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What Is a Tensor?

• In the previous lecture we took a tour of a pre-trained 

neural network that can label an image according to its 

contents.

• This deep learning system can transform data from one 

representation to another, for example, from images to 

text labels.

• The transformation from one form of data to another is 

typically learned by a deep neural network in stages, 

which means that the partially transformed data between 

each stage can be thought of as a sequence of 

intermediate representations. 
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What Is a Tensor?

• For image recognition, early representations can be 

things like edge detection or certain textures like fur. 

Deeper representations can capture more complex 

structures like ears, noses, or eyes.

• In general, such intermediate representations are 

collections of floating point numbers that characterize the 

input and capture the structure in the data, in a way that is 

instrumental for describing how inputs are mapped to the 

outputs of the neural network. These collections of 

floating point numbers and their manipulation is at the 

heart of modern AI. 

• For these representations and their computation, PyTorch 

uses a fundamental data structure: tensor.
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Figure 3.1 A deep neural network learns how to transform 

an input representation to an output representation
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A Deep Learning Model
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What Is a Tensor?

• In Machine Learning, tensors refer to the generalization of 

vectors and matrices to an arbitrary number of 

dimensions, similar to multidimensional arrays.

• The dimensionality of a tensor coincides with the number 

of indices used to refer to scalar values within the tensor.
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What Is a Tensor?

• PyTorch is not the only library dealing with multi-

dimensional arrays. NumPy is by far the most popular 

multidimensional array library in Python. 

• PyTorch shows seamless interoperability with NumPy, 

which brings with it, integration with the rest of the 

scientific libraries in Python, such as SciPy, Scikit-learn, 

and Pandas.
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What Is a Tensor?

• Compared to NumPy arrays, PyTorch tensors have a few 

superpowers, such as the ability to perform very fast 

operations on Graphical Processing Units, to distribute 

operations on multiple devices or machines, or to keep 

track of the graph of computations that created them.

• These are all important features when implementing a 

modern deep learning system.

• Understanding the capabilities and API of tensors is 

important in order to have a strong implementation tool for 

machine learning.
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Fundamentals of Tensors

• A tensor is a data structure, like an array, capable of 

storing collection of numbers that are accessible 

individually using an index, and that can be indexed with 

multiple indices.

• Firstly, let’s see list indexing so we can compare it to 

tensor indexing. Take a list of three numbers in Python:

In[1]: a = [1.0, 2.0, 1.0]

In[2]: a[0]

Out[2]:

1.0

In[3]: a[2] = 3.0

a

# Out[3]:

[1.0, 2.0, 3.0]
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Fundamentals of Tensors

• It is not unusual for simple Python programs dealing with 

vectors of numbers, such as the coordinates of a 2D line, 

to use Python lists to store the vector. 

• This can be sub-optimal for several reasons:

1. Numbers in Python are full-fledged objects. While a 

floating point number might take only, for instance, 32 

bits to be represented on a computer, Python will box

them in a full-fledged Python object with reference 

counting, etc.; this is not a problem if we need to store a 

small number of them, but allocating millions of such 

numbers gets very inefficient;
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Fundamentals of Tensors

2. Lists in Python are meant for sequential collections of 

objects. There are no operations defined for, say, efficiently 

taking the dot product of two vectors, or summing vectors 

together; also, Python lists have no way of optimizing the 

layout of their content in memory, as they are indexable 

collections of pointers to Python objects (of any kind, not 

just numbers); last, Python lists are 1D, and while one can 

create lists of lists, this is again very inefficient;

3. The Python interpreter is slow compared to executing 

optimized compiled code. Performing mathematical 

operations on large collections of numerical data can be 

much faster using optimized code written in a compiled, 

low-level language like C.
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Fundamentals of Tensors

• For these reasons, data science libraries rely on NumPy, 

or introduce dedicated data structures like PyTorch 

tensors, that provide efficient low-level implementations of 

numerical data structures and related operations on them, 

wrapped in a convenient high-level API.

