Finite and Algorithmic Model Theory

Lecture 3 (Dresden 26.10.22, Long version)

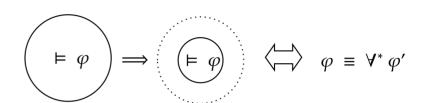
Lecturer: Bartosz "Bart" Bednarczyk

TECHNISCHE UNIVERSITÄT DRESDEN & UNIWERSYTET WROCŁAWSKI

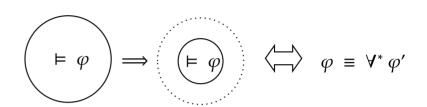
Goal: Investigate important properties of FO and see whether they stay true in the finite.

1. Diagrams and embeddings.

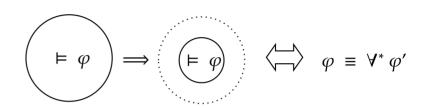
- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.



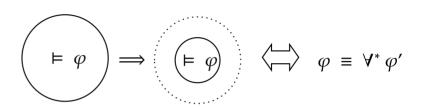
- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.
- **3.** Failure of Łoś-Tarski in the finite.



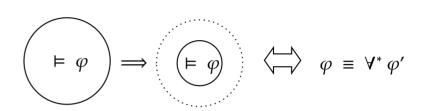
- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.
- 3. Failure of Łoś-Tarski in the finite.
- **4.** Discussion of related preservation theorems.



- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.
- 3. Failure of Łoś-Tarski in the finite.
- **4.** Discussion of related preservation theorems.
- **5.** Robinson's Joint-Consistency (without a proof).



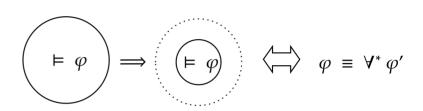
- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.
- **3.** Failure of Łoś-Tarski in the finite.
- **4.** Discussion of related preservation theorems.
- **5.** Robinson's Joint-Consistency (without a proof).
- **6.** Craig Interpolation Property (CIP).



$$\left(\varphi(\chi)\psi\right) sig(\chi) \subseteq sig(\varphi) \cap sig(\psi)$$

$$\varphi \models \psi \implies \exists \chi \ \varphi \models \chi \models \psi$$

- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.
- **3.** Failure of Łoś-Tarski in the finite.
- **4.** Discussion of related preservation theorems.
- **5.** Robinson's Joint-Consistency (without a proof).
- **6.** Craig Interpolation Property (CIP).
- 7. Projective Beth's Definability Property (PBDP).

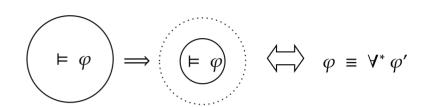


$$\varphi(\chi)\psi \operatorname{sig}(\chi) \subseteq \operatorname{sig}(\varphi) \cap \operatorname{sig}(\psi)$$

$$\varphi \models \psi \implies \exists \chi \ \varphi \models \chi \models \psi$$

Goal: Investigate important properties of FO and see whether they stay true in the finite.

- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.
- 3. Failure of Łoś-Tarski in the finite.
- 4. Discussion of related preservation theorems.
- 5. Robinson's Joint-Consistency (without a proof).
- **6.** Craig Interpolation Property (CIP).
- 7. Projective Beth's Definability Property (PBDP).



Based on Chapters 0.1, 0.2.1–0.2.3, 1.2 by [Otto]

Chapters 1.9–1.11 by [Väänänen]

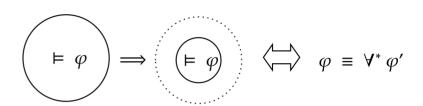
+ recent research papers.

$$\varphi(\chi)\psi sig(\chi) \subseteq sig(\varphi) \cap sig(\psi)$$

$$\varphi \models \psi \implies \exists \chi \ \varphi \models \chi \models \psi$$

Goal: Investigate important properties of FO and see whether they stay true in the finite.

- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.
- **3.** Failure of Łoś-Tarski in the finite.
- **4.** Discussion of related preservation theorems.
- 5. Robinson's Joint-Consistency (without a proof).
- 6. Craig Interpolation Property (CIP).
- 7. Projective Beth's Definability Property (PBDP).



