
Refining Unsatisfiable Cores
in Incremental SAT Solving

Norbert Manthey
Technische Universität Dresden

Knowledge Representation and Reasoning Group
Dresden, Germany

Email: norbert.manthey@tu-dresden.de

Abstract—Incremental SAT solving is used in many
applications in the area of electronic design automa-
tion. The extraction of unsatisfiable subformulas of a
propositional logic formula, as used in verification tools
and MaxSAT algorithms, is an important feature. In
this work we propose a simple refinement strategy for
extracting unsatisfiable subformulas, which does not
produce minimal subformulas, but can be computed
easily. When implementing the proposed refinement,
the circuit verification tool IC3 solves three more
circuits from HWMCC 2014, improving its run time
between 11 percent to 21 percent. Furthermore, the
MaxSAT solver Open-WBO solves 32 more weighted
partial industrial MaxSAT problems from the evalua-
tions 2013 and 2014.

I. Introduction

There exist many applications in electronic design au-
tomation (EDA) that are built on top of satisfiability
testing. SAT solvers are used a lot in EDA to solve the
major work load. These applications include bounded [1]
and unbounded model checking [2]–[5], as well as com-
binatorial and sequential equivalence checking [6]–[10] or
design debugging [11], [12], where the latter is based on the
optimization variant of SAT solving, namely the MaxSAT
problem. Most of the time, a SAT solver is not used to
solve a single formula. Instead, related formulas are solved
iteratively, and after each call the problem is refined based
on the SAT solver’s answer. The incremental interface of
modern SAT solvers is motivated by [13]. The interface
supports extracting a model for the current formula, as
well as solving a formula under assumptions and it allows
to extract an unsatisfiable subformula.

The latter feature is based on extracting an inconsistent
subset of assumptions, and is actively used in abstraction-
based algorithms to refine the abstraction, for example
in [3]–[5]. Modern MaxSAT algorithms, which are capable
of solving industrial EDA problems [14], also exploit the
extraction of unsatisfiable subformulas based on assump-
tions [15]. The minimization of these unsatisfiable subsets
is believed to improve the abstraction, as well as the
verification time [16]. Hence, there have been attempts to
apply the extraction of minimal unsatisfiable subformulas

This work is supported by the DFG grant HO 1294/11-1

(MUS) to formal verification tasks, for example in [17]–
[20]. However, the calculation of minimal subformulas is
known to be a hard problem, as this problem is part of
the problem class DP [21].

This work presents another, very light-weight, method
to refine the extracted unsatisfiable core. Differently to the
calculation of an MUS, the proposed procedure is rather
simple. Assume, the set C = {a1, . . . , an} of inconsistent
assumption literals of a formula has been returned by an
incremental SAT solver. Then, the solver represents this
set as the clause D = (a1 ∨ . . . ∨ an). We propose to
run a limited vivification [22] on the clause D to obtain a
shorter clause D′, which then represents a smaller set of
inconsistent assumptions C ′. As the resulting clause D′ is
a subset of the clause D, C ′ ⊆ C also holds.

We implemented a small patch to the SAT solvers
MiniSAT and Glucose 3.0, because they are used in the
open MaxSAT solver Open-WBO [23], as well as in the
reference implementation of IC3 [4]. With the refined un-
satisfiable cores, both tools can solve more problems of the
MaxSAT evaluation 2014 [24] and the HWMCC’14 [25].
Furthermore, for IC3 the time to solve 33 percent of the
benchmark is improved by 21 percent.

A. Related Work

Incremental SAT solving received much attention re-
cently. Formula simplification techniques have been in-
vestigated, and methods to eventually undo simplification
steps have been proposed in [26], [27].

Furthermore, handling assumption literals has been in-
vestigated in [28]. Instead of using these literals as decision
literals, as proposed in [13], the assumption literals are
added to the formula as unit clauses, such that simplifica-
tion techniques become more powerful. To keep the benefit
of incremental SAT solving, i.e. keeping learned clauses
over multiple solver calls, the effects of learned unit clauses
are traced and undone if necessary.

