
KNOWLEDGE GRAPHS

Lecture 9: Rules for Querying Graphs

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 5th Jan 2020

https://iccl.inf.tu-dresden.de/web/Knowledge_Graphs_(WS2020/21)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en


Review: Datalog

A rule-based query language

• Syntax: Rules based on first-order atoms based on terms (constants or variables)
and predicate symbols

• Semantics: Logical semantics based on first-order logic entailment from a
database viewed as a set of facts; therefore set-based

Example: Recursively finding all ancestors of Alice:

Parent(x, y) :− father(x, y)

Parent(x, y) :− mother(x, y)

Ancestor(x, y) :− Parent(x, y)

Ancestor(x, z) :− Parent(x, y), Ancestor(y, z)

Result(y) :− Ancestor(alice, y)

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 2 of 18



Negation

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 3 of 18



Negation

Negation enables us to ask for the absence of some data or inference.

Example 9.1: SPARQL supports negation in the form of the NOT EXISTS filter:

SELECT ?person WHERE {
?person wdt:P19 wd:Q1731 . # born in Dresden

FILTER NOT EXISTS { ?person wdt:P570 ?date } # no date of death

}

To achieve such expressivity in Datalog, we can add a form of logical negation.

Example 9.2: Using negation, a query for living people born in Dresden could be
expressed as follows:

HasDied(x) :− triple(x, wdt:P570, y)

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬HasDied(x)

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 4 of 18



Semantics of negation (1)

A negated ground atom ¬A is true over a database D if A < D. So we can define:
TP(I) = {Hσ | H :− B1, . . . , Bn,¬A1, . . . ,¬Am ∈ P,

B1σ, . . . , Bnσ ∈ I, and A1σ, . . . , Amσ < I}

Example 9.3: What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

Observation: If variables appear only in negated atoms, then it is not clear which values
they range over (e.g., which bindings for y should be considered in the rule above?).

Definition 9.4: A rule is safe if all of its variables occur in non-negated atoms in
its body.

It is common to require all rules to be safe, and this does not restrict expressivity (exercise).

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 5 of 18



Semantics of negation (1)

A negated ground atom ¬A is true over a database D if A < D. So we can define:
TP(I) = {Hσ | H :− B1, . . . , Bn,¬A1, . . . ,¬Am ∈ P,

B1σ, . . . , Bnσ ∈ I, and A1σ, . . . , Amσ < I}

Example 9.3: What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

Observation: If variables appear only in negated atoms, then it is not clear which values
they range over (e.g., which bindings for y should be considered in the rule above?).

Definition 9.4: A rule is safe if all of its variables occur in non-negated atoms in
its body.

It is common to require all rules to be safe, and this does not restrict expressivity (exercise).

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 5 of 18



Semantics of negation (1)

A negated ground atom ¬A is true over a database D if A < D. So we can define:
TP(I) = {Hσ | H :− B1, . . . , Bn,¬A1, . . . ,¬Am ∈ P,

B1σ, . . . , Bnσ ∈ I, and A1σ, . . . , Amσ < I}

Example 9.3: What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

“Find all x, such that x is born in Dresden and there is a date y, such that x did
not die on y.”

Observation: If variables appear only in negated atoms, then it is not clear which values
they range over (e.g., which bindings for y should be considered in the rule above?).

Definition 9.4: A rule is safe if all of its variables occur in non-negated atoms in
its body.

It is common to require all rules to be safe, and this does not restrict expressivity (exercise).

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 5 of 18



Semantics of negation (1)

A negated ground atom ¬A is true over a database D if A < D. So we can define:
TP(I) = {Hσ | H :− B1, . . . , Bn,¬A1, . . . ,¬Am ∈ P,

B1σ, . . . , Bnσ ∈ I, and A1σ, . . . , Amσ < I}

Example 9.3: What is the meaning of the following rule?

