
Towards Improving the Resource Usage of SAT
solvers

Norbert Manthey? and Ari Saptawijaya

International Center for Computational Logic
TU Dresden, 01062 Dresden, Germany

Norbert.Manthey@mail.inf.tu-dresden.de

Abstract. The paper presents our work on cache analysis of SAT-
solving. The aim is to study how resources are utilized by a SAT solver
and to use this knowledge to improve the resource usage in SAT-solving.
The analysis is performed mainly on our CDCL-based SAT solver and
additionally on MiniSAT and PrecoSAT. The measurement is conducted
using sample-based profiling on some industrial benchmark from the
SAT competition 2009. During the measurement the following hardware
events are traced: total cycles, stall cycles, L2 cache hits and L2 cache
misses. From the measurement results, our runtime and implementation
analysis unveil that several improvements on resource usage can be done,
in particular on data structures and memory access. These improvements
result in about 60% speedup of runtime performance for our solver.

1 Introduction

The satisfiability problem (SAT) has its importance not only theoretically but
also practically. The active development of SAT solvers in recent years has turned
SAT solvers into a powerful tool to solve SAT-encoded problems in various fields,
from model checking to bioinformatics. Encoding industrial problems often re-
sults in large SAT instances with millions of variables and clauses. Therefore it is
important to have appropriate data structures and techniques to handle them.
Driven by the annual SAT competitions and SAT races, many improvements
have been made on SAT solvers. These include improvements on the algorithm
and employing various heuristics and cache-aware data structures.

In this work we study how computing resources are utilized by a SAT solver
in solving industrial problems. In particular, we observe and analyze the use of
cache in solving SAT instances. We aim at an optimal use of cache by a SAT
solver as cache allows a faster data access compared to main memory access. In
the end, this leads to the improvement of the overall solver performance.

We consider a conflict-driven clause learning (CDCL)-based SAT solver in our
work. The solver is based on HydraSAT [3], that is developed in our group. The
solver employs components used commonly in state-of-the-art SAT solvers. The

? The author was supported by the European Master’s Program in Computational
Logic (EMCL).

2

industrial problems in the study are taken from some benchmark used in the last
SAT competition 2009. The measurement is conducted using the HPCToolkit
[1] via sample-based profiling. At each sample point, the performance counter
is accessed using the PAPI library [2]. Using these performance measurement
tools, we observed the following processor events: total cycles, stall cycles, L2
cache hits and L2 cache misses. Additionally, the number of clause read-access
and write-access are collected.

The runtime analysis from the measurement suggests some improvements
that can be made on data structures. The improvements particularly deal with
the clause representation and with prefetching clauses in a watcher list. We pro-
pose the use of the slab allocator [5] that, together with several clause representa-
tion schemes, improve the runtime performance of the solver up to 23% speedup.
Two prefetching schemes are also proposed which give about 12% speedup of
runtime performance. Based on the implementation analysis, we also carry out
some experiments to improve memory access. The experiments include reusing
data structure vector in conflict analysis and compressing some data structures,
i.e. literals, boolean arrays and the truth-value assignment. We also consider a
scheme to maintain a watcher list lazily, where the “gap” in the list (due to re-
moving a clause from it) is not closed immediately by moving subsequent clauses
in the list. Instead, this “gap” is only closed once the unit propagation termi-
nates. This lazy maintenance of watcher list speeds up the solver’s runtime by
about 24%. The most encouraging result is obtained when several improvements
are combined, where the runtime performance of the solver can be improved up
to 60% speedup. All the improvements we consider in this work do not change
the search-path in finding a solution. Besides our solver, we also measure and
evaluate the cache performance of MiniSAT 2.0 [7] and PrecoSAT [4].

The paper is organized as follows. The description of the solver is given in
Section 2. Then, in Section 3 we detail how the measurement is conducted. We
discuss the measurement results and the analysis in Section 4. The proposed im-
provements based on the analysis are examined in Section 5. Finally, we conclude
in Section 6 by discussing related work and some future work.

2 Description of the Solver

The solver used in this work is based on the conflict-driven clause learning
(CDCL) procedure. It is customized from HydraSAT [3], a solver that is im-
plemented in C++. The solver is compiled to a 64-bit binary using the GNU
Compiler version 4.1.2 with the highest optimization level -O3.