In [29], the solver is adapted to store dependencies of
assumption literals, such that learned clauses that are
created together with assumption literals are shorter, and
hence unit propagation can be executed faster. Based on
the dependencies, the authors of [29] furthermore propose
a minimization technique for learned clauses.



Differently, in [30], Audemard et al. treat the assump-
tion literals specially during unit propagation and conflict
analysis. Additionally, they propose to ignore assumption
literals during the calculation of metrics to decide whether
learnt clauses should be kept, similarly to the work by
Belov et al. [31].

Our presented approach is orthogonal to the related
work, as we suggest to reduce the unsatisfiable core. All
other components of the solver remain untouched, such
that the ideas of related work could also be incorporated.

B. Structure

We first give the preliminaries in Section II. Next, in
Section III we present reverse core refinement, the main
method of this work. Afterwards, we apply the idea to an
implementation of IC3 and a MaxSAT solver, and discuss
the empirical results in Section IV. We conclude the work
in Section V.

II. Preliminaries

We assume the reader to be familiar with proposi-
tional logic, and present only the notation that is used
throughout the paper. We assume a fixed infinite set V
of Boolean variables. A literal is a variable v (positive
literal) or a negated variable ¬v (negative literal). The
complement x of a positive (negative, resp.) literal x is
the negative (positive, resp.) literal with the same variable
as x. The complement S of a sequence S is the sequence
S = (x | x ∈ S). Formulas are conjunctions of clauses,
and clauses are disjunctions of literals. Clauses do not
contain duplicate literals. However, a clause is not a set
of literals, as the order of the literals inside the clause
matters in the solver implementation. For convenience, we
will still use set operations for clauses and formulas to
explain algorithms. The empty clause is denoted by ⊥.

A sequence of literals M is consistent, if whenever
x ∈ M , then x /∈ M . For simplicity, we view consistent
sequences M as sets throughout this paper. An interpre-
tation is a consistent set of literals I. The reduct F |I
of a formula F with respect to I is the multiset F |I :=
{C \ I | C ∈ F,C ∩ I = ∅}. An interpretation I satisfies a
formula F , if F |I = ∅. A formula is satisfiable if there is an
interpretation that satisfies it. The SAT problem consists
in deciding whether a formula is satisfiable.

Let C and D be clauses, with x ∈ C and x ∈ D; then,
the resolvent of the clauses C and D upon the literal x is
the clause C ⊗x D := (C \ {x}) ∪ (D \ {x}).

A. SAT Solving

A major operation in modern SAT solvers is unit prop-
agation, which is based on the fact that a unit clause
C = {x} can only be satisfied by interpretations that
contain x. For this assignment of x the clause C is called
the reason. Given a formula F and a literal x, then let
F `UP x denote that the literal x can be derived from the
formula F via the repeated application of the unit rule.

Furthermore, SAT solvers rely on search. Literal assign-
ments that are done due to search will be denoted with
a dot on top, e.g. ẋ. Search literals do not have a reason.
The decision level of a literal is the number of decision
literals that have been added to the interpretation before
this literal (including the literal itself).

A conflict clause C is a clause that is falsified by
the current interpretation M , i.e. C|M = ∅. By conflict
analysis [32], a learned clause D is obtained from C, by
applying resolution with the reason clauses of the literals
of C. With D, backjumping is performed and then search
can be continued.

Initially, D = C. Then, a literal x ∈ D with the
reason clause Rx for x is selected, and another clause D is
obtained by D := D⊗Rx. The literal x ∈ D is selected as
the literal with the highest index in M [13]. There exist
two criteria to stop the routine. Modern SAT solvers learn
a first UIP clause [33], which is reached when D contains
only a single literal from the current decision level for
the first time. Furthermore, decision clauses [34] can be
learned, which are obtained by continuing resolution until
no literal of D has a reason clause.

