The only way to convince oneself of this is to try and modify the definition and see the impact on
the cut elimination procedure. There are possibly many solutions to this problem, and the one we
present here is probably only one of many.

However, there is a better explanation, which also offers a unique solution, the one we adopt:
goals correspond to the shape of a proof tree, and clauses correspond to state sequents. In fact, a
goal stands for the collection of branches of a tree, conveniently quantified universally (note that
the branches of a derivation tree may share variables). Every branch of a derivation tree ends in a
state sequent, as we will see, and this corresponds to a clause. The mutual recursion between goals
and clauses correspond to the phases in the construction of a proof that we are going to explore in
the rest of the paper. There is a certain mysticism in this correspondence, and we are not sure we
really understand it enough; for the time being we content ourselves in seeing that it works. But
let us now get back to the properties of goals and clauses.

In cut-free sequent systems enjoying the subformula property, like the one we are dealing
with, various fragments, which differ in the connectives allowed, can be cut out of bigger ones,
while maintaining provability unaffected in the corresponding languages. For example, we could
take the fragment of Forum in which N is not allowed; since, reading proofs bottom-up, no rule can
introduce connectives not already present in its conclusion, provability for formulae not containing
N would not be influenced. There is sort of an independence, or modularity, among connectives,
which we want to preserve, because it is a valuable property in language design.

We show two ways of getting equivalence between goals and clauses and generic formulae; the
first one, with goals, respects independence of connectives by using in an essential way distributivity
of O over N.

3.1.2 Theorem Every formula in FOLL is equivalent to a goal in Forum.

Proof We already know that for every formula in linear logic there are equivalent formulae in Forum. We
show that, taken any formula in Forum, we can exhibit an equivalent goal.

We use the following absorption equivalences:

1) F O ⊥ ≡ F .

2) F O > ≡ >.

3) F N > ≡ F .

We also use the following equivalences:

4) F O (F ′
N F ′′) ≡ (F O F ′) N (F O F ′′).

5) ∀x.F O F ′ ≡ ∀x.(F O F ′) whenever x is not free in F ′.

6) ∀x.F N F ′ ≡ ∀x.(F N F ′) whenever x is not free in F ′.
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Let A be a formula in Forum: the proof is by induction on its structure.

Basis Cases

• A is an atom.

• A = ⊥.

• A = >.

In the cases above, A is a goal.

Inductive Cases

Given B and B′, by the induction hypothesis we suppose we are also given two goals G and G′ such that

B ≡ G = ∀~x.(δ1 N · · · N δh),

B
′ ≡ G

′ = ∀~y.(δ′1 N · · · N δ
′

h′),

where ~x and ~y may be empty and h and h′ may be 0. The following cases may occur.

• A = B O B′. By applications of equivalence 5 and renaming of bounded variables, if necessary, we
get

A ≡ ∀~z.
(
(δ1 N · · · N δh) O (δ′1 N · · · N δ

′

h′)
)
.

If h = 0 or h′ = 0 we can conclude that A ≡ ∀~z.>, by making use of equivalence 2. Otherwise, we
may repeatedly apply equivalence 4 above, and we get:

A ≡ ∀~z.
((

(δ1 O δ
′

1) N · · · N (δh O δ
′

1)
)

N · · · N
(
(δ1 O δ

′

h′) N · · · N (δh O δ
′

h′)
))

.

For 1 6 i 6 h and 1 6 j 6 h′, let

δi = G
i
1 ⇒ · · · ⇒ G

i
h′′

i
⇒ H

i
1 ( · · · ( H

i
h′

i
( a

i
1 O · · · O a

i
hi

,

δ
′

j = G
′j
1 ⇒ · · · ⇒ G

′j

k′′

j
⇒ H

′j
1 ( · · · ( H

′j

k′

j
( a

′j
1 O · · · O a

′j

kj
.

Since F ⇒ F ′ ≡ !F ( F ′ and F ( F ′ ≡ F⊥
O F ′, commutativity of O suffices to show that

δi O δ
′

j ≡ G
i
1 ⇒ · · · ⇒ G

i
h′′

i
⇒ G

′j
1 ⇒ · · · ⇒ G

′j

k′′

j
⇒

H
i
1 ( · · · ( H

i
h′

i
( H

′j
1 ( · · · ( H

′j

k′

j
(

a
i
1 O · · · O a

i
hi

O a
′j
1 O · · · O a

′j

kj
.

Special cases where hi = 0 or kj = 0 are handled by equivalence 1 above.

• A = B N B′. By applications of equivalence 6 and renaming of bounded variables, if necessary, we
get

A ≡ ∀~z.(δ1 N · · · N δh N δ
′

1 N · · · N δ
′

h).

If h = 0 or h′ = 0 use equivalence 3.

• A = B ( B′. By using equivalences 5 and 4, and by renaming bounded variables if necessary, we
have:

A ≡ G
⊥

O ∀~y.(δ′1 N · · · N δ
′

h)

≡ ∀~z.(G⊥
O (δ′1 N · · · N δ

′

h))

≡ ∀~z.((G⊥
O δ

′

1) N · · · N (G⊥
O δ

′

h)).

By commutativity of O it is easily seen that every (G⊥
O δ′i) is a clause. If B′ ≡ > then A ≡ >.

• A = B ⇒ B′. The argument goes as in the previous case.

• A = ∀x.B. Trivial. �
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From the proof of the theorem we can derive an obvious algorithm that transforms a Forum
formula into a goal. If A is a Forum formula and G the equivalent goal found by the algorithm, then
the set of connectives appearing in G is not greater than that of A. The translation could transform
a linear logic formula or a generic Forum formula into a much bigger and perhaps obscure goal in
Forum. We are going to see in a moment a more direct translation of Forum generic formulae into
clauses that does not suffer from this problem. The translation does not respect independence of
all connectives, because it introduces ( and ⊥, what should not be considered a severe constraint.
First of all, we note:

3.1.3 Corollary Every formula in FOLL is equivalent to a clause.

Proof Let F be a formula and G ≡ F , where G is obtained as in Th. 3.1.2. Then, (G ( ⊥) ( ⊥ is a
clause equivalent to G. �

It is possible to prove the equivalence of Forum formulae and clauses in a shorter way, by
using a double negation trick, as follows.

3.1.4 Theorem Every formula in FOLL is equivalent to a clause.

Proof Structural induction on a Forum formula A equivalent to the given FOLL formula.

Basis Cases

If A is an atom or ⊥, just take A as the equivalent clause. If A = > take (> ( ⊥) ( ⊥.

Inductive Cases

Let δ and δ′ be clauses equivalent to formulae B and B′ in Forum, respectively.

• A = B O B′. Consider δ O δ′ and use the commutative property of O. Use A O ⊥ ≡ A if necessary.

• A = B N B′. Take (δ N δ′ ( ⊥) ( ⊥.

• A = B ( B′. Consider δ ( δ′ ≡ δ⊥ O δ′ and use the commutative property of O.

• A = B ⇒ B′. Consider δ ⇒ δ′ ≡ (!δ)⊥ O δ′ and use the commutative property of O.

• A = ∀~x.B. Take (∀~x.δ ( ⊥) ( ⊥. �

One should be aware, though, that there are some concerns in Miller’s [8] about clauses
(similar to ours) with degenerate head ⊥. Clauses of that kind, when at the left of `, are always
available to rewritings, what could be cause of explosion of the search space of proofs. How to
translate formulae into goals and clauses is then a matter of careful judgment, to be exercised on
the concrete situations one should deal with.

3.2 Deriving in the Right Context

We start here an analysis of the behaviour of goals and clauses in Forum. Our purpose is to isolate
big chunks of derivations, whose shape is forced by the combined constraints of Forum inference
rules and the restrictions on syntax we imposed in the previous subsection. We consider these
big derivations as instances of (big) inference rules, whose operational meaning is reminiscent of
traditional logic programming, but, of course, more general.

