Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 ~ idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 ~ idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 \[\sim \] idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

negation in front of complex expressions and non-atomic operators difficult to handle, thus reformulate:
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 ⇒ idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

negation in front of complex expressions and non-atomic operators difficult to handle, thus reformulate:

\[\neg (p \lor q) \lor (\neg p \lor \neg q)\]
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 - idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

negation in front of complex expressions and non-atomic operators difficult to handle, thus reformulate:

\[\neg(p \lor q) \lor (\neg p \lor \neg q)\]
\[\neg(p \land \neg q) \lor (\neg p \lor \neg q)\]
Automation

• by now: ad hoc arguments about satisfiability of DL axioms
• a concept is satisfiable, if it has a model
 ⇝ idea: constructive decision procedure that tries to build models
• analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

negation in front of complex expressions and non-atomic operators difficult to handle, thus reformulate:

\[\neg(p \lor q) \lor (\neg p \lor \neg q)\]
\[(\neg p \lor \neg q) \lor (\neg p \lor \neg q)\]
\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Simple Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]
Simple Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
Simple Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q \]

- \(\neg p \land \neg q \)
- \(\neg p \)
- \(\neg q \)

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
Simple Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]

\[\neg p \land \neg q\]
\[\neg p\]
\[\neg q\]

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
- compare: truth table

<table>
<thead>
<tr>
<th>(I(p))</th>
<th>(I(q))</th>
<th>(I(\neg p))</th>
<th>(I(\neg q))</th>
<th>(I(p \lor q))</th>
<th>(I(\neg p \lor \neg q))</th>
<th>(I((p \lor q) \rightarrow (\neg p \lor \neg q)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

TU Dresden Deduction Systems
Simple Tableau with Contradiction

\((\neg p \lor q) \land p \land \neg q\)
Simple Tableau with Contradiction

$$(\neg p \lor q) \land p \land \neg q$$

$\neg p \lor q$

p

$\neg q$
Simple Tableau with Contradiction

$$(\neg p \lor q) \land p \land \neg q$$

$\neg p \lor q$

p

$\neg q$

$\neg p$

q

• if a branch contains an atomic contradiction (clash), we call this branch closed.

• a tableau is closed, if all its branches are closed.

• a complete tableau without open branches shows the formula's unsatisfiability.
Simple Tableau with Contradiction

\((\neg p \lor q) \land p \land \neg q\)

- \(\neg p \lor q\)
 - \(p\)
 - \(\neg q\)
 - \(\neg p\)
 - \(q\)

- a branch contains an atomic contradiction (clash), we call this branch closed.
- A tableau is closed if all its branches are closed.
- A complete tableau without open branches shows the formula's unsatisfiability.
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]

- \(\neg p \lor q\)
 - \(p\)
 - \(\neg q\)
 - \(\neg p\)
 - \(q\)

\(\bot\)

- if a branch contains an atomic contradiction (clash), we call this branch closed
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]

- \(\neg p \lor q\)
- \(p\)
- \(\neg q\)
 - \(\neg p\)
 - \(q\)

- if a branch contains an atomic contradiction (clash), we call this branch closed
- a tableau is closed, if all its branches are
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]

\[-p \lor q\]

\[p\]

\[-q\]

\[-p\]

\[q\]

\[\bot\]

\[\bot\]

- if a branch contains an atomic contradiction (clash), we call this branch closed
- a tableau is closed, if all its branches are
- a complete tableau without open branches shows the formula's unsatisfiability
Constructing a Model from the Tableau

\[\neg p \land \neg q \lor \neg p \lor \neg q \]

- \neg p
- \neg q

- given an open branch, we can construct a model
Constructing a Model from the Tableau

- \(\neg p \land \neg q \lor \neg p \lor \neg q \)

- \(\neg p \land \neg q \)
 - \(\neg p \)
 - \(\neg q \)

- \(\neg p \)
- \(\neg q \)

- given an open branch, we can construct a model
- let \(I(p) = \text{false} \) and let \(I(q) = \text{false} \)
Constructing a Model from the Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]

- Given an open branch, we can construct a model
- Let \(I(p)\) = false and let \(I(q)\) = false
- Let \(I(p)\) = false (\(I(q)\) is irrelevant since not in the branch, default assignment false)
Constructing a Model from the Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]