A literal is implemented using a 32-bit unsigned integer. A clause is imple-
mented by storing its activity (32-bit floating point), its size (32-bit unsigned
integer) and a pointer to the literals of the clause. In case a clause is used in sev-
eral solver components, no copy of this clause is made. Instead, only the address
of the clause is shared among the components. Finally, a formula is implemented
as a vector of pointers to clauses it contains. Auxiliary data structures used in
the solver are vectors, stacks, double-ended queues and priority queues. The first

3

three are adopted from the C++ Standard Template Library. The priority queue
is implemented using a binary heap. We consider the following components for
our solver.

– Unit Propagation. The two watched-literal scheme, which is introduced in
Chaff [10] to improve the cache performance, is used for the unit propagation
component. As usual, this scheme is realized by maintaining watcher lists.
The implementation handles the binary clauses separately from the other
longer clauses. Unit propagation is performed firstly on binary clauses and
then on longer clauses. Due to the special treatment for binary clauses,
watcher lists for literals of binary clauses are introduced. For binary clauses,
the watcher list of a literal does not only store the pointer to the clauses,
but it stores also the other literal of the clause.

– Conflict Analysis. The first UIP scheme [9] is used for the conflict anal-
ysis component. Additionally, the learnt clause obtained from the conflict
analysis is further minimized using self-subsumption [8].

– Decision Heuristics. The decision heuristic used follows the basic principle
of VSIDS [10]. Each variable is assigned an activity and the variable with
the highest activity is picked as a decision variable. Every 1000 decisions
an attempt to pick a decision variable randomly takes place (up to ten at-
tempts). If these attempts fail, a deterministic decision is made using the
activity-based heuristic. Decision variables are assigned negative polarity.

– Restart Event Heuristics. This component manages the scheduling of restart.
The first restart is performed after 100 conflicts. Restart is scheduled accord-
ing the following scheme:

noc(t) =

0 , if t = 0
100 , if t = 1
(noc(t− 1) − noc(t− 2)) · r + con , otherwise

where noc(t) is the number of conflicts needed to restart at time t, r is a
constant and con is the current total number of conflicts. In our solver, the
value of r is set to 1.5.

– Removal Heuristics. Removal of learnt clauses is scheduled immediately after
a restart. Hence, there is no need to check whether the clauses to be removed
are still actively participated in the current search. In our solver, the heuristic
is to remove:
• learnt clauses with more than six literals, and
• the oldest 55 % of the remaining learnt clauses with more than two

literals.

3 Measurement

The measurement is conducted using the HPCToolkit [1] via sample-based pro-
filing. The solver is run and halted at a specified processor event and the method
currently running is analyzed. Such an event is triggered when a performance

4

counter reaches the maximum of its period. When the program is halted, the
performance counters are read using the PAPI Library [2]. The precision of the
measurement is assured due to the long run of the solver. This long run ensures
the collection of lots of samples during the measurement.

In the measurement, four processor events are traced simultaneously: total
cycles, stall cycles, L2 cache hits and L2 cache misses. The sample rate for the
total cycles is 106, whereas the sample rate for the other three events are set to
105. In addition to tracing processor events, the number of clause read-access
and write-access are observed. Observing the behavior of clause read-access and
write-access allows us to learn which among the two accesses is more frequent.
Hence, the more frequent access can be treated differently.

For the measurement, 40 problem instances of the industrial benchmark from
the the SAT competition 2009 are used. These are the instances that are solved
within 45 minutes timeout using the basic version of our solver, i.e. without
any improvement which will be discussed subsequently. Appendix A shows the
selected instances together with their solving time and memory usage. The total
runtime for the benchmark is 9.5 hours. The measurement is performed on a
hardware with AMD Opteron 285 2.66 GHz processor, 1024 KB Level 2 Cache,
2 GB main memory, 64-byte cache line size. In the subsequent sections, the
computation of runtime, wait rate, L2 cache access, L2 cache miss rate and
work cycles is as usual:

– runtime = total cycles× CPU Frequency
– wait rate = stall cycles/total cycles
– L2 cache access = L2 cache misses + L2 cache hits
– L2 cache miss rate = L2 cache misses/L2 cache access
– work cycles = total cycles− stall cycles

Since L1 cache is not analyzed, in the sequel memory access refers also to L2
cache access.

