
Foundations for Machine

Learning

L. Y. Stefanus

TU Dresden, June-July 2019

1Slides 02p

Slide 02p

Tensors in PyTorch

2Slides 02p

Reference

• Eli Stevens and Luca Antiga. Deep

Learning with PyTorch. Manning

Publications, 2019/2020.

• Ian Goodfellow and Yoshua Bengio and

Aaron Courville. Deep Learning. MIT

Press, 2016.

Slides 02p
3

What Is a Tensor?

• In the previous lecture we took a tour of a pre-trained

neural network that can label an image according to its

contents.

• This deep learning system can transform data from one

representation to another, for example, from images to

text labels.

• The transformation from one form of data to another is

typically learned by a deep neural network in stages,

which means that the partially transformed data between

each stage can be thought of as a sequence of

intermediate representations.

Slides 02p
4

What Is a Tensor?

• For image recognition, early representations can be

things like edge detection or certain textures like fur.

Deeper representations can capture more complex

structures like ears, noses, or eyes.

• In general, such intermediate representations are

collections of floating point numbers that characterize the

input and capture the structure in the data, in a way that is

instrumental for describing how inputs are mapped to the

outputs of the neural network. These collections of

floating point numbers and their manipulation is at the

heart of modern AI.

• For these representations and their computation, PyTorch

uses a fundamental data structure: tensor.

Slides 02p
5

Figure 3.1 A deep neural network learns how to transform

an input representation to an output representation

Slides 02p
6

A Deep Learning Model

Slides 02p
7

What Is a Tensor?

• In Machine Learning, tensors refer to the generalization of

vectors and matrices to an arbitrary number of

dimensions, similar to multidimensional arrays.

• The dimensionality of a tensor coincides with the number

of indices used to refer to scalar values within the tensor.

Slides 02p
8

What Is a Tensor?

• PyTorch is not the only library dealing with multi-

dimensional arrays. NumPy is by far the most popular

multidimensional array library in Python.

• PyTorch shows seamless interoperability with NumPy,

which brings with it, integration with the rest of the

scientific libraries in Python, such as SciPy, Scikit-learn,

and Pandas.

Slides 02p
9

What Is a Tensor?

• Compared to NumPy arrays, PyTorch tensors have a few

superpowers, such as the ability to perform very fast

operations on Graphical Processing Units, to distribute

operations on multiple devices or machines, or to keep

track of the graph of computations that created them.

• These are all important features when implementing a

modern deep learning system.

• Understanding the capabilities and API of tensors is

important in order to have a strong implementation tool for

machine learning.

Slides 02p
10

Fundamentals of Tensors

• A tensor is a data structure, like an array, capable of

storing collection of numbers that are accessible

individually using an index, and that can be indexed with

multiple indices.

• Firstly, let’s see list indexing so we can compare it to

tensor indexing. Take a list of three numbers in Python:

In[1]: a = [1.0, 2.0, 1.0]

In[2]: a[0]

Out[2]:

1.0

In[3]: a[2] = 3.0

a

Out[3]:

[1.0, 2.0, 3.0]

Slides 02p
11

Fundamentals of Tensors

• It is not unusual for simple Python programs dealing with

vectors of numbers, such as the coordinates of a 2D line,

to use Python lists to store the vector.

• This can be sub-optimal for several reasons:

1. Numbers in Python are full-fledged objects. While a

floating point number might take only, for instance, 32

bits to be represented on a computer, Python will box

them in a full-fledged Python object with reference

counting, etc.; this is not a problem if we need to store a

small number of them, but allocating millions of such

numbers gets very inefficient;

Slides 02p
12

Fundamentals of Tensors

2. Lists in Python are meant for sequential collections of

objects. There are no operations defined for, say, efficiently

taking the dot product of two vectors, or summing vectors

together; also, Python lists have no way of optimizing the

layout of their content in memory, as they are indexable

collections of pointers to Python objects (of any kind, not

just numbers); last, Python lists are 1D, and while one can

create lists of lists, this is again very inefficient;

3. The Python interpreter is slow compared to executing

optimized compiled code. Performing mathematical

operations on large collections of numerical data can be

much faster using optimized code written in a compiled,

low-level language like C.

