Foundations for Machine
L earning

L. Y. Stefanus
TU Dresden, June-July 2019

S!es l[p -

Tensors In PyTorch

S!ell!. ~ -

Reference

» Eli Stevens and Luca Antiga. Deep
Learning with PyTorch. Manning
Publications, 2019/2020.

 |lan Goodfellow and Yoshua Bengio and
Aaron Courville. Deep Learning. MIT
Press, 2016.

Slides 02p -

What Is a ?

 In the previous lecture we took a tour of a pre-trained
neural network that can label an image according to its

contents.

* This deep learning system can from one
representation to another, for example, from images to
text labels.

« The transformation from one form of data to another is
typically learned by a deep neural network in stages,
which means that the partially transformed data between
each stage can be thought of as a sequence of
Intermediate representations.

Slides 02p

What Is a ?

« For image recognition, early representations can be
things like edge detection or certain textures like fur.
Deeper representations can capture more complex
structures like ears, noses, or eyes.

 In general, such intermediate representations are
collections of that characterize the
iInput and capture the structure in the data, in a way that is
Instrumental for describing how inputs are mapped to the
outputs of the neural network. These collections of
floating point numbers and their manipulation is at the
heart of modern Al.

* For these representations and their computation, PyTorch
uses a fundamental data structure:

Slides 02p '

Figure 3.1 A deep neural network learns how to transform
an input representation to an output representation

] Su” i
"SE4S(AE

“SCEWERY “

0.1 0.04

) ﬂ.‘m‘ E:U
18] W o4 o

liu.ﬂ's‘._ | L 0.0
— ""'h

IJSUY |Mﬂﬁb[ﬂﬁ ovYPuT
AEPRESEVYAT 10N REPRESENTATIONS REPRESERTAYION

(VMUES oF PIKELS) | (PROBARILITY OF CLASSES)

SR INPUTS

SHeuLh LEAR YD
CLOSE QEPRESENTAYION S

(ESPECIALLY 4¥ BEEPER LEVELS)

Slides 02p

A Deep Learning Model

Output
(object identity)

3rd hidden layer

(object parts)

2nd hidden layer
(corners and

contours)

1st hidden layer
(edges)

Visible layer

(input pixels)

Slides 02p

What Is a ?

* In Machine Learning, tensors refer to the generalization of

vectors and matrices to an arbitrary number of
dimensions, similar to multidimensional arrays.

« The dimensionality of a tensor coincides with the number
of indices used to refer to scalar values within the tensor.

2

4 & % 5 31
3 1 334 § 4 3
b) 1295 -

SCALANL, VECYOR, MATRIX TEN SorL
x[2]=5 X[1,0]=7 x[o,z,q: 2 x[13, IR
OA AN AN EYN \
N-D BNAYA — W INMICES

Slides 02p

What Is a ?

* PyTorch is not the only library dealing with multi-
dimensional arrays. NumPYy is by far the most popular
multidimensional array library in Python.

* PyTorch shows seamless interoperability with NumPYy,
which brings with it, integration with the rest of the
scientific libraries in Python, such as SciPy, Scikit-learn,
and Pandas.

Slides 02p

What Is a ?

« Compared to NumPy arrays, PyTorch tensors have a few
superpowers, such as the ability to perform very fast
operations on Graphical Processing Units, to distribute
operations on multiple devices or machines, or to keep
track of the graph of computations that created them.

« These are all important features when implementing a
modern deep learning system.

« Understanding the capabilities and API of tensors is
Important in order to have a strong implementation tool for
machine learning.

Slides 02p -

Fundamentals of Tensors

« Atensor is a data structure, like an array, capable of
storing collection of numbers that are accessible

Individually using an index, and that can be indexed with
multiple indices.

* Firstly, let's see list indexing so we can compare it to
tensor indexing. Take a list of three numbers in Python:

In[1]: a = [1.0, 2.0, 1.0]

In[2]: a[@]

out[2]:

1.0

In[3]: a[2] = 3.0

d

[1.0, 2.0, 3.

Slides 02p

Fundamentals of Tensors

 Itis not unusual for simple Python programs dealing with
vectors of numbers, such as the coordinates of a 2D line,
to use Python lists to store the vector.