- given an open branch, we can construct a model
- let \(I(p)\) = false and let \(I(q)\) = false
- let \(I(p)\) = false (\(I(q)\) is irrelevant since not in the branch, default assignment false)
- let \(I(q)\) = false (\(I(p)\) is irrelevant since not in the branch, default assignment false)
Propositional Tableau

- not always exponentially many combinations have to be checked (as opposed to truth table method)
- branches can be built one after the other \Rightarrow only polynomial space needed
- if we care about satisfiability we can stop after constructing the first complete open branch
Construction with only one Branch in Memory

\((\neg p \lor q) \land p \land q\)
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]

\[\neg p^{1a} \lor q^{1b}\]

\[p\]

\[q\]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]

\[\neg p^{1a} \lor q^{1b}\]

\[p\]

\[q\]

\[\neg p^{1a}\]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]
\[\neg p^{1a} \lor q^{1b}\]
\[p\]
\[q\]
\[\neg p^{1a}\]
\[\bot^{1a}\]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
- when encountering a contradiction caused by a choice, remove marked formulae and try next choice
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]
\[\neg p^{1a} \lor q^{1b}\]
\[p\]
\[q\]
\[\neg p^{1a}\]
\[\neg q^{1a}\]
\[q^{1b}\]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
- when encountering a contradiction caused by a choice, remove marked formulae and try next choice
From Propositional Tableau to Tableau for DLs

How can the tableaux be extended for checking satisfiability of \mathcal{ALC} concepts? NB: initially, we assume no underlying knowledge base, thus unsatisfiability means that the concept is contradictory “by itself”.

- tableau represents an element of the domain (plus its “environment”)
From Propositional Tableau to Tableau for DLs

How can the tableaux be extended for checking satisfiability of \mathcal{ALC} concepts? NB: initially, we assume no underlying knowledge base, thus unsatisfiability means that the concept is contradictory “by itself”.

- tableau represents an element of the domain (plus its “environment”)
- tableau branch: finite set of propositions of the form $C(a)$, $r(a, b)$
- for existential quantifiers, new domain elements are introduced
- universal quantifiers propagate formulae (=concept expressions) to neighboring elements
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of ALC Concepts
- Correctness and Termination
- Summary
Propositional Logic – Some Logical Equivalences

• We aim at negations being present only in front of atomic concepts

\[\varphi \land \psi \equiv \psi \land \varphi\]
\[\varphi \lor \psi \equiv \psi \lor \varphi\]
\[\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi\]
\[\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)\]
\[\varphi \land (\psi \land \omega) \equiv (\varphi \land \psi) \land \omega\]
\[\varphi \lor (\psi \lor \omega) \equiv (\varphi \lor \psi) \lor \omega\]
\[\neg (\varphi \land \psi) \equiv \neg \varphi \land \neg \psi\]
\[\neg (\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi\]
\[\varphi \land \varphi \equiv \varphi\]
\[\varphi \lor \varphi \equiv \varphi\]
\[\neg \neg \varphi \equiv \varphi\]
\[\varphi \land (\psi \lor \varphi) \equiv \varphi\]
\[\varphi \lor (\psi \land \varphi) \equiv \varphi\]
\[\varphi \lor (\psi \land \omega) \equiv (\varphi \lor \psi) \land (\varphi \lor \omega)\]
\[\varphi \land (\psi \lor \omega) \equiv (\varphi \land \psi) \lor (\varphi \land \omega)\]
Further Logical Equivalences

\[-(C \land D) \leadsto \neg C \lor \neg D\]
\[-(D \lor D) \leadsto \neg C \land \neg D\]
\[-\neg C \leadsto C\]
\[-(\forall r. C) \leadsto \exists r. (\neg C)\]
\[-(\exists r. C) \leadsto \forall r. (\neg C)\]
\[-(\leq n \, s\, C) \leadsto \geq n + 1 \, s\, C\]
\[-(\geq n \, s\, C) \leadsto \leq n - 1 \, s\, C, \quad n \geq 1\]
\[-(\geq 0 \, s\, C) \leadsto \bot\]