The analysis we perform is very straightforward: it only requires careful inspection of the
rules. One way of looking at what we do here is the following: linear logic is a system with many
rules, each of which performs a little operational task. Here, we head towards a system with only
two rules, each of which has a somewhat complex behaviour. The point is that this behaviour is
manageable in two senses: on one hand, it corresponds to a generalised view of logic programming,
as intuitive as Miller’s one in Forum (in our opinion); on the other hand, it is possible to define a
cut elimination procedure for the two-rule formalism that, even when spelled out in full detail, as
we do here, requires a comparable effort to getting cut elimination in unconstrained linear logic. In
a subsequent paper we will see how these rules make sense in a third way, which is being in good
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[

Ψ, G1, . . . , Gk′′

Γ, H1, . . . , Hk′

]

`

[

Ξ
a1, . . . , ak , Λ

]

[

Ψ, G1, . . . , Gk′′

Γ, H1, . . . , Hk′

]

`

[

a1 O · · · O ak, Ξ
Λ

]

(OR or a)?

[

Ψ, G1, . . . , Gk′′

Γ

]

`

[

H1 ( · · · ( Hk′ ( a1 O · · · O ak , Ξ
Λ

]

(
?

R

[

Ψ
Γ

]

`

[

G1 ⇒ · · · ⇒ Gk′′ ⇒ H1 ( · · · ( Hk′ ( a1 O · · · O ak, Ξ
Λ

]

⇒
?

R

Fig. 3 Clause reduction right inference rule ŽR

correspondence to a sensible concurrent operational semantics. These should be reasons enough
for the reader to struggle through the following, admittedly technical and tedious, definitions and
propositions.

3.2.1 Definition Let ŽR be the following clause reduction right inference rule, shown in Fig. 3 in
terms of Forum rules: [

Ψ, cp(δ)
Γ, lp(δ)

]

`

[

Ξ
hd(δ), Λ

]

ŽR .[

Ψ
Γ

]

`

[

δ,Ξ
Λ

]

In the figure k > 0 and k′, k′′ > 0. Starred inference rule names mean repeated application of the
rule, or no application at all; (OR or a) stands for ‘application of one of either OR or a.’ In the
special case where k = 0 the upper sequence of (OR or a) rules is replaced by a single application
of ⊥R.

Clauses assume different meanings depending on whether they appear at the left or at the
right of the entailment symbol `. When a clause appears at the right of `, we operationally
interpret it as follows:

• classical premises are added to the classical program: they can be used at will (or not used
at all) in the rest of the computation;

• linear premises are added to the linear program: they must be used exactly once in the rest
of the computation;

• atoms in the head go into the atomic context: they are added to the current multiset of
resources upon which the program will act.

We informally say that a ŽR rule loads the contexts, by reducing clauses.

ŽR is nothing more than a shortening for a piece of a derivation. The following proposition
justifies its introduction.

3.2.2 Proposition Every proof of

[

Ψ
Γ

]

`

[

δ, Ξ
Λ

]

has shape

[

Ψ ′

Γ ′

]

`

[

Ξ
Λ′

]

[

Ψ
Γ

]

`

[

δ, Ξ
Λ

]

ŽR

.
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[

Ψ, cp(δ1ρ)
Γ, lp(δ1ρ)

]

`

[

Ξ
hd(δ1ρ), Λ

] [

Ψ, cp(δ2ρ)
Γ, lp(δ2ρ)

]

`

[

Ξ
hd(δ2ρ), Λ

] [

Ψ, cp(δhρ)
Γ, lp(δhρ)

]

`

[

Ξ
hd(δhρ), Λ

]

[

Ψ
Γ

]

`

[

δ1ρ, Ξ
Λ

]

ŽR

[

Ψ
Γ

]

`

[

δ2ρ, Ξ
Λ

]

ŽR

· · ·

[

Ψ
Γ

]

`

[

δhρ, Ξ
Λ

]

ŽR

...

NR

[

Ψ
Γ

]

`

[

(δ2 N · · · N δh)ρ, Ξ
Λ

]

NR

NR

[

Ψ
Γ

]

`

[

(δ1 N · · · N δh)ρ, Ξ
Λ

]

NR

NR

[

Ψ
Γ

]

`

[

∀~x.(δ1 N · · · N δh), Ξ
Λ

]

∀
?

R

and

◦

[

Ψ
Γ

]

`

[

>, Ξ
Λ

]

>R

[

Ψ
Γ

]

`

[

∀~x.>, Ξ
Λ

]

∀
?

R

Fig. 4 Goal reduction right inference rule GR when h > 0 and h = 0

Proof By reasoning bottom-up, each application of an inference rule is compulsory. �

All Forum inference rules applied in ŽR are right ones. This is of course an aspect of the fact
that Forum produces only uniform proofs (see [8, 9, 10]). Rules >R, NR and ∀R are still missing:
they will appear in the reduction of goals.

We can build on ŽR an inference rule which reduces goals in the right linear context.

3.2.3 Definition Let GR be the following goal reduction right inference rule, shown in Fig. 4 in
terms of ŽR and Forum rules:

[

Ψ, cp(δ1ρ)
Γ, lp(δ1ρ)

]

`

[

Ξ
hd(δ1ρ), Λ

]

· · ·

[

Ψ, cp(δhρ)
Γ, lp(δhρ)

]

`

[

Ξ
hd(δhρ), Λ

]

GR ,[

Ψ
Γ

]

`

[

∀~x.(δ1 N · · · N δh), Ξ
Λ

]

where ~x can be empty, ρ is an appropriate renaming substitution and h > 0. In the figure only
one choice among the possible associations of N connectives has been considered, but every choice
leads to the same multiset of premises.

This whole reduction phase is deterministic: in the end a goal is reduced to pieces with no
choice about the possible outcome, except for the rather immaterial choice of eigenvariables in
GR rules. The Forum system has been designed to reduce choices to a minimum, in a bottom-up
construction of a proof. Still, some ‘not necessary’ sequentialisation exists: in the case above it
resides in the binary treatment of associative connectives. We can consider the GR rule at the
abstraction level in which all premises are reached at the same time in a parallel way, thus hiding
the sequentialisation at the Forum’s level of abstraction. In other words we can consider every
instance of the GR rule a representative of an equivalence class of derivations, differing only in the
associations of N connectives.

We can perform on the GR rule the same kind of simple reasoning we did for ŽR in Prop. 3.2.2.
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3.2.4 Proposition Every proof of

[

Ψ
Γ

]

`

[

G, Ξ
Λ

]

has shape

[

Ψ1

Γ1

]

`

[

Ξ
Λ1

]

· · ·
[

Ψh

Γh

]

`

[

Ξ
Λh

]

[

Ψ
Γ

]

`

[

∀~x.(δ1 N · · · N δh), Ξ
Λ

]

GR GR
or

◦

[

Ψ
Γ

]

`

[

∀~x.>, Ξ
Λ

]

GR

.

Proof By reasoning bottom-up, each application of an inference rule is compulsory. �

GR defines the behaviour of goals when they appear at the right of `. They generate as many
branches in the computation as there are clauses in the conjunction. When GR is applied to a ∀~x.>,
it just terminates a (thread of a) computation.

3.2.5 Definition A G-state sequent is a state sequent of the kind

[

Ψ
Γ

]

`

[

Λ

]

, where all formulae
in Ψ and Γ are goals.

By 3.1.2 and 3.2.4 we can always reduce provability of a Forum formula (therefore of a FOLL’s
one, by 2.11) to provability of some G-state sequents. Moreover, we can always reduce provability of
a given formula to the provability of exactly one G-state sequent by employing the double negation
equivalence G ≡ (G ( ⊥) ( ⊥: this last formula is a clause.

3.3 Deriving in the Left Context

Let us now turn our attention to left rules and the behaviour of goals and clauses when they appear
at the left of `, as left focused formulae.

G-state sequents embody a natural notion of state for our computations. To proceed com-
puting from a G-state sequent, clauses from its program must be applied to its atomic context. Left
rules come into play: application of clauses is mainly accomplished by (L and ⇒L rules. Rules
OL and ⊥L have a role in the applicability of clauses. Rule (L is also responsible for some non-
deterministic choices about the splitting of state into multiple substates. Clauses are applicable to
the atomic context Λ whenever their heads match a submultiset of Λ’s atoms. Let us focus first on
this matching aspect.