« This can be sub-optimal for several reasons:

1. Numbers in Python are full-fledged objects. While a
floating point number might take only, for instance, 32
bits to be represented on a computer, Python will box
them in a full-fledged Python object with reference
counting, etc.; this is not a problem if we need to store a
small number of them, but allocating millions of such
numbers gets very inefficient;

Slides 02p -

Fundamentals of Tensors

2. Lists in Python are meant for sequential collections of
objects. There are no operations defined for, say, efficiently
taking the dot product of two vectors, or summing vectors
together; also, Python lists have no way of optimizing the
layout of their content in memory, as they are indexable
collections of pointers to Python objects (of any kind, not
just numbers); last, Python lists are 1D, and while one can
create lists of lists, this Is again very inefficient;

3. The Python interpreter is slow compared to executing
optimized compiled code. Performing mathematical
operations on large collections of numerical data can be
much faster using optimized code written in a compiled,

Slides 02p

Fundamentals of Tensors

* For these reasons, data science libraries rely on NumPy,
or introduce dedicated data structures like PyTorch
tensors, that provide efficient low-level implementations of
numerical data structures and related operations on them,
wrapped in a convenient high-level API.

« We will learn later that many types of data, from images to
time series, audio, even sentences, can be represented
using tensors. By defining operations over tensors, we
can slice and manipulate data expressively and efficiently,
even from a high-level (and not particularly fast) language
such as Python.

o - ~
Slides 02p u

Fundamentals of Tensors

« Let’s construct a simple PyTorch tensor, consisting of
just three ones in a row.

In[4]:
import torch

a = torch.ones(3)
=

Out[4]:
tensor([1., 1., 1.])

In[5]:
all]

Out[5]:
tensor(l.)

Slides 02p

« Let's see what we did here: after importing the torch
module, we called a function that creates a 1D tensor of
size 3 filled with the value 1.0. We can access an element
using its 0-based index or assign a new value to it.

« Although on the surface the example above doesn't differ
all that much from a list of number objects, under the
hood things are completely different. Python lists or tuples
of numbers are collections of Python objects that are
iIndividually allocated in memory, as shown in Figure-3.3.

Slides 02p -

* PyTorch Tensors on the other hand are views over
(typically) contiguous memory blocks containing
unboxed C numeric types, (4 bytes) float in this case, as
we can see on the right side of Figure-3.3.

« This means that a 1D tensor of 1,000,000 float numbers
will require exactly 4,000,000 contiguous bytes to be
stored, plus a small overhead for the meta data (e.g.
dimensions, numeric type).

Slides 02p

l

\
0 7,'2, AN AN])

|

Vo Towser([49,

MWYHoN LIST YeUSOR, or ARLAY

Figure 3.3 Python object (boxed) numeric values vs. tensor (unboxed array) numeric
values.

Slides 02p

Fundamentals of Tensors

« Say we have a list of 2D coordinates we'd like to
represent a geometrical object, let's say a triangle.
Instead of having coordinates as numbers in a Python
list, we can use a 1D tensor, by storing x’s in the even
indices and y’s in the odd indices, like:

In[8]:

sekatiscroy <L (1) The use of zeros here is just

points [0]
points[1]

4.

a way to get an appropriately
sized tensor.

points [2]
points [3]
points[4]
points [5]

H OB W

(2) We overwrite those zeros with the values we actually
want.

Slides 02p

Fundamentals of Tensors

 We can also pass a Python list to the constructor:

In[11]:
points = torch.tensor([[4.0, 1.0],
points

Out[1l1]:
tensor([[4.,

« Here we passed a list of lists to the constructor. We can
ask the tensor about its shape, which informs us on the
size of the tensor along each dimension.

In[l12]:
points.shape

Slides 02p

« We can access an individual element in the tensor using
two indices now, for instance:

Inf[1l4]:
points = torch.FloatTensor([[4.0, 1.0], [5.0, 3.0],
points

Out[14]:
tensor([[4.,

In[15]:
points [0, 1]

Out[15]:
tensori(l.)

returns the y-coordinate of the O-th point in our dataset.

Slides 02p .

« We can also access the first element in the tensor to get
the 2D coordinates of the first point.

In[l6]:
points [0]

Out [16] :
tensor([4., 1.])

* Note that what we get as the output is another tensor, only
a 1D tensor of size 2 containing the values in the first row
of the points tensor.

* Does it mean that a new chunk of memory was allocated,
values were copied into it, and the new memory returned
wrapped in a new tensor object? , because that would
be very inefficient, especially if we had millions of points.
What we got back is instead a different view of the same
underlying data, limited to the first row.

Slides 02p .

Tensors and Storages

* Let's look deeper at the implementation under the hood:
Values are allocated in contiguous chunks of memory,
managed by torch.Storage instances.