Based on Chapters 0.1, 0.2.1–0.2.3, 1.2 by [Otto]

Chapters 1.9–1.11 by [Väänänen]

+ recent research papers.

$$\varphi(\chi)\psi sig(\chi) \subseteq sig(\varphi) \cap sig(\psi)$$

$$\varphi \models \psi \implies \exists \chi \ \varphi \models \chi \models \psi$$

Feel free to ask questions and interrupt me!

Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

1. Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

1. Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature,

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

fresh constants

make them different

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

3. Append $\bigwedge_{a\neq b\in\tau_A\setminus\tau}a\neq b$ to $\mathcal{T}_{\mathfrak{A}}$.

fresh constants

make them different

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

 $\bigwedge_{\mathtt{a}
eq \mathtt{b} \in au_{A} \setminus au} \mathtt{a}
eq \mathtt{b} \ \mathsf{to} \ \mathcal{T}_{\mathfrak{A}}.$ **3.** Append

fresh constants

make them different

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append $\bigwedge_{a\neq b\in\tau_A\setminus\tau}a\neq b$ to $\mathcal{T}_{\mathfrak{A}}$.
- **4.** For all $n \in \mathbb{N}$.

fresh constants

make them different

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append $\bigwedge_{a\neq b\in\tau_{\Delta}\setminus\tau}a\neq b$ to $\mathcal{T}_{\mathfrak{A}}$.
- **4.** For all $n \in \mathbb{N}$, all n-tuples of constant symb. $\overline{\mathbf{a}}$ from $\tau_A \setminus \tau$,

fresh constants

make them different

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append \wedge a \neq b to $\mathcal{T}_{\mathfrak{A}}$. $a\neq b\in \tau_{\Delta}\setminus \tau$
- **4.** For all $n \in \mathbb{N}$, all n-tuples of constant symb. $\overline{\mathbf{a}}$ from $\tau_A \setminus \tau$, and relational symb. $R \in \tau$ of arity n:

fresh constants

make them different

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append \wedge a \neq b to $\mathcal{T}_{\mathfrak{A}}$. $a\neq b\in \tau_{\Delta}\setminus \tau$
- **4.** For all $n \in \mathbb{N}$, all n-tuples of constant symb. $\overline{\mathbf{a}}$ from $\tau_A \setminus \tau$, and relational symb. $R \in \tau$ of arity n:

fresh constants

iterate through au

positive facts

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append $\bigwedge_{a\neq b\in\tau_{\Delta}\setminus\tau}a\neq b$ to $\mathcal{T}_{\mathfrak{A}}$.
- **4.** For all $n \in \mathbb{N}$, all n-tuples of constant symb. $\overline{\mathbf{a}}$ from $\tau_A \setminus \tau$, and relational symb. $R \in \tau$ of arity n:
- append $R(\overline{a})$ to $\mathcal{T}_{\mathfrak{A}}$ iff the corresponding *n*-tuple belongs to $R^{\mathfrak{A}}$.

fresh constants

make them different

iterate through au

positive facts

Copposite of the coppos

Algebraic Diagrams and Embeddings

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append $\bigwedge_{a\neq b\in\tau_{\Delta}\setminus\tau}a\neq b$ to $\mathcal{T}_{\mathfrak{A}}$.
- **4.** For all $n \in \mathbb{N}$, all n-tuples of constant symb. $\overline{\mathbf{a}}$ from $\tau_A \setminus \tau$, and relational symb. $R \in \tau$ of arity n:
- append $R(\overline{a})$ to $\mathcal{T}_{\mathfrak{A}}$ iff the corresponding *n*-tuple belongs to $R^{\mathfrak{A}}$.

fresh constants

make them different

iterate through au

negative facts

•

Algebraic Diagrams and Embeddings

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append $\bigwedge_{a\neq b\in\tau_{\Delta}\setminus\tau}a\neq b$ to $\mathcal{T}_{\mathfrak{A}}$.
- **4.** For all $n \in \mathbb{N}$, all n-tuples of constant symb. $\overline{\mathbf{a}}$ from $\tau_A \setminus \tau$, and relational symb. $R \in \tau$ of arity n:
- append $R(\bar{a})$ to $\mathcal{T}_{\mathfrak{A}}$ iff the corresponding *n*-tuple belongs to $R^{\mathfrak{A}}$.
- proceed similarly with $\neg R(\overline{a})$ and *n*-tuples outside $R^{\mathfrak{A}}$.

fresh constants

nt

iterate through au

positive facts

25)