B. Incremental SAT Solving

In incremental SAT solving [13], [35], a solver instances
is inizialized with a formula F and is used multiple times.
Instead, based on the result for the current formula,
more clauses can be added. Furthermore, search under
assumptions is possible. Let A be a sequence of literals
(a1 . . . an). Then, solving under the assumptions A is to
evaluate the truth value of F ∧ a1 ∧ . . . ∧ an, for short
F ∧ A. This process is realized by using the literals of
A as the first search decisions, before the usual heuristic
driven search is performed. The decision literals are picked
in exactly the order in which they appear in A.

If F ∧ A ≡ >, then a model M |= F ∧ A is returned.
Otherwise, a learned clause D, which is created to be
a decision clause, with D ⊆ A, is generated, where
F |= D as we used only resolution to derive D. Hence, the
conjunction of literals in D is inconsistent with F , which
can be shown by unit propagation, i.e. (F ∧ D) `UP ⊥.
Together with F , the literals D represent an unsatisfiable
core. Depending on the application, the result is used to
control the next step of the algorithm.

Example 1. Consider the formula

F = (a ∨ c) ∧ (b ∨ d) ∧ (b ∨ d) ∧ (c ∨ d)

and let the assumptions be A = (ab). As there are no
unit clauses, search is triggered with the first decision
literal a. By unit propagation c is implied with the
reason (a∨ c), and d is implied with (c∨ d). Next, b is
implied with the reason (b ∨ d). Finally, the algorithm
tries to assign b to >, as b is an assumption. In this



step, the algorithm notices that b is assigned to ⊥
already, and starts creating the learned clause D by
starting with b’s reason D = (b ∨ d). By resolving D
with (c ∨ d) and afterwards resolving with (a ∨ c), the
final decision clause D = (b ∨ a) is obtained. Note,
that F ∧ D finds a conflict by unit propagation, as
F ∧ (b ∧ a) `UP {d, d}.

III. Reverse Core Refinement

The unsatisfiable core in Example 1 is D = (b ∧ a).
This core contains exactly the same literals as the as-
sumptions, they are just reversed. The conjecture of this
paper is that an unsatisfiable core that is generated with
the above routine contains redundant literals. A way to
remove redundant literals is to apply minimization by
checking whether for a literal x ∈ D we can still find a
conflict via unit propagation after removing the literal, i.e.
F ∧(D \ {x}) `UP ⊥. Then, x is redundant, and D \ {x} is
a smaller unsatisfiable core. The above procedure is known
as vivification [22], and is quadratic when being executed
until reaching a fix point. Furthermore, no good selection
heuristic for the literals x are known.

We propose to reverse the literals in D, and use them as
assumptions again, and to not execute vivification until a
fix point is reached. With the new assumptions, we re-run
the solver again. This way, literals, which might be present
in D because they have been used as first decision literals,
can now be dropped, as these literals are used last now.

Example 2. Consider the formula of Example 1
again. Now, let A = (ba) be the refined assumptions.
The new unsatisfiable core is D = b, because after the
search decision b we implied the literal d with (b∨d) and
d with (b∨d). However, before the core is generated, the
algorithm first learns the unit clause b from the conflict
clause (b∨ d), according to the algorithm implemented
in MiniSAT 2.2 and applies backtracking. Next, using
b as search decision fails, and hence, the core D = b
is returned.

The steps in Example 2 show that a smaller core can be
obtained. Furthermore, the algorithm might find further
conflicts and learn further clauses before obtaining the
final core, as Example 3 illustrates.

Example 3. Consider the following formula

(e∨a)∧(g∨a∨e)∧(g∨b)∧(g∨f∨d)∧(c∨e)∧(g∨f)∧(g∨f)

with the assumptions A = (abcd). Assuming literal a
implies no literals. Next, after using b as decision, h

and f are implied. With decision c, the literals e, g and
d are implied. Hence, using d as next decision fails,
and the unsatisfiable core (dcba) is found without any
intermediate conflicts.

When using this core as refined assumptions, i.e.
A′ = (dcba), then two conflicts are necessary to obtain
the refined core. Assuming d and c implies e with (c∨e),
a with (e ∨ a), g with (g ∨ a ∨ e) and f with (g ∨
f). Then, from the interpretation M = (ḋċeagf) the
conflict clause (g ∨ f ∨ d) is found, from which the
clause D1 = (g ∨ d) is learned.

