What is a Query?

The relational queries considered so far produced a result table from a database. Other query languages can be completely different, but they usually agree on this:

Definition 2.1:

- Syntax: a query expression q is a word from a query language (algebra expression, logical expression, etc.)
- Semantics: a query mapping $M[q]$ is a function that maps a database instance I to a database table $M[q](I)$

\rightarrow for some semantics, query mappings are not defined on all database instances

Generic Queries

We only consider queries that do not depend on the concrete names given to constants in the database:

Definition 2.2: A query q is generic if, for every bijective renaming function $\mu : \text{dom} \rightarrow \text{dom}$ and database instance I:

$$\mu(M[q](I)) = M[\mu(q)](\mu(I)).$$

In this case, $M[q]$ is closed under isomorphisms.

Review: Example from Previous Lecture

Every table has a schema:

- Lines[Line:string, Type:string]
- Stops[SID:int, Stop:string, Accessible:bool]
- Connect[From:int, To:int, Line:string]
First-order Logic as a Query Language

Idea: database instances are finite first-order interpretations

\(\leadsto \) use first-order formulae as query language

\(\leadsto \) use unnamed perspective (more natural here)

Examples (using schema as in previous lecture):

- Find all bus lines: Lines(x, “bus”)
- Find all possible types of lines: \(\exists y. \text{Lines}(y, x) \)
- Find all lines that depart from an accessible stop:
 \[\exists y. \text{Stop}(y, x) \land \text{Connect}(y, z, x, \text{Line}) \]

First-order Logic Syntax: Simplifications

We use the usual shortcuts and simplifications:

- flat conjunctions (\(\varphi_1 \land \varphi_2 \land \varphi_3 \) instead of \(\varphi_1 \land (\varphi_2 \land \varphi_3) \))
- flat disjunctions (similar)
- flat quantifiers (\(\exists x. y. z. \varphi \) instead of \(\exists x. \exists y. \exists z. \varphi \))
- \(\varphi \rightarrow \psi \) as shortcut for \(\neg \varphi \lor \psi \)
- \(\varphi \leftrightarrow \psi \) as shortcut for \((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi) \)
- \(t_1 \neq t_2 \) as shortcut for \(\neg (t_1 = t_2) \)

But we always use parentheses to clarify nesting of \(\land \) and \(\lor \):

No "\(\varphi_1 \land \varphi_2 \lor \varphi_3 \)"!

First-order Logic with Equality: Syntax

Basic building blocks:

- Predicate names with an arity \(\geq 0 \): \(p, q, \text{Lines, Stops} \)
- Variables: \(x, y, z \)
- Constants: \(a, b, c \)
- Terms are variables or constants: \(s, t \)

Formulae of first-order logic are defined as usual:

\[\varphi := p(t_1, \ldots, t_n) \mid t_1 \approx t_2 \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \exists x. \varphi \mid \forall x. \varphi \]

where \(p \) is an \(n \)-ary predicate, \(t_i \) are terms, and \(x \) is a variable.

- An atom is a formula of the form \(p(t_1, \ldots, t_n) \)
- A literal is an atom or a negated atom
- Occurrences of variables in the scope of a quantifier are bound; other occurrences of variables are free

First-order Logic with Equality: Semantics

First-order formulae are evaluated over interpretations \(\langle \Delta^I, \cdot^I \rangle \), where \(\Delta^I \) is the domain. To interpret formulae with free variables, we need a variable assignment \(Z : \text{Var} \rightarrow \Delta^I \).

- constants \(a \) interpreted as \(a^I \in \Delta^I \)
- variables \(x \) interpreted as \(x^I \in \Delta^I \)
- \(n \)-ary predicates \(p \) interpreted as \(p^I \subseteq (\Delta^I)^n \)

A formula \(\varphi \) can be satisfied by \(I \) and \(Z \), written \(I, Z \models \varphi \):

- \(I, Z \models p(t_1, \ldots, t_n) \) if \((t_1^I, \ldots, t_n^I) \in p^I \)
- \(I, Z \models t_1 \approx t_2 \) if \(t_1^I = t_2^I \)
- \(I, Z \models \neg \varphi \) if \(I, Z \models \varphi \)
- \(I, Z \models \varphi \land \psi \) if \(I, Z \models \varphi \) and \(I, Z \models \psi \)
- \(I, Z \models \varphi \lor \psi \) if \(I, Z \models \varphi \) or \(I, Z \models \psi \)
- \(I, Z \models \exists x. \varphi \) if there is \(\delta \in \Delta^I \) with \(I, \{ x \mapsto \delta \}, Z \models \varphi \)
- \(I, Z \models \forall x. \varphi \) if for all \(\delta \in \Delta^I \) we have \(I, \{ x \mapsto \delta \}, Z \models \varphi \)
First-order Logic Queries

Definition 2.3: An n-ary first-order query q is an expression $\varphi[x_1, \ldots, x_n]$ where x_1, \ldots, x_n are exactly the free variables of φ (in a specific order).