4 Results and Analysis

Based on the measurement results, two analysis are performed: the runtime
analysis and the implementation analysis. The former involves the analysis on
the processor events and data structure accesses. The latter concerns with the
implementation of the solver that suggests some slight improvements.

4.1 Runtime Analysis

Data structure accesses are important to determine the important part of the
solver’s data. This information cannot be obtained using the HPCToolkit, thus
additional runs for measurement have to be performed. Fig. 1 depicts the literal
accesses in clauses. The most frequently accessed literals are the literal at index
0 (60% read access, 25% write access) and at index 1 (15% read access, 50%
write access) of the literal array. The total number of write accesses is only 17%

5

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 0 1 2 3 4 5 6 7 8 9

am
ou

nt

literal index

literal accesses

write accesses
read accesses

Fig. 1. Literal accesses in clauses.

of read accesses. Note that, literals are only accessed in the unit propagation
and in the conflict analysis components.

Table 1 shows the distribution of each processor event amongst the solver
components. It can be seen that most of the runtime is spent by the unit propa-
gation. The conflict analysis component consumes only about 6% of the runtime,
whereas the remaining components share only 2% of the runtime. Most of the
L2 cache misses and hits are produced in the unit propagation as well. Hence,
this component needs to be optimized in order to obtain a high impact for the
solver’s performance.

Based on the measurement result, the wait rate of the solver, i.e. the part of
of the execution time where the solver waits for a resource, is 82%. This value
indicates that the solver does not use the provided resources well. Computing
the L2 cache miss rate, we obtain the value of 40% for our solver.

Analyzing the unit propagation further, we obtain the distribution of each
processor event for the propagation on binary clauses and on longer clauses as
shown in Table 2. The result indicates that the unit propagation spends most
of its runtime in propagating unit on longer clauses than on binary clauses.
Furthermore, in propagating on longer clauses most of the runtime is spent in
literal read accesses (45.8%) and maintaining the watcher lists (24.26%).

Following the two watched-literal scheme, the watcher list of the literal to
propagate is accessed and all the clauses in this list are processed sequentially.
Visiting these clauses results in two cache misses, in case the other watched
literal is not satisfied. This scheme is considered expensive. The memory scheme
of accessing the first literal of a clause in a watcher list during propagation is
shown in Fig. 2. The first cache miss occurs when the clause head is visited. The

6

Component Total Cycles Stall Cycles L2 Misses L2 Accesses

Decision Heuristics 1.77% 1.59% 3.13% 2.95%

Removal Heuristics 0.31% 0.21% 0.09% 0.21%

Conflict Analysis 5.74% 5.42% 6.27% 7.27%

Restart Event Heuristics 0.00% 1.33% 0.00% 0.00%

Unit Propagation 91.65% 92.62% 90.08% 88.94%

Table 1. Distribution of processor events in solver.

Total Cycles Stall Cycles L2 Misses L2 Accesses

Propagate on binary clauses 5.71% 5.55% 7.95% 5.64%

Propagate on longer clauses 83.86% 85.30% 78.17% 79.78%

Literal read access 45.8% 54.49% 24.07% 12.57%

Maintain watcher list 24.26% 18.59% 2.19% 36.64%

Table 2. Distribution of processor events for Unit Propagation.

second one results from visiting the first literal afterwards. Note that, the cache
misses in looking up the truth value of a literal are negligible (less than 2%).
The cache miss due to the extracting the watcher list of a literal occurs only
once (while propagating this literal). In the sequel, we refer it as 0th cache miss.

Analysis on MiniSAT 2.0 Our solver implements similar data structures as
MiniSAT. This leads to similar behavior as well. The analysis can only be done
on 39 out of 40 problem instances because MiniSAT fails to solve one instance
within the timeout. MiniSAT needs only 80% of the memory accesses compared
to our solver. Due to a similar number of L2 cache misses, the L2 cache miss
rate of MiniSAT is 50%. On the other hand, the work cycles of MiniSAT are
comparable to the work cycles of our solver, indicating that the two algorithms
are suited for the benchmark equally well. The wait rate of MiniSAT is equal to
our solver.