Algebraic Diagrams and Embeddings

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append $\bigwedge_{a\neq b\in \mathcal{T}_A\setminus \mathcal{T}} a\neq b$ to $\mathcal{T}_{\mathfrak{A}}$.
- **4.** For all $n \in \mathbb{N}$, all n-tuples of constant symb. $\overline{\mathbf{a}}$ from $\tau_A \setminus \tau$, and relational symb. $R \in \tau$ of arity n:
- append $R(\bar{a})$ to $\mathcal{T}_{\mathfrak{A}}$ iff the corresponding *n*-tuple belongs to $R^{\mathfrak{A}}$.
- proceed similarly with $\neg R(\overline{a})$ and *n*-tuples outside $R^{\mathfrak{A}}$.
- **5.** Close $\mathcal{T}_{\mathfrak{A}}$ under \wedge, \vee . We denote it $\mathsf{D}(\mathfrak{A})$ and call it the algebraic diagram of \mathfrak{A} .

fresh constants

make them different

positive facts

negative facts

Sold of the second of the seco

Algebraic Diagrams and Embeddings

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A}$ + the interpretation of each a as the corresponding $a \in A$.

- **3.** Append $\bigwedge_{a\neq b\in \mathcal{T}_A\setminus \mathcal{T}} a\neq b$ to $\mathcal{T}_{\mathfrak{A}}$.
- **4.** For all $n \in \mathbb{N}$, all n-tuples of constant symb. $\overline{\mathbf{a}}$ from $\tau_A \setminus \tau$, and relational symb. $R \in \tau$ of arity n:
- append $R(\bar{a})$ to $\mathcal{T}_{\mathfrak{A}}$ iff the corresponding *n*-tuple belongs to $R^{\mathfrak{A}}$.
- proceed similarly with $\neg R(\overline{a})$ and *n*-tuples outside $R^{\mathfrak{A}}$.
- **5.** Close $\mathcal{T}_{\mathfrak{A}}$ under \wedge, \vee . We denote it $D(\mathfrak{A})$ and call it the algebraic diagram of \mathfrak{A} .

Alternative definition: $\mathsf{D}(\mathfrak{A}) := \big\{ \varphi \in \mathsf{FO}[au_A] \mid \mathfrak{A}_A \models \varphi, \ \varphi \text{ is quantifier free } \big\}$

make them different

iterate through au

negative facts

Common theme: Formulae having certain properties are precisely these of a certain fragment of FO

Common theme: Formulae having certain properties are precisely these of a certain fragment of FO

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

 $^{^{\}it b}({\it possibly negated})$ atomic symbols + \wedge , \vee and \forall

Common theme: Formulae having certain properties are precisely these of a certain fragment of FO

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

 $^{^{}b}$ (possibly negated) atomic symbols $+ \land$, \lor and \forall

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

Common theme: Formulae having certain properties are precisely these of a certain fragment of FO

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures a iff it is equivalent to a universal b formula.

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

• Finitary analogous of Łoś-Tarski fails in the finite, c.f. [Tait 1933].

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

Preservation Theorems

Common theme: Formulae having certain properties are precisely these of a certain fragment of FO

Theorem (Łoś-Tarski 1954)

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

- Finitary analogous of Łoś-Tarski fails in the finite, c.f. [Tait 1933].
- Finitary generalisations of Łoś-Tarski by Abhisekh Sankaran [MFCS 2014].

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

Preservation Theorems

Common theme: Formulae having certain properties are precisely these of a certain fragment of FO

Theorem (Łoś-Tarski 1954)

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

- Finitary analogous of Łoś-Tarski fails in the finite, c.f. [Tait 1933].
- Finitary generalisations of Łoś-Tarski by Abhisekh Sankaran [MFCS 2014].
- There are $\mathcal{L} \subseteq \mathsf{FO}$ with Łoś-Tarski (also in the finite), e.g. the Guarded Neg. Frag. [B.B.tC. 2018]

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

Preservation Theorems

Common theme: Formulae having certain properties are precisely these of a certain fragment of FO

Theorem (Łoś-Tarski 1954)

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

- Finitary analogous of Łoś-Tarski fails in the finite, c.f. [Tait 1933].
- Finitary generalisations of Łoś-Tarski by Abhisekh Sankaran [MFCS 2014].
- There are $\mathcal{L} \subseteq \mathsf{FO}$ with Łoś-Tarski (also in the finite), e.g. the Guarded Neg. Frag. [B.B.tC. 2018]
- ullet Open problem: Is there a non-trivial $\mathcal{L}\subseteq\mathsf{FO}$ (without equality) without Łoś-Tarski? [B. 2022]

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

Theorem (Łoś-Tarski 1954)

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

 $^{^{}b}(\text{possibly negated}) \text{ atomic symbols } + \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures,

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

 $^{^{}b}$ (possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures,

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

 $^{^{}b}$ (possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

 $^{^{}b}$ (possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

$$\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}.$$

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

 $^{^{}b}(\text{possibly negated})$ atomic symbols + \wedge , \vee and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

$$\Psi := \big\{\psi \mid \varphi \models \psi, \psi \text{ is universal}\big\}.$$

Note that $\varphi \models \Psi$.