3.3.1 Definition Let h be the following head matching inference rule, where k > 0:

h .[

Ψ
]

a1 O · · · O ak `

[

a1, . . . , ak

]

Fig. 5 shows how h corresponds to Forum inference rules. The same considerations made
above about the associativity of N hold here for O.

3.3.2 Proposition If the sequent

[

Ψ
Γ

]

a1 O · · · O ak `

[

Λ

]

is provable, then Γ is empty, Λ =

{a1, . . . , ak}+ and the only proof is

◦

[

Ψ
]

a1 O · · · O ak `

[

a1, . . . , ak

]

r
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◦ ◦ ◦

[

Ψ
]

a1 `

[

a1

]

i

[

Ψ
]

a2 `

[

a2

]

i

· · ·

[

Ψ
]

ak `

[

ak

]

i

...

OL

[

Ψ
]

a2 O · · · O ak `

[

a2, . . . , ak

]

OL

OL

[

Ψ
]

a1 O · · · O ak `

[

a1, . . . , ak

]

OL

OL and

◦

[

Ψ
]

⊥ `

[ ]

⊥L

Fig. 5 Head matching inference rule h when k > 0 and k = 0

Proof Consider Fig. 5: from the root to the leaves, all applications of inference rules are compelled by the
left focused formula. Identity axioms force empty left linear contexts. By reading from the leaves to the
root, OL rules then constrain the conclusion. The case k = 0 is trivial. �

3.3.3 Definition Let ŽL be the following clause reduction left inference rule, shown in Fig. 6 in
terms of h and Forum rules:

[

Ψ
]

`

[

G1

]

· · ·

[

Ψ
]

`

[

Gk′′

] [

Ψ
Γ1

]

`

[

H1

Λ1

]

· · ·

[

Ψ
Γk′

]

`

[

Hk′

Λk′

]

ŽL ,[

Ψ
Γ

]

δ `

[

Λ

]

where δ = G1 ⇒ · · · ⇒ Gk′′ ⇒ H1 ( · · · ( Hk′ ( a1 O · · · O ak, and k, k′, k′′ > 0, and where
Γ1 ] · · · ] Γk′ = Γ and Λ1 ] · · · ] Λk′ ] {a1, . . . , ak}+ = Λ.

Let us go through ŽL step by step; please note that it contains left rules only. This is a phase
in a derivation in which a left focused clause is reduced and used in a rewriting.

1) All classical premises of δ are evaluated in classical context Ψ .

2) All linear premises of δ are evaluated in classical context Ψ and in linear contexts which are
nondeterministically obtained as indicated. Every linear premise gets a part of each piece of
linear context: the left one is completely split among the premises; the atomic one is also
split except for atoms which have to match the head of the selected clause; the right one is
empty. In the figure some relations among contexts are noted for convenience.

3) The head of δ is matched against the residual atomic context in an h rule.

As an outcome of the reduction of the left focused clause, we have a multiset of premises which
will be further reduced by as many GR rules. They, in turn, will produce G-state sequents. The
most degenerate instances of ŽL have no premises. Special cases where there are no classical or linear
premises are easily inferable from the general scheme provided. Thanks to uniform provability, all
non-determinism in searching for Forum proofs resides in left rules. Much of it can be concentrated
into a decision rule, but one should notice that ŽL is also non-deterministic in the splitting of the
linear contexts.

3.3.4 Definition Let d be the decision inference rule, defined by the following two (non-mutually
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Γ = Γ ′
1

Γ ′
1 = Γ1 ] Γ ′

2

...
Γ ′

k′−1 = Γk′−1 ] Γ ′

k′

Γ ′

k′ = Γk′

Λ = Λ′
1

Λ′
1 = Λ1 ] Λ′

2

...
Λ′

k′−1 = Λk′−1 ] Λ′

k′

Λ′

k′ = Λk′ ] {a1, . . . , ak}+

[

Ψ
]

`

[

G1

]

· · ·

[

Ψ
]

`

[

Gk′′

] [

Ψ
Γ1

]

`

[

H1
Λ1

]

· · ·

[

Ψ
Γk′

]

`

[

Hk′

Λk′

]

◦

[

Ψ
]

a1 O · · · O ak `

[

a1, . . . , ak

]

h

[

Ψ
Γ ′

k′

]

Hk′ (

a1 O · · · O ak
`

[

Λ′

k′

]

(L

(L

...

(L

[

Ψ
Γ ′

1

]

H1 ( · · · ( Hk′ (

a1 O · · · O ak
`

[

Λ′
1

]

(L

(L

[

Ψ
Γ

] Gk′′ ⇒
H1 ( · · · ( Hk′ (

a1 O · · · O ak

`

[

Λ

]

⇒L

⇒L

.

..

⇒L

[

Ψ
Γ

] G1 ⇒ · · · ⇒ Gk′′ ⇒
H1 ( · · · ( Hk′ (

a1 O · · · O ak

`

[

Λ

]

⇒L

⇒L

Fig. 6 Clause reduction left inference rule ŽL

exclusive) cases, and shown in Fig. 7 in terms of Forum rules:

[

Ψ
Γ

]

δlσ `

[

Λ

]

d or[

Ψ
Γ,G

]

`

[

Λ

]

[

Ψ,G
Γ

]

δlσ `

[

Λ

]

d ,[

Ψ,G
Γ

]

`

[

Λ

]

where the conclusions are G-state sequents. In the first case Γ,G is the selected context, in the
second it is Ψ,G. Goal G = ∀~x.(δ1 N . . . N δh), where h > 0 and ~x can be empty, is the selected

goal ; δlσ is the selected clause, 1 ≤ l ≤ h, and σ is a substitution whose domain is ~x.

3.3.5 Proposition All proofs of

[

Ψ
Γ

]

`

[

Λ

]

have shape

[

Ψ
Γ ′

]

δ `

[

Λ

]

[

Ψ
Γ

]

`

[

Λ

]

d

,

for some Γ ′ and the inference rule above d is ŽL.

Proof By reasoning bottom-up, each application of an inference rule is compulsory. �
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[

Ψ
Γ

]

δlσ `

[

Λ

]

[

Ψ
Γ

]

δ1σ N . . . N δhσ `

[

Λ

]

(NLL or NLR)?

[

Ψ
Γ

]

G `

[

Λ

]

∀
?

L

[

Ψ
Γ, G

]

`

[

Λ

]

dL

or

[

Ψ, G
Γ

]

δlσ `

[

Λ

]

[

Ψ, G
Γ

]

δ1σ N . . . N δhσ `

[

Λ

]

(NLL or NLR)?

[

Ψ, G
Γ

]

G `

[

Λ

]

∀
?

L

[

Ψ, G
Γ

]

`

[

Λ

]

dC

Fig. 7 Decision inference rule d in its two possibilities

3.3.6 Remark There are no proofs for the sequent

[

Ψ
Γ

]

∀~x.> `

[

Λ

]

.

Each application of d involves the following choices:

1) which goal G = ∀~x.(δ1 N . . . N δh) to select, and in which context; it could be the case that a
certain G appears both in the classical and in the linear program;

2) which substitution σ to apply;

3) which clause δlσ to select among δ1σ N . . . N δhσ.

We can build on d and ŽL an inference rule which reduces goals in the program.

3.3.7 Definition Let GL be the goal reduction left inference rule, defined in the following two
(non-mutually exclusive) cases and shown in Fig. 8 in terms of d and ŽL rules:

[

Ψ
]

`

[

G1

]

· · ·

[

Ψ
]

`

[

Gk′′

] [

Ψ
Γ1

]

`

[

H1

Λ1

]

· · ·

[

Ψ
Γk′

]

`

[

Hk′

Λk′

]

GL [

Ψ
Γ,G

]

`

[

Λ

]

or

[

Ψ,G
]

`

[

G1

]

· · ·

[

Ψ,G
]

`

[

Gk′′

] [

Ψ,G
Γ1

]

`

[

H1

Λ1

]

· · ·

[

Ψ,G
Γk′

]

`

[

Hk′

Λk′

]

GL ,[

Ψ,G
Γ

]

`

[

Λ

]

where G = ∀~x.(δ1N. . .Nδh), ~x can be empty, δlσ = G1⇒· · ·⇒Gk′′⇒H1(· · ·(Hk′ (a1O· · ·Oak,
for 1 ≤ l ≤ h and k, k′, k′′ > 0, and where Γ1]· · ·]Γk′ = Γ and Λ1]· · ·]Λk′ ]{a1, . . . , ak}+ = Λ.