Result(x) :− triple(x, wdt:P19, wd:Q1731),¬triple(x, wdt:P570, y)

“Find all x, such that x is born in Dresden and there is a date y, such that x did
not die on y.”

Observation: If variables appear only in negated atoms, then it is not clear which values
they range over (e.g., which bindings for y should be considered in the rule above?).

Definition 9.4: A rule is safe if all of its variables occur in non-negated atoms in
its body.

It is common to require all rules to be safe, and this does not restrict expressivity (exercise).
Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 5 of 18



Semantics of negation (2)
The unrestricted use of negation in recursive queries leads to
semantic problems:

Example 9.5: Consider the following facts and query:

human(greta)

Adult(x) :− human(x),¬Child(x)

Child(x) :− human(x),¬Adult(x)

What should be the result if Child were the query predicate?

If we define the sequence Di
P as before, we obtain:

• D1
P = D = {human(greta))}

• D2
P = D ∪ TP(D1

P) = D ∪ {Adult(greta), Child(greta)}
• D3

P = D ∪ TP(D2
P) = D1

P
• D4

P = D ∪ TP(D3
P) = D2

P = D∞P
{ non-monotonic behaviour leads to unfounded conclusions
(e.g., that all humans are both adults and children)

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 6 of 18



Semantics of negation (2)
The unrestricted use of negation in recursive queries leads to
semantic problems:

Example 9.5: Consider the following facts and query:

human(greta)

Adult(x) :− human(x),¬Child(x)

Child(x) :− human(x),¬Adult(x)

What should be the result if Child were the query predicate?

If we define the sequence Di
P as before, we obtain:

• D1
P = D = {human(greta))}

• D2
P = D ∪ TP(D1

P) = D ∪ {Adult(greta), Child(greta)}
• D3

P = D ∪ TP(D2
P) = D1

P
• D4

P = D ∪ TP(D3
P) = D2

P = D∞P
{ non-monotonic behaviour leads to unfounded conclusions
(e.g., that all humans are both adults and children)
Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 6 of 18



Stratified negation

Observation: Iterative evaluation of rules fails if negation is freely used in recursion

• Initially, when no facts were derived, many negated atoms are true

• However, these initially true atoms can become false when more inferences are
computed

To avoid recursion through negation, one can try to organise rules in “layers” or “strata”:

Definition 9.6: Let P be a set of rules with negation. A function ` that assigns a
natural number `(p) to every predicate p is a stratification of P if the following are
true for every rule h(t) :− p1(s1), . . . , pn(sn),¬q1(r1), . . . ,¬qm(rm) ∈ P:

1. `(h) ≥ `(pi) for all i ∈ {1, . . . , n}

2. `(h) > `(qi) for all i ∈ {1, . . . , m}

Intuition: The function s defines the “level” of the rule. By applying rules exhaustively
level-by-level, we can avoid non-monotonic behaviour.

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 7 of 18



Stratified negation

Observation: Iterative evaluation of rules fails if negation is freely used in recursion

• Initially, when no facts were derived, many negated atoms are true

• However, these initially true atoms can become false when more inferences are
computed

To avoid recursion through negation, one can try to organise rules in “layers” or “strata”:

Definition 9.6: Let P be a set of rules with negation. A function ` that assigns a
natural number `(p) to every predicate p is a stratification of P if the following are
true for every rule h(t) :− p1(s1), . . . , pn(sn),¬q1(r1), . . . ,¬qm(rm) ∈ P:

1. `(h) ≥ `(pi) for all i ∈ {1, . . . , n}

2. `(h) > `(qi) for all i ∈ {1, . . . , m}

Intuition: The function s defines the “level” of the rule. By applying rules exhaustively
level-by-level, we can avoid non-monotonic behaviour.

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 7 of 18



Evaluating stratified rules

Evaluation of stratified programs: Let D be a database and let P be a program
with stratification `, with values of ` ranging from 1 to h (without loss of generality).