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

 $^{^{}b}$ (possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

$$\Psi := \big\{\psi \mid \varphi \models \psi, \psi \text{ is universal}\big\}.$$

Note that $\varphi \models \Psi$. It suffices to show that $\Psi \models \varphi$. Why?

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

$$\Psi := \big\{\psi \mid \varphi \models \psi, \psi \text{ is universal}\big\}.$$

Note that $\varphi \models \Psi$. It suffices to show that $\Psi \models \varphi$. Why?

collect universal consequences

compactness

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

 $^{^{}b}$ (possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

$$\Psi := \big\{\psi \mid \varphi \models \psi, \psi \text{ is universal}\big\}.$$

Note that $\varphi \models \Psi$. It suffices to show that $\Psi \models \varphi$. Why?

By compactness there would be

collect universal consequences

compactness

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

^b(possibly negated) atomic symbols $+ \land$, \lor and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

$$\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}.$$

Note that $\varphi \models \Psi$. It suffices to show that $\Psi \models \varphi$. Why?

By compactness there would be a finite subset $\Psi_0 \subseteq_{\text{fin}} \Psi$ such that $\Psi_0 \models \varphi$.

collect universal consequences

compactness

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

 $^{^{}b}(\text{possibly negated})$ atomic symbols + \wedge , \vee and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

$$\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}.$$

Note that $\varphi \models \Psi$. It suffices to show that $\Psi \models \varphi$. Why?

By compactness there would be a finite subset $\Psi_0 \subseteq_{\text{fin}} \Psi$ such that $\Psi_0 \models \varphi$.

collect universal consequences

compactness

universal formulae are closed under \wedge

ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$

 $^{^{}b}(\text{possibly negated})$ atomic symbols + \wedge , \vee and \forall

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction.

Assume that φ is preserved under substructures, and consider the set

$$\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}.$$

Note that $\varphi \models \Psi$. It suffices to show that $\Psi \models \varphi$. Why?

By compactness there would be a finite subset $\Psi_0 \subseteq_{\text{fin}} \Psi$ such that $\Psi_0 \models \varphi$.

But then $\bigwedge_{\psi \in \Psi_0} \psi$ is the desired universal formula equivalent to φ .

collect universal consequences

compactness

universal formulae are closed under \(\)

ai.e. $\mathfrak{A}\models\varphi$ and $\mathfrak{B}\subseteq\mathfrak{A}$ then $\mathfrak{B}\models\varphi$

 $^{^{}b}$ (possibly negated) atomic symbols $+ \land$, \lor and \forall

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$.

Recall that: φ is preserved under substructures, $\Psi := \{\psi \mid \varphi \models \psi, \psi \text{ is universal}\}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure. Indeed, as φ is preserved under substructures,

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such B?

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such 3?

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds,

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} D(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D_0} \psi(\overline{a})$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} D(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D_0} \psi(\overline{a})$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} D(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D_0} \psi(\overline{a})$.

But as diagrams are closed under conjunction, we get a

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Note that φ does not use extra constants from τ_A .

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Note that φ does not use extra constants from τ_A .

Strengthen $\varphi \models \neg \xi(\overline{\mathbf{a}})$ and use Ψ

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Note that φ does not use extra constants from τ_A . Thus actually $\varphi \models \forall \overline{x} \ \neg \xi(\overline{x})$ holds.

Strengthen $\varphi \models \neg \xi(\overline{a})$ and use Ψ .

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Note that φ does not use extra constants from τ_A . Thus actually $\varphi \models \forall \overline{x} \ \neg \xi(\overline{x})$ holds.

As $\forall \overline{x} \ \neg \xi(\overline{x})$ is universal and follows from φ , we know that

Strengthen $\varphi \models \neg \xi(\overline{\mathbf{a}})$ and use Ψ .