With D1 the interpretation M is changed to M =
(ḋg), which does not allow further propagation. Next, c
is assumed again, resulting in e with (c∨e) and a with
(e ∨ a). Then, with the interpretation M = (ḋgċea)
the conflict clause (g ∨ a∨ e) is found, from which the
clause D2 = (e ∨ g) is learned.

After backtracking, the interpretation is changed to
M = (ḋg). With the clause D2, e is implied, and c
is implied with (c ∨ e). Next, the attempt to assume c
fails, and the resulting refined core is (c ∧ d).

As the refinement procedure can be seen as overhead
of the actual routine and because the effectiveness of
the procedure is not known in advance, the number of
additionally learned clauses might be limited. If this limit
is reached, then the original unsatisfiable core is used.

A. Early Refined Cores

An alternative to improve the above routine is to stop
as soon as a conflict with respect to the currently assigned
assumptions is found. Instead of creating a decision clause
if assigning an assumption fails, conflict analysis can also
be applied to an intermediate conflict. This way, additional
conflicts, and the potential overhead, can be avoided.

Example 4. Consider the formula from Example 3
one more time. When using the refined assumptions,
i.e. A′ = (dcba), then the interpretation M = (ḋċeagf)
is created, and the conflict clause (g ∨ f ∨ d) is found.
Learning a decision clause from this conflict results in
the unsatisfiable core (c ∧ d).

In Example 4 the same unsatisfiable core is obtained as
in Example 3. Furthermore, no additional conflicts have
been encountered, and no additional learned clauses had
to be created.

IV. Experimental Results

We implemented the above modifications into the com-
monly used SAT solver MiniSAT, which is used as back
end in several EDA tools. As a first tool, we chose the



Table I
Number of solved circuits by the core-refining variants of

IC3, the time in seconds to solve 33 percent of the
benchmark (q-33), and the obtained deep bound score DBS.

Limit IC3 1 1* 10 1000 100000 ∞

Solved 84 87 87 77 77 85 77
q-33 712.9 640.2 670.0 1470 1598.1 520.1 1580.6

DBS 88.6 88.76 88.77 88.21 88.22 88.84 88.19

reference implementation of IC31 by Bradley, in which we
determined the robustness of unsatisfiable core refinement.
Next, we picked the MaxSAT solver Open-WBO, and
applied the best modifications as well.

All experiments have been performed on a cluster with
Intel Xeon CPUs, a timeout of 60 minutes, and each
process was allowed to use up to 6 GB main memory.

A. Solving Hardware Verification with IC3

For hardware verification experiments we used the 206
publicly available circuits from the HWMCC 2014 [25].
We then modified the implementation of MiniSAT and
embedded it into the implementation of IC3. The results
are summarized in Table I. Note that the implementation
of IC3 uses two types of SAT solvers. A new solver is
created for each frame during evaluating the circuit, and
one solver is used for lifting. All these solvers are used
multiple times while executing the IC3 algorithm.

The table presents the number of solved circuits, the
time for solving the 33 percent quantile, and the deep
bound score according to the HWMCC. The median is not
presented, as none of the variants solves half the circuits.
The table presents several variants of IC3: the original
implementation of MiniSAT, unlimited core refinement,
and different limits for conflict refinement. Additionally,
in column 1* we reordered the conflict clause again.
In the above examples, the order of the literals in the
unsatisfiable core is always reversed with respect to the
original core. Variant 1* reverses the unsatisfiable core
once more, to obtain the original order again. Apparently,
the implementation of IC3 processes the unsatisfiable
cores of the solver independently of their order.