Watched lists

Watched list
for literal 2

¬1

¬2

1

¬3

¬4

3

4

5

¬5

¬6

6

2

Clause Head

Activity

Literals

Size

Clause Body

¬2

¬5

¬6

Fig. 2. Accessing the first literal of a clause using the two watched-literal scheme.

7

Analysis on PrecoSAT PrecoSAT is much faster on the given benchmark than
the other two solvers. Similarly to MiniSAT, PrecoSAT solves 39 instances but
it uses only 33% of our solver’s runtime. The 37% work cycles indicate that
PrecoSAT implements a better algorithm, but the solver does not seem to utilize
hardware much better than MiniSAT or our solver. PrecoSAT’s L2 cache miss
rate is 36% and it spends 77% of the execution time waiting for resources.

4.2 Implementation Analysis

We review the implementation of the solver and we observe three flaws in the
implementation.

The amount of memory accessed during solving instances can be reduced by
compressing data, especially boolean arrays and the truth-value assignment of
the solver. Applying the assignment compression [6] saves 75% compared to the
original size, because four ternary truth values (positive, negative, undefined) can
be stored in a byte. A similar approach can be applied to boolean arrays, which
saves about 88% of its original size. Nevertheless, the compression of boolean
arrays has a cost as it requires additional instructions that are executed every
time the array is accessed.

To enable the phase-saving heuristic in choosing the polarity of a decision
variable [11], the truth-value assignment also stores for every variable the backup
polarity (i.e. the polarity previously assigned but erased due to backtracking).
This polarity is stored next to the current polarity. Thus, reading only an assign-
ment loads every second byte (that stores the backup polarity) unnecessarily into
the cache. In fact, this byte that stores the backup polarity is used only when
the variable is assigned undefined.

Memory accesses can be avoided in the implementation by reusing data struc-
tures. A newly created vector without specifying a size results in a vector with no
allocated storage capacity. Enlarging a vector allocates a new piece of memory
and copies the content of the old piece of memory to the new one. Afterwards,
the old piece of memory is freed. On the other hand, clearing a vector keeps
its allocated capacity. Thus, copying memory can be avoided by clearing and
reusing a vector, instead of deleting the vector and creating a new one.

5 Improvements

The analysis from Section 4 suggests some improvements with the goal to reduce
cache misses and improving data locality. The main reason for cache misses
is the separation of the clause head and the clause body. We discuss several
improvements that can be done and their evaluation, in this section.

5.1 Clause Access Improvements

The first idea is to move literals from the clause body to the clause head. This
improvement is called cache clause. By moving four literals, we obtain up to 19%

8

of runtime speedup. This result is similar to clause packing improvement in [6].
The number of L2 cache misses is reduced by 32%. Choosing to access the local
stored literals or the clause body increases the work cycles by 3%.

With the cache clause improvement, the size of the clause head becomes 32-
byte, so that two clause heads fit exactly on one cache line. Since all clauses are
allocated using the memory allocator malloc, 8-byte additional storage (for sys-
tem information) is added to every allocation. This storage prevents the system
to place two clause heads compactly on a single cache line. Using the slab allo-
cator this additional storage can be avoided [5], since it stores the 8-byte system
information only once, allowing the clause heads to be stored compactly. We im-
plement our own slab allocator for our purpose. In order to handle clauses with
variable sizes, one needs a separate allocator for each size (due to the fixed slab
size). Multiple slab allocators of different sizes are then combined in a wrapper.
When an allocation should be done for a clause, an allocator for the correspond-
ing size (of the clause) is then chosen from the wrapper. The slab allocator alone
does not affect the runtime and main memory accesses, but combining it with
the cache clause leads to a better improvement. Combining the two improve-
ments results in 23% speedup of the runtime and the number of L2 cache misses
is reduced by 26% compared to the basic version of the solver.

Another approach is to store the clause in an array and to combine the
clause head and body [7]. This improvement is dubbed flattened clause. With
this scheme, accessing the size and the activity of a clause is less flexible, but no
additional instruction is needed to determine whether to access the locally stored
literals or the clause body. Fig. 3 shows the implementation and the memory
scheme of the flattened clause improvement. Together with the malloc allocator,
this scheme yields 21% runtime speedup. The L2 cache miss rate is decreased
by 20% and 24% of the L2 cache accesses in the basic version of the solver are
caught by the L1 cache. Combining the flattened clause with the slab allocator
improves the runtime by 22%.