3.4 The System

In the previous section we built two big inference rules, a left one and a right one. Their definition
might look complex, but it is in fact rather straightforward once one knows the (operational)
meaning of linear logic connectives. One should notice that if the language of formulae were
not restricted to goals, such an enterprise would really be cumbersome and complex, and probably
pointless. Our point is, instead, that goals in Forum actually define sort of a generalised connective.
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[

Ψ
]

`

[

Gk′′

] [

Ψ
Γ1

]

`

[

H1
Λ1

]

. . .
[

Ψ
Γk′

]

`

[

Hk′

Λk′

]

...

[

Ψ
]

`

[

G1

] [

Ψ
Γ

]

δlσ `

[

Λ

]

ŽL
ŽL ŽL

ŽL

[

Ψ
Γ, G

]

`

[

Λ

]

d

or

[

Ψ, G
]

`

[

Gk′′

] [

Ψ, G
Γ1

]

`

[

H1
Λ1

]

. . .
[

Ψ, G
Γk′

]

`

[

Hk′

Λk′

]

...

[

Ψ, G
]

`

[

G1

] [

Ψ, G
Γ

]

δlσ `

[

Λ

]

ŽL
ŽL ŽL

ŽL

[

Ψ, G
Γ

]

`

[

Λ

]

d

Fig. 8 Goal reduction left inference rule GL in its two possibilities

3.4.1 Definition Let G-Forum be the formal system whose sequents are G-state sequents or se-

quents of the form

[

Ψ
Γ

]

`

[

G
Λ

]

, where Ψ and Γ contain goals, and whose inference rules are GL and
GR.

An important technical feature of a sequent system is that the rules allow for a cut elimination
theorem. We know already cut elimination from linear logic, but that theorem is proved inside the
sequent system where all the usual connectives are defined. Even if we know that cut is admissible
in our system, in order to test its internal harmony we have to provide a cut elimination proof that
does not appeal to the underlying ‘small’ connectives.

4 Cut Elimination

Let us firstly define two natural cut rules for G-Forum.

4.1 Definition The following inference rules ./L and ./C are respectively called cut linear and
cut classical :

[

Ψ
Γ

]

`

[

G
Λ

] [

Ψ ′

G,Γ ′

]

`

[

Ξ ′

Λ′

]

./L and[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

Ξ ′

Λ,Λ′

]

[

Ψ
]

`

[

G
] [

G,Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

./C .[

Ψ, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

Ξ ′ is either empty or a singleton. In both rules G is called the principal formula. System
G-Forum./L,./C is G-Forum where ./L, ./C are allowed in proofs.

In the sequel we prove that every proof in G-Forum./L,./C can be transformed into an equivalent
proof in G-Forum. The proof of the cut elimination theorem follows a traditional argument in
which one deals with contraction by a generalised cut rule that cuts on several copies of the same
principal formula (see for example [4]). We use the cut classical rule, in a certain generalisation ./′

C

together with a contraction rule >, to make G-Forum./L,./C more general, and then we prove cut
elimination on this more general system. The core of the proof is the elimination of the ./L rule.
Actually, the design of the rules GL and GR, and the crucial decisions about the exact definition
of goals, all come from a careful analysis of what is needed in this part of the cut elimination
argument.

We first introduce a contraction rule and a cut classical rule in a more general form as follows.
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4.2 Definition The following inference rule > is called contraction:

[

Ψ,G,G
Γ

]

`

[

Ξ
Λ

]

> .[

Ψ,G
Γ

]

`

[

Ξ
Λ

]

G-Forum>,./L,./C , G-Forum>,./L and G-Forum>, stand for G-Forum where, in addition to GL and
GR, rules in the superscript are allowed.

4.3 Definition We write lG to indicate the multiset {G, . . . , G}+ where G appears l times; anal-
ogously, given the multiset of formulae Ψ , we write lΨ to indicate Ψ ] · · · ] Ψ

︸ ︷︷ ︸

l times

; when l = 0 both lG

and lΨ stand for ∅+.

4.4 Definition The generalized cut classical rule ./′
C

is so defined:

[

Ψ
]

`

[

G
] [

lG, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

./′
C

,[

Ψ, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

where l > 0. Again, G is called the principal formula.

We will prove that proofs in G-Forum>,./L,./′

C can be transformed into proofs in G-Forum>,./L ,
which in turn can be transformed into proofs in G-Forum>, which can be transformed into proofs
in G-Forum, where every transformation preserves the conclusion:

G-Forum>,./L,./′

C → G-Forum>,./L → G-Forum> → G-Forum.

The first step and the third one are technically similar and eminently ‘structural’ in nature,
meaning that they deal with bookkeeping of resources. The middle step is a typical cut elimination
theorem which tests the symmetries of the system.

The cut elimination theorem relies on an induction measure that we call cut-rank, which is
essentially a measure of the syntactical complexity of the principal formula.

4.5 Definition The cut-rank cr(G) of goal G is a natural number inductively defined as follows:

cr(∀~x.δ1 N . . . N δh) = max{cr′(δ1), . . . , cr
′(δh), 0} + 1, where h > 0;

cr′(G1 ⇒ · · · ⇒ Gk′′ ⇒ H1 ( · · · ( Hk′ ( a1 O · · · O ak) =

max{cr(G1), . . . , cr(Gk′′ ), cr(H1), . . . , cr(Hk′), 0} + 1, where k, k′, k′′
> 0.

The cut-rank of an instance of ./L, ./C or ./′
C

rule is the cut-rank of its principal formula. The
cut-rank cr(Π) of a proof Π is the maximum cut-rank of instances of ./L, ./C and ./′

C
in Π; if Π is

cut-free then we define cr(Π) = 0.

4.1 Elimination of the Generalized Cut Classical Rule

To prove that ./′
C

occurrences may be eliminated from a proof, we prove that every instance of ./′
C

can be moved upwards in the proof, along the right branch of the rule, until it disappears.
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4.1.1 Lemma In G-Forum>,./L,./′

C , let Π be the proof

Π ′

[

Ψ
]

`

[

G
]

Π ′′

[

lG, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

./
′

C ./
′

C

,

where l > 0 and no instance of ./′
C

appears in Π ′ and Π ′′. Then, there exists a proof Π̄ in

G-Forum>,./L , whose conclusion is the same as that of Π, and cr(Π̄) ≤ cr(Π).

Proof We will prove the lemma by induction on the depth of Π ′′.

Basis Cases

The following two cases are the only possible ones:

1) GL. If

Π =

◦
Π ′

[

Ψ
]

`

[

G
] [

lG, Ψ ′

Γ ′

]

`

[

Λ′

]

GL

[

Ψ, Ψ ′

Γ ′

]

`

[

Λ′

]

./′

C ./′

C

,

then two cases are possible. If G is not the selected goal in the GL instance, or it is selected and
either G A Ψ ′ or G A Γ ′, then take:

Π̄ =

◦

[

Ψ, Ψ ′

Γ ′

]

`

[

Λ′

]

GL

.

Otherwise, if G is the selected goal in the GL instance and G does not appear neither in Ψ ′ nor in
Γ ′, it must be l > 0 and Γ ′ = ∅+; in this case take

Π̄ =

◦
Π ′

[

Ψ
]

`

[

G
] [

Ψ ′

G

]

`

[

Λ′

]

GL

[

Ψ, Ψ ′
]

`

[

Λ′

]

./L ./L

.

2) GR. If

Π =

Π ′

[

Ψ
]

`

[

G
]

◦

[

lG, Ψ ′

Γ ′

]

`

[

∀~x.>
Λ′

]

GR

[

Ψ, Ψ ′

Γ ′

]

`

[

∀~x.>
Λ′

]

./′

C ./′

C

,
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then take:

Π̄ =

◦

[

Ψ, Ψ ′

Γ ′

]

`

[

∀~x.>
Λ′

]

GR

.