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Note that φ does not use extra constants from τ_A . Thus actually $\varphi \models \forall \overline{x} \ \neg \xi(\overline{x})$ holds.

As $\forall \overline{x} \ \neg \xi(\overline{x})$ is universal and follows from φ , we know that $\forall \overline{x} \ \neg \xi(\overline{x}) \in \Psi$.

Strengthen $\varphi \models \neg \xi(\overline{\mathbf{a}})$ and use Ψ .

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Note that φ does not use extra constants from τ_A . Thus actually $\varphi \models \forall \overline{x} \ \neg \xi(\overline{x})$ holds.

As $\forall \overline{x} \ \neg \xi(\overline{x})$ is universal and follows from φ , we know that $\forall \overline{x} \ \neg \xi(\overline{x}) \in \Psi$.

From $\xi(\overline{a}) \in D(\mathfrak{A})$ we infer $\mathfrak{A} \models \exists \overline{x} \xi(\overline{x})$.

Strengthen $\varphi \models \neg \xi(\overline{\mathbf{a}})$ and use Ψ .

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure.

Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$.

How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable!

Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \models \neg D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$.

By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathtt{a}}) \in D_0} \psi(\overline{\mathtt{a}})$.

But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$.

Note that φ does not use extra constants from τ_A . Thus actually $\varphi \models \forall \overline{x} \ \neg \xi(\overline{x})$ holds.

As $\forall \overline{x} \ \neg \xi(\overline{x})$ is universal and follows from φ , we know that $\forall \overline{x} \ \neg \xi(\overline{x}) \in \Psi$.

From $\xi(\overline{a}) \in D(\mathfrak{A})$ we infer $\mathfrak{A} \models \exists \overline{x} \xi(\overline{x})$. A contradiction with $\mathfrak{A} \models \Psi$. \square

Strengthen $\varphi \models \neg \xi(\overline{\mathbf{a}})$ and use Ψ

 $def of \models$

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \text{Next}^{(2)}, \text{P}^{(1)}}.$

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = \{\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}\}$. Let φ_0 be a universal stating that

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = \{\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}\}$. Let φ_0 be a universal stating that

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = \{\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}\}$. Let φ_0 be a universal stating that

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$, then Next^{\mathfrak{A}} is

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$.

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Observation (The set of finite models of φ is closed under substructures.)

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Observation (The set of finite models of φ is closed under substructures.)

Take a finite $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$.

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = \{\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}\}$. Let φ_0 be a universal stating that

 $\mathfrak{A} \models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}$, $\max^{\mathfrak{A}}$, and $\operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}$.

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then Next^{\mathfrak{A}} is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Observation (The set of finite models of φ is closed under substructures.)

Take a finite $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$.

universals are preserved under ⊆

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = \{\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}\}$. Let φ_0 be a universal stating that

 $\mathfrak{A} \models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}$, $\max^{\mathfrak{A}}$, and $\operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}$.

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then Next^{\mathfrak{A}} is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Observation (The set of finite models of φ is closed under substructures.)

Take a finite $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$. Observe that $\mathfrak{B} \models \varphi_0$ (because φ_0 is universal).

universals are preserved under ⊂

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Observation (The set of finite models of φ is closed under substructures.)

Take a finite $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$. Observe that $\mathfrak{B} \models \varphi_0$ (because φ_0 is universal). If $\mathfrak{B} \not\models \varphi_1$ we are done.

universals are preserved under \subseteq

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Observation (The set of finite models of φ is closed under substructures.)

Take a finite $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$. Observe that $\mathfrak{B} \models \varphi_0$ (because φ_0 is universal). If $\mathfrak{B} \not\models \varphi_1$ we are done.

If $\mathfrak{B} \models \varphi_1$ then

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \mathrm{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Observation (The set of finite models of φ is closed under substructures.)

Take a finite $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$. Observe that $\mathfrak{B} \models \varphi_0$ (because φ_0 is universal). If $\mathfrak{B} \not\models \varphi_1$ we are done.

If $\mathfrak{B} \models \varphi_1$ then

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = {\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}}$. Let φ_0 be a universal stating that

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

Moreover, take $\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)).$

Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \ P(x))$.

Observation (The set of finite models of φ is closed under substructures.)

Take a finite $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$. Observe that $\mathfrak{B} \models \varphi_0$ (because φ_0 is universal). If $\mathfrak{B} \not\models \varphi_1$ we are done.