« A storage is a one-dimensional array of numerical data,
l.e. a contiguous block of memory containing numbers of
a given type, such a float or int32. A PyTorch Tensor is a
view over such a Storage that is capable of indexing into
that storage using an offset and per-dimension strides.

Slides 02p

Tensors and Storages

« Multiple tensors can index the same storage, even if they
Index into the data differently. See an example in Figure-
3.4.

 In fact, when we requested points[0] in the last snippet,
what we got back is another tensor that indexes the same
storage as the points tensor, just not all of it and with
different dimensionality (1D vs 2D).

* The underlying memory is only allocated once, however,
SO creating alternate tensor-views on the data can be
done quickly, no matter the size of the data managed by
the Storage instance.

Slides 02p -

TEJSORS

(QEFERENCING
YME SaAhE
SYHMGE.>

\ Lows _fsvany 4y o

3 CoLs” ,’“ 3RowS
LCoLS ™ WHERE YHE
V & o~ WUnREQs

svorace |4 [1 |73 2 [A [e

ARE

I

Figure 3.4 Tensors are views over a Storage instance.

Slides 02p

Tensors and Storages

» Let's see how indexing into the storage works in practice
with our 2D points. The storage for a given tensor is
accessible using the .storage property:.

In[17] :
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
points.storage ()

Out [17] :

0

4
1
5.
3.
2
1.
[torch.FloatStorage of size 6]

Slides 02p

Tensors and Storages

« Even though the tensor reports itself as having 3 rows
and 2 columns, the storage under the hood is a
contiguous array of size 6. In this sense, the tensor just
knows how to translate a pair of indices into a location in

the storage.
« We can also index into a storage manually, for instance:

Slides 02p

Tensors and Storages

« We can not index a storage of a 2D tensor using two
Indices. The layout of a storage is always one-
dimensional, irrespective of the dimensionality of any
and all tensors that might refer to it.

« Changing the value of a storage leads to changing the
content of its referring tensor:

In[20]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0,
points storage = points.storage()

points storage([0] = 2.0

point:

Out[20]:

tensor([[2.,

Slides 02p

Tensors and Storages

« We will seldom, if ever, use storage instances directly,
but understanding the relationship between a tensor and

the underlying storage is very useful to understand the
cost (or lack thereof) of certain operations later on.

 It's a good mental model to keep in mind when we want
to write effective PyTorch code.

Slides 02p

Size, offset, stride

In order to index into a storage, tensors rely on a few
pieces of information, which, together with their storage,
define them: size, storage offset and stride. See Figure-
3.5.

The size (or shape, in NumPy parlance) is a tuple
iIndicating how many elements across each dimension the
tensor represents.

The storage offset is the index in the storage
corresponding to the first element in the tensor.

The stride is the number of elements in the storage that
need to be skipped over to obtain the next element along

Slides 02p

s

(6]5(% 4}1|3]z.]7r!2(|

Figure 3.5 Relationship between a tensor’s offset, size and stride.

Slides 02p

Size, offset, stride

* We can get the second point in the tensor by providing the
corresponding index.

« The resulting tensor has offset 2 in the storage, since we
need to skip the first point, which has two items.

In[21]:

points = torch.tenscr([[2.0, 1.0], [5.0, 3.0], [2.0, 1.0011])
sacond point = pointe[1]

second polnt.storage offset()

In[23]:
second polnt.shape

Out[23]:

t[21]:
out [21] torch.8izae([2])

2

In[22]:
second point.size()

oukt[22] :
torch.8ize([2])

Slides 02p

Size, offset, stride

« Last, stride is a tuple indicating the number of elements in
the storage that have to be skipped when the index Is
Increased by 1 in each dimension. For instance, our tensor
points has a stride of (2, 1): # Inf24]:

:.j-:::il'lt g.s8tride()

out[24] :

(2,

« Accessing an element i, j in a 2D tensor, results Iin
accessing the storage offset + stride[0] * | + stride[1] * |
element in the storage.

« The offset will usually be zero; if this tensor is a view into a
storage created to hold a larger tensor the offset might be
a positive value.

Slides 02p -

Size, offset, stride

* This relationship between Tensor and Storage leads some
operations, like transposing a tensor or extracting a sub-
tensor, to be inexpensive, as they do not lead to memory
reallocations; instead they consist in allocating a new
tensor object with a different value for size, storage offset
or stride.