In all cases it holds cr(Π̄) ≤ cr(Π).

Inductive Cases

3) GL. Let Π be

Π ′′
1

[

lG, Ψ ′
]

`

[

G1

]

· · ·

Π ′′

k′′

[

lG, Ψ ′
]

`

[

Gk′′

]

Π ′
1

[

lG, Ψ ′

Γ ′
1

]

`

[

H1

Λ′
1

]

...

Π ′

k′

[

lG, Ψ ′

Γ ′

k′

]

`

[

Hk′

Λ′

k′

]

Π ′

[

Ψ
]

`

[

G
] [

lG, Ψ ′

Γ ′

]

`

[

Λ′

]

GL

GL

GL

GL

[

Ψ, Ψ ′

Γ ′

]

`

[

Λ′

]

./′

C ./′

C

,

where k′ + k′′ > 0. By the induction hypothesis, for 1 ≤ j ≤ k′′ and 1 ≤ i ≤ k′, there are ./′
C-free

proofs Π̄ ′′
j and Π̄ ′

i, corresponding respectively to

Π ′

[

Ψ
]

`

[

G
]

Π ′′
j

[

lG, Ψ ′
]

`

[

Gj

]

[

Ψ, Ψ ′
]

`

[

Gj

]

./′

C

./′

C

and

Π ′

[

Ψ
]

`

[

G
]

Π ′
i

[

lG, Ψ ′

Γ ′
i

]

`

[

Hi

Λ′
i

]

[

Ψ, Ψ ′

Γ ′
i

]

`

[

Hi

Λ′
i

]

./′

C ./′

C

.

Two cases are possible. If G is not the selected goal in the GL instance, or if it is selected and either
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G A Ψ ′ or G A Γ ′, then take Π̄ as:

Π̄ ′′
1

[

Ψ, Ψ ′
]

`

[

G1

]

· · ·

Π̄ ′′

k′′

[

Ψ, Ψ ′
]

`

[

Gk′′

]

Π̄ ′
1

[

Ψ, Ψ ′

Γ ′
1

]

`

[

H1

Λ′
1

]

...

Π̄ ′

k′

[

Ψ, Ψ ′

Γ ′

k′

]

`

[

Hk′

Λ′

k′

]

[

Ψ, Ψ ′

Γ ′

]

`

[

Λ′

]

GL
GL

GL

GL

.

Otherwise, if G is selected and G does not appear neither in Ψ ′ nor in Γ ′, it must be l > 0; in this
case take Π̄ as

Π̄ ′′
1

[

Ψ, Ψ ′
]

`

[

G1

]

· · ·

Π̄ ′′

k′′

[

Ψ, Ψ ′
]

`

[

Gk′′

]

Π̄ ′
1

[

Ψ, Ψ ′

Γ ′
1

]

`

[

H1

Λ′
1

]

...

Π̄ ′

k′

[

Ψ, Ψ ′

Γ ′

k′

]

`

[

Hk′

Λ′

k′

]

Π ′

[

Ψ
]

`

[

G
] [

Ψ, Ψ ′

G, Γ ′

]

`

[

Λ′

]

GL

GL

GL

GL

[

Ψ, Ψ, Ψ ′

Γ ′

]

`

[

Λ′

]

./L ./L

[

Ψ, Ψ ′

Γ ′

]

`

[

Λ′

]

>?

.
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4) GR. Let Π be

Π ′

[

Ψ
]

`

[

G
]

Π1

[

lG, Ψ ′, cp(δ1ρ)
Γ ′, lp(δ1ρ)

]

`

[

hd(δ1ρ), Λ′

]

· · ·

Πh

[

lG, Ψ ′, cp(δhρ)
Γ ′, lp(δhρ)

]

`

[

hd(δhρ), Λ′

]

[

lG, Ψ ′

Γ ′

]

`

[

G′

Λ′

]GR GR

[

Ψ, Ψ ′

Γ ′

]

`

[

G′

Λ′

]

./′

C
./′

C

,

where G′ = ∀~x.(δ1 N . . . N δh), for h > 0, and ρ is a renaming substitution over domain ~x; we can
assume that no variable in the range of ρ is free in Ψ . By the induction hypothesis, for 1 ≤ i ≤ h,
there are ./′

C-free proofs Π̄i, corresponding to:

Π ′

[

Ψ
]

`

[

G
]

Πi

[

lG, Ψ ′, cp(δiρ)
Γ ′, lp(δiρ)

]

`

[

hd(δiρ), Λ′

]

[

Ψ, Ψ ′, cp(δiρ)
Γ ′, lp(δiρ)

]

`

[

hd(δiρ), Λ′

]

./′

C

./′

C

.

Take

Π̄ =

Π̄1

[

Ψ, Ψ ′, cp(δ1ρ)
Γ ′, lp(δ1ρ)

]

`

[

hd(δ1ρ), Λ′

]

· · ·

Π̄h

[

Ψ, Ψ ′, cp(δhρ)
Γ ′, lp(δhρ)

]

`

[

hd(δhρ), Λ′

]

[

Ψ, Ψ ′

Γ ′

]

`

[

G′

Λ′

]

GR

GR

.

5) ./L. Let Π be

Π ′

[

Ψ
]

`

[

G
]

Π1

[

l1G, Ψ ′
1

Γ ′
1

]

`

[

G′

Λ′
1

]

Πh

[

l2G, Ψ ′
2

G′, Γ ′
2

]

`

[

Ξ ′

Λ′
2

]

[

(l1 + l2)G, Ψ ′
1, Ψ

′
2

Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ′
1, Λ

′
2

]

./L
./L

[

Ψ, Ψ ′
1, Ψ

′
2

Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ′
1, Λ

′
2

]

./′

C ./′

C

,
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where l1, l2 > 0. By the induction hypothesis, consider ./′
C-free proofs Π̄1 and Π̄2 corresponding

respectively to

Π ′

[

Ψ
]

`

[

G
]

Π1

[

l1G, Ψ ′
1

Γ ′
1

]

`

[

G′

Λ′
1

]

[

Ψ, Ψ ′
1

Γ ′
1

]

`

[

G′

Λ′
1

]

./′

C ./′

C

and

Π ′

[

Ψ
]

`

[

G
]

Π2

[

l2G, Ψ ′
2

G′, Γ ′
2

]

`

[

Ξ ′

Λ′
2

]

[

Ψ, Ψ ′
2

G′, Γ ′
2

]

`

[

Ξ ′

Λ′
2

]

./′

C ./′

C

.

Take

Π̄ =

Π̄1

[

Ψ, Ψ ′
1

Γ ′
1

]

`

[

G′

Λ′
1

]

Π̄2

[

Ψ, Ψ ′
2

G′, Γ ′
2

]

`

[

Ξ ′

Λ′
2

]

[

Ψ, Ψ, Ψ ′
1, Ψ

′
2

Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ′
1, Λ

′
2

]

./L ./L

[

Ψ, Ψ ′
1, Ψ

′
2

Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ′
1, Λ

′
2

]

>?

.

6) >. There are two distinct cases. If Π is

Π ′′

[

(l + 1)G, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

Π ′

[

Ψ
]

`

[

G
] [

lG, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

>

[

Ψ, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

./′

C
./′

C

,

where l > 0, then, by induction hypothesis, there is a ./′
C-free proof Π̄ corresponding to

Π ′

[

Ψ
]

`

[

G
]

Π ′′

[

(l + 1)G, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ, Ψ ′

Γ ′

]

`

[

Ξ ′

Λ′

]

./′

C ./′

C

.
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If Π is

Π ′′

[

lG, G′, G′, Ψ ′′

Γ ′

]

`

[

Ξ ′

Λ′

]

Π ′

[

Ψ
]

`

[

G
] [

lG, G′, Ψ ′′

Γ ′

]

`

[

Ξ ′

Λ′

]

>

[

Ψ, G′, Ψ ′′

Γ ′

]

`

[

Ξ ′

Λ′

]

./′

C
./′

C

,

by the induction hypothesis, consider the ./′
C-free proof Π̄ ′′ corresponding to

Π ′

[

Ψ
]

`

[

G
]

Π ′′

[

lG, G′, G′, Ψ ′′

Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ, G′, G′, Ψ ′′

Γ ′

]

`

[

Ξ ′

Λ′

]

./′

C ./′

C

.