The results in the table show that three more circuits
can be solved if conflict refinement is used. Using a single
conflict as limit results in the most effective variant of
the tool, independently of the order of the unsatisfiable
core. Furthermore, the run time for the 33 percent quan-
tile is improved by 11 percent compared to the original
implementation. When increasing the conflict limit for
refinement, the performance, as well as the run time to
solve most of the problems, decreases significantly. With
a limit of 10 or 1000 conflicts, or with no limit at all, only
77 circuits can be solved. However, choosing a very large

1The original source code is available at
https://github.com/arbrad/IC3ref, accessed 10th August 2015.

limit seems to be a good trade-off: when using at most
100000 conflicts for each conflict refinement the solving
time for most problems decreases to 520.1 seconds for the
33 percent quantile, and the procedure is as robust as the
original variant. With the high limit, the run time of IC3
is improved by 21 percent.

The result can be explained as follows: when using no
limit, then there seem to be rare cases that require a lot
of conflicts. To avoid these cases, a cut off is necessary.
However, unsatisfiable core refinement pays off only if
either the overhead is very small, or if a sufficient number
of conflicts is allowed. This way, only the variants with a
very low limit or a very large limit are as robust as the
original version. Using no limit, or a medium limit results
in a slowdown of the procedure.

Similarly, the score that evaluates the routine with
respect to unrolling of unsuccessfully solved formulas
supports the above findings. We picked the 70 publicly
available circuits that have been used in the deep bound
track of HWMCC 2014 and calculated the deep bound
score (DBS) for each variant accordingly:

DBS =

70∑
i=1

(
1− 1

2 + boundi

)
,

where boundi is the last bound where the tool could show
that no bug exists for the circuit within the given resource
limits (allowing 100 as the maximum value). The last line
of Table I shows that the fast variants with limit 1 and
100000 reach a higher score than the other limits.

As discussed above, the search for an unsatisfiable core
could also be aborted earlier. We tested three additional
variants: (i) always abort early without refinement, (ii)
abort early only during refinement, and (iii) abort early
and abort early during refinement. Note that no conflict
limit is necessary when using early abort during refine-
ment, as early abort will stop on the first conflict. The
obtained results are all worse than the original variant:
the number of solved circuits is 75, 78, 76, the q-33 time
is always above 1500 seconds, and the DBS is 87.83, 88.17
and 88.07, respectively.

B. Solving Industrial MaxSAT Problems with Open-WBO

The MaxSAT solver Open-WBO [23] is an open solver
that supports multiple SAT solvers. For simplicity, we
picked the implementation of MiniSAT 2.2, and applied
the above modifications. Furthermore, we selected the
solver Glucose 3.0, which is also included in the package
of Open-WBO, and which has been optimized for incre-
mental SAT solving [30]. However, as Glucose 3.0 uses a
dynamic restart schedule, we allow the search for a refined
unsatisfiable core only until the next restart that would be
triggered by the solver.

For the evaluation we used all industrial problems of
the MaxSAT evaluation 2013 and 2014. These problems
can further be partitioned into partial MaxSAT problems
(PMS), where all soft clauses have the same weight and



Table II
Number of solved MaxSAT problems and the corresponding
median time by the core-refining variants of Open-WBO,

separated into the problem types PMS and WPMS

Variant MS2.2 1 100000 ∞ ReA GL3 RST

Solved Industrial MaxSAT Problems

ALL 1715 1719 1720 1725 1709 1726 1747

PMS 1041 1041 1026 1029 1026 1046 1035

WPMS 674 678 694 696 683 680 712
WMSU3 398 398 399 397 395 400 400
WBO 276 280 295 299 288 280 312

Median Run Time

ALL 6.7 6.7 11.4 9.6 11.7 6.3 6.4

PMS 13.7 13.6 23.0 22.1 23.6 10.9 12.7
WPMS 2.0 2.1 4.2 3.9 4.3 2.3 2.7

there exist further hard clauses, and weighted partial
MaxSAT (WPMS), where the weights of the soft clauses
are allowed to vary. In the benchmark there are 2001
industrial problems, from which 1195 are PMS, and the
remaining 806 are WPMS problems. We evaluated the
modification for these categories separately.