• For i ∈ {1, . . . , h}, we define sub-programs for each stratum:
Pi = {h(t) :− p1(s1), . . . , pn(sn),¬q1(r1), . . . ,¬qm(rm) ∈ P | `(h) = i}

• Define D∞0 = D
• Now for i = 1, . . . , h, we define:

– D1
i = D∞i−1

– Dj+1
i = D∞i−1 ∪ TPi (D

j
i)

– D∞i =
⋃

j≥1 Dj
i is the limit of this process

• The evaluation of P over D is D∞h .

Observations:
• For every i, the sequence D1

i ⊆ D2
i ⊆ . . . is increasing, since facts relevant for

negated body literals are not produced in any Dj
i (due to stratification)

• Such increasing sequences must be finite (since the set of all possible facts is finite)
{ The limits D∞i are computed after finitely many steps

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 8 of 18



Evaluating stratified rules

Evaluation of stratified programs: Let D be a database and let P be a program
with stratification `, with values of ` ranging from 1 to h (without loss of generality).

• For i ∈ {1, . . . , h}, we define sub-programs for each stratum:
Pi = {h(t) :− p1(s1), . . . , pn(sn),¬q1(r1), . . . ,¬qm(rm) ∈ P | `(h) = i}

• Define D∞0 = D
• Now for i = 1, . . . , h, we define:

– D1
i = D∞i−1

– Dj+1
i = D∞i−1 ∪ TPi (D

j
i)

– D∞i =
⋃

j≥1 Dj
i is the limit of this process

• The evaluation of P over D is D∞h .

Observations:
• For every i, the sequence D1

i ⊆ D2
i ⊆ . . . is increasing, since facts relevant for

negated body literals are not produced in any Dj
i (due to stratification)

• Such increasing sequences must be finite (since the set of all possible facts is finite)
{ The limits D∞i are computed after finitely many steps
Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 8 of 18



The perfect model

Summary: The stratified evaluation of rules terminates after finitely many steps
(bounded by the number of possible facts)

What is the set of facts that we obtain from this procedure?

Fact 9.7: For a database D and stratified program P, the set of facts M that is
obtained by the stratified evaluation procedure is the least set of facts with the
property that

M = D ∪ TP(M).

In particular, M does not depend on the stratification that was chosen.

M is called perfect model or unique stable model in logic programming.

Intuition: The stratified evaluation is the smallest set of self-supporting true facts that
can be derived

• This is not the set of inferences under classical logical semantics! (exercise)

• But it is a good extension of negation in queries to the recursive setting.

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 9 of 18



The perfect model

Summary: The stratified evaluation of rules terminates after finitely many steps
(bounded by the number of possible facts)

What is the set of facts that we obtain from this procedure?

Fact 9.7: For a database D and stratified program P, the set of facts M that is
obtained by the stratified evaluation procedure is the least set of facts with the
property that

M = D ∪ TP(M).

In particular, M does not depend on the stratification that was chosen.

M is called perfect model or unique stable model in logic programming.

Intuition: The stratified evaluation is the smallest set of self-supporting true facts that
can be derived

• This is not the set of inferences under classical logical semantics! (exercise)

• But it is a good extension of negation in queries to the recursive setting.

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 9 of 18



Obtaining a stratification

To find a stratification, the following algorithm can be used:

Input: program P

• Construct a directed graph with two types of edges,
+
→ and

−
→:

– The vertices are the predicate symbols in P
– p

+
→ q if there is a rule with p in its non-negated body and q in the head

– p
−
→ q if there is a rule with p in its negated body and q in the head

• Then P is stratified if and only if the graph contains no directed cycle that
involves an edge

−
→

• In this case, we can obtain a stratification as follows:
(1) produce a topological order of the strongly connected components of

this directed graph (without distinguishing edge types), e.g., using
Tarjan’s algorithm

(2) assign numerical strata bottom-up to all predicates in each component

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 10 of 18



Outlook: Beyond stratified negation

Stratified negation is usually sufficient for query answering.
Non-stratified negation is relevant in optimisation and constraint solving.