Definition 2.4: An answer to $q = \varphi[x_1, \ldots, x_n]$ over an interpretation I is a tuple $\langle a_1, \ldots, a_n \rangle$ of constants such that $I \models \varphi[x_1/a_1, \ldots, x_n/a_n]$ where $\varphi[x_1/a_1, \ldots, x_n/a_n]$ is φ with each free x_i replaced by a_i. The result of q over I is the set of all answers of q over I.

Boolean Queries

A Boolean query is a query of arity 0

\rightarrow we simply write φ instead of $\varphi[]$

$\rightarrow \varphi$ is a closed formula (a.k.a. sentence)

What does a Boolean query return?

Two possible cases:

- $I \not\models \varphi$, then the result of φ over I is \emptyset (the empty table)
- $I \models \varphi$, then the result of φ over I is $\{\langle \rangle\}$ (the unit table)

Interpreted as Boolean check with result true or false (match or no match)

Domain Dependence

We have defined FO queries over interpretations

\rightarrow How exactly do we get from databases to interpretations?

- Constants are just interpreted as themselves: $a^I = a$
- Predicates are interpreted according to the table contents
- But what is the domain of the interpretation?

Example 2.5: What should the following queries return?

1. $\neg \text{Lines}(x, \text{"bus"})[x]$
2. $(\text{Connect}(x_1, \text{"42"}, \text{"85"}) \lor \text{Connect}(\text{"57"}, x_2, \text{"85"}))[x_1, x_2]$
3. $\forall y. p(x, y)[x]$

\rightarrow Answers depend on the interpretation domain, not just on the database contents

Natural Domain

First possible solution: the natural domain

Natural domain semantics (ND):

- fix the interpretation domain to dom (infinite)
- query answers might be infinite (not a valid result table)
- \rightarrow query result undefined for such databases
Natural Domain: Examples

Query answers under natural domain semantics:

1. \(\neg \text{Lines}(x, \text{"bus"})[x] \)
 Undefined on all databases

2. \((\text{Connect}(x_1, \text{"42"}, \text{"85"}) \lor \text{Connect}(\text{"57"}, x_2, \text{"85"})))[x_1, x_2] \)
 Undefined on databases with matching \(x_1 \) or \(x_2 \) in Connect, otherwise empty

3. \(\forall y. p(x, y)[x] \)
 Empty on all databases

Active Domain: Examples

Query answers under active domain semantics:

1. \(\neg \text{Lines}(x, \text{"bus"})[x] \)
 Let \(q' = \text{Lines}(x, \text{"bus"}) \times M[q'][I] \)

2. \((\text{Connect}(x_1, \text{"42"}, \text{"85"}) \lor \text{Connect}(\text{"57"}, x_2, \text{"85"})))[x_1, x_2] \)
 Let \(q' = \text{Connect}(\text{"42"}, \text{"85"}) \times M[q'][I] \)
 The answer is \(M[q_1](I) \times \text{dom}(I, q) \cup M[q_2](I) \)

3. \(\forall y. p(x, y)[x] \leadsto \text{see board} \)

Active Domain

Alternative: restrict to constants that are really used

\(\leadsto \text{active domain} \)

- for a database instance \(I \), \(\text{dom}(I) \) is the set of constants used in relations of \(I \)
- for a query \(q \), \(\text{dom}(q) \) is the set of constants in \(q \)
- \(\text{dom}(I, q) = \text{dom}(I) \cup \text{dom}(q) \)

Active domain semantics (AD):

consider database instance as interpretation over \(\text{dom}(I, q) \)

Domain Independence

Observation: some queries do not depend on the domain

- \(\text{ Stops}(x, y, \text{"true"})[x, y] \)
- \((x \approx a)[x] \)
- \(p(x) \land \neg q(x)[x] \)
- \(r(x) \land \forall y. (q(x, y) \rightarrow p(x, y))[x] \) (exercise: why?)