• We will learn later that many types of data, from images to 

time series, audio, even sentences, can be represented 

using tensors. By defining operations over tensors, we 

can slice and manipulate data expressively and efficiently,  

even from a high-level (and not particularly fast) language 

such as Python.
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Fundamentals of Tensors

• Let’s construct a simple PyTorch tensor, consisting of 

just three ones in a row.
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• Let’s see what we did here: after importing the torch 

module, we called a function that creates a 1D tensor of 

size 3 filled with the value 1.0. We can access an element 

using its 0-based index or assign a new value to it.

• Although on the surface the example above doesn’t differ 

all that much from a list of number objects, under the 

hood things are completely different. Python lists or tuples 

of numbers are collections of Python objects that are 

individually allocated in memory, as shown in Figure-3.3. 
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• PyTorch Tensors on the other hand are views over 

(typically) contiguous memory blocks containing 

unboxed C numeric types, (4 bytes) float in this case, as 

we can see on the right side of Figure-3.3. 

• This means that a 1D tensor of 1,000,000 float numbers 

will require exactly 4,000,000 contiguous bytes to be 

stored, plus a small overhead for the meta data (e.g. 

dimensions, numeric type).
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Fundamentals of Tensors

• Say we have a list of 2D coordinates we’d like to 

represent a geometrical object, let’s say a triangle. 

Instead of having coordinates as numbers in a Python 

list, we can use a 1D tensor, by storing x’s in the even 

indices and y’s in the odd indices, like:

(1) The use of zeros here is just 

a way to get an appropriately 

sized tensor.

(2) We overwrite those zeros with the values we actually 

want.
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Fundamentals of Tensors

• We can also pass a Python list to the constructor:

• Here we passed a list of lists to the constructor. We can 

ask the tensor about its shape, which informs us on the 

size of the tensor along each dimension.
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• We can access an individual element in the tensor using 

two indices now, for instance:

returns the y-coordinate of the 0-th point in our dataset.
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• We can also access the first element in the tensor to get 

the 2D coordinates of the first point. 

• Note that what we get as the output is another tensor, only 

a 1D tensor of size 2 containing the values in the first row 

of the points tensor. 

• Does it mean that a new chunk of memory was allocated, 

values were copied into it, and the new memory returned 

wrapped in a new tensor object? No, because that would 

be very inefficient, especially if we had millions of points. 

What we got back is instead a different view of the same 

underlying data, limited to the first row.
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Tensors and Storages

• Let’s look deeper at the implementation under the hood: 

Values are allocated in contiguous chunks of memory, 

managed by torch.Storage instances. 

• A storage is a one-dimensional array of numerical data, 

i.e. a contiguous block of memory containing numbers of 

a given type, such a float or int32. A PyTorch Tensor is a 

view over such a Storage that is capable of indexing into 

that storage using an offset and per-dimension strides.
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Tensors and Storages

• Multiple tensors can index the same storage, even if they 

index into the data differently. See an example in Figure-

3.4. 

• In fact, when we requested points[0] in the last snippet, 

what we got back is another tensor that indexes the same 

storage as the points tensor, just not all of it and with 

different dimensionality (1D vs 2D). 

• The underlying memory is only allocated once, however, 

so creating alternate tensor-views on the data can be 

done quickly, no matter the size of the data managed by 

the Storage instance.
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Tensors and Storages

• Let’s see how indexing into the storage works in practice 

with our 2D points. The storage for a given tensor is 

accessible using the .storage property:
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Tensors and Storages

• Even though the tensor reports itself as having 3 rows 

and 2 columns, the storage under the hood is a 

contiguous array of size 6. In this sense, the tensor just 

knows how to translate a pair of indices into a location in 

the storage.

• We can also index into a storage manually, for instance:
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Tensors and Storages

• We can not index a storage of a 2D tensor using two 

indices. The layout of a storage is always one-

dimensional, irrespective of the dimensionality of any 

and all tensors that might refer to it.