Handling non-stratified negation:

• Recursion through negation gives rise to multiple alternative interpretations

• Semantics can be defined in many ways, e.g., stable models (answer set
programming), well-founded semantics, and classical semantics

• See various other courses (e.g., “Problem Solving and Search in AI”)

Stratified negation allows us to express non-monotonic queries.
However, not all polynomial-time queries are expressible.

Capturing PTime:

• To express all polytime queries, in addition to stratified negation, Datalog needs a
total order on the domain (defined by special predicates)

• See course “Database Theory” for details

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 11 of 18



Outlook: Beyond stratified negation

Stratified negation is usually sufficient for query answering.
Non-stratified negation is relevant in optimisation and constraint solving.

Handling non-stratified negation:

• Recursion through negation gives rise to multiple alternative interpretations

• Semantics can be defined in many ways, e.g., stable models (answer set
programming), well-founded semantics, and classical semantics

• See various other courses (e.g., “Problem Solving and Search in AI”)

Stratified negation allows us to express non-monotonic queries.
However, not all polynomial-time queries are expressible.

Capturing PTime:

• To express all polytime queries, in addition to stratified negation, Datalog needs a
total order on the domain (defined by special predicates)

• See course “Database Theory” for details

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 11 of 18



Outlook: Beyond stratified negation

Stratified negation is usually sufficient for query answering.
Non-stratified negation is relevant in optimisation and constraint solving.

Handling non-stratified negation:

• Recursion through negation gives rise to multiple alternative interpretations

• Semantics can be defined in many ways, e.g., stable models (answer set
programming), well-founded semantics, and classical semantics

• See various other courses (e.g., “Problem Solving and Search in AI”)

Stratified negation allows us to express non-monotonic queries.
However, not all polynomial-time queries are expressible.

Capturing PTime:

• To express all polytime queries, in addition to stratified negation, Datalog needs a
total order on the domain (defined by special predicates)

• See course “Database Theory” for details

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 11 of 18



Outlook: Beyond stratified negation

Stratified negation is usually sufficient for query answering.
Non-stratified negation is relevant in optimisation and constraint solving.

Handling non-stratified negation:

• Recursion through negation gives rise to multiple alternative interpretations

• Semantics can be defined in many ways, e.g., stable models (answer set
programming), well-founded semantics, and classical semantics

• See various other courses (e.g., “Problem Solving and Search in AI”)

Stratified negation allows us to express non-monotonic queries.
However, not all polynomial-time queries are expressible.

Capturing PTime:

• To express all polytime queries, in addition to stratified negation, Datalog needs a
total order on the domain (defined by special predicates)

• See course “Database Theory” for details

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 11 of 18



Comparing Datalog and SPARQL

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 12 of 18



Datalog vs. SPARQL: Supported features
Datalog with stratified negation captures and extends important parts of SPARQL:

• Basic Graph Patterns: are simply conjunctions of triple-atoms
• Path expressions: Datalog does not support paths syntactically, but they can be

captured in Datalog
• Union: disjunction can be expressed in Datalog using several rules (exercise)
• Minus and Not Exists: can be expressed with stratified negation in Datalog
• Values: can be declared by Datalog facts

Recall: Datalog always assumes set semantics (Distinct in SPARQL)

Example 9.8: The following rules are an alternative to express the property path
pattern eg:JSBach (ˆeg:hasFather|ˆeg:hasMother)+ ?x:

Result(x) :− triple(x, eg:hasFather, eg:JSBach)

Result(x) :− triple(x, eg:hasMother, eg:JSBach)

Result(x) :− Result(y), triple(x, eg:hasFather, y)

Result(x) :− Result(y), triple(x, eg:hasMother, y)

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 13 of 18



Datalog vs. SPARQL: Supported features
Datalog with stratified negation captures and extends important parts of SPARQL:

• Basic Graph Patterns: are simply conjunctions of triple-atoms
• Path expressions: Datalog does not support paths syntactically, but they can be

captured in Datalog
• Union: disjunction can be expressed in Datalog using several rules (exercise)
• Minus and Not Exists: can be expressed with stratified negation in Datalog
• Values: can be declared by Datalog facts

Recall: Datalog always assumes set semantics (Distinct in SPARQL)

Example 9.8: The following rules are an alternative to express the property path
pattern eg:JSBach (ˆeg:hasFather|ˆeg:hasMother)+ ?x:

Result(x) :− triple(x, eg:hasFather, eg:JSBach)

Result(x) :− triple(x, eg:hasMother, eg:JSBach)

Result(x) :− Result(y), triple(x, eg:hasFather, y)

Result(x) :− Result(y), triple(x, eg:hasMother, y)

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 13 of 18



Datalog vs. SPARQL: Supported features
Datalog with stratified negation captures and extends important parts of SPARQL:

• Basic Graph Patterns: are simply conjunctions of triple-atoms
• Path expressions: Datalog does not support paths syntactically, but they can be

captured in Datalog
• Union: disjunction can be expressed in Datalog using several rules (exercise)
• Minus and Not Exists: can be expressed with stratified negation in Datalog
• Values: can be declared by Datalog facts

Recall: Datalog always assumes set semantics (Distinct in SPARQL)

Example 9.8: The following rules are an alternative to express the property path
pattern eg:JSBach (ˆeg:hasFather|ˆeg:hasMother)+ ?x:

Result(x) :− triple(x, eg:hasFather, eg:JSBach)

Result(x) :− triple(x, eg:hasMother, eg:JSBach)

Result(x) :− Result(y), triple(x, eg:hasFather, y)

Result(x) :− Result(y), triple(x, eg:hasMother, y)

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 13 of 18



Datalog vs. SPARQL: Missing features

Many other SPARQL features are not part of Datalog:

• Filters: filter conditions (and datatypes) are not part of the pure logical definition of
Datalog, but can easily be added as built-in predicates

• Bind: computed functions are not usually found in Datalog but can be added

• Optional: Datalog (and logic in general) does not have a direct way to handle
partial result mappings, and there is no equivalent to Optional

• Aggregates: Datalog does not support aggregates, as they introduce
non-monotonic behaviour in general; Datalog extensions with restricted
aggregation exist

• Subqueries: Datalog cannot express nested limit/offset/order by

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 14 of 18



Implementations of Datalog

Many implementations of Datalog exist:

• In-Memory systems for query answering and
data analysis: Graal, RDFox, Vadalog, Rulewerk/VLog, . . .

• Answer set programming engines: Clingo, DLV(2), . . .

• Logic programming engines: Prolog implementations

• “Business Rule” engines with database backend support

{ many use cases; many different implementation approaches

Compatibility with knowledge graph formats:

• Rules can support for RDF and related technologies (IRI, datatypes)

• Most common for in-memory systems: Graal, RDFox, and Rulewerk support RDF

• Rulewerk also supports SPARQL as source of external data

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 15 of 18



Implementations of Datalog

Many implementations of Datalog exist:

• In-Memory systems for query answering and
data analysis: Graal, RDFox, Vadalog, Rulewerk/VLog, . . .

• Answer set programming engines: Clingo, DLV(2), . . .