- apply these rules iteratively until none can be applied any more
- \(\leadsto\) equivalent concept in negation normal form
NNF Transformation

recursive definition of an NNF transformation:

if C atomic:

$$\text{NNF}(C) := C$$

$$\text{NNF}(-C) := -C$$

otherwise:

$$\text{NNF}(-\neg C) := \text{NNF}(C)$$

$$\text{NNF}(C \land D) := \text{NNF}(C) \land \text{NNF}(D)$$

$$\text{NNF}(\neg (C \land D)) := \text{NNF}(-C) \lor \text{NNF}(-D)$$

$$\text{NNF}(\forall r.C) := \forall r.(\text{NNF}(C))$$

$$\text{NNF}(\neg (\forall r.C)) := \exists r.(\text{NNF}(-C))$$

$$\text{NNF}(\exists r.C) := \exists r.(\text{NNF}(C))$$

$$\text{NNF}(\neg (\exists r.C)) := \forall r.(\text{NNF}(-C))$$

$$\text{NNF}(\leq n.s.C) := \leq n.s.\text{NNF}(C)$$

$$\text{NNF}(\neg (\leq n.s.C)) := \geq n + 1.s.\text{NNF}(C)$$

$$\text{NNF}(\geq n.s.C) := \geq n.s.\text{NNF}(C)$$

$$\text{NNF}(\neg (\geq n.s.C)) := \leq n - 1.s.\text{NNF}(C)$$

if $n \geq 1$

$$\text{NNF}(\geq 0.s.C) := \top$$

$$\text{NNF}(\neg (\geq 0.s.C)) := \bot$$

otherwise
NNF Transformation – Example

\[
\text{NNF}(\neg(\neg C \lor (\neg D \lor E)))
\]
\[
\quad = \text{NNF}(\neg \neg C) \lor \text{NNF}(\neg(\neg D \lor E))
\]
\[
\quad = \text{NNF}(C) \lor \text{NNF}(\neg(\neg D \lor E))
\]
\[
\quad = C \lor \text{NNF}(\neg(\neg D \lor E))
\]
\[
\quad = C \lor (\text{NNF}(\neg \neg D) \lor \text{NNF}(\neg E))
\]
\[
\quad = C \lor (\text{NNF}(D) \lor \text{NNF}(\neg E))
\]
\[
\quad = C \lor (D \lor \text{NNF}(\neg E))
\]
\[
\quad = C \lor (D \lor \neg E)
\]
Agenda

• Basic Idea of the Tableau Calculus
• Propositional Example
• Transformation into Negation Normal Form
• Satisfiability of \mathcal{ALC} Concepts
• Correctness and Termination
• Summary
Tableau for \mathcal{ALC} Concepts

- tableau for a propositional formula α: one element, labeled with subformulae of α
- tableau for an \mathcal{ALC} concept C: graph (more precisely: tree) where the nodes are labeled with subformulae of C
- root labeled with C
- represents model for C (if complete and clash-free)
- non-root nodes are enforced by existential quantifiers

Definition

Let C be an \mathcal{ALC} concept, $\text{SF}(C)$ the set of all subformulae of C and $\text{Rol}(C)$ the set of all roles occurring in C. A tableau for C is a tree $G = \langle V, E, L \rangle$, with nodes V, edges $E \subseteq V \times V$ and a labeling function L with $L: V \to 2^{\text{SF}(C)}$ and $L: V \times V \to 2^{\text{Rol}(C)}$.
Properties of the \mathcal{ALC} Tableau Algorithm

- the algorithm is specified as a set of rules
- every rule breaks down a complex concept into its parts
- rules applicable in any order
- the algorithm is non-deterministic (due to disjunction)
- check for atomic contradictions

Tableau algorithm for checking satisfiability of \mathcal{ALC} concepts

Input: an \mathcal{ALC} concept in NNF

Output:
- true if there is a clash-free tableau where no more rules can be applied
- false otherwise (tableau closed)
Tableau Rules for \(\mathcal{ALC}\) Concepts

\(\square\)-rule: For an arbitrary \(v \in V\) mit \(C \sqcap D \in L(v)\) and \(\{C, D\} \not\subseteq L(v)\), let \(L(v) := L(v) \cup \{C, D\}\).