The improvements in clause implementation avoid the second cache miss
occurring in visiting the clauses in a watcher list as discussed in Section 4.1. In

typedef literal_t* cls;

cls literals;

literal_t literal(cls literals,uint32_t index){

return literals[index];

}

uint32_t size(cls literals){

return ((uint32_t*)literals)[-1];

}

float activity(cls literals){

return ((float*)(&(((uint32_t*)literals)[-1])))[-1];

}

Head

Activity

Size

Literals

Fig. 3. The implementation and the memory scheme of the flattened clause.

9

[6], some literals of the clauses in a watcher list are stored directly in the watch
list itself in order to avoid the first cache miss. Unfortunately the search path
may change by this improvement.

The first cache miss can also be avoided if the prefetch unit is used to store the
clauses of a watcher list in the cache. The GNU Compiler provides an instruction
that tells the prefetcher the address to fetch into the cache. Since the watcher
list is traversed linearly, the clauses it contains can be prefetched.

To avoid 0th cache miss, the corresponding watcher list is prefetched as soon
as another literal is added to the propagation queue. Prefetching the clauses
(effectively the clause heads) can be done in two ways: either all clauses in the
currently visited watcher list are prefetched (first prefetching scheme) or the
clauses from the watcher lists of the first depth literals in the propagation queue
are prefetched (second prefetching scheme). Note that, depth is a parameter and
it refers to the number of consecutive literals in the propagation queue.

The following results are obtained without improving the implementation of
clause. The first prefetching scheme delivers 12% speedup and the stall cycles
are reduced to 84%. The results of the second prefetching scheme depend on
the parameter depth. For depth = 10, we gain 4% speedup of the runtime. This
parameter can be tuned further, but this is not considered in the current work.
In both schemes the number of work cycles, cache hits and cache misses increase
because unnecessary clauses are prefetched due to a conflict which stops the unit
propagation. The prefetch unit does not introduce any negative impact on the
runtime.

5.2 Reducing Memory Accesses

As shown in Table 2, the maintenance of the watcher lists, i.e. removing elements
from the watcher list, needs almost 25% of runtime. Removing a clause from a
watcher list pushes all subsequent clauses one position forward. As a result, lots
of memory accesses are performed. Using a linked-list instead of a vector for a
watcher list reduces the memory accesses by 13%, but it takes longer runtime
(increase by 20%). The negative impact is caused by the high miss rate of L2
cache, i.e. 71%, which results from the non-linear read access of the list elements.

In the maintenance of a watcher list, in fact there is no need to push all
subsequent clauses immediately to fill in the “gap” (that occurs due to removing
a clause from it). The maintenance of the watcher list can be done lazily. This can
be illustrated as follows. Suppose that the first clause is removed from the list, the
pointer of this clause is kept and marked as a gap. This means, the subsequent
clauses are not pushed immediately forward. Suppose that the second clause has
also to be removed, then we leave a wider gap (of two clauses) in the list. If the
third clause is not removed from the list then this clause can be pushed forward
to the top of the list, making the gap in the list smaller. Note that, only this
clause is pushed forward, as the following clauses could be potentially removed
as well (thus, leaving a new gap). In the end, when the propagation stops (e.g.
due to a conflict) then all the gaps can be removed at once from the watcher
list. This lazy maintenance of watcher list results in 23% speedup of the solver’s

10

runtime, decreases the memory accesses by 35% and thus increases the L2 miss
rate by 54%. This scheme also decreases the work cycles by 52%. These results
indicate that the process of maintaining a watcher list is buffered completely in
the L2 cache. We refer this improvement scheme as the lazy maintenance.

Data structures compression may reduce memory accesses further. This com-
pression includes the compression of the truth-value assignment and boolean
arrays. These improvements are called compressed assignment and compressed
boolean arrays, respectively. Our experiment shows that both compressions do
not lead to any impact on the runtime performance. Some speedup gained from
less L2 cache accesses and misses has to compensate the compression and de-
compression operations.