If $\mathfrak{B} \models \varphi_1$ then $\mathfrak{A} = \mathfrak{B}$, concluding $\mathfrak{B} \models \varphi$. \square

universals are preserved under \subseteq finiteness

 $\mathfrak{A} \models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}$, $\max^{\mathfrak{A}}$, and $\operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}$.

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

 $\mathfrak{A} \models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}$, $\max^{\mathfrak{A}}$, and $\operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}$.

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.

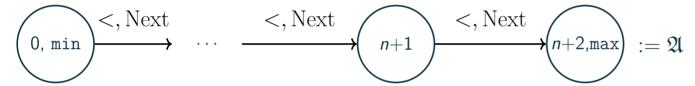
contradiction

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



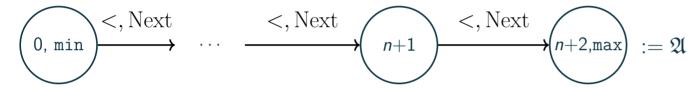
contradiction

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \land \varphi_1$.

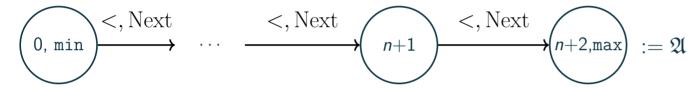
contradiction

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



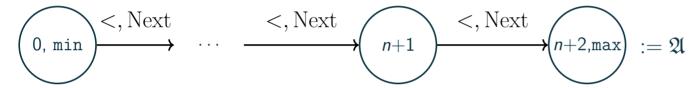
By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$.

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



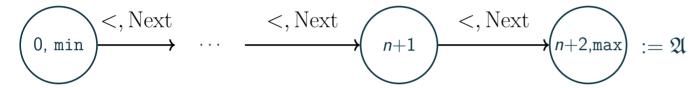
By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



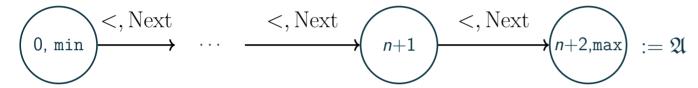
By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

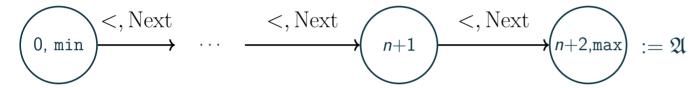
Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$.

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

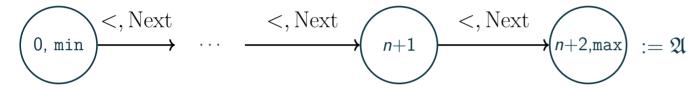
Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$.

 $\mathfrak{A} \models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

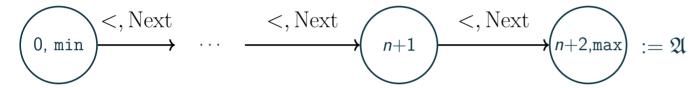
Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A},\emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} .

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A},\emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} .

when $P^{\mathfrak{A}} = \emptyset$

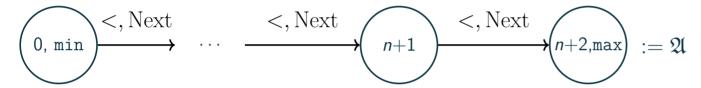
select suitable b and make it satisfy P

 $\mathfrak{A}\models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}$, $\max^{\mathfrak{A}}$, and $\mathrm{Next}^{\mathfrak{A}}\subseteq <^{\mathfrak{A}}$.

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A},\emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} .

Take b to be different from \overline{a} , $\max^{\mathfrak{A}}$ and $\min^{\mathfrak{A}}$ (we have enough elements!).

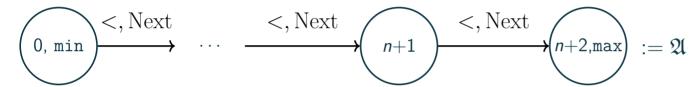
select suitable b and make it satisfy P

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A},\emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} .

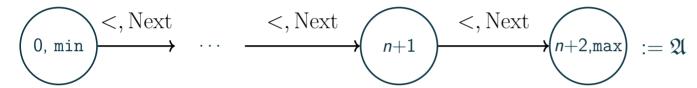
Take b to be different from \overline{a} , $\max^{\mathfrak{A}}$ and $\min^{\mathfrak{A}}$ (we have enough elements!).

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \land \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A},\emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} .