Take

Π̄ =

Π̄ ′′

[

Ψ, G′, G′, Ψ ′′

Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ, G′, Ψ ′′

Γ ′

]

`

[

Ξ ′

Λ′

]

>

.

In all cases it is easy to check that cr(Π̄) ≤ cr(Π). �

4.1.2 Lemma For every proof Π in G-Forum>,./L,./′

C a proof Π ′ exists in G-Forum>,./L whose

conclusion is the same and cr(Π ′) ≤ cr(Π).

Proof If a ./′
C instance appears in the proof Π , there must be in Π a subproof Π ′ which satisfies the

hypotheses of Lemma 4.1.1. Replace Π ′ with its associated ./′
C-free proof Π̄ ′ produced by the lemma.

Proceed by induction on the number of ./′
C instances in Π : at each step the cut-rank of the proof does not

increase. �

4.2 Elimination of the Cut Linear Rule

In this section we see the core argument of the whole proof.

4.2.1 Lemma If there is in G-Forum>,./L a proof with conclusion

[

Ψ
Γ

]

`

[

Ξ
Λ

]

, there is also a proof

with conclusion

[

Ψ, Ψ ′

Γ

]

`

[

Ξ
Λ

]

and whose cut-rank is the same, for any multiset Ψ ′.

Proof Add Ψ ′ to the classical context in the conclusion of the proof and proceed recursively upwards:
when a cut-rule is reached, proceed recursively on one of the two proofs ending in its premises; when a rule
different from a cut is reached, proceed recursively on all the proofs ending in its premises. The cut-rank
is unchanged. �
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4.2.2 Lemma In G-Forum>,./L let Π be the proof

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Π ′′

[

Ψ ′

G, Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

./L ./L

,

such that cr(G) > cr(Π ′) and cr(G) > cr(Π ′′). A proof Π̄ exists in G-Forum>,./L , whose conclusion

is the same as that of Π, and cr(Π̄) < cr(Π).

Proof The proof is by induction on d(Π ′) + d(Π ′′).

Basis Case

The only basis case occurs when Π is

◦ ◦

[

Ψ
Γ

]

`

[

∀~x.>
Λ

]

GR

[

Ψ ′

∀~x.>, Γ ′

]

`

[

∀~x.>
Λ′

]

GR

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

∀~x.>
Λ, Λ′

]

./L ./L

;

in this case consider

Π̄ =

◦

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

∀~x.>
Λ, Λ′

]

GR

.

Inductive Cases

We consider the bottommost rule instances in Π ′ and Π ′′. The bottommost rule in Π ′ cannot be a GL,
so we can make an exhaustive case analysis by considering the following couples ‘left bottommost, right
bottommost’:

1) GR, GL (where the principal formula is active);

2) any rule, GL (where the principal formula is not active);

3) any rule, GR;

4) any rule, ./L (principal formula goes to the left);

5) any rule, ./L (principal formula goes to the right);

6) any rule, >;

7) ./L, any rule;

8) >, any rule.

In detail:
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1) GR, GL (where the principal formula is active). Let Π be

Π1

[

Ψ1

Γ1

]

`

[

Λ1

]

Π ′′
1

[

Ψ ′
]

`

[

G1σ
]

. . .

Π ′′

k′′

[

Ψ ′
]

`

[

Gk′′σ
]

. . .

Πl

[

Ψl

Γl

]

`

[

Λl

]

Π ′
1

[

Ψ ′

Γ ′
1

]

`

[

H1σ
Λ′

1

]

...
...

Πh

[

Ψh

Γh

]

`

[

Λh

]

Π ′

k′

[

Ψ ′

Γ ′

k′

]

`

[

Hk′σ
Λ′

k′

]

[

Ψ
Γ

]

`

[

G
Λ

]

GR

GR

GR

[

Ψ ′

G, Γ ′

]

`

[

Λ′

]

GL GL

GL

GL

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

Λ, Λ′

]

./L
./L

;

where G = ∀~x.(δ1 N · · · N δh) is the selected goal in the GL instance and h > 0 (the case h = 0 is
impossible); the selected clause in GL is δlσ = (G1⇒· · ·⇒Gk′′⇒H1(· · ·(Hk′(a1O· · ·Oak)σ, where
k, k′, k′′

> 0 and 1 ≤ l ≤ h; for some renaming substitution ρ they hold Ψl = Ψ ] {G1ρ, . . . , Gk′′ρ}+,
Γl = Γ ] {H1ρ, . . . , Hk′ρ}+ and Λl = Λ ] {a1ρ, . . . , akρ}+; Γ ′ = Γ ′

1 ] · · · ] Γ ′

k′ and Λ′ = Λ′
1 ]

· · · ] Λ′

k′ ] {a1σ, . . . , akσ}+. Let τ be a substitution whose domain is the range of ρ and such that
ρτ = σ. Consider the proof Π̄l obtained from Πl by applying τ to every formula in every sequent
(this operation may of course involve the renaming of some eigenvariable); moreover Ψ ′ is added to
the classical context (Lemma 4.2.1):

Π̄l

[

G1σ, . . . , Gk′′σ, Ψ, Ψ ′

H1σ, . . . , Hk′σ, Γ

]

`

[

Λ, a1σ, . . . , akσ

] .
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Of course, cr(Π̄l) = cr(Πl). Let Π̄ ′ be the following proof:

Π ′′
1

[

Ψ ′
]

`

[

G1σ
]

Π̄l

[

G1σ, . . . , Gk′′σ, Ψ, Ψ ′

H1σ, . . . , Hk′σ, Γ

]

`

[

Λlτ

]

...

[

G2σ, . . . , Gk′′σ, Ψ, 2Ψ ′

H1σ, . . . , Hk′σ, Γ

]

`

[

Λlτ

]

./C ./C

Π ′′

k′′

[

Ψ ′
]

`

[

Gk′′σ
]

...

./C

Π ′
1

[

Ψ ′

Γ ′
1

]

`

[

H1σ
Λ′

1

] [

Ψ, (k′′ + 1)Ψ ′

H1σ, . . . , Hk′σ, Γ

]

`

[

Λlτ

]

./C
./C

...

[

Ψ, (k′′ + 2)Ψ ′

H2σ, . . . , Hk′σ, Γ, Γ ′
1

]

`

[

Λlτ, Λ′
1

]

./L ./L

Π ′

k′

[

Ψ ′

Γ ′

k′

]

`

[

Hk′σ
Λ′

k′

]

...

./L

[

Ψ, (k′ + k′′ + 1)Ψ ′

Γ, Γ ′

]

`

[

Λ, Λ′

]

./L
./L

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

Λ, Λ′

]

>?

.

We have

cr(Π̄ ′) =max{cr(Π̄l), cr(Π
′′

1 ), . . . , cr(Π ′′

k′′), cr(Π ′

1), . . . , cr(Π
′

k′),

cr(G1σ), . . . , cr(Gk′′σ), cr(H1σ), . . . , cr(Hk′σ)}

< cr(G).

Apply Lemma 4.1.2 to Π̄ ′ and obtain Π̄: the cut-rank does not increase.
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2) Any rule, GL (where the principal formula is not active). Let Π be

Π ′
1

[

Ψ ′

Γ ′
1

]

`

[

H ′
1

Λ′
1

] . . .

Π ′
l−1

[

Ψ ′

Γ ′
l−1

]

`

[

H ′

l−1

Λ′
l−1

]

Π ′
l

[

Ψ ′

G, Γ ′

l

]

`

[

H ′

l

Λ′

l

]

Π ′′

k′′

[

Ψ ′
]

`

[

G′

k′′

]

Π ′
l+1

[

Ψ ′

Γl+1

]

`

[

H ′
l+1

Λ′
l+1

]

...
...