The assignment can be stored more compactly by storing the backup polari-
ties from the currently used ones separately, rather than storing both polarities
next to each other (cf. Section 4.2). The assignment is partitioned in two halves,
albeit stored in a single array (it can alternatively be realized using two separate
arrays). The half partition of backup polarities is identified by indexing the as-
signment with the negative variable. The number of memory accesses is reduced
by 1% using this scheme and the runtime is slightly better than the runtime of
the above compressing schemes. This improvement is called the negative index
assignment.

Compressing the literals as it is done in siege [12] is also analyzed in this work.
The compression is able to store three literals in a 64-bit integer and reduces
the storage needed by 33% in the best case. The maximum number of variables
in the formula is reduced to 220, because the representation of one compressed
literal is stored in 21-bit. The number of L2 cache misses reduces by 3%, but
the number of work cycles increases by 17%. As a result, the runtime does not
change. The number of memory accesses decreased by almost 1%.

The implementation of the conflict analysis needs three vectors. The first one
stores the literals of the learnt clause. The second vector stores a backup of the
first one during minimizing the learnt clause. The last vector stores temporary
literals that have to be processed. Clearing and reusing these vectors lead to
4% runtime improvement and the number of memory accesses decreases by 3%.
This improvement is called the vector reuse.

5.3 Combination of Improvements

Most of the improvements described previously can be combined. Table 3 gives
the results of the six combinations with respect to the total cycles, L2 accesses,
L2 miss rate and wait rate. Note that, the values for total cycles and L2 accesses
of each combination are relative to those of the basic version, whereas the values
for the L2 miss rate and wait rate are absolute. The following acronyms are used
in defining the combinations: CC, slab, VR, P1, NA, CBA, CA and LM refer
to the cache clause (with four local literals), slab allocator, vector reuse, the
first prefetching scheme, the negative index assignment, the compressed boolean
arrays, the compressed assignment and the lazy maintenance improvement, re-
spectively.

11

Configuration Total Cycles L2 Accesses L2 Miss Rate Wait rate

Basic Version 100.0% 100.0% 40.94% 81.12%

Combination 1 40.93% 56.3% 47.68% 75.56%

Combination 2 39.91% 56.72% 48.7% 75.88%

Combination 3 41.01% 56.01% 48.05% 75.82%

Combination 4 40.9% 56.51% 48.86% 76.14%

Combination 5 40.69% 54.56% 48.25% 74.86%

Combination 6 39.7% 51.71% 49.3% 72.21%

Table 3. Results of improvement combinations. In this table, Basic refers to the basic
version of the solver, Combination 1 = CC + slab + VR + P1 + LM, Combination 2
= FC + slab + VR + P1 + LM, Combination 3 = Combination 1 + NA, Combination
4 = Combination 2 + NA, Combination 5 = Combination 3 + CBA and Combination
6 = Combination 1 + CA + CBA.

Total Cycles Improvement Work Cycles Improvement
total cycles work cycles

Combination 6 100% 60.31% 100% 42.62%

Decision Heuristic 4.28% 0.07% 4.52% -0.02%

Removal Heuristic 0.68% 0.04% 2.33% -0.58%

Conflict Analysis 13% 0.58% 15.97% -1.99%

Restart Event Heuristic 0% 1.33% 0.01% 1.33%

Unit Propagation 80.87% 59.55% 74.48% 44.56%

Propagate on binary clauses 14.42% -0.01% 13.07% -1.08%

Propagate on longer clauses 61.47% 59.46% 54.14% 46.32%

Literal read access 9.17% 16.04% 8.34% -3.87%

Maintain watched list 0.22% 24.18% 0.34% 49.51%

Prefetch memory 23.14% -9.18% 3.46% -1.98%

Table 4. Comparing cycles distribution of basic version and combined improvements.

All combinations result in a runtime improvement of almost 60%. Combina-
tions with slab, VR, P1, LM together with a clause improvement (CC or FC),
as in combination 1 and 2, serve as the core of optimizations. The performance
drops significantly when only slab, VR, P1 and LM are considered (without any
clause improvement), where we obtain 64.49% total cycles, 73.92% L2 accesses,
55.42% L2 miss rate and 84.45% wait rate. The gained improvement does not
interfere with compressing data structures much. We only further analyze the
combination with the best runtime improvement, viz. Combination 6. Table 4
shows the distribution of its runtime and work cycles. It also lists the amount of
improvement obtained by comparing its absolute runtime (and work cycles) to
the runtime (and work cycles, respectively) of the basic version. Compared to the
basic version of the solver (Table 1), the distribution of the total cycles moves
from the unit propagation to other components. The conflict analysis now needs
13% of the runtime. The work cycles change mainly for the unit propagation.