Table II shows the results for the modification. The first
columns are for the SAT solver MiniSAT 2.2 (MS2.2)
with the variants to refine the unsatisfiable core with dif-
ferent limits, and with the variant to abort early combined
with refinement (ReA). The last two columns show the
results for Open-WBO with Glucose 3.0 (GL3), and
with core refinement until the next restart (RST).

For the discussion of the results a detail of Open-WBO
is important: the MaxSAT algorithm is picked depending
on the problem instance, and whenever possible an incre-
mental variant is selected. For PMS problems, always the
algorithm MSU3 [36] is chosen. Weighted problems are
solved either with WMSU3 [36], or with the WBO [37]
algorithm. In the algorithm WBO, the used SAT solver is
rebuilt in each iteration of the algorithm. Hence, learned
clauses from previous calls are lost. Differently, in MSU3,
one solver is kept and used for all calls with incremental
updates, similarly to the used implementation of IC3.
Likewise, the incremental variant of WMSU3 also keeps
one solver object for the whole search and performs opti-
mization updates to the formula incrementally.

From the distribution of the problems in the industrial
category, one can easily see, that by using core refinement,
the performance of Open-WBO can be improved. With
MiniSAT, 1725 problems can be solved, instead of 1715,
while using core refinement almost always increases the
median run time of the tool, except when only a single
conflict is allowed during refinement. With Glucose, the
number of solved problems increases from 1726 to 1747. A
detailed analysis reveals, that the increase in performance
comes from the weighted problems, more precisely from
the WBO algorithm, whose performance jumps from 276

to 299 and 280 to 312 solved problems for MiniSAT and
Glucose, respectively. The reduced unsatisfiable cores
seem to help the tool, and the additionally learned clauses
during conflict refinement cannot influence future search
steps, because the SAT solver is re-initialized before the
next call. The numbers for WMSU3 remain almost con-
stant. For plain partial MaxSAT problems, the perfor-
mance of the tool even decreases: up to 15 less problems
can be solved. We assume that the additionally learned
clauses, as well as the additionally search steps prevent the
tool from following the search path of the original variant.
Nevertheless, except for the early abort modification all
variants of core refinement are more robust than the
original variant of Open-WBO for the whole industrial
benchmark. The modification is only useful when being
used inside the WBO algorithm. Still, this modification is
outperformed by most limited core refinements. All other
tested variants of early refinement aborts resulted in worse
results.

V. Conclusion

Incremental SAT solving is widely applied in EDA
applications to solve verification problems or to debug
designs. Modern algorithms for both problems, i.e. the
IC3 algorithm, as well as unsatisfiable core based MaxSAT
algorithms, are heavily based on extracting unsatisfiable
subformulas from a propositional formula. This paper
presents reverse core refinement, which allows to reduce
these subformulas with little overhead. The effectiveness
of the approach has been demonstrated for hardware veri-
fication problems as well as industrial MaxSAT problems.
Both the robustness and the run time of the modified tools
have been improved significantly.

Neither modern verification tool implementations nor
modern MaxSAT solvers use the full features that are
available in modern SAT solvers, most importantly inpro-
cessing. Currently, SAT solvers are used as a black box
with a simple interface to incrementally solve specified
problems. As future work, the effects of formula sim-
plifications during the verification or debugging process
should be investigated, especially because the complexity
of verification or MaxSAT is higher than the complexity
of solving the satisfiability problem. Most simplification
techniques are developed for solving the SAT problem
and the complexity of each technique is lower than NP

to not solve an unnecessarily hard problem. However,
for verification and debugging, also the more complex
simplification techniques should be considered, as they
might improve the overall performance even when a higher
simplification time is required.

References

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu,“Symbolic model
checking without BDDs,” in Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Anal-
ysis of Systems, ser. TACAS ’99. Springer, 1999, pp. 193–207.



[2] M. Sheeran, S. Singh, and G. St̊almarck, “Checking safety
properties using induction and a SAT-solver,” in FMCAD, ser.
LNCS, W. A. H. Jr. and S. D. Johnson, Eds., vol. 1954.
Springer, 2000, pp. 108–125.

