

Hannes Strass (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałega) Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

[Non-Monotonic Reasoning II](https://iccl.inf.tu-dresden.de/web/Foundations_of_Knowledge_Representation_(WS2024))

Lecture 8, 9th Dec 2024 // Foundations of Knowledge Representation, WS 2024/25

Datalog & Least Herbrand Models

We have seen so far:

- It is easy to formalise intuitions about preferred models if we have a least Herbrand model.
- In that case, everyone agrees that the least Herbrand model is the right choice
- Datalog knowledge bases have a least Herbrand model, which can be computed deterministically using forward chaining
- We can successfully formalise the Closed World Assumption

However, we cannot express default statements:

hasOrg(*x*, *y*) *∧ Heart*(*y*) & consistent to assume *hasLocation*(*y*, *left*) deduce *hasLocation*(*y*, *left*)

Slide 2 of 22

Going Beyond Datalog

To overcome expressivity limitations we next

- 1. extend Datalog to a more expressive logic;
- 2. develop a new mechanism for selecting preferred models.

Idea: First, allow for "negation" *∼* in the body of rules:

∀x∀y (*hasOrg*(*x*, *y*) *∧ Heart*(*y*) *∧ ∼hasLocation*(*y*,*right*)) *→ hasLocation*(*y*, *left*)

Then, devise a preferred model selection mechanism such that negation is read non-monotonically, as follows:

- "Deduce that heart is on the left unless we can deduce that it is on the right."
- "Deduce that the heart is on the left if *∼hasLocation*(*y*,*right*) (that is, *hasLocation*(*y*, *left*) is consistent with our knowledge)."

Datalog*[¬]* **-Rules**

Definition

A Datalog*[¬]* rule is a function-free, universally quantified implication

 $(L_1 \wedge \ldots \wedge L_n) \rightarrow H$

with *Lⁱ* a literal (an atom *A* or negated atom *∼A*) and *H* either an atom or *⊥*. A Datalog⁻ knowledge base is a pair $\mathcal{K} = \langle \mathcal{R}, \mathcal{F} \rangle$ where \mathcal{R} is a finite set of Datalog^{\neg} rules and ϑ is a finite set of facts.

∀x.(*Heart*(*x*) *∧ hasLoc*(*x*, *left*) *→ SitSolHeart*(*x*)) *∀x*.(*Heart*(*x*) *∧ hasLoc*(*x*,*right*) *→ SitInvHeart*(*x*)) *∀x*.*∀y*.(*Human*(*x*) *∧ hasOrg*(*x*, *y*) *∧ SitInvHeart*(*y*) *→ SitInvPatient*(*x*)) *∀x*.*∀y*.(*Human*(*x*) *∧ hasOrg*(*x*, *y*) *∧ SitSolHeart*(*y*) *→ Healthy*(*x*)) *∀x*.(*∀y*.(*hasOrg*(*x*, *y*) *∧ Heart*(*y*) *∧ ∼hasLoc*(*y*,*right*) *→ hasLoc*(*y*, *left*))) *Human*(*MaryJones*), *hasOrg*(*MaryJones*, *MJHeart*), *Heart*(*MJHeart*)

So far all this is just syntax.

We need to specify the semantics of Datalog*¬*. \rightsquigarrow Which are the preferred models?

There was a "war of semantics" in 1980s and 1990s. Meaning of *{∼B → A*, *∼A → B}*? (Infinite negative recursion.) Single-model vs. multiple-models semantics?

To date, we have the following:

- Well-founded Semantics
- Stable Model Semantics (a/ka Answer Set Semantics)

We will focus on Stable Model Semantics. Preferred models are given through so-called Stable Models (SM). It thus follows that

 $\mathcal{K} \approx a$ iff $\mathcal{I} \models a$ for each stable model J of \mathcal{K}

We will see that K may have

- no stable models, or
- one stable model, or
- several stable models.

Furthermore, if K contains only Datalog rules (i.e., no negation), then K has exactly one stable model (the least Herbrand model).

Slide 6 of 22

We proceed as follows:

- 1. Define stable models for the propositional case.
- 2. Extend to the case with variables using grounding.

A simple propositional example K with one rule and one fact:

Suspect ∧ ∼Guilty → Innocent Suspect

Intuitively, the rule says the following:

"A suspect is innocent unless they can be proved guilty."

We only know that Suspect holds, so we intuitively expect that

K |*≈ Innocent* and K *∪ {Guilty} ̸*|*≈ Innocent*

Our example: *Suspect ∧ ∼Guilty → Innocent Suspect*

Intuitively, the following (Herbrand-style) model should be stable:

I¹ = *{Suspect*, *Innocent}*

To check this, we first compute the reduct \mathcal{K}^{J_1} of \mathcal{K} by J_1 :

1. Remove all rules with negative body literal *∼A* such that the (positive) literal A is in \mathcal{I}_1 .

2. Remove all negative literals from the remaining rules. The result is always a (negation-free) Datalog knowledge base.

In our example, we do not remove any rule since $Guity \notin \mathcal{I}_1$:

Suspect → Innocent

Suspect

Once we have the reduct $\mathcal{K}^{\mathcal{J}_1}$

Suspect → Innocent Suspect

We check whether \mathfrak{I}_1 is the least Herbrand Model of $\mathfrak{K}^{\mathfrak{I}_1}$, in which case \mathfrak{I}_1 is a stable model.