Slides 02p

Size, offset, stride

We've already seen extracting a sub-tensor when we
Indexed a specific point and saw the storage offset

iIncreasing. Let's see what happens to size and stride as
well:

In[25]:
points = torch.tensor{[[4.0, 1.0], [5.0,
second point = points[1]

second point.size()

Out [25]
torch.size([2])

In[26] :

second point.storage offset ()

out[26]

¥
L

In[27]:
second point.stride()

out[27] -
(1,1

395)
Slides 02p

Size, offset, stride

In this case, the sub-tensor has one fewer dimension, as
one would expect, while still indexing the same storage as
the original points tensor. This also means that changing
the sub-tensor will have a side-effect on the original

tensor, too.

In[28]:
polnte = torch.tensor([[4.0,

second point = points[1]

gecond point[0] = 10.0

points

out [28] :

tensor([[4

Slides 02p

Size, offset, stride

* This might not always be desirable, so we can eventually
clone the sub-tensor into a new tensor.

In[29]:

points = torch.tensor([[4.0, 1.0],
second point = points[1].clone()
second point[0] = 10.0

points

Out[29] :

tensor([[4.,]

Slides 02p

Size, offset, stride

« Let’s try with transposing now. Let’'s take our tensor, that
has individual points points in the rows and xy coordinates
In the columns, and turn it around so that individual points
are along the columns.

In[30]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0],
points

out [30]

tensor([[4., 1.],
=

In[31]:
points t
points t

out [31] -
tensori([[4.,

88
Slides 02p

Size, offset, stride

* We can easlily verify that the two tensors share the same
storage:

In[32]:
id(pointse.storage()) == ld(points t.storage())

out[32] :
True

« and that they only differ by the shape and stride:

In[23]:
points.stride()

out[3z]:

!
L£,

In[34]:
points t.stride()

out[34]: .o v
(1, 2)

Slides 02p

Size, offset, stride

« The stride (2,1) above tells us that increasing the first
Index by one in points, e.g. going from points[0,0] to
points[1,0], will skip along the storage by elements,
while increasing the second index, e.g. from points[0,0] to
points[O,1] will skip along the storage by

* In other words, the storage holds the elements in the
tensor points sequentially row by row.

 No new memory is allocated: transposing is obtained only
by creating a new Tensor instance with different stride
ordering from the original.

Slides 02p -

Size, offset, stride

TRAUSPoSE

p

WE WY et

TM\L|4}1]%]

Figure 3.6 Transpose operation applied to a tensor.

Slides 02p

Size, offset, stride

« Transposing in PyTorch is not limited to matrices. We
can transpose a multidimensional array by specifying the
two dimensions along which transposing (i.e. flipping
shape and stride) should occur.

In[35]: # In[37]:
some tensor = torch.cnes(3, &, 5) some_tensor.stride ()
some tensor t = some tensor.transposa(0, 2)
some_tensor.shape # Cut [37]:

(20, 5, 1)
Out [35] :
torch.81i=ze({[3, 4, 5]}

In[3g]:
some_tensor t.stridaf()

In[3e]:

gome tensor t.shape
-~ — L2 # out[38] :

out[36] : (1, &5, 20)

torch.s81ize([5, 4, 31)

Slides 02p

Size, offset, stride

« Atensor whose values are laid out in the storage starting
from the right-most dimension onwards (i.e. moving
along rows for a 2D tensor), is defined as contiguous.

« Contiguous tensors are convenient, because we can Visit
them efficiently in order without jumping around in the
storage (iImproving data locality improves performance

because of the way memory access works on modern
CPUs).

* In our case, points is contiguous, while its transpose is
not.

Slides 02p

Size, offset, stride

15 contiguous ()

contiguous ()

Slides 02p

Size, offset, stride

« \We can obtain a new contiguous tensor from a non-
contiguous one using the contiguous method. The content

of the tensor will be the same, but the stride will change,
as will the storage.

Slides 02p

In[41]:

points = torch.tensor([[4.0, 1.0], [5.0,

peints t = points.t()
peoints t

Out[41]:
tensor([[4., 5., 2.],
[1., 3., 1.]1])

In[42]:
points t.storage ()

Out[42]:

1.
[torch.FloatStorage of size £]

In[43]:
points t.stride ()

Out[43]:
(1, 2)

In[44]:
points t cont = points t.contiguous ()
peints t cont

Out[44] :
tensor([[4., 5.

2-]:
[1., 3., 1.]

1)

In[45]:
points t cont.stride ()

Slides 02p

3.

D]J

Out [45]:
(3, 1)

In[4€] :
points t cont.storage ()

Out [46] :

4
5
2.
1.
3
1
t

[torch.FloatStorage of size €]

To be continued ...

Slides 02p) -