12

The major improvement is achieved in propagating longer clauses. The runtime
improvement of this part is caused by the improvement of the literal read ac-
cess (16%) and the lazy watcher list maintenance (24%). The newly introduced
prefetching scheme consumes about 9% of this improvement.

The unit propagation still remains at the heart of the solver and is the part
where further improvements concerning the resource usage should be applied.
The usage of the prefetch function seems to offer some space for the optimization
of the solver, since it requires only about 4% of the work cycles but consumes
about 23% of the total runtime.

6 Conclusion and Future Work

In this paper we have described our study on how computing resources are uti-
lized by a modern SAT solver in solving several industrial problems. The aim
is to improve the resource usage in SAT-solving and the overall performance
of SAT solvers. We perform cache analysis of our CDCL-based SAT solver via
sample-based profiling measurements on some industrial benchmark from the
SAT competition 2009. The analysis of the measurements suggests several im-
provements, which include efficient representations of clauses, the use of the slab
allocator and clause-prefetching schemes in two watched-literal propagation. Ad-
ditionally, compression schemes of several data structures and lazy maintenance
of watcher list are also considered. By combining several improvements, the run-
time performance of the solver can be improved up to 60% speedup.

The idea of cache clause improvement and compressed assignment is also
considered in [6], to improve MiniSAT. MiniSAT also enjoys lazy maintenance
of watcher lists, similar to what we describe here. There is also some similarity
between the idea of the flattened clause and the clause representation described
in [13], where the clause head and body are combined and stored in an array.
Differently from [13], the additional clause offsets array is not needed, since we
do not store the whole clause database in a single array. We also record in our
clause representation the activity of clause instead of the number of watched
literals. Cache performance of SAT solvers has also been studied in [14]. Com-
pared to [14], we do not study the cache performance on various unit propagation
schemes. Instead, we consider only the two watched-literal propagation, which is
commonly used in recent solvers, and study some improvements that can be done
on it further. We also examine the cache performance of some recent solvers, viz.
MiniSAT and PrecoSAT (as well as our own solver), using measurement tools
different from [14]. In addition to that, our measurements are conducted on more
SAT instances, taken from the recent benchmark of SAT competition. This is
important in order to validate our analysis better. Our work is an extension
of the above mentioned previous work, as we also examine several other im-
provements. These improvements include the slab memory allocator and the
clause-prefetching schemes in two watched-literal propagation, that combined
with some other improvements, increase the solver’s performance significantly.

13

As a future work, we would like to study further improvement through Trans-
lation Lookaside Buffer (TLB). A preliminary study shows that using 2 MBytes
page size (instead of 4 KBytes page size) our cache-optimized solver obtains up
to 10% performance speedup. For this result, the benchmark is run on an Intel
Core i7 860 CPU with 8 MBytes L2 cache and a clock frequency of 2.80 GHz. Us-
ing the 2 MByte pages decreased the runtime of both the basic and the improved
version of the solver. This kind of improvement requires that the underlying ma-
chine supports huge page size. It is also interesting to study the impact of the slab
allocator and various prefetching schemes in some other solvers, e.g. MiniSAT or
PrecoSAT. Another direction for the future work is to study improvements that
affect the search path. In this line of work, a metric to compare search paths has
to be defined in order to evaluate the results of the measurement correctly.

Acknowledgment The authors would like to thank Julian Stecklina, Hermann
Härtig and Steffen Hölldobler, for many fruitful discussions during this work.

References

1. HPCToolkit. http://hpctoolkit.org/.

2. PAPI library. http://icl.cs.utk.edu/papi/.

3. C. Baldow, F. Gräter, S. Hölldobler, N. Manthey, M. Seelemann, P. Steinke,
C. Wernhard, K. Winkler, and E. Zenker. HydraSAT 2009.3 solver de-
scription. SAT 2009 Competitive Event Booklet, http://www.cril.univ-
artois.fr/SAT09/solvers/booklet.pdf.