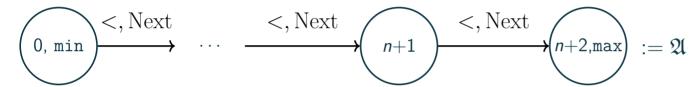
Take b to be different from \overline{a} , $\max^{\mathfrak{A}}$ and $\min^{\mathfrak{A}}$ (we have enough elements!). Then $(\mathfrak{A}, \{b\}) \models \varphi$.

 $\mathfrak{A}\models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}$, $\max^{\mathfrak{A}}$, and $\mathrm{Next}^{\mathfrak{A}}\subseteq <^{\mathfrak{A}}$.

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A},\emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} .

Take b to be different from \overline{a} , $\max^{\mathfrak{A}}$ and $\min^{\mathfrak{A}}$ (we have enough elements!). Then $(\mathfrak{A}, \{b\}) \models \varphi$.

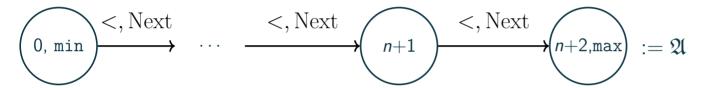
But $(\mathfrak{A}, \{b\}) \models \neg \chi(\overline{\mathbf{a}})$ $(\mathfrak{A} \mid \overline{\mathbf{a}} \text{ was not touched!}).$

 $\mathfrak{A}\models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}$, $\max^{\mathfrak{A}}$, and $\mathrm{Next}^{\mathfrak{A}}\subseteq <^{\mathfrak{A}}$.

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \qquad \text{and} \qquad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \ \mathrm{P}(x)).$$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.



By construction $\mathfrak{A} \models \varphi_0 \wedge \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A},\emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} .

Take b to be different from \overline{a} , $\max^{\mathfrak{A}}$ and $\min^{\mathfrak{A}}$ (we have enough elements!). Then $(\mathfrak{A}, \{b\}) \models \varphi$.

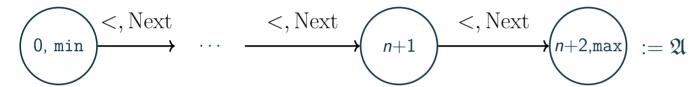
But $(\mathfrak{A},\{b\}) \models \neg \chi(\overline{\mathtt{a}})$ $(\mathfrak{A} \mid \overline{\mathtt{a}} \text{ was not touched!})$. But it means $(\mathfrak{A},\{b\}) \not\models \forall \overline{\mathtt{x}} \ \chi(\overline{\mathtt{x}}) \equiv \varphi$.

 $\mathfrak{A}\models \varphi_0 \text{ iff } <^{\mathfrak{A}} \text{ is a strict linear order with the minimal/maximal elements } \min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \text{ and } \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}.$

$$\varphi_1 := \forall x \forall y \ \mathrm{Next}(x,y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y))$$
 and $\varphi := \varphi_0 \land (\varphi_1 \rightarrow \exists x \ \mathrm{P}(x)).$

Lemma (φ is not equivalent (in the finite) to any universal formula.)

Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with n variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below.

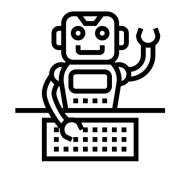


By construction $\mathfrak{A} \models \varphi_0 \land \varphi_1$. Moreover, observe that $(\mathfrak{A}, P^{\mathfrak{A}}) \models \varphi$ iff $P^{\mathfrak{A}} \neq \emptyset$.

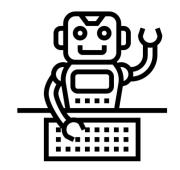
Then $(\mathfrak{A},\emptyset) \not\models \varphi$ implies $(\mathfrak{A},\emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A},\emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} .

Take b to be different from \overline{a} , $\max^{\mathfrak{A}}$ and $\min^{\mathfrak{A}}$ (we have enough elements!). Then $(\mathfrak{A}, \{b\}) \models \varphi$.

But $(\mathfrak{A},\{b\}) \models \neg \chi(\overline{\mathbf{a}})$ $(\mathfrak{A} \mid \overline{\mathbf{a}} \text{ was not touched!})$. But it means $(\mathfrak{A},\{b\}) \not\models \forall \overline{\mathbf{x}} \ \chi(\overline{\mathbf{x}}) \equiv \varphi$. A contradiction! contradiction def of P when $P^{\mathfrak{A}} = \emptyset$ witness select suitable b and make it satisfy P def of φ

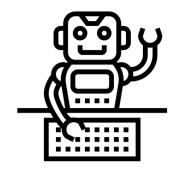


Input: First-Order φ closed under substructures (in the general setting).