Slides 02p
13

Fundamentals of Tensors

• For these reasons, data science libraries rely on NumPy,

or introduce dedicated data structures like PyTorch

tensors, that provide efficient low-level implementations of

numerical data structures and related operations on them,

wrapped in a convenient high-level API.

• We will learn later that many types of data, from images to

time series, audio, even sentences, can be represented

using tensors. By defining operations over tensors, we

can slice and manipulate data expressively and efficiently,

even from a high-level (and not particularly fast) language

such as Python.

Slides 02p
14

Fundamentals of Tensors

• Let’s construct a simple PyTorch tensor, consisting of

just three ones in a row.

Slides 02p
15

• Let’s see what we did here: after importing the torch

module, we called a function that creates a 1D tensor of

size 3 filled with the value 1.0. We can access an element

using its 0-based index or assign a new value to it.

• Although on the surface the example above doesn’t differ

all that much from a list of number objects, under the

hood things are completely different. Python lists or tuples

of numbers are collections of Python objects that are

individually allocated in memory, as shown in Figure-3.3.

Slides 02p
16

• PyTorch Tensors on the other hand are views over

(typically) contiguous memory blocks containing

unboxed C numeric types, (4 bytes) float in this case, as

we can see on the right side of Figure-3.3.

• This means that a 1D tensor of 1,000,000 float numbers

will require exactly 4,000,000 contiguous bytes to be

stored, plus a small overhead for the meta data (e.g.

dimensions, numeric type).

Slides 02p
17

Slides 02p
18

Fundamentals of Tensors

• Say we have a list of 2D coordinates we’d like to

represent a geometrical object, let’s say a triangle.

Instead of having coordinates as numbers in a Python

list, we can use a 1D tensor, by storing x’s in the even

indices and y’s in the odd indices, like:

(1) The use of zeros here is just

a way to get an appropriately

sized tensor.

(2) We overwrite those zeros with the values we actually

want.

Slides 02p
19

Fundamentals of Tensors

• We can also pass a Python list to the constructor:

• Here we passed a list of lists to the constructor. We can

ask the tensor about its shape, which informs us on the

size of the tensor along each dimension.

Slides 02p
20

• We can access an individual element in the tensor using

two indices now, for instance:

returns the y-coordinate of the 0-th point in our dataset.

Slides 02p
21

• We can also access the first element in the tensor to get

the 2D coordinates of the first point.

• Note that what we get as the output is another tensor, only

a 1D tensor of size 2 containing the values in the first row

of the points tensor.

• Does it mean that a new chunk of memory was allocated,

values were copied into it, and the new memory returned

wrapped in a new tensor object? No, because that would

be very inefficient, especially if we had millions of points.

What we got back is instead a different view of the same

underlying data, limited to the first row.

Slides 02p
22

Tensors and Storages

• Let’s look deeper at the implementation under the hood:

Values are allocated in contiguous chunks of memory,

managed by torch.Storage instances.

• A storage is a one-dimensional array of numerical data,

i.e. a contiguous block of memory containing numbers of

a given type, such a float or int32. A PyTorch Tensor is a

view over such a Storage that is capable of indexing into

that storage using an offset and per-dimension strides.

Slides 02p
23

Tensors and Storages

• Multiple tensors can index the same storage, even if they

index into the data differently. See an example in Figure-

3.4.

• In fact, when we requested points[0] in the last snippet,

what we got back is another tensor that indexes the same

storage as the points tensor, just not all of it and with

different dimensionality (1D vs 2D).

• The underlying memory is only allocated once, however,

so creating alternate tensor-views on the data can be

done quickly, no matter the size of the data managed by

the Storage instance.

Slides 02p
24

Slides 02p
25

Tensors and Storages

• Let’s see how indexing into the storage works in practice

with our 2D points. The storage for a given tensor is

accessible using the .storage property:

Slides 02p
26

Tensors and Storages

• Even though the tensor reports itself as having 3 rows

and 2 columns, the storage under the hood is a

contiguous array of size 6. In this sense, the tensor just

knows how to translate a pair of indices into a location in

the storage.

• We can also index into a storage manually, for instance:

Slides 02p
27

Tensors and Storages

• We can not index a storage of a 2D tensor using two

indices. The layout of a storage is always one-

dimensional, irrespective of the dimensionality of any

and all tensors that might refer to it.