4. A. Biere. PrecoSAT system description. http://fmv.jku.at/precosat/preicosat-
sc09.pdf.

5. J. Bonwick. The slab allocator: an object-caching kernel memory allocator. In
Proceedings of the USENIX Summer 1994 Technical Conference, 1994.

6. G. Chu, A. Harwood, and P. J. Stuckey. Cache conscious data structures for
boolean satisfiability solvers. JSAT, 6:99–120, 2009.

7. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. 6th SAT, LNCS
2919, 2004.

8. N. Eén and N. Sörensson. Minisat - a SAT solver with conflict-clause minimization.
Poster - 8th SAT, 2005.

9. J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search algorithm for
satisfiability. In International Conference on Computer-Aided Design, 1996.

10. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. Design Automation Conference, pages 530–535, 2001.

11. K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for
satisfiability solvers. In Proc. 10th SAT, LNCS 4501, 2007.

12. L. O. Ryan. Efficient algorithms for clause learning SAT solvers. Master’s thesis,
Simon Fraser University, Canada, 2004.

13. A. van Gelder. Generalizations of watched literals for backtracking search. In
Seventh International Symposium on AI and Mathematics, 2002.

14. L. Zhang and S. Malik. Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In Proc. 6th SAT, LNCS 2919, 2003.

14

A Problem Instances Used in the Measurement

Instances Solving Time Memory Usage Satisfiable?
(seconds) (KB)

ACG-10-5p0.cnf 169.062565 170968 no
AProVE09-20.cnf 1756.697786 203888 yes
UCG-15-5p0.cnf 476.773796 321968 no
UCG-20-5p1.cnf 1226.080625 474164 yes
UR-15-5p0.cnf 574.231887 338256 no
UTI-10-10p0.cnf 607.533968 388956 no
UTI-15-10p0.cnf 1027.736229 601984 no
blocks-4-ipc5-h22-unknown.cnf 570.543656 269496 no
cmu-bmc-longmult15.cnf 130.956184 26744 no
countbitswegner064.cnf 2585.413578 266988 no
eq.atree.braun.8.unsat.cnf 256.244014 30292 no
gss-16-s100.cnf 243.911243 38484 yes
gss-17-s100.cnf 357.822362 40828 yes
gss-20-s100.cnf 705.240074 51040 yes
gus-md5-07.cnf 121.45559 98880 no
gus-md5-09.cnf 820.299265 102548 no
manol-pipe-c10nidw s.cnf 820.53928 625660 no
manol-pipe-c6bidw i.cnf 257.124069 175516 no
manol-pipe-c6nidw i.cnf 273.521094 181600 no
manol-pipe-g10id.cnf 812.70279 339084 no
manol-pipe-g10nid.cnf 2334.201878 570644 no
mizh-md5-47-3.cnf 814.090877 275084 yes
mizh-md5-47-4.cnf 668.657788 246784 yes
mizh-sha0-35-3.cnf 219.293705 153244 yes
ndhf xits 20 SAT.cnf 393.776609 252364 yes
post-c32s-gcdm16-22.cnf 998.362393 257068 yes
q query 3 L60 coli.sat.cnf 336.085004 240176 yes
q query 3 L70 coli.sat.cnf 561.367083 285092 yes
q query 3 l44 lambda.cnf 2024.402517 135872 no
q query 3 l45 lambda.cnf 1767.374454 133816 no
q query 3 l48 lambda.cnf 2068.153251 136716 no
rbcl xits 06 UNSAT.cnf 415.165946 32620 no
schup-l2s-abp4-1-k31.cnf 448.384022 69608 no
schup-l2s-guid-1-k56.cnf 2439.468457 306456 no
schup-l2s-motst-2-k315.cnf 344.433525 561832 yes
simon-s02b-dp11u10.cnf 1189.330328 80564 no
uts-l05-ipc5-h27-unknown.cnf 353.102067 163212 no
uts-l06-ipc5-h31-unknown.cnf 1186.990182 284108 no
vmpc 24.cnf 659.017186 73148 yes
vmpc 26.cnf 539.513717 84628 yes