Π ′′
1

[

Ψ ′
]

`

[

G′
1

]

Π ′

k′

[

Ψ ′

Γk′

]

`

[

H ′

k′

Λ′

k′

]

Π ′

[

Ψ
Γ

]

`

[

G
Λ

] [

Ψ ′

G, Γ ′

]

`

[

Λ′

]

GL

GL

GL

GL

GL

GL

GL

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

Λ, Λ′

]

./L ./L

.

where k′′
> 0, goal G is not selected, and then k′ > 0 and 1 ≤ l ≤ k′. Let Π̄ ′′

1 , . . . , Π̄ ′′

k′′ , Π̄ ′
1, . . . , Π̄

′

l−1,
Π̄ ′

l+1, . . . , Π̄
′

k′ respectively be obtained by Π ′′
1 , . . . , Π ′′

k′′ , Π ′
1, . . . , Π

′

l−1, Π ′

l+1, . . . , Π ′

k′ by adding Ψ

to the classical context in the conclusion (by Lemma 4.2.1). By the induction hypothesis there is a
proof Π̄ ′

l with the same conclusion of

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Π ′

l

[

Ψ ′

G, Γ ′

l

]

`

[

H ′
l

Λ′

l

]

[

Ψ, Ψ ′

Γ, Γ ′

l

]

`

[

H ′
l

Λ, Λ′

l

]

./L ./L

,
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and such that cr(Π̄ ′

l) < cr(G). Take Π̄ as

Π̄ ′
1

[

Ψ, Ψ ′

Γ ′
1

]

`

[

H ′
1

Λ′
1

] . . .

Π̄ ′
l−1

[

Ψ, Ψ ′

Γ ′
l−1

]

`

[

H ′

l−1

Λ′
l−1

]

Π̄ ′
l

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

H ′

l

Λ, Λ′

l

]

Π̄ ′′

k′′

[

Ψ, Ψ ′
]

`

[

G′

k′′

]

Π̄ ′

l+1

[

Ψ, Ψ ′

Γl+1

]

`

[

H ′
l+1

Λ′

l+1

]

...
...

Π̄ ′′
1

[

Ψ, Ψ ′
]

`

[

G′
1

]

Π̄ ′

k′

[

Ψ, Ψ ′

Γk′

]

`

[

H ′

k′

Λ′

k′

]

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

Λ, Λ′

]

GL

GL

GL

GL

GL

GL

GL

;

cr(Π̄) < cr(Π) is easily verified.

3) Any rule, GR. Let Π be

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Π1

[

Ψ ′, cp(δ′1ρ)
G, Γ ′, lp(δ′1ρ)

]

`

[

Λ′, hd(δ′1ρ)

]

· · ·

Πh

[

Ψ ′, cp(δ′hρ)
G, Γ ′, lp(δ′hρ)

]

`

[

Λ′, hd(δ′hρ)

]

[

Ψ ′

G, Γ ′

]

`

[

G′

Λ′

]GR GR

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

G′

Λ, Λ′

]

./L ./L

,

where G′ = ∀~x.(δ′1 N · · · N δ′h) and h > 0. Obtain, using the induction hypothesis, proofs Π̄i, where
1 ≤ i ≤ h, and such that cr(Π̄i) < cr(G), from proofs

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Πi

[

Ψ ′, cp(δ′iρ)
G, Γ ′, lp(δ′iρ)

]

`

[

Λ′, hd(δ′iρ)

]

[

Ψ, Ψ ′, cp(δ′iρ)
Γ, Γ ′, lp(δ′iρ)

]

`

[

Λ, Λ′, hd(δ′iρ)

]

./L

./L

.
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Take Π̄ as

Π̄1

[

Ψ, Ψ ′, cp(δ′1ρ)
Γ, Γ ′, lp(δ′1ρ)

]

`

[

Λ, Λ′, hd(δ′1ρ)

]

. . .

Π̄h

[

Ψ, Ψ ′, cp(δ′hρ)
Γ, Γ ′, lp(δ′hρ)

]

`

[

Λ, Λ′, hd(δ′hρ)

]

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

G′

Λ, Λ′

]

GR GR

.

When h = 0 take Π̄ as
◦

[

Ψ, Ψ ′

Γ, Γ ′

]

`

[

∀~y.>
Λ, Λ′

]

GR

.

4) Any rule, ./L (principal formula goes to the left). Let Π be

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Π1

[

Ψ ′
1

G, Γ ′
1

]

`

[

G′

Λ′
1

]

Π2

[

Ψ ′
2

G′, Γ ′
2

]

`

[

Ξ ′

Λ′
2

]

[

Ψ ′
1, Ψ

′
2

G, Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ′
1, Λ

′
2

]

./L ./L

[

Ψ, Ψ ′
1, Ψ

′
2

Γ, Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ, Λ′
1, Λ

′
2

]

./L
./L

.

Apply the induction hypothesis on

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Π1

[

Ψ ′
1

G, Γ ′
1

]

`

[

G′

Λ′
1

]

[

Ψ, Ψ ′
1

Γ, Γ ′
1

]

`

[

G′

Λ, Λ′
1

]

./L ./L

and obtain Π̄1. Then take Π̄ as

Π̄1

[

Ψ, Ψ ′
1

Γ, Γ ′
1

]

`

[

G′

Λ, Λ′
1

]

Π2

[

Ψ ′
2

G′, Γ ′
2

]

`

[

Ξ ′

Λ′
2

]

[

Ψ, Ψ ′
1, Ψ

′
2

Γ, Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ, Λ′
1, Λ

′
2

]

./L ./L

.
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5) Any rule, ./L (principal formula goes to the right). Let Π be

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Π1

[

Ψ ′
1

Γ ′
1

]

`

[

G′

Λ′
1

]

Π2

[

Ψ ′
2

G′, G, Γ ′
2

]

`

[

Ξ ′

Λ′
2

]

[

Ψ ′
1, Ψ

′
2

G, Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ′
1, Λ

′
2

]

./L ./L

[

Ψ, Ψ ′
1, Ψ

′
2

Γ, Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ, Λ′
1, Λ

′
2

]

./L
./L

.

Apply the induction hypothesis on

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Π2

[

Ψ ′
2

G′, G, Γ ′
2

]

`

[

Ξ ′

Λ′
2

]

[

Ψ, Ψ ′
2

G′, Γ, Γ ′
2

]

`

[

Ξ ′

Λ, Λ′
2

]

./L ./L

and obtain Π̄2. Then take Π̄ as

Π1

[

Ψ ′
1

Γ ′
1

]

`

[

G′

Λ′
1

]

Π̄2

[

Ψ, Ψ ′
2

G′, Γ, Γ ′
2

]

`

[

Ξ ′

Λ, Λ′
2

]

[

Ψ, Ψ ′
1, Ψ

′
2

Γ, Γ ′
1, Γ

′
2

]

`

[

Ξ ′

Λ, Λ′
1, Λ

′
2

]

./L ./L

.

6) Any rule, >. Let Π be

Π1

[

Ψ ′, G′, G′

G, Γ ′

]

`

[

Ξ ′

Λ′

]

Π ′

[

Ψ
Γ

]

`

[

G
Λ

] [

Ψ ′, G′

G, Γ ′

]

`

[

Ξ ′

Λ′

]

>

[

Ψ, Ψ ′, G′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

./L

./L

.

Apply the induction hypothesis on

Π ′

[

Ψ
Γ

]

`

[

G
Λ

]

Π1

[

Ψ ′, G′, G′

G, Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ, Ψ ′, G′, G′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

./L ./L
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and obtain Π̄1. Then take Π̄ as

Π̄1

[

Ψ, Ψ ′, G′, G′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

[

Ψ, Ψ ′, G′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

>

.

7) ./L, Any rule. Let Π be

Π1

[

Ψ1

Γ1

]

`

[

G′

Λ1

]

Π2

[

Ψ2

G′, Γ2

]

`

[

G
Λ2

]

[

Ψ1, Ψ2

Γ1, Γ2

]

`

[

G
Λ1, Λ2

]

./L ./L

Π ′′

[

Ψ ′

G, Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ1, Ψ2, Ψ
′

Γ1, Γ2, Γ
′

]

`

[

Ξ ′

Λ1, Λ2, Λ
′

]

./L
./L

.