[3] N. Eén and N. Sörensson, “Temporal induction by incremental
SAT solving,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 4,
pp. 543–560, 2003.

[4] A. R. Bradley, “SAT-based model checking without unrolling,”
in Proceedings of the 12th International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation, ser. VM-
CAI’11. Springer, 2011, pp. 70–87.

[5] N. Een, A. Mishchenko, and R. Brayton, “Efficient implemen-
tation of property directed reachability,” in Proceedings of the
International Conference on Formal Methods in Computer-
Aided Design, ser. FMCAD ’11. FMCAD Inc, 2011, pp. 125–
134.

[6] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Ro-
bust boolean reasoning for equivalence checking and functional
property verification,” IEEE Trans. on CAD of Integrated Cir-
cuits and Systems, vol. 21, no. 12, pp. 1377–1394, 2002.

[7] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT
for combinational equivalence checking,” in DATE, 2001, pp.
114–121.

[8] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Eén,
“Improvements to combinational equivalence checking,” in In-
ternational Conference on Computer-Aided Design, S. Hassoun,
Ed. ACM, 2006, pp. 836–843.

[9] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and
G. Janssen, “Scalable sequential equivalence checking across
arbitrary design transformations,” in ICCD, 2006.

[10] D. Kaiss, M. Skaba, Z. Hanna, and Z. Khasidashvili, “Industrial
strength SAT-based alignability algorithm for hardware equiv-
alence verification,” in FMCAD, 2007, pp. 20–26.

[11] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis
and logic debugging using boolean satisfiability,” Trans. Comp.-
Aided Des. Integ. Cir. Sys., vol. 24, no. 10, pp. 1606–1621, Nov.
2006.

[12] Y. Chen, S. Safarpour, J. P. Marques-Silva, and A. G. Veneris,
“Automated design debugging with maximum satisfiability,”
IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 29, no. 11, pp. 1804–1817, 2010.

[13] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT
2003., ser. LNCS, E. Giunchiglia and A. Tacchella, Eds., vol.
2919. Springer, 2003, pp. 502–518.

[14] S. Safarpour, H. Mangassarian, A. G. Veneris, M. H. Liffi-
ton, and K. A. Sakallah, “Improved design debugging using
maximum satisfiability,” in Formal Methods in Computer-Aided
Design, 7th International Conference, FMCAD 2007, 2007, pp.
13–19.

[15] J. Marques-Silva and J. Planes, “Algorithms for maximum
satisfiability using unsatisfiable cores,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser.
DATE ’08. ACM, 2008, pp. 408–413.

[16] A. Belov, H. Chen, A. Mishchenko, and J. Marques-Silva, “Core
minimization in SAT-based abstraction,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser.
DATE ’13. EDA Consortium, 2013, pp. 1411–1416.

[17] K. L. McMillan,“Interpolation and SAT-based model checking,”
in Computer Aided Verification, 15th International Conference,
CAV 2003, ser. LNCS, W. A. H. Jr. and F. Somenzi, Eds., vol.
2725. Springer, 2003, pp. 1–13.

[18] A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative abstrac-
tion using SAT-based BMC with proof analysis,” in Proceedings
of the 2003 IEEE/ACM International Conference on Computer-
aided Design, ser. ICCAD ’03. IEEE Computer Society, 2003,
pp. 416–423.

[19] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony,
and P. Nalla, “GLA: Gate-level abstraction revisited,” in Pro-
ceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’13. EDA Consortium, 2013, pp. 1399–1404.

[20] A. Nadel, “Boosting minimal unsatisfiable core extraction,” in
FMCAD 2010, R. Bloem and N. Sharygina, Eds. IEEE, 2010,
pp. 221–229.

[21] C. H. Papadimitriou and D. Wolfe, “The complexity of facets
resolved,” J. Comput. Syst. Sci., vol. 37, no. 1, pp. 2–13, Aug.
1988.