Input: First-Order φ closed under substructures (in the general setting).

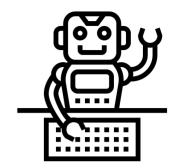
Output: the equivalent universal formula.



Input: First-Order φ closed under substructures (in the general setting).

Output: the equivalent universal formula.

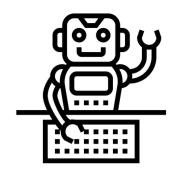
Is this problem solvable?:



Input: First-Order φ closed under substructures (in the general setting).

Output: the equivalent universal formula.

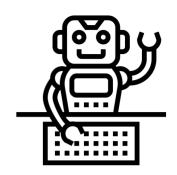
Is this problem solvable?: YES! Ask Gödel for help!



Input: First-Order φ closed under substructures (in the general setting).

Output: the equivalent universal formula.

Is this problem solvable?: YES! Ask Gödel for help!

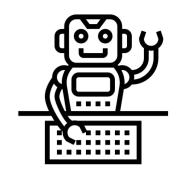


Unfortunately, the finitary analogue is unsolvable. [Chen and Flum 2021]

Input: First-Order φ closed under substructures (in the general setting).

Output: the equivalent universal formula.

Is this problem solvable?: YES! Ask Gödel for help!

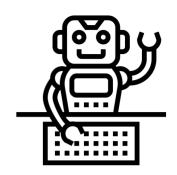


Unfortunately, the finitary analogue is unsolvable. [Chen and Flum 2021]

Input: First-Order φ closed under substructures (in the general setting).

Output: the equivalent universal formula.

Is this problem solvable?: YES! Ask Gödel for help!



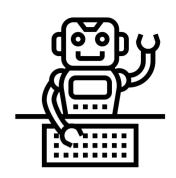
Unfortunately, the finitary analogue is unsolvable. [Chen and Flum 2021]

Other preservation theorems?

Input: First-Order φ closed under substructures (in the general setting).

Output: the equivalent universal formula.

Is this problem solvable?: YES! Ask Gödel for help!



Unfortunately, the finitary analogue is unsolvable. [Chen and Flum 2021]

Other preservation theorems?

Theorem (Lyndon–Tarski 1956, Rossmann 2005)

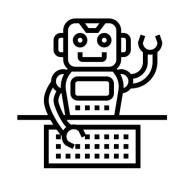
An FO formula is preserved under homomorphic images^a iff it is equivalent to a positive existential^b formula.

^ai.e. $\mathfrak{A} \models \varphi$ and there is a homomorphism from \mathfrak{A} to \mathfrak{B} then $\mathfrak{B} \models \varphi$ ^batomic symbols $+ \land$. \lor and \exists

Input: First-Order φ closed under substructures (in the general setting).

Output: the equivalent universal formula.

Is this problem solvable?: YES! Ask Gödel for help!



Unfortunately, the finitary analogue is unsolvable. [Chen and Flum 2021]

Other preservation theorems?

Theorem (Lyndon–Tarski 1956, Rossmann 2005)

An FO formula is preserved under homomorphic images^a iff it is equivalent to a positive existential^b formula.

• A notable example of classical MT theorem that works in the finite, c.f. [Rossmann's paper]

 $[^]a$ i.e. $\mathfrak{A}\models\varphi$ and there is a homomorphism from \mathfrak{A} to \mathfrak{B} then $\mathfrak{B}\models\varphi$ b atomic symbols + \wedge , \vee and \exists

Copyright of used icons and pictures

- 1. Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
- 2. Idea icon created by Vectors Market Flaticon flaticon.com/free-icons/idea.
- 3. Head icons created by Eucalyp Flaticon flaticon.com/free-icons/head
- **4.** Question mark icons created by Freepik Flaticon flaticon.com/free-icons/question-mark
- **5.** Warning icon created by Freepik Flaticon flaticon.com/free-icons/warning.
- 6. Robot icon created by Eucalyp Flaticon flaticon.com/free-icons/robot.
- 7. Picture of Jerzy Łoś from [Wikipedia]
- 8. Picture of Tarski from Oberwolfach Photo Collection [HERE]
- **9.** Picture of Rossman from his [webpage].