• Logic programming engines: Prolog implementations

• “Business Rule” engines with database backend support

{ many use cases; many different implementation approaches

Compatibility with knowledge graph formats:

• Rules can support for RDF and related technologies (IRI, datatypes)

• Most common for in-memory systems: Graal, RDFox, and Rulewerk support RDF

• Rulewerk also supports SPARQL as source of external data

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 15 of 18



Rules in Rulewerk
Rulewerk is a free rule engine that supports extensions of Datalog:

• Download, documentation, and source code online:
https://github.com/knowsys/rulewerk

• Java library and command-line client, based on the VLog rule engine (C++)

• Support for evaluating Datalog queries over RDF files and SPARQL query results

• Stratified negation and value invention (existential rules)

Example 9.9: Rulewerk uses a textual syntax for rules, which is slightly different
from the one we used so far. Variables are marked by ?, negation is written as ~,
and rules end with a full stop:

Parent(?x,?y) :- father(?x,?y) .

Parent(?x,?y) :- mother(?x,?y) .

Ancestor(?x,?y) :- Parent(?x,?y) .

Ancestor(?x,?z) :- Parent(?x,?y), Ancestor(?y,?z) .

Result(?y) :- Ancestor(alice,?y), ~profession(?y,composer) .

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 16 of 18

https://github.com/knowsys/rulewerk


Rules in Rulewerk
Rulewerk is a free rule engine that supports extensions of Datalog:

• Download, documentation, and source code online:
https://github.com/knowsys/rulewerk

• Java library and command-line client, based on the VLog rule engine (C++)

• Support for evaluating Datalog queries over RDF files and SPARQL query results

• Stratified negation and value invention (existential rules)

Example 9.9: Rulewerk uses a textual syntax for rules, which is slightly different
from the one we used so far. Variables are marked by ?, negation is written as ~,
and rules end with a full stop:

Parent(?x,?y) :- father(?x,?y) .

Parent(?x,?y) :- mother(?x,?y) .

Ancestor(?x,?y) :- Parent(?x,?y) .

Ancestor(?x,?z) :- Parent(?x,?y), Ancestor(?y,?z) .

Result(?y) :- Ancestor(alice,?y), ~profession(?y,composer) .

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 16 of 18

https://github.com/knowsys/rulewerk


RDF and SPARQL in Datalog

Facts in Rulewerk can be specified as part of the rules, loaded from files (RDF or CSV),
or loaded from SPARQL query services. RDF terms and prefixes can be used.

The following example evaluates data from Wikidata with simple rules:

@prefix wdqs: <https://query.wikidata.org/> .

@source mother[2] : sparql(wdqs:sparql, "child,mother",

"?child wdt:P25 ?mother") .

% Rules to find maternal ancestors:

matAnc(?X, ?Y) :- mother(?X, ?Y) .

matAnc(?X, ?Z) :- matAnc(?X, ?Y), matAnc(?Y, ?Z) .

% Query for maternal ancestors of Ada Lovelace

Result(?X) :- matAnc(<http://www.wikidata.org/entity/Q7259>, ?X) .

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 17 of 18



RDF and SPARQL in Datalog

Facts in Rulewerk can be specified as part of the rules, loaded from files (RDF or CSV),
or loaded from SPARQL query services. RDF terms and prefixes can be used.

The following example evaluates data from Wikidata with simple rules:

@prefix wdqs: <https://query.wikidata.org/> .

@source mother[2] : sparql(wdqs:sparql, "child,mother",

"?child wdt:P25 ?mother") .

% Rules to find maternal ancestors:

matAnc(?X, ?Y) :- mother(?X, ?Y) .

matAnc(?X, ?Z) :- matAnc(?X, ?Y), matAnc(?Y, ?Z) .

% Query for maternal ancestors of Ada Lovelace

Result(?X) :- matAnc(<http://www.wikidata.org/entity/Q7259>, ?X) .

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 17 of 18



Summary

Stratified negation is a simple way of adding negation to recursive queries

Datalog can capture and extend many basic features of SPARQL

SPARQL features not in Datalog include many datatypes, aggregates, optional, and
multiset semantics

Rulewerk is a free RDF-compatible rule engine

What’s next?

• Property graph

• The Cypher query language

• Knowledge Graph quality

Markus Krötzsch, 5th Jan 2020 Knowledge Graphs slide 18 of 18