Indeed, by using forward chaining we can see that

I¹ = *{Suspect*, *Innocent}*

is the least Herbrand model of \mathcal{K}^{J_1} and hence J_1 is a stable model of \mathcal{K} . But this is not sufficient to show K |*≈ Innocent*. \rightsquigarrow We need to look at all stable models of \mathcal{K} .

Let us check the remaining possibilities:

$$
J_2 = {Suspect, Guily}\nJ_3 = {Suspect, Innocent, Guily}\nJ_4 = {Suspect}
$$

The reducts $\mathcal{K}^{\mathcal{I}_2}$ and $\mathcal{K}^{\mathcal{I}_3}$ are the same and contain just the fact:

Suspect

This is so because *Guilty* $\in \mathcal{I}_2$, \mathcal{I}_3 and hence the reduct does not include the only rule we have in K .

The least model of $\mathfrak{K}^{\mathfrak{I}_2}$ (or $\mathfrak{K}^{\mathfrak{I}_3}$) is \mathfrak{I}_4 , thus neither \mathfrak{I}_2 nor \mathfrak{I}_3 are stable.

Slide 10 of 22

We finally check whether

 $\mathcal{I}_4 = \{Suspect\}$

is a stable model of

Suspect ∧ ∼Guilty → Innocent Suspect

The reduct $\mathcal{K}^{\mathcal{J}_4}$ is the same as $\mathcal{K}^{\mathcal{J}_1}$, namely *Suspect → Innocent Suspect* But then \mathcal{I}_4 is not even a model of $\mathcal{K}^{\mathcal{I}_4}$. Thus, $I_1 = \{Suspect, Innocent\}$ is the only stable model of K and so K |*≈ Innocent*.

Slide 11 of 22

Example (1)

Consider K as follows:

∼Guilty → Innocent ∼Innocent → Guilty

Recall that we compute the reduct $\mathcal{K}^{\mathcal{I}}$ of \mathcal{K} by \mathcal{I} as follows:

- 1. Remove all rules with negative body literal *∼A* such that the (positive) literal *A* is in I.
- 2. Remove all negative literals from the remaining rules.

SM candidates: *∅*, *{Guilty}*, *{Innocent}*, *{Guilty*, *Innocent}*

Stable models: *{Guilty}*, *{Innocent}*

 \rightarrow A KB can have several stable models.

Example (2)

Consider K as follows:

∼Guilty → Guilty

Recall that we compute the reduct $\mathcal{K}^{\mathcal{I}}$ of \mathcal{K} by \mathcal{I} as follows:

- 1. Remove all rules with negative body literal *∼A* such that the (positive) literal *A* is in I.
- 2. Remove all negative literals from the remaining rules.

Stable model candidates: *∅*, *{Guilty}*

 \rightarrow A KB may have no stable models.

Slide 12 of 22

Non-monotonic vs. Classical Negation

Consider again our propositional example K:

Suspect ∧ ¬Guilty → Innocent Suspect

Let us check whether

 $K \models$ *Innocent*

 $for \, \models$ being entailment under monotonic PL semantics.

Clearly, K is equivalent in standard propositional logic to

Suspect → Innocent ∨ Guilty

Suspect

Hence $\mathcal{I} = \{Suspect, Guity\}$ is a model of $\mathcal K$ with $\mathcal{I} \not\models \textit{Innocent, thus:}$

 $\mathcal{K} \not\models$ *Innocent*

Slide 14 of 22

Properties

Let *K* be a (propositional) Datalog⁻ knowledge base. Then:

Slide 15 of 22

So far, all this is propositional. What about ...

∀x(*Heart*(*x*) *∧ hasLoc*(*x*, *left*) *→ SitSolHeart*(*x*))

∀x(*Heart*(*x*) *∧ hasLoc*(*x*,*right*) *→ SitInvHeart*(*x*))

∀x∀y(*Human*(*x*) *∧ hasOrg*(*x*, *y*) *∧ SitInvHeart*(*y*) *→ SitInvPatient*(*x*))

∀x∀y(*Human*(*x*) *∧ hasOrg*(*x*, *y*) *∧ SitSolHeart*(*y*) *→ Healthy*(*x*))

∀x(*∀y*(*hasOrg*(*x*, *y*) *∧ Heart*(*y*) *∧ ∼hasLoc*(*y*,*right*) *→ hasLoc*(*y*, *left*))) *Human*(*MJ*)

hasOrg(*MJ*, *h*)

Heart(*h*)

Fortunately, we are still within the Bernays-Schönfinkel class. *∗* \rightsquigarrow We can apply grounding and reduce to the propositional case.

∗ : Bernays-Schönfinkel formulas are of the form *∃x*¹ *. . . ∃xm∀y*¹ *. . . ∀ynφ* with *φ* quantifier-free.