In contrast, all example queries on the previous few slides are not domain independent

Domain independent semantics (DI):

consider only domain independent queries

use any domain \(\text{dom}(I, q) \subseteq \Delta I \subseteq \text{dom} \) for interpretation
How to Compare Query Languages

We have seen three ways of defining FO query semantics
∽ how to compare them?

Definition 2.6: The set of query mappings that can be described in a query language L is denoted \(\text{QM}(L) \).

- \(L_1 \) is subsumed by \(L_2 \), written \(L_1 \sqsubseteq L_2 \), if \(\text{QM}(L_1) \subseteq \text{QM}(L_2) \)
- \(L_1 \) is equivalent to \(L_2 \), written \(L_1 \equiv L_2 \), if \(\text{QM}(L_1) = \text{QM}(L_2) \)

We will also compare query languages under named perspective with query languages under unnamed perspective. This is possible since there is an easy one-to-one correspondence between query mappings of either kind (see exercise).

Equivalence of Relational Query Languages

Theorem 2.7: The following query languages are equivalent:

- Relational algebra RA
- FO queries under active domain semantics AD
- Domain independent FO queries DI

This holds under named and under unnamed perspective.

To prove it, we will show:

\[
\text{RA}_{\text{named}} \sqsubseteq \text{DI}_{\text{unnamed}} \sqsubseteq \text{AD}_{\text{unnamed}} \sqsubseteq \text{RA}_{\text{named}}
\]

RA\text{named} \sqsubseteq DI\text{unnamed} (cont’d)

For a given RA query \(q[a_1, \ldots, a_n] \), we recursively construct a DI query \(\varphi_q[x_{a_1}, \ldots, x_{a_n}] \) as follows:

We assume without loss of generality that all attribute lists in RA expressions respect the global order of attributes.

- if \(q = R \) with signature \(R(a_1, \ldots, a_n) \), then \(\varphi_q = R(x_{a_1}, \ldots, x_{a_n}) \)
- if \(n = 1 \) and \(q = \{[a_1 \mapsto c]\} \), then \(\varphi_q = (x_{a_1} \equiv c) \)
- if \(q = \sigma_{a_i=m}(q') \), then \(\varphi_q = \varphi_{q'} \land (x_{a_i} \equiv c) \)
- if \(q = \sigma_{a_i=m}(q') \), then \(\varphi_q = \varphi_{q'} \land (x_{a_i} \equiv x_{a_i}) \)
- if \(q = \delta_{b_i=m_i=b_i=m_i}(q') \), then

\[
\varphi_q = \exists y_{b_1}, \ldots, y_{b_n} (x_{a_1} \equiv y_{b_1}) \land \ldots \land (x_{a_n} \equiv y_{b_n}) \land \varphi_{q'}[y_{b_1}, \ldots, y_{b_n}]
\]

(Here we assume that the \(a_1, \ldots, a_n \) in \(\delta_{b_i=m_i=b_i=m_i}(q') \) are written in the order of attributes, while \(b_1, \ldots, b_n \) might be in another order. We use \(\{b_1, \ldots, b_n\} = \{a_1, \ldots, a_n\} \) to denote the ordered version of the \(b \) attributes. \(\varphi_{q'}[y_{b_1}, \ldots, y_{b_n}] \) is like \(\varphi_{q'} \) but using variables \(y_{b_1} \))

Remaining cases:

- if \(q = \pi_{a_1, \ldots, a_n}(q') \) for a subquery \(q'[b_1, \ldots, b_m] \) with \(\{b_1, \ldots, b_m\} = \{a_1, \ldots, a_n\} \cup \{c_1, \ldots, c_k\} \), then \(\varphi_q = \exists x_{c_1}, \ldots, x_{c_k} \varphi_{q'} \)
- if \(q = q_1 \Join q_2 \) then \(\varphi_q = \varphi_{q_1} \land \varphi_{q_2} \)
- if \(q = q_1 \Join q_2 \) then \(\varphi_q = \varphi_{q_1} \lor \varphi_{q_2} \)
- if \(q = q_1 - q_2 \) then \(\varphi_q = \varphi_{q_1} \land \neg \varphi_{q_2} \)