\(\square\)-rule: For an arbitrary \(v \in V\) mit \(C \sqcup D \in L(v)\) and \(\{C, D\} \cap L(v) = \emptyset\), choose \(X \in \{C, D\}\) and let \(L(v) := L(v) \cup \{X\}\).

\(\exists\)-rule: For an arbitrary \(v \in V\) mit \(\exists r.C \in L(v)\) such that there is no \(r\)-successor \(v'\) of \(v\) mit \(C \in L(v')\), let \(V := V \cup \{v'\}\), \(E := E \cup \{(v, v')\}\), \(L(v') := \{C\}\) and \(L(v, v') := \{r\}\) for \(v'\) a new node.

\(\forall\)-rule: For arbitrary \(v, v' \in V\), \(v'\) \(r\)-neighbor of \(v\), \(\forall r.C \in L(v)\) and \(C \notin L(v')\), let \(L(v') := L(v') \cup \{C\}\).

- a node \(v'\) is an \(r\)-neighbor of a node \(v\) if \(\langle v, v'\rangle \in E\) and \(r \in L(v, v')\)
Tableau Rules for \mathcal{ALC} Concepts

\square-rule: For an arbitrary $v \in V$ mit $C \cap D \in L(v)$ and
$\{C, D\} \not\subseteq L(v)$, let $L(v) := L(v) \cup \{C, D\}$.

\square-rule: For an arbitrary $v \in V$ with $C \cup D \in L(v)$ and
$\{C, D\} \cap L(v) = \emptyset$, choose $X \in \{C, D\}$ and let
$L(v) := L(v) \cup \{X\}$.

\exists-rule: For an arbitrary $v \in V$ with $\exists r. C \in L(v)$ such that
there is no r-successor v' of v with $C \in L(v')$,
let $V = V \cup \{v'\}$, $E = E \cup \{(v, v')\}$, $L(v') := \{C\}$ and
$L(v, v') := \{r\}$ for v' a new node.

\forall-rule: For arbitrary $v, v' \in V$, v' r-neighbor of v,
$\forall r. C \in L(v)$ and $C \notin L(v')$, let $L(v') := L(v') \cup \{C\}$.

- a node v' is an r-neighbor of a node v if $\langle v, v' \rangle \in E$ and $r \in L(v, v')$
- rule application order: “don’t care” non-determinism
Tableau Rules for \mathcal{ALC} Concepts

\sqcap-rule: For an arbitrary $v \in V$ mit $C \sqcap D \in L(v)$ and $
\{C, D\} \not\subseteq L(v)$, let $L(v) := L(v) \cup \{C, D\}$.

\sqcup-rule: For an arbitrary $v \in V$ with $C \sqcup D \in L(v)$ and $
\{C, D\} \cap L(v) = \emptyset$, choose $X \in \{C, D\}$ and let $L(v) := L(v) \cup \{X\}$.

\exists-rule: For an arbitrary $v \in V$ with $\exists r.C \in L(v)$ such that there is no r-successor v' of v with $C \in L(v')$, let $V = V \cup \{v'\}$, $E = E \cup \{(v, v')\}$, $L(v') := \{C\}$ and $L(v, v') := \{r\}$ for v' a new node.

\forall-rule: For arbitrary $v, v' \in V$, v' r-neighbor of v,
$\forall r.C \in L(v)$ and $C \notin L(v')$, let $L(v') := L(v') \cup \{C\}$.

- a node v' is an r-neighbor of a node v if $(v, v') \in E$ and $r \in L(v, v')$
- rule application order: “don’t care” non-determinism
- choice of disjunction: “don’t know” non-determinism
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \]

\[
L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \\
\exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \}
\]

\[
L(v) = \{ A \sqcup \exists r. B \}
\]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B \} \]

\[L(w) = \{ \neg A \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \]

\[
\begin{align*}
L(u) &= \{ C, \exists r. (A \sqcup \exists r. B), \\
&\quad \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \} \\
L(v) &= \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A) \} \\
L(w) &= \{ \neg A \}
\end{align*}
\]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[
\begin{align*}
L(u) &= \{ C, \exists r. (A \sqcup \exists r. B), \\
&\quad \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \\
L(v) &= \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A) \} \\
L(w) &= \{ \neg A, \forall r. (\neg B \sqcup A) \}
\end{align*}
\]
Tableau Algorithm Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \]