• Changing the value of a storage leads to changing the 

content of its referring tensor:
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Tensors and Storages

• We will seldom, if ever, use storage instances directly, 

but understanding the relationship between a tensor and 

the underlying storage is very useful to understand the 

cost (or lack thereof) of certain operations later on. 

• It’s a good mental model to keep in mind when we want 

to write effective PyTorch code.
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Size, offset, stride

• In order to index into a storage, tensors rely on a few 

pieces of information, which, together with their storage, 

define them: size, storage offset and stride. See Figure-

3.5. 

• The size (or shape, in NumPy parlance) is a tuple 

indicating how many elements across each dimension the 

tensor represents. 

• The storage offset is the index in the storage 

corresponding to the first element in the tensor. 

• The stride is the number of elements in the storage that 

need to be skipped over to obtain the next element along 

each dimension.
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Size, offset, stride

• We can get the second point in the tensor by providing the 

corresponding index. 

• The resulting tensor has offset 2 in the storage, since we 

need to skip the first point, which has two items.
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Size, offset, stride
• Last, stride is a tuple indicating the number of elements in 

the storage that have to be skipped when the index is 

increased by 1 in each dimension. For instance, our tensor 

points has a stride of (2, 1):

• Accessing an element i, j in a 2D tensor, results in 

accessing the storage_offset + stride[0] * i + stride[1] * j 

element in the storage. 

• The offset will usually be zero; if this tensor is a view into a 

storage created to hold a larger tensor the offset might be 

a positive value.
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Size, offset, stride

• This relationship between Tensor and Storage leads some 

operations, like transposing a tensor or extracting a sub-

tensor, to be inexpensive, as they do not lead to memory 

reallocations; instead they consist in allocating a new 

tensor object with a different value for size, storage offset 

or stride.
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Size, offset, stride

• We’ve already seen extracting a sub-tensor when we 

indexed a specific point and saw the storage offset 

increasing. Let’s see what happens to size and stride as 

well:
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Size, offset, stride

• In this case, the sub-tensor has one fewer dimension, as 

one would expect, while still indexing the same storage as 

the original points tensor. This also means that changing 

the sub-tensor will have a side-effect on the original 

tensor, too.
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Size, offset, stride

• This might not always be desirable, so we can eventually 

clone the sub-tensor into a new tensor.
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Size, offset, stride

• Let’s try with transposing now. Let’s take our tensor, that 

has individual points points in the rows and xy coordinates 

in the columns, and turn it around so that individual points 

are along the columns.
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Size, offset, stride

• We can easily verify that the two tensors share the same 

storage:

• and that they only differ by the shape and stride:
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Size, offset, stride

• The stride (2,1) above tells us that increasing the first 

index by one in points, e.g. going from points[0,0] to 

points[1,0], will skip along the storage by two elements, 

while increasing the second index, e.g. from points[0,0] to 

points[0,1] will skip along the storage by one.

• In other words, the storage holds the elements in the 

tensor points sequentially row by row.

• No new memory is allocated: transposing is obtained only 

by creating a new Tensor instance with different stride 

ordering from the original.
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Size, offset, stride
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Size, offset, stride

• Transposing in PyTorch is not limited to matrices. We 

can transpose a multidimensional array by specifying the 

two dimensions along which transposing (i.e. flipping 

shape and stride) should occur.
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Size, offset, stride

• A tensor whose values are laid out in the storage starting 

from the right-most dimension onwards (i.e. moving 

along rows for a 2D tensor), is defined as contiguous. 

• Contiguous tensors are convenient, because we can visit 

them efficiently in order without jumping around in the 

storage (improving data locality improves performance 

because of the way memory access works on modern 

CPUs).

• In our case, points is contiguous, while its transpose is 

not.
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Size, offset, stride
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Size, offset, stride
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• We can obtain a new contiguous tensor from a non-

contiguous one using the contiguous method. The content 

of the tensor will be the same, but the stride will change, 

as will the storage.
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To be continued …
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