• Changing the value of a storage leads to changing the

content of its referring tensor:

Slides 02p
28

Tensors and Storages

• We will seldom, if ever, use storage instances directly,

but understanding the relationship between a tensor and

the underlying storage is very useful to understand the

cost (or lack thereof) of certain operations later on.

• It’s a good mental model to keep in mind when we want

to write effective PyTorch code.

Slides 02p
29

Size, offset, stride

• In order to index into a storage, tensors rely on a few

pieces of information, which, together with their storage,

define them: size, storage offset and stride. See Figure-

3.5.

• The size (or shape, in NumPy parlance) is a tuple

indicating how many elements across each dimension the

tensor represents.

• The storage offset is the index in the storage

corresponding to the first element in the tensor.

• The stride is the number of elements in the storage that

need to be skipped over to obtain the next element along

each dimension.

Slides 02p
30

Slides 02p
31

Size, offset, stride

• We can get the second point in the tensor by providing the

corresponding index.

• The resulting tensor has offset 2 in the storage, since we

need to skip the first point, which has two items.

Slides 02p
32

Size, offset, stride
• Last, stride is a tuple indicating the number of elements in

the storage that have to be skipped when the index is

increased by 1 in each dimension. For instance, our tensor

points has a stride of (2, 1):

• Accessing an element i, j in a 2D tensor, results in

accessing the storage_offset + stride[0] * i + stride[1] * j

element in the storage.

• The offset will usually be zero; if this tensor is a view into a

storage created to hold a larger tensor the offset might be

a positive value.

Slides 02p
33

Size, offset, stride

• This relationship between Tensor and Storage leads some

operations, like transposing a tensor or extracting a sub-

tensor, to be inexpensive, as they do not lead to memory

reallocations; instead they consist in allocating a new

tensor object with a different value for size, storage offset

or stride.

Slides 02p
34

Size, offset, stride

• We’ve already seen extracting a sub-tensor when we

indexed a specific point and saw the storage offset

increasing. Let’s see what happens to size and stride as

well:

Slides 02p
35

Size, offset, stride

• In this case, the sub-tensor has one fewer dimension, as

one would expect, while still indexing the same storage as

the original points tensor. This also means that changing

the sub-tensor will have a side-effect on the original

tensor, too.

Slides 02p
36

Size, offset, stride

• This might not always be desirable, so we can eventually

clone the sub-tensor into a new tensor.

Slides 02p
37

Size, offset, stride

• Let’s try with transposing now. Let’s take our tensor, that

has individual points points in the rows and xy coordinates

in the columns, and turn it around so that individual points

are along the columns.

Slides 02p
38

Size, offset, stride

• We can easily verify that the two tensors share the same

storage:

• and that they only differ by the shape and stride:

Slides 02p
39

Size, offset, stride

• The stride (2,1) above tells us that increasing the first

index by one in points, e.g. going from points[0,0] to

points[1,0], will skip along the storage by two elements,

while increasing the second index, e.g. from points[0,0] to

points[0,1] will skip along the storage by one.

• In other words, the storage holds the elements in the

tensor points sequentially row by row.

• No new memory is allocated: transposing is obtained only

by creating a new Tensor instance with different stride

ordering from the original.

Slides 02p
40

Size, offset, stride

Slides 02p
41

Size, offset, stride

• Transposing in PyTorch is not limited to matrices. We

can transpose a multidimensional array by specifying the

two dimensions along which transposing (i.e. flipping

shape and stride) should occur.

Slides 02p
42

Size, offset, stride

• A tensor whose values are laid out in the storage starting

from the right-most dimension onwards (i.e. moving

along rows for a 2D tensor), is defined as contiguous.

• Contiguous tensors are convenient, because we can visit

them efficiently in order without jumping around in the

storage (improving data locality improves performance

because of the way memory access works on modern

CPUs).

• In our case, points is contiguous, while its transpose is

not.

Slides 02p
43

Size, offset, stride

Slides 02p
44

Size, offset, stride

Slides 02p
45

• We can obtain a new contiguous tensor from a non-

contiguous one using the contiguous method. The content

of the tensor will be the same, but the stride will change,

as will the storage.

Slides 02p
46

To be continued …

Slides 02p
47