\[L(v) = \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A), A \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \cup A) \} \]
Tableau Algorithm Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \]

\[L(v) = \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A) \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \cup A) \} \]
Tableau Algorithm Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[
L(u) = \{ C, \exists r. (A \cup \exists r. B), \\
\exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \}
\]

\[
L(v) = \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A), \times, \exists r. B \}
\]

\[
L(w) = \{ \neg A, \forall r. (\neg B \cup A) \}
\]
Tableau Algorithm Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[
\begin{align*}
L(u) &= \{ C, \exists r. (A \cup \exists r. B), \\
&\quad \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \\
L(v) &= \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A), \times, \exists r. B \} \\
L(w) &= \{ \neg A, \forall r. (\neg B \cup A) \} \\
L(x) &= \{ B \}
\end{align*}
\]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), \times, \exists r. B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \sqcup A) \} \]

\[L(x) = \{ B, \neg B \sqcup A \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), \not\exists r. B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \sqcup A) \} \]

\[L(x) = \{ B, \neg B \sqcup A, \neg B \} \]
Tableau Algorithm Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \]

\[L(v) = \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A), X, \exists r. B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \cup A) \} \]

\[L(x) = \{ B, \neg B \cup A, X, B \} \]
Tableau Algorithm Example

\[C = \exists r. (A \uplus \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \uplus A)) \]

\[L(u) = \{ C, \exists r. (A \uplus \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \uplus A)) \} \]

\[L(v) = \{ A \uplus \exists r. B, \neg A, \forall r. (\neg B \uplus A), A, \exists r. B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \uplus A), \} \]

\[L(x) = \{ B, \neg B \uplus A, B, A \} \]
Tableau Algorithm Example

the model \mathcal{I} constructed by the algorithm is the following:

\[
\begin{align*}
\Delta^\mathcal{I} &= \{u, v, w, x\} \\
A^\mathcal{I} &= \{x\} \\
B^\mathcal{I} &= \{x\} \\
r^\mathcal{I} &= \{(u, v), (u, w), (v, x)\}
\end{align*}
\]

Check that indeed $C^\mathcal{I} = \{u\}$, given the defined semantics of \mathcal{ALC}
Tableau Algorithm Properties

1. the model is **finite**: only finitely many elements in the domain
2. the model is **tree-shaped**: the tableau is a labeled tree

the algorithm will always construct finite trees
- from a clash-free tableau, we can construct a finite model
- if there is no clash-free tableau, there is no model
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of ALC Concepts
- Correctness and Termination
- Summary
Tableau Properties

- the depth (number of nested quantifiers) decreases in every node
- every node is labeled only with subformulae of C
- C has only polynomially many subformulae
- if the output is true we can build a model out of the constructed tableau
- on the other hand, we can use a model of a satisfiable concept to construct a clash-free tableau for this concept
Tableau Algorithm for \mathcal{ALC} Concepts

Theorem

1. the algorithm terminates for every input
2. if the output is $true$, then the input concept is satisfiable
3. if the input concept is satisfiable, then the output is $true$.

Corollary

Every \mathcal{ALC} concept C has the following properties:

1. finite model property: If C has a model, then it has a finite one.
2. tree model property: If C has a model, then it has a tree-shaped one.
Tableau Algorithm for \mathcal{ALC} Concepts

Theorem

1. the algorithm terminates for every input
2. if the output is $true$, then the input concept is satisfiable
3. if the input concept is satisfiable, then the output is $true$.

Corollary

Every \mathcal{ALC} concept C has the following properties:

1. **finite model property**: If C has a model, then it has a finite one.
2. **tree model property**: If C has a model, then it has a tree-shaped one.
Agenda

• Basic Idea of the Tableau Calculus
• Propositional Example
• Transformation into Negation Normal Form
• Satisfiability of \mathcal{ALC} Concepts
• Correctness and Termination
• Summary
Summary

- we now have a constructive method for building model abstractions
- satisfiable \mathcal{ALC} concepts always have a finite model that we can construct
- the algorithm is correct, complete and terminating
- serves as basis for practically implemented algorithms
- next: extension to knowledge bases