So, to compute all the stable models of K :

- 1. Compute the grounding of K over the Herbrand universe.
- 2. Compute all the stable models of the resulting propositional KB. Obviously, the grounding could be of exponential size.

But this is a computational hazard, not a conceptual one.

Intuitively, the following Herbrand model should be stable:

$$
J_1 = {Human(MJ), hasOrg(MJ, h), Heart(h), hasLoc(h, left), StSolHeart(h), Healthy(MJ)}
$$

On the other hand, the following one should not be stable:

I² = *{Human*(*MJ*), *hasOrg*(*MJ*, *h*),*Heart*(*h*), *hasLoc*(*h*,*right*), *SitInvHeart*(*h*), *SitInvPatient*(*MJ*)*}*

To check whether

I¹ = *{Human*(*MJ*), *hasOrg*(*MJ*, *h*),*Heart*(*h*), *hasLoc*(*h*, *left*), *SitSolHeart*(*h*),*Healthy*(*MJ*)*}*

is stable, notice that even though the grounding is huge, the only PL formulas that matter are the following:

> *Heart*(*h*) *∧ hasLoc*(*h*, *left*) *→ SitSolHeart*(*h*) *Human*(*MJ*) *∧ hasOrg*(*MJ*, *h*) *∧ SitSolHeart*(*h*) *→ Healthy*(*MJ*) *hasOrg*(*MJ*, *h*) *∧ Heart*(*h*) *∧ ∼hasLoc*(*h*,*right*) *→ hasLoc*(*h*, *left*) *Human*(*MJ*), *hasOrg*(*MJ*, *h*), *Heart*(*h*)

The reduct of J_1 over those formulas is

Heart(*h*) *∧ hasLoc*(*h*, *left*) *→ SitSolHeart*(*h*) *Human*(*MJ*) *∧ hasOrg*(*MJ*, *h*) *∧ SitSolHeart*(*h*) *→ Healthy*(*MJ*) *hasOrg*(*MJ*, *h*) *∧ Heart*(*h*) *→ hasLoc*(*h*, *left*) *Human*(*MJ*), *hasOrg*(*MJ*, *h*), *Heart*(*h*)

And clearly, J_1 is the least model.

To check whether

I² = *{Human*(*MJ*), *hasOrg*(*MJ*, *h*),*Heart*(*h*), *hasLoc*(*h*,*right*), *SitInvHeart*(*h*), *SitInvPatient*(*MJ*)*}*

is stable, the relevant PL formulas are the following:

Heart(*h*) *∧ hasLoc*(*h*,*right*) *→ SitInvHeart*(*h*) *Human*(*MJ*) *∧ hasOrg*(*MJ*, *h*) *∧ SitInvHeart*(*h*) *→ SitInvPatient*(*MJ*) *hasOrg*(*MJ*, *h*) *∧ Heart*(*h*) *∧ ∼hasLoc*(*h*,*right*) *→ hasLoc*(*h*, *left*) *Human*(*MJ*), *hasOrg*(*MJ*, *h*), *Heart*(*h*)

The reduct of I_2 over those formulas is

Heart(*h*) *∧ hasLoc*(*h*,*right*) *→ SitInvHeart*(*h*) *Human*(*MJ*) *∧ hasOrg*(*MJ*, *h*) *∧ SitInvHeart*(*h*) *→ SitInvPatient*(*MJ*) *Human*(*MJ*), *hasOrg*(*MJ*, *h*), *Heart*(*h*)

And clearly, \mathcal{I}_2 is not the least model.

Slide 19 of 22

Quick Recap

We have seen that by using Datalog with non-monotonic negation

- 1. We can formalise the closed-world assumption
- 2. We can express default statements

The key notion is that of a Stable Model as a "preferred" model.

Checking whether a propositional model is stable involves

- 1. Eliminating negation by computing the reduct
- 2. Checking if the candidate is the least model of the reduct

Checking whether a FOL Herbrand interpretation is a stable model involves

- 1. Computing the propositional grounding of the KB
- 2. Checking whether the candidate is stable for the grounding Note: Stable models in the FOL case are always Herbrand models.

What have we left out?

Much more than we have covered!

The field of NMR is huge and we have just seen the tip of the iceberg.

Extensions related to what we have seen:

• Stable models and disjunctive rules (disjunction in the head), e.g.

Professor(*x*), *Semester*(*s*) *→ Teaches*(*x*, *s*) *∨ Sabbatical*(*x*, *s*)

- Stable models and general propositional formulas
- Combinations of classical and non-monotonic negation, e.g.

Suspect(*x*), *∼Guilty*(*x*) *→ ¬Guilty*(*x*) *Heart*(*x*), *∼¬SitSolH*(*x*) *→ SitSolH*(*x*)

Relationships with other areas

What we have seen is not only relevant to KR.

There are strong connections with other fields:

• Answer Set Programming (ASP)

Using negation we can encode search problems

- Deductive databases
	- Database systems that can conclude new data using rules
- Logic programming (Prolog)

Negation as failure can help write shorter programs