One can show that \(\varphi_q[x_{a_1}, \ldots, x_{a_n}] \) is domain independent and equivalent to \(q \) ~ exercise
This is easy to see:

- Consider an FO query q that is domain independent
- The semantics of q is the same for any domain $\text{dom} \subseteq \Delta I \subseteq \text{dom}$
- In particular, the semantics of q is the same under active domain semantics
- Hence, for every DI query, there is an equivalent AD query

Remaining cases:

- if $\phi = \neg \psi$, then $E_{\phi} = (E_{ax_1}, \text{dom} \pitchfork ... \pitchfork E_{ax_n}, \text{dom}) - E_{\psi}$
- if $\phi = \psi_1 ...$ are arbitrary and we have infinitely many names available.

How to find DI queries?

Domain independent queries are arguably most intuitive, since their result does not depend on special assumptions.

\leadsto How can we check if a query is in DI? Unfortunately, we can’t:

Theorem 2.8: Given a FO query q, it is undecidable if $q \in \text{DI}$.

\leadsto find decidable sufficient conditions for a query to be in DI
A Normal Form for Queries

We first define a normal form for FO queries:
Safe-Range Normal Form (SRNF)

- Rename variables apart (distinct quantifiers bind distinct variables, bound variables distinct from free variables)
- Eliminate all universal quantifiers: $\forall y. \psi \mapsto \neg\exists y. \neg\psi$
- Push negations inwards:
 - $\neg(\varphi \land \psi) \mapsto (\neg\varphi \lor \neg\psi)$
 - $\neg(\varphi \lor \psi) \mapsto (\neg\varphi \land \neg\psi)$
 - $\neg\neg\psi \mapsto \psi$

Safe-Range Queries

Definition 2.9: An FO query $q = \varphi[x_1, \ldots, x_n]$ is a safe-range query if

$$rr(SRNF(\varphi)) = \{x_1, \ldots, x_n\}.$$

Safe-range queries are domain independent.

One can show a much stronger result:

Theorem 2.10: The following query languages are equivalent:

- Safe-range queries SR
- Relational algebra RA
- FO queries under active domain semantics AD
- Domain independent FO queries DI

Safe-Range Queries

Let φ be a formula in SRNF. The set $rr(\varphi)$ of range-restricted variables of φ is defined recursively:

- $rr(R(t_1, \ldots, t_n)) = \{x \mid x \text{ a variable among the } t_1, \ldots, t_n\}$
- $rr(x \equiv y) = \{x\}$
- $rr(x \equiv a) = \emptyset$
- $rr(\psi) = \emptyset$ if $rr(\psi)$ is defined (no exception)

$$rr(\varphi \land \psi) = rr(\varphi) \cup \{x, y\} \quad \text{if } \varphi = (x \equiv y) \text{ and } \{x, y\} \cap rr(\varphi_1) \neq \emptyset$$
$$rr(\varphi \lor \psi) = rr(\varphi) \cap rr(\varphi_2) \quad \text{otherwise}$$
$$rr(\exists y. \psi) = \begin{cases} rr(\psi) \setminus \{y\} & \text{if } y \in rr(\psi) \\ \text{throw new NotSafeException()} & \text{if } y \notin rr(\psi) \end{cases}$$

Tuple-Relational Calculus

There are more equivalent ways to define a relational query language

Example: Codd’s tuple calculus

- Based on named perspective
- Use first-order logic, but variables range over sorted tuples (rows) instead of values
- Use expressions like $x : \text{From}, t_0, \text{Line}$ to declare sorts of variables in queries
- Use expressions like $x. \text{From}$ to access a specific value of a tuple
- Example: Find all lines that depart from an accessible stop

$$\{x : \text{Line} \mid \exists z : \text{SID, Stop, Accessible}. (\text{Stops}(y) \land y. \text{Accessible} \equiv "\text{true}" \\
\land \exists z : \text{From}, t_0, \text{Line}. (\text{Connect}(z) \land z. \text{From} = y. \text{SID} \land z. \text{Line} = x. \text{Line}))\}$$
Summary and Outlook

First-order logic gives rise to a relational query language

The problem of domain dependence can be solved in several ways

All common definitions lead to equivalent calculi

leadsto "relational calculus"

Open questions:

- How hard is it to actually answer such queries? (next lecture)
- How can we study the expressiveness of query languages?
- Are there interesting query languages that are not equivalent to RA?