[22] C. Piette, Y. Hamadi, and L. Säıs, “Vivifying propositional
clausal formulae,” in Proceedings of the 2008 Conference on
ECAI 2008: 18th European Conference on Artificial Intelli-
gence. IOS Press, 2008, pp. 525–529.

[23] R. Martins, V. Manquinho, and I. Lynce,“Open-WBO: A modu-
lar MaxSAT solver

”
” in Theory and Applications of Satisfiability

Testing – SAT 2014, ser. LNCS, C. Sinz and U. Egly, Eds.
Springer, 2014, vol. 8561, pp. 438–445.

[24] “MaxSAT evaluations,” http://www.maxsat.udl.cat/, Oct.
2014.

[25] “Hardware model checking competition,”
http://fmv.jku.at/hwmcc14/, Oct. 2014.

[26] A. Nadel, V. Ryvchin, and O. Strichman, “Ultimately incremen-
tal SAT,” in SAT 2014, ser. LNCS, C. Sinz and U. Egly, Eds.,
vol. 8561. Springer, 2014, pp. 206–218.

[27] ——, “Preprocessing in incremental SAT,” in SAT 2012, ser.
LNCS, A. Cimatti and R. Sebastiani, Eds., vol. 7317. Springer,
2012, pp. 256–269.

[28] A. Nadel and V. Ryvchin, “Efficient SAT solving under assump-
tions,” in SAT 2012, ser. LNCS, A. Cimatti and R. Sebastiani,
Eds., vol. 7317. Springer, 2012, pp. 242–255.

[29] J. Lagniez and A. Biere, “Factoring out assumptions to speed
up MUS extraction,” in SAT 2013, ser. LNCS, M. Järvisalo and
A. V. Gelder, Eds., vol. 7962. Springer, 2013, pp. 276–292.

[30] G. Audemard, J. Lagniez, and L. Simon, “Improving glucose for
incremental SAT solving with assumptions: Application to MUS
extraction,” in Theory and Applications of Satisfiability Testing
- SAT 2013, ser. LNCS, M. Järvisalo and A. V. Gelder, Eds.,
vol. 7962. Springer, 2013, pp. 309–317.

[31] A. Belov, N. Manthey, and J. P. Marques-Silva, “Parallel MUS
extraction,” in SAT 2013, ser. LNCS, M. Järvisalo and A. V.
Gelder, Eds., vol. 7962. Springer, 2013, pp. 133–149.

[32] J. P. Marques-Silva and K. A. Sakallah, “GRASP – a new
search algorithm for satisfiability,” in Proceedings of the 1996
IEEE/ACM international conference on computer-aided design,
ser. ICCAD ’96. IEEE Computer Society, Washington, DC,
USA, 1996, pp. 220–227.

[33] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik, “Chaff: Engineering an efficient SAT solver,” in Pro-
ceedings of the 38th annual Design Automation Conference, ser.
DAC ’01. ACM, 2001, pp. 530–535.

[34] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik,
“Efficient conflict driven learning in a Boolean satisfiability
solver,” in Proceedings of the 2001 IEEE/ACM International
Conference on Computer-aided Design, ser. ICCAD ’01. IEEE
Press, 2001, pp. 279–285.

[35] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds.,
Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence
and Applications. IOS Press, February 2009, vol. 185.

[36] J. Marques-Silva and J. Planes, “On using unsatisfiability for
solving maximum satisfiability,” CoRR, vol. abs/0712.1097,
2007.

[37] V. Manquinho, J. Marques-Silva, and J. Planes, “Algorithms for
weighted boolean optimization,” in Theory and Applications of
Satisfiability Testing - SAT 2009, ser. LNCS, O. Kullmann, Ed.
Springer, 2009, vol. 5584, pp. 495–508.

[38] M. Järvisalo and A. V. Gelder, Eds., Theory and Applications
of Satisfiability Testing - SAT 2013, ser. LNCS, vol. 7962.
Springer, 2013.

[39] A. Cimatti and R. Sebastiani, Eds., Theory and Applications
of Satisfiability Testing - SAT 2012, ser. LNCS, vol. 7317.
Springer, 2012.