Apply the induction hypothesis on

Π2

[

Ψ2

G′, Γ2

]

`

[

G
Λ2

]

Π ′′

[

Ψ ′

G, Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ2, Ψ
′

G′, Γ2, Γ
′

]

`

[

Ξ ′

Λ2, Λ
′

]

./L
./L

and obtain Π̄2. Then take Π̄ as

Π1

[

Ψ1

Γ1

]

`

[

G′

Λ1

]

Π̄2

[

Ψ2, Ψ
′

G′, Γ2, Γ
′

]

`

[

Ξ ′

Λ2, Λ
′

]

[

Ψ1, Ψ2, Ψ
′

Γ1, Γ2, Γ
′

]

`

[

Ξ ′

Λ1, Λ2, Λ
′

]

./L
./L

.

8) >, any rule. Let Π be

Π1

[

Ψ, G′, G′

Γ

]

`

[

G
Λ

]

[

Ψ, G′

Γ

]

`

[

G
Λ

]

> Π ′′

[

Ψ ′

G, Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ, Ψ ′, G′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

./L
./L

.
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Apply the induction hypothesis on

Π1

[

Ψ, G′, G′

Γ

]

`

[

G
Λ

]

Π ′′

[

Ψ ′

G, Γ ′

]

`

[

Ξ ′

Λ′

]

[

Ψ, Ψ ′, G′, G′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

./L ./L

and obtain Π̄1. Then take Π̄ as

Π̄1

[

Ψ, Ψ ′, G′, G′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

[

Ψ, Ψ ′, G′

Γ, Γ ′

]

`

[

Ξ ′

Λ, Λ′

]

>

.

�

4.2.3 Lemma For every proof in G-Forum>,./L there is a proof in G-Forum> whose conclusion is

the same.

Proof Given a proof in G-Forum>,./L , we say that a certain ./L instance is maximal if its cut-rank is higher
than that of any other ./L instance above it. Apply repeatedly Lemma 4.2.2 on maximal ./L instances
until all ./L instances disappear: they do because the cut-rank in the subproofs whose root is a maximal
./L decreases each time. �

4.3 Elimination of the Contraction Rule

4.3.1 Lemma In G-Forum>, let Π be the proof

Π ′

[

Ψ, G, G
Γ

]

`

[

Ξ
Λ

]

[

Ψ, G
Γ

]

`

[

Ξ
Λ

]

>

,

where no instance of > appears in Π ′. A proof Π̄ exists in G-Forum whose conclusion is the same

as that of Π.

Proof By induction on the depth of Π ′.

Basis Case

If Π is
◦

[

Ψ, G, G
Γ

]

`

[

Ξ
Λ

]

r

[

Ψ, G
Γ

]

`

[

Ξ
Λ

]

>

,
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then take

Π̄ =

◦

[

Ψ, G
Γ

]

`

[

Ξ
Λ

]

r

,

where r is GL or GR.

Inductive Cases

1) GL. Let Π be

Π ′′
1

[

Ψ, G, G
]

`

[

G1

]

. . .

Π ′′

k′′

[

Ψ, G, G
]

`

[

Gk′′

]

Π ′
1

[

Ψ, G, G
Γ1

]

`

[

H1

Λ1

]

. . .

Π ′

k′

[

Ψ, G, G
Γk′

]

`

[

Hk′

Λk′

]

[

Ψ, G, G
Γ

]

`

[

Λ

]GL

GL

GL

GL

[

Ψ, G
Γ

]

`

[

Λ

]

>

where k′ + k′′ > 0. By the induction hypothesis, for 1 ≤ j ≤ k′′ and 1 ≤ i ≤ k′, there are >-free
proofs Π̄ ′′

j and Π̄ ′
i, corresponding respectively to

Π ′′
j

[

Ψ, G, G
]

`

[

Gj

]

[

Ψ, G
]

`

[

Gj

]

>

and

Π ′
i

[

Ψ, G, G
Γi

]

`

[

Hi

Λi

]

[

Ψ, G
Γi

]

`

[

Hi

Λi

]

>

.

Then take Π̄ as

Π̄ ′′
1

[

Ψ, G
]

`

[

G1

]

. . .

Π̄ ′′

k′′

[

Ψ, G
]

`

[

Gk′′

]

Π̄ ′
1

[

Ψ, G
Γ1

]

`

[

H1

Λ1

]

. . .

Π̄ ′

k′

[

Ψ, G
Γk′

]

`

[

Hk′

Λk′

]

[

Ψ, G
Γ

]

`

[

Λ

]GL

GL

GL

GL

.

2) GR. Let Π be

Π1

[

Ψ, G, G, cp(δ1ρ)
Γ, lp(δ1ρ)

]

`

[

hd(δ1ρ), Λ

]

· · ·

Πh

[

Ψ, G, G, cp(δhρ)
Γ, lp(δhρ)

]

`

[

hd(δhρ), Λ

]

[

Ψ, G, G
Γ

]

`

[

G′

Λ

]

GR
GR

[

Ψ, G
Γ

]

`

[

G′

Λ

]

>
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where h > 0. By the induction hypothesis, for 1 ≤ i ≤ h, there are >-free proofs Π̄i, corresponding
to

Πi

[

Ψ, G, G, cp(δiρ)
Γ, lp(δiρ)

]

`

[

hd(δiρ), Λ

]

[

Ψ, G, cp(δiρ)
Γ, lp(δiρ)

]

`

[

hd(δiρ), Λ

]

>

.

Then take Π̄ as

Π̄1

[

Ψ, G, cp(δ1ρ)
Γ, lp(δ1ρ)

]

`

[

hd(δ1ρ), Λ

]

· · ·

Π̄h

[

Ψ, G, cp(δhρ)
Γ, lp(δhρ)

]

`

[

hd(δhρ), Λ

]

[

Ψ, G
Γ

]

`

[

G′

Λ

]

GR
GR

.

�

4.3.2 Lemma For every proof in G-Forum> there is a proof in G-Forum whose conclusion is the

same.

Proof Apply repeatedly Lemma 4.3.1 until all > instances disappear. �

4.4 The Cut Elimination Theorem

4.4.1 Theorem For every proof in G-Forum./L,./C there exists a proof in G-Forum with the same

conclusion.

Proof G-Forum>,./L,./′

C is more general than G-Forum./L,./C , so we can proceed by the scheme:

G-Forum>,./L,./′

C → G-Forum>,./L → G-Forum> → G-Forum,

by applying successively Lemma 4.1.2, 4.2.3 and 4.3.2. �

5 Conclusions

In this paper we showed G-Forum, a non-left-right symmetric sequent system for linear logic, and
we proved cut elimination for it. Like in the case of Forum, the left-right asymmetry of sequents
is motivated by the necessity of limiting proof search to uniform proofs. We limited the freedom
of composing formulae in such a way that their structure matches that of sequents; in a certain
sense, formulae become asymmetric, too. We consider this situation where two asymmetries match
aestethically pleasant, and actually more symmetric than the same in Forum, where the structure
of formulae is at odds with that of sequents. This new asymmetry is motivated by the desire of
structuring proofs by easily definable, big building blocks, suitable to semantic understanding.

The result is a system for which it is natural to define cut rules and for which it is possible
to prove cut elimination by a procedure that rewrites proofs inside the system, without resorting
to Forum or plain linear logic. This guarantees that the new system has a good proof theoretical
standing, which usually means that it is a good basis for further, fruitful research.
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In a forthcoming paper we will show how to associate to G-Forum a labelled event structure
semantics, i.e., a behavioural model of computation, along the lines initiated in [6]. In another
paper we will apply G-Forum and its semantics to problems of partial order planning.

The methods in this paper are about studying the structure of proofs at a coarser abstraction
level than the one provided by the sequent calculus. In another research project we are pursuing
about the calculus of structures [3, 7, 2, 12] (see also http://alessio.guglielmi.name/res/cos), we
study proofs at a finer level than provided by the sequent calculus. We do so for exploring properties
of locality and modularity, which are important for concurrency, that are otherwise not available.

In the future, we plan to adapt the techniques in this paper to the calculus of structures (for
example, of linear logic), in order to cover the full range of granularity: from the finer, suitable for
distributed implementation, to the coarser, suitable for semantics.
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